MATH 113: DISCRETE STRUCTURES WEDNESDAY WEEK 11 HANDOUT

The greatest common divisor $d=\operatorname{gcd}(a, b)$ of integers a, b is the largest positive integer such that $d \mid a$ and $d \mid b$. We say that a and b are relatively prime when they share no divisors larger than 1, and this is equivalent to $\operatorname{gcd}(a, b)=1$.
Problem 1. Draw a divisor diagram for 84 and 105. Where does the gcd appear in partially ordered set of divisors?

If we know the prime factorizations of a and b, this number is easy to determine. Let $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ be the set of distinct prime divisors of a and b. Then we may write

$$
\begin{aligned}
a & =p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}, \\
b & =p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{k}^{a_{k}}
\end{aligned}
$$

for nonnegative integers a_{i}, b_{i} and

$$
\operatorname{gcd}(a, b)=p_{1}^{\min \left\{a_{1}, b_{1}\right\}} p_{2}^{\min \left\{a_{2}, b_{2}\right\}} \cdots p_{k}^{\min \left\{a_{k}, b_{k}\right\}} .
$$

It is frequently the case, though, that we do not have access to the prime factorizations of integers. In this case, the Euclidean algorithm allows us to determine the greatest common divisor. Let's execute the algorithm with $a=81, b=57$:

$$
\begin{aligned}
81 & =1 \cdot 57+24 \\
57 & =2 \cdot 24+9 \\
24 & =2 \cdot 9+6 \\
9 & =1 \cdot 6+3 \\
6 & =2 \cdot 3+0 .
\end{aligned}
$$

We conclude that the final nonzero remainder, 3 , is the gcd of 81 and 57. Indeed, $81=3^{4}$ and $57=3 \cdot 19$, so this agrees with our first method for determining gcd's.

The Euclidean algorithm can be described formally as follows:

1. Assume $a>b$ are integers (if $a<b$, swap them).
2. Perform long division to express to express $a=q b+r$ where $0 \leq r \leq b-1$.
3. Replace a with b and b with r.
4. If $r \neq 0$, return to step 2 ; else
5. if $r=0$, conclude that the final nonzero remainder is $\operatorname{gcd}(a, b)$.

A generic run of the algorithm then looks like

$$
\begin{aligned}
a & =q_{0} b+r_{1} \\
b & =q_{1} r_{1}+r_{2} \\
r_{1} & =q_{2} r_{2}+r_{3} \\
r_{2} & =q_{3} r_{3}+r_{4} \\
& \vdots \\
r_{n-2} & =q_{n-1} r_{n-1}+r_{n} \\
r_{n-1} & =q_{n} r_{n}+0
\end{aligned}
$$

where $1 \leq r_{k} \leq r_{k-1}$ and we conclude that $r_{n}=\operatorname{gcd}(a, b)$ (since $r_{n+1}=0$).
Problem 2. Suppose an integer x divides integers y and z. Show that for any $k, \ell \in \mathbb{Z}, x \mid k y+\ell z$.
Problem 3. Why does the Euclidean algorithm work? Start at the end of the algorithm and check that $r_{n} \mid r_{n-1}$, then inductively check that $r_{k} \mid r_{k-1}$ for $-1 \leq k \leq n$ where we write $r_{0}=b$ and $r_{-1}=a$ for notational convenience. Conclude that r_{n} divides a and b. Use a similar argument starting at the beginning of the algorithm to show that $\operatorname{gcd}(a, b)$ divides r_{k} for $-1 \leq k \leq n$. Why does this prove that the algorithm produces the gcd.

Problem 4. The Euclidean algorithm gives us a way to dissect a rectangle with integer sides into squares. Run the Euclidean algorithm to find $\operatorname{gcd}(23,13)$. Interpret the first step $(23=1 \cdot 13+10)$ as telling you that $q_{0}=1$-many 10×10 squares fit inside a 23×13 rectangle. Figure out what instructions the rest of the algorithm is giving you and draw a corresponding picture. At the end, your 23×13 rectangle should be partitioned into squares! What is special about this procedure if you start with consecutive Fibonacci numbers $a=F_{n+1}, b=F_{n}$?

Problem 5. Run the Euclidean algorithm when $a=45, b=16$. How is it related to the expression

$$
\frac{45}{16}=2+\frac{1}{1+\frac{1}{4+\frac{1}{3}}} ?
$$

Come up with a general procedure by which the Euclidean algorithm produces continued fraction expressions for rational numbers of the form

$$
\frac{a}{b}=x_{1}+\frac{1}{x_{2}+\frac{1}{x_{3}+\frac{1}{x_{4}+\cdots}}}
$$

where the x_{i} are integers.

