MATH 113: DISCRETE STRUCTURES FRIDAY WEEK 12 HANDOUT

Question 1. Solve the system of congruences

$$
\begin{array}{ll}
2 x \equiv 5 & (\bmod 7) \\
3 x \equiv 4 & (\bmod 8) .
\end{array}
$$

Problem 2. What is the remainder when you divide 135^{3} by 1728 ? (Hint: $1728=64 \cdot 27$.)
Recall that the Fermat-Euler Theorem is a generalization of Fermat's Little Theorem which states that

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

when $\operatorname{gcd}(a, n)=1$. We will prove a special case of this theorem in which n is the product of k distinct primes, $n=p_{1} p_{2} \cdots p_{k}$. In this case, $\phi(n)=\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)$. Let $q_{i}=\phi(n) /\left(p_{i}-1\right)$ for $i=1,2, \ldots, k$. Then

$$
a^{\phi(n)}=\left(a^{p_{i}-1}\right)^{q_{i}} \equiv 1^{q_{i}} \equiv 1 \quad\left(\bmod p_{i}\right)
$$

for all i. We see then that $x=a^{\phi(n)}$ is a simultaneous solution of the congruences

$$
x \equiv 1 \quad\left(\bmod p_{1}\right), x \equiv 1 \quad\left(\bmod p_{2}\right), \ldots, x \equiv 1 \quad\left(\bmod p_{k}\right) .
$$

But $x=1$ is another solution! By Sunzi's theorem, it follows that $a^{\phi(n)} \equiv 1(\bmod n)$.
Problem 3. How can the above argument be extended to the case in which $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ where the p_{i} are distinct primes and $a_{i} \geq 1$?

