MATH 113: DISCRETE STRUCTURES FRIDAY WEEK 13 HANDOUT

A polyhedron is a subset of \mathbb{R}^{3} built from flat polygonal faces joined along their edges and vertices. A polyhedron P is convex if for any two points $x, y \in P$, the line segment joining x and y remains in P. A convex polyhedron is regular if all its faces are regular polygons and the same number of faces meet at each vertex. A convex regular polyhedron is called a Platonic solid.

Theorem 1. There are exactly five Platonic solids: the regular tetrahedron, cube, octahedron, dodecahedron, and icosahedron.

We can use Euler's formula for planar graphs to prove this theorem! But first, we need a way to extract a planar graph from a convex polyhedron. The idea is to place a light just above one of the faces of the polyhedron and record the shadow of the polyhedron. For instance, here is the graph of the dodecahedron:

Since this graph is planar, we know that if a convex polyhedron has v vertices, e edges, and f faces, then $v-e+f=2$.

Outline Proof of Theorem 1. With your group, fill in the details in this outline in order to prove the theorem. Throughout, suppose that P is a Platonic solid with v vertices, e edges, and f faces.
(1) Suppose that each face of P is a regular triangle. We aim to show that P must be the regular tetrahedron, octahedron, or icosahedron.
(a) Show that $e=3 f / 2$.
(b) Use Euler's formula to conclude that $v=2+f / 2$.
(c) Let d denote the degree of each vertex. Show that $e=d v / 2$.
(d) Combine these observations to conclude that

$$
d=\frac{6 f}{4+f} .
$$

(e) Observe that $6 f /(4+f)$ is an increasing function with horizontal asymptote $d=6$. Conclude that $d=3,4$, or 5 , corresponding to the tetrahedron, octahedron, or icosahedron, respectively.
(2) Suppose that each face of P is a square. We aim to show that P must be a cube.
(a) Show that $e=2 f$.
(b) Show that $v=2+f$.
(c) Show that $e=d(2+f) / 2$ where d is the degree of each vertex.
(d) Combine these observations to conclude that

$$
d=\frac{8 f}{4+2 f}
$$

(e) The function $8 f /(4+2 f)$ is increasing with horizontal asymptote $d=4$. Conclude that $d=3$, and that this corresponds to a cube.
(3) Suppose that each face of P is a regular pentagon. We aim to show that P must be the regular dodecahedron.
(a) Mimic the steps from the previous two parts to prove that

$$
d=\frac{10 f}{4+3 f} .
$$

(b) This function is increasing with horizontal asymptote $d=10 / 3$. Conclude that $d=3$, and that this corresponds to a dodecahedron.
(4) Suppose that each face of P is a regular n-gon for $n \geq 6$. We aim to show that no such P exists.
(a) As above, show that

$$
d=\frac{2 n f}{4+(n-2) f} .
$$

(b) This function is increasing with horizontal asymptote $d=2 n /(n-2) \leq 3$. Hence $d<3$, which is absurd, so no such P exists.

