MATH 113: DISCRETE STRUCTURES WEDNESDAY WEEK 13 HANDOUT

Problem 1. Suppose *G* is planar with *k* connected components. Prove that

$$v - e + f = k + 1.$$

In the reading, you learned that a connected planar graph on v vertices has at most 3v - 6 edges. By the Euler formula, we thus know that in a planar graph

$$-e + f = 2$$
$$e \ge 3v - 6.$$

The proof that $e \ge 3v - 6$ proceeds by arguing that every face has at least 3 edges. We can improve this bound if we know something about the *girth* of the graph.

Definition 2. The girth g of a graph G is the length of the smallest cycle in G.

v

Problem 3. Prove that in a planar graph of girth g, $f \le 2e/g$. Combine this with Euler's formula to prove that

$$e \le \frac{g}{g-2}(v-2).$$

Note that g/(g-2) is a decreasing function of g for g > 2, and in fact $g \ge 3$ for all graphs. We conclude that this inequality is least stringent when g = 3, in which case we recover $e \le 3v - 6$. The encompassing moral is that planar graphs have relatively few edges!

Problem 4. Prove that every planar graph contains a vertex of degree ≤ 5 . (*Hint*: Proceed by contradiction and use vertex degrees to count edges. You should ultimately contradict the known inequality $e \leq 3v - 6$.)

Problem 5. Is there a planar graph in which every vertex has degree 5? (*Hint*: Get Platonic.)

The text proves that K_5 is not planar, and you will prove in your homework that $K_{3,3}$ is not planar. Any student of graph theory should be aware of the following theorem (which we won't have time to prove):

Theorem 6 (Kuratowski). Every non-planar graph contains a subgraph which is a subdivision¹ of K_5 or $K_{3,3}$.

A (good) *coloring* of a graph G = (V, E) by color set C is a function $c : C \to V$ that assigns a color to each vertex such that c(v) = c(w) implies $\{v, w\} \notin E$. In other words, vertices connected by an edge don't have the same color. A graph is called *n*-colorable if it has a good coloring with $\leq n$ colors.

Problem 7. Prove (by induction?) that every planar graph is 6-colorable.

The famous Four Color Theorem says that every planar graph is in fact 4-colorable, but the proof is not easy!

¹A graph *H* is a subdivision of *G* if it can be obtained by turning some of *G*'s edges into paths.