MATH 113: DISCRETE STRUCTURES MONDAY WEEK 10 HANDOUT

For integers a, b, we say that a divides b when an integer m exists such that $b=a m$; in this case we also say that b is a multiple of a and that a is a divisor of b.

Question 1. When does $1 \mid b$? $-1|b ? a| 0 ? a \mid a$?
Problem 2. Suppose that $a \mid b$ and $b \mid c$. Prove that $a \mid c$.
This produces a partial order on \mathbb{N}, visualized in the following diagram.

Question 3. Where should you put 9 in the diagram?
Problem 4. Prove that if $a \mid b$ and $a \mid c$, then $a \mid b+c$ and $a \mid b-c$.
A natural number $p>1$ is prime if its only positive divisors are 1 and p. The fundamental theorem of arithmetic says that every positive integer is a product of primes, and that this factorization is unique up to reordering of the factors. For instance, $6=2 \cdot 3,1728=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3=2^{6} \cdot 3^{3}$ and $825=3 \cdot 5 \cdot 5 \cdot 11=3 \cdot 5^{2} \cdot 11$. This probably seems like old hat, but not every number system has unique factorization! For instance, $\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$ supports addition and multiplication, but

$$
6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5}) .
$$

Number theorists are quite interested in objects like $\mathbb{Z}[\sqrt{-5}]$, but we will limit our study to \mathbb{Z} where the fundamental theorem of arithmetic holds.
Question 5. Where should the prime numbers go in the divisibility diagram?
Problem 6. Prove that a positive integer n is prime if and only if n is not divisible by any prime p with $1<p \leq \sqrt{n}$.

Problem 7. Suppose that a positive integer n has prime factorization $n=p_{1} p_{2} \cdots p_{k}$. How many distinct positive integers are divisors of n ?
Problem 8. The book's proof does a fine job of guaranteeing that prime factorizations of integers are unique, but it elides the proof that prime factorization exist. Give an inductive proof that every positive integer has a prime factorization.

