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Abstract

Designing overlay network topologies that facilitate efficient routing for a given com-
munication demand is an important task in network optimization. This thesis explores
several demand-aware network design problems through the lens of the skip graph,
an overlay network invented by Aspnes and Shah [1]. We show that the Minimum
Expected Path Length (MEPL) problem remains NP-Complete for skip graphs under
various constraints. We also present the interleaved skip graph, a highly connected
skip graph with a striking resemblance to Chord [21], derive its average path length,
and conjecture that it is optimal. Finally, we describe and implement two heuristics
to find the optimal skip graph for a given communication demand, with empirical
evidence that suggest they outperform random sampling.





Introduction

Suppose there are n linguists documenting the rare Reedian language in a village
called Reed College. Each linguist is stationed at a different location on Reed’s
campus. To effectively coordinate their efforts, each linguist would like the ability to
query any other linguist on the campus.

Suppose the linguists communicate with each other by way of cell phone, where
each linguist has a distinct identifier : a cell number. Additionally, each cell phone
only has enough space to store fewer than n other cell numbers1. The network of
linguists can be modeled as a directed graph, where each node represents a linguist
and a directed edge from node u to v represents the fact that linguist u has linguist v’s
cell number in their phone. This network is an example of a peer-to-peer network,
which is a distributed system where each node (linguist, in this case) can both serve
and request resource from other nodes. In particular, if node u desires to contact node
v and does not have v’s cell number stored, u must choose a neighbor (i.e. a linguist
whose cell number u has stored) to pass the message further along to v. Choosing
which neighbor to pass the message to is done via a routing algorithm (protocol).

Now, further suppose that m of the n (m < n) linguists are part of a more
specialized task force dedicated to documenting the even rarer library-dwelling dialect
of the Reedian language. For these m linguists to communicate amongst themselves
using the existing network, the other n − m linguists help relay messages to and
from the m nodes. In this case, the m linguists will form a peer-to-peer overlay
network built atop the existing network of n linguists. The overlay network is a
logical (virtual) network, meaning that the links are abstractions for paths between
nodes in the underlying network (Fig. 1). Every node in the overlay network operates
under the same protocol. If there exists a path between every pair of the m nodes
in the underlying network, then the underlying network can be abstracted away and
the overlay network can be theoretically treated as a standalone undirected network.

Fundamentally, peer-to-peer overlay networks are used to efficiently search for
resources shared amongst several machines, or peers. Many applications rely on over-
lay networks that are built atop the internet and thus require routing algorithms
that scale well – that is, as the number of peers grow, routing between nodes in the
network does not substantially degrade performance. Several peer-to-peer overlay
network schemes have been designed and implemented in the last two decades, some
of the most notable being Chord [21], Pastry [17], Tapestry [23], and CAN [16].

1Typically, each phone will only be able to store O(log n) or O(1) numbers. All logarithms in
this thesis are base 2 unless specified otherwise.
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Figure 1: Underlying network on n = 7 nodes and an overlay network for m = 4.
Each node is labeled by a number between 0 and 6. Note that the links between 3
and 1, between 4 and 6, and between 3 and 6 in the overlay network abstract the
paths between them in the underlying network.
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(a) Node 1’s finger table contains the set of
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(b) Routing on Chord. The route from node
1 to node 12 follows the path 1, 9, 11, 12.

Figure 2: Chord on 16 nodes, C16.

0.1 Chord
To get an idea of how these systems are designed, we briefly overview the structure
and routing of Chord. The reader is encouraged to refer to the original paper [21] for
a summary of insertion, deletion, fault tolerance, and implementation details.

0.1.1 Network Topology
Suppose we have n computers (nodes), each of which we identify with a distinct
integer from V = {0, ..., n− 1}. The basic idea is that Chord arranges these n nodes
in a ring and mandates that each node maintain its own finger table. A specific node’s
finger table contains links to every node whose clockwise distance from itself on the
ring is a power of two (Fig. 2a). More formally, the network topology given by Chord
is a graph Cn = (V,E) with directed edge set2

E =
⋃
u∈V
{(u, (u+ 2i) mod n) | 0 ≤ i ≤ blog2 nc}. (1)

Note that this formulation allows each node to only store Θ(log n) identifiers to other
nodes. In our analogy with linguists, identifiers were cell numbers. In a real com-
puter network, identifiers might typically be IP addresses. Here, we use integers for
simplicity. Further note that links are not always bidirectional. If (u, v) ∈ E, then
(v, u) ∈ E when the clockwise distance between v and u equals the clockwise distance
between u and v, which occurs only when u and v are directly opposite each other in
the ring.

2Formulation borrowed from R. Seth Terashima’s Reed Thesis [22].
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0.1.2 Routing
Routing in Chord proceeds in a greedy fashion. If u wants to send a message to v,
u forwards its message to the node w in its finger table that is closest to v, without
overshooting v. Then w forwards the message in the same manner, and this process
repeats until v is reached (Fig. 2b). At each routing step, the remaining distance to v
is reduced by the largest power of two less than the clockwise ring distance between
the current node and v.

To illustrate, consider the example in Fig. 2b, where node 1 aims to route to node
12. Node 1 first routes to node 9 because 8 is the largest power of two less than 11,
the clockwise ring distance between node 1 and node 12. From there, node 9 routes
to node 11 because 2 is the largest power of two less than 12 − 9 = 3, and finally
node 11 will deliver the message home to node 12, for a total cost of 3 hops. Note
that node 9 should not route to node 13, even though node 13 is as close to node 12
on the ring as node 11 is. This is because overshooting 12 jeopardizes the route: 13
does not have 12 in its finger table.

A stylish way to reason about the route cost from u to v is to think in terms
of binary representations. Recall that routing in Chord requires taking links that
subtract a distinct power of two from the remaining distance. Thus, the number of
‘1’ bits in the binary representation of the clockwise distance between u and v gives
us the total number of hops to route from u to v, because each ‘1’ bit represents a
power of two that contributes to the total distance. For instance, consider routing
from node 1 to node 12 in the previous example. The clockwise distance 11 has a
binary representation of 1011. This means that it takes three distinct powers of two
to sum to 11 (23 + 21 + 20), each of which corresponds to a link taken by the route
from node 1 to node 12. Thus the total number of hops is 3, as we showed. In general,
the worst case routing cost in Chord must be O(log n) hops, as binary representations
are already O(log n) bits to begin with.

We have established that in a size n network, Chord allows each node to only
maintain Θ(log n) links and also allows at most O(log n) hops for routing. Intuitively,
this means that each node only needs to add one more link to its finger table as the
network size doubles! Similarly, the worst case routing cost also only increases by one
as the network size doubles.

BiChord

As an aside, there is a variant of Chord called BiChord [13] that maintains bidirec-
tional links in the Chord graph Cn – that is, if (u, v) ∈ E, then (v, u) ∈ E as well.
Or more precisely, the edge set for BiChord is:

E =
⋃
u∈V

(
{(u, (u+ 2i) mod n) | 0 ≤ i ≤ L} ∪ {((u+ 2i) mod n, u) | 0 ≤ i ≤ L}

)
where L = blog2 nc. The authors of BiChord show that routing in Cn can be made
much more efficient by exploiting the bidirectionality of links. Others have indepen-
dently presented routing algorithms for BiChord that are in fact optimal (of provably
minimal hop distance) [9, 11].
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0.2 Thesis Overview
Overlay networks are often designed with the assumption that each node is equally
likely to communicate with every other node in the network. While this is a nice
simplifying assumption, communication patterns (also called demands) can be highly
non-uniform in many real world networks. As network designers, we gain an upper
hand when we know the demand beforehand, because we can build an overlay network
that is specifically tailored to the heartbeat of that communication pattern. This
thesis explores various facets of this demand-aware network design paradigm through
a specific type of overlay network called the skip graph [1].

Chapter 1 begins with a summary of a simple lookup data structure, the skip list
[15], and an expose of the data structure inspired by the skip list, the skip graph. We
characterize their structure, routing, and representations to serve as the foundation
for the rest of the thesis.

Chapter 2 formulates the minimum expected path length problem (MEPL), which
is a demand-aware node placement problem. In particular, we prove NP-completeness
for MEPL when restricted to various families of skip graphs under different conditions.

Chapter 3 introduces the interleaved skip graph through the lens of the optimal
skip graph problem, which is a demand-aware network design problem. We explore
the interleaved skip graph’s relationship with Chord, derive a closed form for its
average path length, and discuss our conjecture for its optimality.

Chapter 4 describes, implements, and empirically analyzes heuristics for the op-
timal skip graph problem introduced in Chapter 3.

Finally, Chapter 5 concludes with several open problems and future directions
arising from this thesis.

0.2.1 A Nod to Self-Adjusting Networks
As a nod to the origins of this thesis, we will very briefly mention self-adjusting
networks. Before pivoting entirely to demand-aware skip graphs, the first several
months of this thesis were originally devoted to the study of self-adjusting networks,
specifically self-adjusting skip graphs. While demand aware networks are optimized
for a given demand beforehand, self-adjusting networks dynamically adapt to the
communication pattern over time — by incrementally and reactively transforming
their own network topology after serving each communication request. The following
papers may be of interest to those who would like to learn more:

• For a survey on the theoretical and algorithmic challenges in self-adjusting net-
works, see [4].

• For a self-adjusting skip graph, see [12], and for a self-adjusting skip list network,
see [3].

• SplayNet [18], a self-adjusting peer-to-peer overlay network based on splay trees
[20].
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• See [8] for a comprehensive survey on practical developments in self-adjusting
data center networks.



Chapter 1

Skip Lists and Skip Graphs

We begin by describing the form and function of the skip list, a simple lookup data
structure [15] that we use as a stepping stone to understand skip graphs in more
detail [1]. In particular, we overview skip graph structure and routing behavior in
order to contextualize subsequent chapters.

1.1 The Skip List
In this section, we describe the form and function of the skip list in terms sufficient
enough for this thesis. The reader is encouraged to refer to the full generality of the
original paper [15] for more details.

1.1.1 Structure
We treat a skip list as an ordered collection of n+ 2 nodes L = {x−∞, x1, ..., xn, x∞}
each holding a distinct key from {−∞, k1, ..., kn,∞}, where k1 < · · · < kn are non-
negative integers. Each node x ∈ L has a field x.key where x−∞.key = −∞, x∞.key =
∞, and in general, xi.key = ki. The x∞ and x∞ nodes simply act as sentinels to mark
the beginning and end of the skip list.

The nodes of a skip list L are organized as a hierarchy of doubly linked lists
L0 ⊂ L1 ⊂ · · · ⊂ LH where H is the height of L and Lj is the linked list at level
j. In particular, L0 = L with the order of the linked list determined by ascending
order of key, and LH = {x−∞, x∞}. The height of each node xi is xi.height =
max
h≤H
{h | xi ∈ Lh}, that is, the height of the highest linked list that contains xi. This

means x−∞.height = x∞.height = H and for all other nodes, 0 ≤ xi.height < H. We
call x−∞ the head and x∞ the tail of each linked list, and specifically, we let the
head of the entire skip list be L.HEAD = x−∞. See Fig. 1.1 for an example of a skip
list.

Each node xi maintains two arrays to determine the linked list structure: xi.left
and xi.right for the nodes to the left and right of them at each level, respectively.
Specifically, x.left[j] gives the node to the left of x in linked list Lj and x.right[j]
gives the node to the right. Both x∞.right[j] and x−∞.left[j] are assumed to be null,
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L0 −∞ 0 1 2 3 4 5 ∞
L1 −∞ 1 2 4 ∞
L2 −∞ 1 4 ∞
L3 −∞ 4 ∞
L4 −∞ ∞

Figure 1.1: A skip list on n = 6 nodes with the two sentinel nodes −∞,∞, and height
H = 4. In this example, x0.height = 0, x1.height = 2, where x1 has key 1 and x0 has
key 0.

for all valid j. Because the linked lists are doubly linked, x.left[j] = y, if and only if
y.right[j] = x for all nodes x, y. For example, in Fig. 1.1, we have x1.right[2] = x4
and x4.left[1] = x2. Note that x−∞.right[H] = x∞ and x∞.left[H] = x−∞.

Given a node x, we define the rank of x in linked list Lh as the position of x in
Lh. Because each linked list in L contains nodes in ascending order of key, the rank of
a node in Lj is just the position of its key in a sorted order of all the keys in Lj. For
the same reason, we require the following for all 0 ≤ i ≤ n and all 0 ≤ ` ≤ xi.height:

xi.right[`] = xb,

xi.left[`] = xa

where b = min
j
{j | j > i and xj ∈ L`} is the smallest rank larger than i in L`, and

a = max
j
{j | j < i and xj ∈ L`} is the largest rank smaller than i in L`.

1.1.2 Search
Searching for a key in a skip list L proceeds in a top-down fashion. The higher level
linked lists facilitate search by acting as “express lanes” to the queried key at lower
levels. Traversing the linked list at level `, realizing that the current node has key
greater than the target node, and then dropping to search level ` − 1 would mean
that only a sub-list of level ` − 1 needs to be searched (Fig. 1.2). If a queried key k
is not found, the search returns the node with greatest key less than k. A detailed
description of the search algorithm appears in Algorithm 1.

Considering a search path in reverse gives the fact that the expected number of
nodes traversed per linked list is at most 2. Since there are expected O(log n) levels,
the expected search time is O(log n) [1].

1.1.3 Insert
The actual linked list structure of a skip list L is determined probabilistically. In-
serting a node x in a skip list L proceeds as follows. First, we execute a search for
x.key in L, which will fail and instead return the node y with the largest key less than
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1 Function search(L, searchKey):
2 node← L.HEAD
3 `← H
4 while ` > 0 do
5 while node.right[`].key ≤ searchKey do
6 node← node.right[`]
7 if node.key = searchKey then
8 return node
9 `← `− 1

10 return node

Algorithm 1: Search algorithm for skip list L with height H. searchKey is
the queried key.

L0 −∞ 0 1 2 3 4 5 ∞
L1 −∞ 1 2 4 ∞
L2 −∞ 1 4 ∞
L3 −∞ 4 ∞
L4 −∞ ∞

Figure 1.2: Skip list from Fig. 1.1 searches for queried key 5, starting at HEAD (−∞).
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x.key. We then relink L0 so that x is between y and y.right[0]. Next, we repeatedly
flip a fair coin until it first turns up tails – let the number of heads be t. Generally,
we will stop flipping the coin once t exceeds the height H of L, so t ≤ H + 1. Then x
is inserted into all L`, for 0 ≤ ` ≤ t, so x.height = t. If t = H + 1, we initialize a new
linked list Lt and then increment H by 1. The sentinel nodes x−∞, x∞ are inserted
into Lt along with x.

Since insertion proceeds in this way, on average half the nodes from L` will appear
in L`+1. Thus the number of nodes at level ` is expected to be |L`| = 2 + n/2`, with
the exception of |LH | = 2. This indicates that H, the height of the skip list, is
expected to be O(log n).

1.2 Skip Graphs

1.2.1 Structure
Aspnes and Shah [1] invented the skip graph, a distributed data structure and
overlay network that is inspired by the skip list. Being a distributed data structure, it
supports point-to-point search requests, insertion, and deletion in a highly distributed
system. Furthermore, it allows each of these operations to be done in expected
logarithmic time.

Very generally, a skip graph maintains a hierarchy of levels where each level con-
tains several linked lists. Each of the n nodes appears in exactly one linked list per
level, until the final level where every node appears in a length 1 linked list. The
linked list at level ` that a node x belongs to is determined by the first `th symbol
of its membership vector, which is a random word over the alphabet {0, 1}. Level
0 comprises of a single linked list that contains all n nodes in ascending order of key,
and in general, each non-singleton linked list at level ` is a superset of two linked lists
at level `+ 1.

Formal Description: A skip graph is an ordered collection of n nodes G =
{x1, ..., xn} where each node xi has an integer key xi.key = ki, with k1 < · · · < kn as
usual. The rank of a node x in G is its position in the level 0 list – that is, the rank
of xi is i. Each node x additionally maintains the following fields, which dictates the
structure of G:

x.height = h ∈ N
x.id ∈ {0, 1}d

x.key ∈ N
x.left[0, ..., h]

x.right[0, ..., h].

The height h of node x is the number of linked lists in G that x appears in. The
identifier of node x, x.id, is a simplified version of what Aspnes and Shah [1] call
the membership vector. We write w | ` to be the first ` bits of a word w, and we let
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ε be the empty word. Here, x.id is the first h bits of x’s membership vector, as that
is all that needs to be maintained. In particular, let the height of the skip graph G
be H = max

x∈G
{x.height}, that is, the maximum height over all nodes in G.

• For each word w ∈ {0, 1}H , let Gw be the doubly linked list associated with w.

• Gw belongs in level ` of G if and only if |w| = `, where |w| is the length of w.

• For a node x ∈ G, x ∈ Gw if and only if x.id is a prefix of w, written w � x.id

• Gw is sorted in ascending order of key.

• For every pair of nodes x, y in G, we require that x.id 6= y.id, and that if
x.height ≤ y.height, then x.id is not a prefix of y.id. This is to ensure that
every node is eventually contained in a linked list of length one.

This ruleset also guarantees that each node x appears in at most one linked list
per level, as x.id|i returns a single prefix p of length i for all i ≤ |x.id|, determining
that x goes into Gp. Consequently, Gε denotes the level 0 linked list which contains
all n nodes. We will consider G to only contain the linked lists Gw that are nonempty.
For convenience, we will also write G = {Gw} so it is clear as to which variable (in
this case G) is used to index linked lists.

Just as in our formulation of skip lists, each node x maintains two arrays x.left
and x.right for their left and right neighbors at each level, respectively. Specifically,
x.left[j] is the node to the left of x in linked list Gx.id|j and x.right[j] is the node to
the right. If x is the first or last node in a linked list, then its left or right neighbor
in that list will be NULL, respectively. And since we require that each Gw is sorted
in ascending order based on key, it must be that for each node xi,

xi.left[`] = xa

xi.right[`] = xb

where a = max
j
{j < i : xj.id|` = xi.id|`} and b = min

j
{j > i : xj.id|` = xi.id|`}.

That is, a is the smallest rank greater than i in Gz|` and b is the largest rank smaller
than i in Gz|`, where z = x.id. See Fig. 1.3 for example of a skip graph.

Since links are bidirectional, a skip graph determines an undirected graph (i.e. a
network topology) in the traditional sense, where an edge between nodes x and y is
drawn if they are neighbors in some Gw in G (Fig. 1.4). The skip graph is simply
a way of representing this information, so in general we will use G to refer to both
the skip graph representation and the network topology it represents, since they are
equivalent.

Prefix tree representation: A skip graph G can also be represented as a binary
prefix tree. Gε roots the tree, and every Gw has two children Gw0 and Gw1 (Fig. 1.5).
The level of a linked list is then equal to its tree depth, and each of the n nodes in
the system will be ultimately reside in a leaf, which corresponds to a linked list of
length one.
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G00

G01

5 Level 0

Level 1

Level 2
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001

39
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24
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Figure 1.3: Example skip graph G on n = 6 nodes. Identifiers are at the top right of
each node. Note that the height of G is 3, and that every node appears in a singleton
linked list.

5

39

11

001

101

100

01

000 31

24

16

6Level 0
Level 1
Level 2

Figure 1.4: The skip graph in Fig. 1.3 determines a graph. Edge colors only distin-
guish the level in which the connected nodes first appear as neighbors, but have no
other function otherwise.
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5 3911 001 10110001000 3124166

31 001 10110001000 11 3924166 5

101100 113924 501001000 31 166

0 1

0 1 0 1

101100 3924001000 316

0 1 10

Figure 1.5: Skip graph from Fig. 1.3 represented as a binary prefix tree.
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Figure 1.6: Sub-skip graph G0 of skip graph G.

Sub-skip graphs: In Fig. 1.5, note that each child list fully determines another
skip graph (a sub-skip graph) rooted at that child. We will write Gw to denote the
sub-skip graph that only contains the nodes in Gw. The network that Gw represents
is simply the network that G represents but only on the nodes in linked list Gw. For
example, in Fig. 1.3 and Fig. 1.5, G0 = {x6, x16, x31} where here we use xi to be the
node with key i. See Fig. 1.6 for an example.

It is important to keep in mind that a skip graph is still a graph in the sense of
Fig. 1.4; the prefix-tree (Fig. 1.5) and linked list hierarchy (Fig. 1.3) representations
simply present that information in more useful ways.

View as a collection of skip lists: With the prefix tree representation in mind
(Fig. 1.5), notice that tracing a path from any list to any other sublist fully determines
a skip list. A skip graph can thus be thought of as a collection of skip lists that share
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Gε = L0 −∞ 5 6 16 24 39 ∞
G0 = L1 −∞ 6 16 ∞
G00 = L2 −∞ 6 31 ∞
G001 = L3 −∞ 31 ∞

−∞ ∞L4

31

31

Figure 1.7: A skip list obtained from skip graph in Fig. 1.3 by grouping together all
linked lists that contain key 31.

their lower levels. See Fig. 1.7 for an example.
In fact, this observation leads to the following result [1]:

Theorem 1.2.1. Let G be a skip graph with height H. For all z ∈ {0, 1}H such that
Gz is nonempty, the linked lists Gz|0, Gz|1, Gz|2, Gz|3, ... form a skip list.

Proof. We summarize the proof from [1], which performs induction on i, the prefix
length of each Gz|i. For i = 0, Gz|0 = Gε is the bottom-most list containing all nodes.
A node x appears in Gz|i if and only if x.id|i = z|i. Since there are 2 possibilities
for symbol i + 1, Pr[x ∈ Gz|(i+1) | x ∈ Gz|i] = 1/2. Each x appears in Gz|(i+1)
independently of any other x′ ∈ Gz|i, so Gz|0, Gz|1, ... forms a skip list.

We will refer to Lz = Gz|0, Gz|1, Gz|2, Gz|3, ..., Gz|z.height as the skip list restric-
tion of node x with x.id = z. Since each child list determines a sub-skip graph,
Theorem 1.2.1 easily extends to Gz|i, ..., Gz|j for any 0 ≤ i ≤ j . This perspective also
sheds light on each node’s view of the rest of the skip graph. Each node x with id w
will belong in a leaf list in G, which can be thought of as the node at the top level
in its own skip list Gw (e.g. the node holding 5 is the top node of G11 in Fig. 1.5).
This gives a more localized view of a skip graph, as each node x only needs to store
identifiers to their neighbors in each level of G.

1.2.2 Balanced Skip Graphs
We quickly define a special type of skip graph that will be useful.

Definition 1.2.1. A balanced skip graph B on n = 2H nodes is a skip graph where
every node has a unique identifier of length exactly H.

A balanced skip graph on n nodes defines a bijection between the set of H-length
bitstrings and the n nodes. This ensures that every balanced skip graph has height
H = log n, the minimum height across all skip graphs on n nodes.

However, the term “balanced” only refers to the fact that the skip graph has height
log n, which does not correlate with how effective and connected its network topology
is (Example 1.2.1).
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Figure 1.8: Balanced skip graph B (top) and skip graph G (bottom).

Example 1.2.1. Suppose we have a balanced skip graph B and a skip graph G
both on four nodes, as in Fig. 1.8. Note that G determines a more connected network
topology than B even though G has larger height than B. In fact, because the network
determined by G is just the network determined by B with extra edges, the cost to
search from u to v (see Section 1.2.3) for any u, v is less than or equal to the cost to
search from u to v in B.

1.2.3 The search algorithm
We refer the reader to the original paper [1] for a more meticulous treatment of
the skip graph routing algorithm, search 1. In particular, they provide proofs of
correctness and their pseudocode is presented to run in a distributed system. We
present our pseudocode at a higher level by abstracting away the message-passing
protocols.

Because a skip graph G describes an overlay network, we are interested in serving
point-to-point search requests. Given a node pair (u, v) such that u ∈ G, we want to
search from u to v. More specifically, a node u can initiate a search for a key k, which
then returns the node v with key k if found. If such a v is not found, then the search
should return the node with the largest key less than k (if u.key < k) or the node with
the smallest key greater than k (if u.key > k). Node u performs what is essentially a
skip list search starting at u in its skip list restriction Lw, where w = u.id. Because
u initiates the search and not x∞, the search can attempt to follow u’s left pointer if

1They also discuss the skip graph’s ability to perform efficient range queries. A range query is a
powerful operation that returns some set of nodes whose keys lie in a specified range.
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k is less than u.key. Note that once a direction is picked (following u’s left or right
pointer), the search will never traverse a pointer in the opposite direction. A detailed
description of the algorithm appears in Algorithm 2.

1 Function search(G, fromNode, searchKey):
2 u← fromNode
3 `← |u.id|
4 while ` > 0 do
5 while u.right[`].key ≤ searchKey do
6 u← u.right[`]
7 while u.left[`].key ≥ searchKey do
8 u← u.left[`]
9 if u.key = searchKey then

10 return u
11 `← `− 1
12 return u

Algorithm 2: Skip graph search initiated by fromNode. searchKey is the
queried key.

Theorem 1.2.2. In a skip graph G with n nodes, search takes O(log n) time.

Proof. A search initiated by u (w = u.id) at height h in G will follow the same search
path as a search in the skip list formed by Gw|h, ..., Gw|1, Gε if the search started at
u and not x−∞. (Theorem 1.2.1). Because this is just a skip list search, it takes
expected O(log n) time, as we showed in Section 1.1.

Remark 1.2.1. Search is not optimal. Because the search algorithm routes greed-
ily, it does not always follow the shortest path between u and v. To see this, consider
the example in Fig. 1.9. When 0 searches for 3 using the skip graph search algorithm,
it will traverse the path 0, 1, 2, 3. However, the shortest path between 0 and 3 in the
graph is 0, 4, 3.

Remark 1.2.2. Search is not commutative. It is not always the case that
search(u, v) = search(v, u). Again, consider the skip graph in Fig. 1.9. Here
search(3, 0) = 2 since, starting at 3, the search path traverses 1 and then 0. However,
search(0, 3) = 3 since, starting at 0, the search path traverses 1, 2, and then 3.

Remark 1.2.3. Going Forward. To greatly simplify matters, we will refer to both
nodes and keys as their rank in the skip graph. In other words, nodes and keys will
live in the range {0, ..., n− 1}.
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Figure 1.9: The skip graph search path is not always the shortest path. Search is also
not commutative. Left: Prefix tree representation. Right: View as a network.





Chapter 2

The Minimum Expected Path
Length Problem

In this chapter, we establish some useful measures for network efficiency – average
path length, weighted path length, and expected path length. Then we explore some
NP-Complete aspects to the minimum expected path length problem when restricted
to skip graphs.

2.1 Preliminaries
Given a graph G = (V,E), we first define the average path length of G to be the
average length of the shortest paths between every node pair. More formally:

Definition 2.1.1. The average path length of a graph G = (V,E) is

APL(G) = 1
|V |2

∑
(u,v)∈V×V

dG(u, v) (2.1)

where dG(u, v) the cost to route from u to v in G, which we assume is the shortest
path unless specified otherwise.

Example 2.1.1. Computing the average path length for Kn, the complete graph on
n nodes, is simply APL(Kn) = 1

n2
∑

(u,v)∈V×V
1 = n2

n2 = 1. This matches our intuition

– because every node pair is connected by an edge in Kn, the average path length
should be one.

The average path length describes the average number of edges traversed when
routing between two uniformly randomly chosen nodes in a network. Lower aver-
age path length corresponds to lower overall route lengths, which makes it a useful
measure for network efficiency.

However, if we cannot assume that all node pairs are equally likely to communi-
cate, then the average path length may not be a revealing measure of a network’s
efficiency. Some nodes may communicate with other nodes more frequently and thus
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Figure 2.1: Example demand graph on 3 nodes modeling the uniform request distri-
bution.

some paths in the network may be more frequently traversed than others. This sug-
gests that in Definition 2.1.1, the contribution of the term dG(u, v) to the total sum
should be proportional to the frequency that u communicates with v. So instead, if
we are given the distribution that node pairs are sampled from (also called the request
distribution or demand), we can define a similar measure called the weighted path
length:

Definition 2.1.2. The weighted path length of a graph G = (V,E) given a
demand D : V × V → [0, 1], ∑

(u,v)∈V×V
D(u, v) = 1, is

WPL(D,G) =
∑

(u,v)∈V×V
D(u, v)dG(u, v). (2.2)

We will model the demand on node pairs of V = {0, ..., n − 1} as a demand
graph (Fig. 2.1), which we define to be a complete directed graph (with loops) on
V where each edge (u, v) is weighted by D(u, v), the probability of u requesting v,
or equivalently, the demand between u and v.1 Because we allow loops, we allow
distributions where a node can communicate with itself with positive probability.2
Edges with zero weight will be omitted. We will let D denote both demands and
demand graphs interchangeably, with D(u, v) being the probability that u requests v
in both cases.

Example 2.1.2. Given G = Kn and D(u, v) = 1/n2 for all (u, v) (uniform demand),
we compute WPL(D,G) = ∑

(u,v)∈V×V
1
n2 · 1 = n2

n2 = 1. This matches our result in
1Alternatively, a demand could be described by an n×n matrix M , where entry Mu,v = D(u, v).
2This may sound strange, but there are applications where allowing a node to request itself is

not unreasonable. If each node stands for a cluster of computers, loops and non-loops represent
intra-cluster and inter-cluster communication, respectively.
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Example 2.1.1. If the demand describes the uniform distribution, then the weighted
path length of G is precisely the average path length of G, regardless of G.

We can generalize Definition 2.1.2 and introduce what we call an embedding
(also called a labeling or placement function [2]).

Definition 2.1.3. Given a demand graph D = (VD, ED) that defines a request distri-
bution and an undirected, unweighted graph G = (VG, EG) that describes a network
topology, an embedding φ : VD → VG is a bijection that maps the nodes of D onto
the nodes of G.

From the network perspective, the idea behind an embedding is to “assign” to each
node in the network a particular set of communication partners and probabilities of
communicating with those partners, as determined by the demand graph. This is
typically done to minimize some objective, as we do shortly. The complementary
way of looking at this is from the demand graph perspective, where we can think of
the nodes in the demand graph D as “processes” that communicate with each other.
Then the embedding function determines the location of each process in the network
topology determined by G. Now, we define the expected path length:

Definition 2.1.4. Given a demand graph D = (VD, ED) that describes a probabil-
ity distribution on node pairs, an undirected, unweighted graph G = (VG, EG) that
describes a network topology, and an embedding φ : VD → VG, the expected path
length is

EPL(D,G, φ) =
∑

(u,v)∈ED

D(u, v)dG(φ(u), φ(v)). (2.3)

Example 2.1.3. Consider the embedding φ from D to path graph G in Fig. 2.2.
Specifically, φ(w) = a, φ(y) = b, φ(x) = c, φ(z) = d. From Definition 2.1.4, we can
calculate

EPL(D,G, φ) = 1
4dG(φ(w), φ(z)) + 1

4dG(φ(w), φ(y))

+ 1
6dG(φ(y), φ(x)) + 1

3dG(φ(x), φ(w))

= (1/4)(3) + (1/4)(1) + (1/6)(1) + (1/3)(2)
= 1.5.

.

Note that the definition of weighted path length (Definition 2.1.2) implicitly as-
sumes knowledge of the embedding – the processes have already been placed, and
their corresponding locations in the network are known. The only difference in the
definition of expected path length (Definition 2.1.4) is that we make the embedding
explicitly a parameter itself. Further note that even if D is the uniform distribution
in Definition 2.1.4, the expected path length is still precisely the average path length
of G, regardless of G and φ.
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Figure 2.2: An embedding φ from the demand graph D to the path graph G.

2.2 Problem Statement
Given a demand D on the network and a network topology G, it is natural to seek
a node assignment (i.e. an embedding) that minimizes the expected path length. In
other words, we aim to find φ∗ = arg minφ EPL(D,G, φ). The embedding φ∗ corre-
sponds to the most efficient way to configure the network when handed an immutable
topology and request distribution. The decision variant of this problem is as follows.

Problem 2.2.1. The Minimum Expected Path Length Problem (MEPL).
On input 〈D,G, k〉, where D = (VD, ED) is a demand graph, G = (VG, EG) is any
undirected, unweighted graph (|VD| = |VG|), and k is a positive number, does there
exist an embedding φ : VD → VG such that EPL(D,G, φ) ≤ k?

Chen et al. [2] show that MEPL is NP-Complete for general graphs using a re-
duction from k-CLIQUE. They also show that MEPL is NP-Complete in the special
case where G is a 2-dimensional grid graph, using a reduction from the problem of
whether a tree is embeddable in a 2-dimensional grid [5].

What about for the special case where G is a skip graph? We propose two variants
of interest. First, recall Remark 1.2.1 where we showed that the shortest path between
u and v in a skip graph can differ from the path traversed by the search algorithm.
Thus, if S is a skip graph, we write d∗S(u, v) to be the shortest path distance and
dS(u, v) to be the routing cost as determined by the skip graph’s search algorithm.

Problem 2.2.2. Let MEPL-SG* be Problem 2.2.1 restricted to the case where G
is a skip graph and where we use d∗G to compute cost.

Problem 2.2.3. Let MEPL-SG be Problem 2.2.1 restricted to the case where G is
a skip graph and where we use dG to compute cost.
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While MEPL-SG is more faithful to our conception of skip graphs in Section 1.2,
we still pursue MEPL-SG* as it is a conceptually simpler problem.

2.3 Hardness of MEPL-SG and MEPL-SG*

2.3.1 The Minimum Linear Arrangement Problem
We first introduce the minimum linear arrangement (MLA) problem, whose decision
variant is NP-Complete [10]. The MLA problem asks to find an embedding φ from
G onto the path graph such that the cost of its linear arrangement (Eq. (2.4)) is
minimized. Note that for any two nodes u, v (labeled in order of appearance) in a
path graph, |u − v| is the distance between them. And since G is weighted with
non-negative values, normalizing the edge weights helps us think of it as a demand
graph. So Eq. (2.4) mirrors Eq. (2.3), and the connection between MLA and MEPL
seems quite natural. The decision variant of MLA is formalized as follows [19]:

Problem 2.3.1. The Minimum Linear Arrangement Problem (MLA). On
input 〈G,w, k〉 where G = (V,E) is an undirected, connected, weighted graph with
|V | = n and non-negative edge weight function w and k is a positive number, does
there exist a bijection φ : V → {1, ..., n} such that∑

(u,v)∈E
w(u, v)|φ(u)− φ(v)| ≤ k? (2.4)

Example 2.3.1. Consider the star graph on n nodes with unit edge weights. The
only edges in this graph are those with an endpoint at the center vertex r, and so the
minimal linear arrangement is to have r map to the middle (i.e. φ(r) = bn/2c + 1)
and the remaining nodes can be mapped anywhere (Fig. 2.3). In the resulting linear
arrangement, there are two nodes of distance 1 from r, two nodes of distance 2, up
to two nodes of distance bn/2c if n is odd or one node of distance n/2 if n is even.
Using Eq. (2.4), this gives a linear arrangement cost ofbn/2c−1∑

i=0
2(bn/2c − i)

− bn/2c(n mod 2) = bn/2c (bn/2c+ 1)− bn/2c(n mod 2).

2.3.2 Reductions
We first proceed with a helpful lemma that allows us to perform the reduction.

Lemma 2.3.1. There exists a skip graph on n nodes that is isomorphic to a path
graph on n nodes.

Proof. Let L denote the path graph on n nodes. Consider Sε, the level 0 list of a
skip graph S, which contains all n nodes in a linked list. Clearly, Sε forms a path,
and is thus isomorphic to L. To ensure that no additional links are added to S, we
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Figure 2.3: Minimum linear arrangement φ (right) of the star graph on 9 nodes (left),
where every edge has unit weight. Note that φ is a bijection from the nodes of the
star to {1, ..., 9}.

can promote all elements in a contiguous subset of Sε to S0 and all elements in the
complement of that subset (which must also be contiguous) to S1. Then we continue
to do this recursively until all nodes are in a linked list of length 1. This ensures that
every node will only be adjacent to nodes it was already adjacent to in the previous
level, and thus no new links will be added.

Theorem 2.3.2. MEPL-SG* is NP-Complete.

Proof. First, note that MEPL-SG* is in NP because given any problem instance
〈D,G, k〉 and an embedding φ, checking if φ satisfies EPL(D,G, φ) ≤ k can be
done in polynomial time.

Now, given any instance I = 〈G,w, k〉 of MLA, we can transform it into an
instance f(I) = 〈D,L, k′〉 of MEPL-SG* as follows.

• The main idea is that D is the same as G but with 1) directed edges and 2)
normalized edge weights so as to conform to a valid probability distribution.
Formally, let G = (V,E). Let W be the total weight of all the edges in G, so
W = ∑

(u,v)∈E w(u, v). While every (u, v) ∈ E is an undirected edge, we can
interpret E as a directed edge set by randomly choosing either u or v to be the
direction. Then D = (V,E), but with edge weights w(u, v)/W for every edge
(u, v) ∈ E.3

• L is the path graph on |V | nodes, which is also a skip graph due to Lemma 2.3.1.

• k′ = k/W .

Now, we show that MLA accepts I ⇐⇒ MEPL-SG* accepts f(I).
( =⇒ ) Suppose MLA accepts I. Then there exists a bijection φ : V → {1, ..., |V |}

3Note that we can assume that W > 0. The case where W = 0 means that every edge has 0
weight, which is trivially solvable in polynomial time because Eq. (2.4) is always satisfied. Thus the
problem must be hard when W > 0.
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such that ∑
(u,v)∈E

w(u, v)|φ(u)− φ(v)| ≤ k.

Now since L = {1, ..., |V |},

=⇒
∑

(u,v)∈E
w(u, v)d∗L(φ(u), φ(v)) ≤ k

=⇒ 1
W

∑
(u,v)∈E

w(u, v)d∗L(φ(u), φ(v)) ≤ k

W

=⇒
∑

(u,v)∈E

w(u, v)
W

d∗L(φ(u), φ(v)) ≤ k

W

=⇒ EPL(D,L, φ) ≤ k

W
= k′,

so MEPL-SG* accepts f(I).
(⇐=) Suppose MEPL-SG* accepts f(I). Then there exists a bijection φ : V →
{1, ..., |V |} such that

EPL(D,L, φ) ≤ k′

=⇒
∑

(u,v)∈E

w(u, v)
W

d∗L(φ(u), φ(v)) ≤ k

W

=⇒ 1
W

∑
(u,v)∈E

w(u, v)d∗L(φ(u), φ(v)) ≤ k

W

=⇒
∑

(u,v)∈E
w(u, v)|φ(u)− φ(v)| ≤ k.

And so MLA accepts I.

Corollary 2.3.3. MEPL-SG is NP-Complete.

Proof. The proof is identical to Theorem 2.3.2 because the route traced by the skip
graph search algorithm is identical to the shortest path when the skip graph is a path.
In other words, dL = d∗L, so we can substitute d∗L with dL in the proof above.

2.3.3 Variants
Remark 2.3.1. Bipartite demand is NP-Complete. The MLA problem remains
NP-Complete when the input graph G is restricted to bipartite graphs [7]. Therefore
the same reduction in Theorem 2.3.2 can be used to show that the MEPL problem
remains NP-Complete when the demand graph is bipartite.

Remark 2.3.2. Extension to other graph families. The reduction in Theo-
rem 2.3.2 can also be used to show that the general MEPL (Problem 2.2.1), when G
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Figure 2.4: Balanced skip graph construction in proof of Corollary 2.3.4 (left) pro-
duces a path graph, for n = 23 = 8.

is a restricted family of graphs, remains NP-Complete if the path is a special case of the
graph family. It thus follows that MEPL remains NP-Complete when G is restricted
to trees, bounded-degree graphs, and bipartite graphs, for instance. Presumably, this
relationship can in turn be used to show that several other graph families remain
NP-Complete under the MEPL problem.

For example, one application of Remark 2.3.2 is to show NP-Completeness even if
we restrict ourselves to a smaller family of skip graphs.

Problem 2.3.2. Let MEPL-SG-BAL* be Problem 2.2.1 restricted to the case
where G is a balanced skip graph on n = 2k nodes, and we use d∗G to compute cost.
Similarly define MEPL-SG-BAL to be the same problem but where we use dG to
compute cost.

Corollary 2.3.4. MEPL-SG-BAL* and MEPL-SG-BAL are both NP-Complete.

Proof. It suffices to show that there exists a balanced skip graph on n = 2k nodes
that is isomorphic to the path graph on n nodes (Remark 2.3.2). To show this, recall
the proof of Lemma 2.3.1. Starting from Sε which contains all n nodes in increasing
order {0, ..., n− 1}, promote all elements in the contiguous subset {0, ..., n/2− 1} to
S0 and the complement {n/2, ..., n− 1} to S1. Doing this recursively produces a path
graph (Fig. 2.4). Because we partition in exactly half each step, the recursion has
depth log2(n) = k, so every node has an identifier of length k.



Chapter 3

The Optimal Skip Graph Problem

In this chapter, we first formulate the problem of constructing optimal skip graphs for
a given demand. We then enumerate skip graphs to underscore the difficulty of the
problem, and then turn our attention to the interleaved skip graph, where we discuss
its resemblance to Chord and derive a closed form for its average path length. Finally,
we conjecture that the interleaved skip graph has optimal average path length.

3.1 Problem Statement
Another natural question is: given a node set V and demand graph D = (V,ED),
can a skip graph G∗ = (V,EG∗) such that the weighted path length is minimized be
found? More formally, stated as an optimization problem:

Problem 3.1.1. Optimal Skip Graph Problem (OSG). Given a demand D over
the node pairs of V , find a skip graph G∗ = (V,E) such that

G∗ = arg min
G

WPL(D,G), (3.1)

where we use the skip graph routes dG to compute cost within WPL.

The difference between OSG and MEPL (Problem 2.2.1) is that in OSG, the
network topology itself is subject to optimization. Whether this freedom makes OSG
an easier or harder problem than MEPL for certain demands and network topologies
is an open question [4]. If we are optimizing over binary tree networks rather than skip
graphs in Eq. (3.1), then the optimal network can be computed in polynomial time
using dynamic programming [18]. On the other extreme, when we are optimizing
over general trees and D is restricted to the uniform distribution, the problem is
NP-Complete [14].

3.2 Enumerating Skip Graphs
Here we enumerate the number of skip graphs on n nodes, where for this section
we define a skip graph as a valid prefix tree representation and count the number
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0 1

0 1

{0, 1, 2}

Figure 3.1: An example prefix tree layout for n = 3. Each identifier is determined by
a path from the root of the prefix tree to a leaf. Because the number of leaves in a
prefix tree representation is the number of nodes in the skip graph, there are n! ways
to assign the nodes to the leaves.

of such prefix trees 1 We can decouple the enumeration of prefix tree layouts from
the assignment of nodes to identifiers by observing that for each prefix tree layout,
there are n! ways to assign the identifiers determined by the layout to the n nodes
(Fig. 3.1).

The problem becomes one of enumerating the number of prefix tree layouts, which
we can characterize recursively. Let Tn be the number of prefix tree layouts for n nodes
(e.g Fig. 3.1 is one such layout for n = 3 nodes). Then the number of skip graphs on
n nodes is n!Tn, as discussed. To compute Tn, we have

Tn =
n−1∑
i=1

Tn−iTi T1 = 1 (3.2)

because when we choose to allocate i nodes for the left subtree, we automatically
allocate n − i nodes for the right subtree, where i can range from 1 to n − 1. We
multiply Ti by Tn−i because for each left subtree Ti, we can pair with Tn−i different
choices for the right subtree. Now, notice that Tn = Cn−1, where Ck is the kth Catalan
number given by the recurrence

Ck =
k∑
i=0
Ck−iCi, C0 = 1 (3.3)

and has closed form (2k)!
(k+1)!k! . This gives Tn = (2n−2)!

n!(n−1)! , and so the number of skip

1There may be several different prefix tree representations for a given network topology (e.g. the
path graph, as seen in Lemma 2.3.1). So two skip graphs that differ in prefix tree representation
may otherwise have isomorphic network topologies.
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graphs on n nodes is

n!Tn = (2n− 2)!
(n− 1)! (3.4)

Depending on the implementation, an exhaustive search even for small n (n < 20)
may be prohibitive. It remains an interesting question to enumerate the number of
non-isomorphic skip graphs. For example, in Eq. (3.2), we could iterate the sum from
i = 1 to bn/2c to account for the fact that two skip graphs that have mirrored prefix
tree representations are isomorphic – but this only accounts for isomorphisms among
skip graphs with identical prefix tree layouts.

3.3 Interleaved Skip Graphs
In this section, we construct the interleaved skip graph, which is a highly connected
skip graph that we conjecture to have optimal (minimal) average path length.

Definition 3.3.1. The interleaved skip graph on n nodes is a skip graph I = {Iw}
created by the following procedure:

1. Initialize Iε = [0, ..., n− 1] and let w = ε.

2. Promote every odd indexed element in Iw to Iw1 and every even indexed element
to Iw0.

3. Do this recursively for every w until Iw comprises of a single node.

Note that when n is a power of two, the interleaved skip graph is a balanced skip
graph.

Example 3.3.1. Observe the interleaved skip graph on 8 nodes in Fig. 3.2. Starting
with Iε, we promote 0, 2, 4, 6 to I0 and 1, 3, 5, 7 to I1. Then we promote 0, 4 to I00,
2, 6 to I01, 1, 5 to I10, and 3, 7 to I11. The remaining promotions put every element
in a linked list of length one, at which point |w| = 3 = log 8.

Note how this construction ensures that there no two nodes appear as neighbors
in more than one level. For example, at level 0, 4 is connected to 3 and 5. At level
1, 4 is connected to 2 and 6, and at level 2, 4 is connected to 0. Further note the
recursive nature of this construction: if Ik is the interleaved skip graph on 2k nodes,
then it contains two copies of Ik−1 with the nodes relabeled. That is, Ik = {0, ..., 2k}
contains I ′k−1 = {1, 3, 5, ..., 2k − 1} and Ik−1 = {0, 2, 4, ..., 2k}, which both have the
same structure on different node sets.

The term “interleaved” stems from the fact that in the recursive step we are
promoting every other node to the same sub-skip graph. This ensures that every
node receives at least one new edge from each level (not including the final promotion
step, where each node rests in a linked list of length one). In general, every node in
a list at level i will gain two new neighbors in its list at level i + 1 if it is at least
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Figure 3.2: Interleaved skip graph on n = 8 nodes. (Left) Binary prefix tree repre-
sentation. (Right) Corresponding network topology.

distance two from either end of the list at level i (e.g. any node that is not 0, 1, 6, 7
in the level 0 list in Fig. 3.2). Nodes that are less than distance two from either end
of the list at level i will gain one new neighbor when promoted, unless that list only
contains two nodes. First, we discuss the interleaved skip graph’s uncanny connection
to Chord, and then we proceed to derive a closed form for its average path length,
assuming n is a power of two. Then, we discuss our conjecture of optimality.

3.3.1 Cutting the Chord
The interleaved skip graph I bears a striking resemblance to Chord – or rather,
BiChord, since links are bidirectional2. In particular, it seems to be a version of
BiChord with the nodes laid out on a path instead of a ring3.

Similarity in Structure

By promoting every other node to the same sub-skip graph, I induces links between
two nodes if their rank difference (the distance between them on the path) is a power
of two. The result is isomorphic to a version of BiChord where edges that “straddle”
the cut-point between n − 1 and 0 are removed. Formally, edge (u, v) in BiChord
– with either v = (u + 2i) mod n or u = (v + 2i) mod n for the appropriate i –
straddles the aforementioned cut-point if both of the following are true (Fig. 3.3):

• u+ 2i 6= (u+ 2i) mod n or v + 2i 6= (v + 2i) mod n.

• The clockwise distance between u and v is not equal to the clockwise distance
between v and u.

2Interestingly, we discovered the interleaved skip graph independent from Chord. It was not until
several weeks later that we realized their resemblance.

3Hence the catchphrase of this thesis: “Cutting the Chord.” Credit goes to my co-adviser Marcus
for the pun.
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Figure 3.3: The interleaved skip graph is isomorphic (') to BiChord with the strad-
dling edges (in red) removed.



32 Chapter 3. The Optimal Skip Graph Problem

Figure 3.4: Node 1 performs a skip list search for node 12 in I4, the interleaved skip
graph on 16 nodes, represented as a prefix tree. Note that the higher the level, the
larger the power of two is for the rank difference between neighbors.

Similarity in Routes

The skip graph routing algorithm on I is nearly identical to Chord’s protocol, the
only difference being the absence of the straddling edges. For a node u to route to v
in I, recall that u initiates a skip list search for v within its skip list restriction Lu.id.
Within Lu.id, every node is directly linked to a node that is a power of two away in
rank. More importantly, the larger their rank difference, the higher up they are linked
together within Lu.id. A consequence of this is that the skip graph routing algorithm
will greedily route similar to Chord: if the current node is w and the destination is v,
w will forward the message to the neighbor that reduces the remaining rank distance
to v by the largest power of two less than that remaining distance (Fig. 3.4, Fig. 3.5).

The caveat is that routes on I will differ from that of Chord if the latter uses
a straddling edge. In this case, the skip graph route is identical to Chord’s route if
Chord routes in the opposite direction (e.g. if Chord’s protocol routes clockwise and
encounters a straddling edge, then perform the search counterclockwise instead). Of
course, this assumes bidirectional links, so it is perhaps more accurate to think of it
as BiChord with Chord’s protocol (Fig. 3.6).

3.3.2 Derivation of Average Path Length

In this section, we derive the average path length of Ik, the interleaved skip graph on
n = 2k nodes, using the skip graph route cost dIk

(u, v) rather than the shortest path.
For simplicity, let us write Υk = dIk

for the remainder of this proof.
Let V = {0, ..., 2k−1} be the node set of Ik, and let Sk be the total path length
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Figure 3.5: Route from 1 to 12 in Fig. 3.4 represented as a network (left). Routing
from 1 to 12 in Chord (right). Note that the two search paths are identical.
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Figure 3.6: (Left) I4 routes from 15 to 0. (Right) Chord encounters a straddling edge
when routing from 15 to 0 in the clockwise direction. Assuming bidirectional links,
routing counterclockwise yields the same search path as the interleaved skip graph.
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of Ik:

Sk =
∑

(u,v)∈V
Υk(u, v). (3.5)

Then, we have the following recurrence:
Theorem 3.3.1.

Sk = 4Sk−1 + 22k−1 − (k − 1)2k−1, S1 = 2. (3.6)

Proof. We know that Ik contains two copies of Ik−1 as sub-skip graphs. Labeling
nodes by their index in the level 0 list, let V0 = {u | u ∈ V and u is even} and let
V1 = V \ V0. Also let A t B = (A× B) ∪ (B × A). Then, by the recursive nature of
Ik,

Sk =
∑

(u,v)∈V
Υk(u, v) (3.7)

=
 ∑

(u,v)∈V0

Υk−1(u, v)
+

 ∑
(u,v)∈V1

Υk−1(u, v)
+

∑
(u,v)∈V0tV1

Υk(u, v) (3.8)

= 2Sk−1 +
∑

(u,v)∈V0tV1

Υk(u, v) (3.9)

= 2Sk−1 +Xk, (3.10)

where the term Xk = ∑
(u,v)∈V0tV1 d

′
Ik

(u, v) accounts for the average path length due
to node pairs that have opposite parity – i.e. those where the skip graph route paths
must drop down to the level 0 list to complete.

For every (u, v) ∈ V0 tV1, note that Υk(u, v) = Υk−1(u, t) + 1, where t is the node
with the largest key less than v (if u < v) or the node with smallest key greater than
v (if u > v). This lets us write

Xk =
∑

(u,v)∈V0tV1

(Υk−1(u, t) + 1) =
 ∑

(u,v)∈V0tV1

Υk−1(u, t)
+ 22k−1 (3.11)

since |V0 t V1| = 2(2k−1 · 2k−1) = 22k−1. Let Iuk−1 be the copy of Ik−1 that contains u.
Since t = v − 1 or t = v + 1, when calculating the sum in Eq. (3.11), every possible
skip graph search path in Iuk−1 is traversed except the search paths in Iuk−1 that end
at 0 (if u is even) or at 2k − 1 (if u is odd). This is because when u searches for t in
Iuk−1, 0 and 2k − 1 will not be used by the skip graph search algorithm to route from
any u to v ((u, v) ∈ V0 t V1), unless u is either 0 or 2k − 1 to begin with. This lets us
decompose Eq. (3.11) to

Xk =
 ∑

(u,w)∈V0

Υk−1(u,w)
− ∑

u∈V0

Υk−1(u, 0) (3.12)

+
 ∑

(u,w)∈V1

Υk−1(u,w)
− ∑

u∈V1

Υk(u, 2k − 1) + 22k−1 (3.13)

=2Sk−1 − 2Zk−1 + 22k−1 (3.14)
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where we let Zk−1 = ∑
u∈V0 Υk−1(u, 0) = ∑

u∈V1 Υk−1(u, 2k − 1). In other words, Zk
computes the sum total distances to route from any node to one of the endpoints in
the level 0 list of Ik (either 0 or 2k − 1). We can characterize Zk using the recursive
nature of Ik:

Zk =
∑
u∈V

Υk(u, 0) (3.15)

=
∑
u∈V0

Υk−1(u, 0)
+

∑
u∈V1

Υk(u, 1) + 1
 (3.16)

= Zk−1 +
Zk−1 +

∑
u∈V1

1
 (3.17)

= 2Zk−1 + 2k−1. (3.18)

Note that Eq. (3.17) follows because 1 is an endpoint of the level 0 list of Iuk−1 (for u
odd), and because |V1| = |V |/2 = 2k/2 = 2k−1.

For the base case, Z1 = 1, because the cost to route from 1 to 0 in I1 is 1. Solving
Eq. (3.15) yields

Zk = 2Zk−1 + 2k−1, Z1 = 1 (3.19)

=
k∑
i=1

2i−1 · 2k−i =
k∑
i=1

2k−1 (3.20)

= k2k−1. (3.21)

Substituting into Eq. (3.14), we have

Xk = 2Sk−1 − 2(k − 1)2k−2 + 22k−1, (3.22)

which we finally substitute into Eq. (3.10) to obtain

Sk = 2Sk−1 + 2Sk−1 − 2(k − 1)2k−2 + 22k−1 (3.23)
= 4Sk−1 + 22k−1 − (k − 1)2k−1. (3.24)

For the base case, S1 = Υ1(0, 1) + Υ1(1, 0) = 2.

Now, we leverage the recurrence in Theorem 3.3.1 to calculate a closed form for
Sk.

Corollary 3.3.2. Sk = 2k−1(2k(k − 1) + k + 1).

Proof. We proceed by induction. For the base case, we know S1 = 2 from Theo-
rem 3.3.1, which matches 21−1(21(1− 1) + 1 + 1) = 2. Assume Sk = 2k−1(2k(k− 1) +
k + 1) for some k ≥ 1. By Theorem 3.3.1, we have

Sk+1 = 4Sk + 22(k+1)−1 − k2k. (3.25)
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By the inductive hypothesis,

= 22(2k−1(2k(k − 1) + k + 1)) + 22(k+1)−1 − k2k (3.26)
= 22k+1(k − 1) + k2k+1 + 2k+1 + 22k+1 − k2k (3.27)
= 22k+1k + 2k+1(k + 1)− k2k (3.28)
= 2k(2k+1k − k + 2(k + 1)) (3.29)
= 2k(2k+1k + k + 2). (3.30)

The average path length is just the total path length divided by the number of
node pairs

(
2k
)2
, which gives us:

APL(Ik) = Sk
22k = 2k−1(2k(k − 1) + k + 1)

22k (3.31)

= 2k(k − 1) + k + 1
2k+1 (3.32)

= k

2 + k + 1
2k+1 −

1
2 (3.33)

= k

2 −Θ(1). (3.34)

Just to be safe, we have experimentally verified this value for all 0 ≤ k ≤ 10. Unsur-
prisingly, APL(Ik) = Θ(k) = Θ(log n). For comparison, the average path length of
Chord is k/2 [21] and the average path length of the optimal protocol4 on BiChord
is k/3 + Θ(1) [9].

3.3.3 Conjecture of Optimality
We conjecture that the interleaved skip graph is optimal:

Conjecture 3.3.1. The interleaved skip graph on n = 2k nodes has minimal average
path length (when using skip graph routes as the distance function) across all skip
graphs on n = 2k nodes.

The intuition behind this conjecture is that by promoting every other node to the
same sub-skip graph, we are maximizing the number of links added to the skip graph
on a per level basis. Under uniform demand (which average path length assumes),
every request (node pair) is equally likely to be sampled, so all search paths are
weighted equally. Because the interleaved skip graph is constructed without regard
to any demand, adding as many links as possible to the network at each level such
that each node gains at least one new link seeks to shorten search path lengths about
equally well across all node pairs. We believe that this allows for minimal average
path length across all skip graphs.

4The optimal protocol means routes are shortest paths.
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Figure 3.7: (Left) Uniform clustering demand D with disjoint subsets V1 = {0, 1, 6, 7}
and V2 = {2, 3, 4, 5}. Edge weights and directed edges omitted for simplicity. (Middle)
Conjectured optimal skip graph for D represented as a prefix tree, comprising of the
interleaved skip graphs for V1 and V2. (Right) Corresponding network topology.

We have spent a non-trivial amount of time and effort trying to prove a relaxed
version of this conjecture: that the interleaved skip graph is optimal across all bal-
anced skip graphs, which seems like a more approachable problem while still being
a meaningful result. For k ≤ 4, we have computationally verified that this is indeed
the case. Perhaps a proof will turn up soon!

Extension to Uniform Clustering Demands

Assuming the conjecture is true, we can extend it to demands that describe clustering
behaviour, which often arise in practice [2]. A uniform clustering demand defines
clusters of nodes that only communicate uniformly amongst themselves. More for-
mally, it is given by a demand D that, when given disjoint subsets V1, V2, .... of the
nodes V = {0, ..., n− 1} such that the size of each Vi is a power of two, is:

D(u, v) =

1/C u, v in the same Vi
0 else

(3.35)

where C is a normalizing constant.
The requirement that cluster sizes are powers of two is simply so that the conjec-

ture is applicable – the optimal skip graph for a uniform clustering demand would
be the skip graph obtained by combining the interleaved skip graphs for each Vi
(Fig. 3.7).





Chapter 4

Optimal Skip Graph Heuristics

In this chapter, we describe and analyze the performance of a few heuristics for the
optimal skip graph problem. Recall that the objective of the optimal skip graph
problem is to find a skip graph with minimal weighted path length given a demand
graph D on node set V = {0, ..., n − 1}. We are unsure if there exists a polynomial
time algorithm to find an optimal solution, so we design heuristics that seem to offer
good performance in practice, in terms of both running time and solution quality.

4.1 Contraction Heuristics
Our heuristics follow the same basic structure. Given a demand graph D describing
pairwise request probabilities for the n nodes V = {0, ..., n−1}, the general blueprint
is as follows.
Definition 4.1.1. A contraction heuristic is a family of heuristics that share the
following steps:

1. Initialize a heuristic graph H, which is an undirected, weighted complete
graph on vertex set V with edge weights given according to some weight function
h(u, v). In this initialization step, each node in H can be thought of as a size
one skip graph (i.e. a skip graph comprised of a single node.)

2. Using an edge contraction1 subroutine, choose some set of edges in H to
contract, and the order in which to contract them, if necessary 2. For each edge
that is being contracted, the two endpoints are merged together into a single
node, which represents two skip graphs merging into a larger skip graph. The
new node now represents this larger skip graph.

3. Using h, update edge weights for all edges that are now incident to any node
that was born from an edge contraction in the previous step.

4. Repeat steps 2 - 4 until H contains only one node, which must contain a skip
graph of size n. Output this skip graph.

1This is defined on the following page.
2Order of contraction only matters for edges that share an endpoint.
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u v w

Figure 4.1: (Left) Before contracting edge (u, v). (Right) After contracting edge
(u, v), merging u and v into a node w.

The two modifiable parameters in a contraction heuristic are the edge weight
function h and the edge contraction subroutine. In general, the subroutine will make
decisions based on the edge weights of H, and a good heuristic will have the edge
weights depend on the input demand graph D as well. Designing the subroutine with
the weight function in mind and vice versa is also essential to a good heuristic.

4.1.1 Edge Contractions
We first define what an edge contraction is. Given an undirected graph G = (V,E)
and an edge (u, v) ∈ E, an edge contraction at (u, v) will merge u and v into a
single vertex w that is adjacent to all nodes that u and v were previously adjacent
to. Edge (u, v) is subsequently deleted. We do not allow multiple edges from w to a
node – if both u and v share a neighbor x, w will only have a single edge to x. See
Fig. 4.1 for an example. In particular, note that contracting an edge in the complete
graph on n nodes yields the complete graph on n− 1 nodes.

A contraction in the heuristic graph H corresponds to merging two skip graphs
into one. Merging two skip graphs S = {Sw} and T = {Tw} involves making them
sub-skip graphs of a new skip graph R = {Rw} where R0w = Sw and R1w = Tw for all
w, and Rε is the linked list that is the union of nodes in S and T in sorted order. We
will denote S ⊕ T to be the skip graph returned by merging S and T . See Fig. 4.2
for an example of this.

4.1.2 Comprehensive Weight Function
Because each node in the heuristic graph H represents a skip graph, our edge weight
function h is essentially a map from the space of skip graph pairs to the real numbers.
At any point in a contraction heuristic’s execution, a node in H can represent any
skip graph with a k-subset of V as its node set, for all 1 ≤ k ≤ |V |.

One strategy for h is to have it encode the improvement in weighted path length
due to merging two skip graphs. Since the contraction heuristic iteratively merges
smaller skip graphs to eventually create a skip graph on the entirety of V , we design
h so that it takes into account nodes that are outside of the skip graphs we are
considering.

Definition 4.1.2. Let D be the demand graph on V = {0, ..., n− 1} and let S,R be
skip graphs where S ⊆ R ⊆ V .



4.1. Contraction Heuristics 41

0

0 1 3
1

0 1

5 6 7 9

0 5 9 1 3 6 7

1 6 3 7

0 1

0 5 9
0 1

0 5

0 1

1 6

0 1

3 7

0 1

0 5 9 1 3 6 7

1 6 3 7

0 1

0 5 9
0 1

0 5

0 1

1 6

0 1

3 7

merge

S T

S T

contract

H

S ⊕ T

S ⊕ T

Figure 4.2: Contracting edge (S, T ) in a heuristic graph H results in a new node,
which corresponds to merging skip graphs S and T together into a new skip graph
S ⊕ T .
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Then the potential improvement in weighted path length between S and R
given D is

∆D(S,R) =
∑

(u,v)∈S×V
D(u, v) (dS(u,wS) + |wS − v| − (dR(u,wR) + |wR − v|)) (4.1)

where wS is the largest node at most v (if u < v) or the smallest node at least v (if
u > v) present in S. We will refer to ∆D as simply the potential improvement.

Let us dissect Eq. (4.1) for a moment, focusing on the term dS(u,wS) + |wS−v|−
(dR(u,wR) + |wR − v|). This term describes how much the cost of the search path
from u to v is improved by R from S:

• dS(u,wS) gives us the cost to route from u to v as far as possible within S.

• |wS − v| gives us the leftover cost to route to the destination v, from wherever
the search path ended in S.

Therefore the hope is that R, which is a skip graph that contains the nodes in S, can
have a smaller dR(u,wR) + |wR − v| – that is, if it can get closer to v with less cost.
In general, we can think of the term dS(u,wS) + |wS − v| as the "route cost so far"
from u to v, since the nodes in V \ S have not yet been incorporated.

The potential improvement is a measure of how much the weighted path length
improves across source-destination pairs where sources are specifically in S. Summing
over the pairs in S×V allows us to consider destinations outside S∪R. The intuition
behind this is that we can measure the cumulative improvement of potentially incom-
plete search paths to every possible destination, rather than the search paths that
begin and end entirely within S. Thus, assuming that R contains S as a sub-skip
graph (as in Definition 4.1.3, where R = S ⊕T ), we obtain a more faithful picture of
how much those search paths to destinations outside S are improved by R. Because
we are striving to minimize weighted path length, the larger ∆D(S,R) is, the more
R is an improvement over S.

Definition 4.1.3. Let D be a demand graph on V = {0, ..., n − 1}. Given two
skip graphs S ⊆ V and T ⊆ V in the heuristic graph, the comprehensive weight
function on D is given by

hD(S, T ) = ∆D(S,S ⊕ T ) + ∆D(T ,S ⊕ T ). (4.2)

In other words, hD(S, T ) measures the potential improvement gained from merg-
ing S and T – and since we aim to minimize weighted path length, the larger hD is,
the more improvement you get from merging S and T . We call hD the comprehensive
weight function because, via the potential improvement, it accounts for all nodes in
V despite the fact that S ∪ T is only a subset of V .

Example 4.1.1. Suppose we have the setup in Fig. 4.3, with skip graphs S =
{2, 4}, T = {0} as shown and node set V = {0, 1, 2, 3, 4}. Then S ⊕ T = {0, 2, 4}
as shown. We would like to compute hD(S, T ), where D is uniform demand on the
node pairs of V , so D(u, v) = 1/25 for all u, v.
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Figure 4.3: Computing edge weight (S, T ) using the comprehensive weight function
in Definition 4.1.3

.

• First, we compute ∆D(S,S ⊕ T ). Since S is a sub-skip graph of S ⊕ T , we
only have to consider the pairs {(2, 0), (2, 1), (2, 3), (4, 0), (4, 1), (4, 3)}. This is
because the search paths between (4, 2), (2, 4) do not change between S and
S ⊕ T and the pairs (2, 2), (4, 4) are trivially 0 in Eq. (4.1).
Let R = S ⊕ T for simplicity. We compute the term in the sum of Eq. (4.1)
for each of these pairs, namely dS(u,wS) + |wS − v| − dR(u,wR)− |wR− v| (we
factor out D(u, v) since it is uniform):

– For (u, v) = (2, 0): (0 + 2− 1− 0) = 1
– For (u, v) = (2, 1): (0 + 1− 0− 1) = 0
– For (u, v) = (2, 3): (0 + 1− 0− 1) = 0
– For (u, v) = (4, 0): (1 + 2− 2− 0) = 1
– For (u, v) = (4, 1): (1 + 1− 1− 1) = 0
– For (u, v) = (4, 3): (0 + 1− 0− 1) = 0

And so ∆D(S,S ⊕ T ) = 1
25 (1 + 0 + 0 + 1 + 0 + 0) = 2/25.

• Next we compute ∆D(T ,S⊕T ), where T ×V = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)}.
Excluding (0, 0), computing the term in the sum of Eq. (4.1) for each pair gives:

– For (u, v) = (0, 1): (0 + 1− 0− 1) = 0
– For (u, v) = (0, 2): (0 + 2− 1− 0) = 1
– For (u, v) = (0, 3): (0 + 3− 1− 1) = 1
– For (u, v) = (0, 4): (0 + 4− 2− 0) = 2

And so ∆D(T ,S ⊕ T ) = 1
25 (0 + 1 + 1 + 2) = 4/25.
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This gives hD(S, T ) = 2/25 + 4/25 = 6/25.

Note in Example 4.1.1, S⊕T improves routing costs for pairs (2, 0), (4, 0), (0, 2), (0, 3)
and (0, 4) and does not improve nor worsen the routing costs for the other pairs. This
leads to the following property.

Theorem 4.1.1. For any S, T ⊂ V such that S ∩T = ∅, the skip graph S ⊕T does
not worsen the route cost so far for any (u, v) ∈ V × V . In other words, for all such
valid (u, v),

dS(u,wS) + |wS − v| ≥ dR(u,wR) + |wR − v| (4.3)

where R = S ⊕ T and wS is as in Definition 4.1.2.

Proof. We have the following:

• If (u, v) ∈ (S ∪ T ) × V , the source u is neither in S nor T , and so the search
path from u to v does not exist in both S and R.

• Suppose (u, v) ∈ (S ∪ T ) × V . Without loss of generality, let u ∈ S (the case
where u ∈ T is identical). In this case, dR(u,wR) = dS(u,wS) + δ where δ is
the rank difference between wR and wS in linked list Rε. Since Rε is a subset of
V , it must be that δ ≤ |wR−wS |, the rank difference between them in V . Now
observe that |wS − v| = |wR − v|+ |wR −wS | because wR must be between (or
equal to one of) wS and v. Combining these observations (Fig. 4.4) yields:

|wS − v| = |wR − v|+ |wR − wS | (4.4)
|wS − v| ≥ |wR − v|+ δ (4.5)

dS(u,wS) + δ + |wS − v| ≥ dR(u,wR) + |wR − v|+ δ (4.6)
dS(u,wS) + |wS − v| ≥ dR(u,wR) + |wR − v|. (4.7)

Corollary 4.1.2.

hD(S, T ) ≥ 0. (4.8)

Proof. By Theorem 4.1.1, every term in the sum of hD(S, T ) will be positive.

Corollary 4.1.2 tells us that merging two skip graphs in a contraction heuristic
cannot worsen the weighted path length across source-destination pairs whose route
costs are at least partially measurable (i.e. across source-destination pairs in V × V
where the source u is either in S or T , because then we can at least partially compute
the search path starting at u).
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Figure 4.4: Proof of Theorem 4.1.1. In this figure, wS 6= wR, but it could be possible
for them to be equal, in which case δ = 0.

4.1.3 Edge Contraction Subroutines
In our case, an edge contraction subroutine is given a heuristic graph H that has
edge weights according to the comprehensive weight function hD (Definition 4.1.3).
The subroutine selects a subset of edges of H to contract, and the order in which to
contract them, if necessary. We present two subroutines that only select edges that
do not share endpoints, so we do not need to consider the order of contraction.

Maximum Cost Edge

The first subroutine is to just choose the edge with the largest weight. We will call
it the MaxEdge subroutine. MaxEdge(H) returns the edge in heuristic graph H with
the largest weight. The intuition is that we scan through all edges in H and merge
the two skip graphs that gain the most improvement from merging.

Maximum Cost Matching

Our second subroutine MaxMatching is similar to MaxEdge in the sense that it is also
greedy. First, a quick review on matchings:

• Given an undirected graph G, recall that a matching on G is a subset of its
edges such that no two edges share an endpoint.

• A maximal matching is a matching M on G that is not a subset of any other
matching on G (i.e. every edge that is not in M shares an endpoint with some
edge in M). See Fig. 4.5.
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Figure 4.5: (Left) Maximal matching. (Right) Maximum cost matching (which is
also a maximal matching).
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Figure 4.6: Example execution of the contraction heuristic in Example 4.1.2. Circles
represents nodes in the heuristic graph H. Arrows transition between edge contrac-
tions.

• A maximum cost matching is a matching where the sum of edge weights of
all edges in the matching is maximized. Due to Corollary 4.1.2, all edge weights
are positive, so any maximum cost matching on a heuristic graph H must be a
maximal matching as well. See Fig. 4.5. The maximum cost matching can be
computed in polynomial time using Edmond’s Blossom Algorithm [6].

We define MaxMatching(H) to return a maximum cost matching on H. The in-
tuition is that it generalizes the greedy approach of just picking the heaviest edge.
Instead, we merge as many skip graphs as we possibly can in H in a way that maxi-
mizes the total improvement.

Example 4.1.2. Suppose D is once again, uniform demand on V = {0, 1, 2}, so
D(u, v) = 1/9 for all (u, v). See Fig. 4.6 for the execution of the contraction heuristic
on this example, given comprehensive edge weights hD. Note that since |V | = 3, both
MaxEdge and MaxMatching perform identically, as the cardinality of any matching on
a graph with 3 nodes will be 1.
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Table 4.1: Ratio between average WPL of Random and CMM in Fig. 4.7.

n WPL of Random
WPL of CMM

10 1.41
30 1.60
50 1.61
70 1.67

4.2 Empirical Performance Over Random Demand
In this section, we empirically evaluate the performance of the contraction heuristics
from the previous section over random demand. We are interested in solution quality
– the weighted path length of the skip graphs output by our heuristics. Let CME be
the contraction heuristic with the MaxEdge subroutine and let CMM be the contraction
heuristic with the MaxMatching subroutine, both using the comprehensive weight
function. Let Random denote the random heuristic – that is, Random returns a size n
skip graph chosen uniformly at random, independent of the input demand.

Randomly generated demand graphs in the following experiments are generated
by first weighting each edge in the demand graph with a uniformly chosen value
between 1 and 10 and then normalizing by the sum of the weights. All experiments
were executed on an Intel core i5 processor with a 2.7GHz clock speed.3.

4.2.1 Scaling
To get an idea of how the solution quality of our heuristics scale, we plot the weighted
path length (averaged over 100 trials, each trial being a random demand graph on n
nodes) against n for the skip graphs returned by Random, CME, and CMM in Fig. 4.7.
Using Random as a point of comparison lets us ascertain whether our heuristics might
offer an improvement over simply choosing a skip graph at random.

In particular, note that CMM outperforms Random and CME as n grows, with the
gap between Random and CMM increasing (Table 4.1).

The inferior scaling of CME could be explained by the fact that the heuristic has
a tendency to repeatedly merge skip graphs of size 1 with skip graphs of size greater
than 1. This is because MaxEdge can only contract a single edge per iteration, and
perhaps due to the comprehensive weight function, is more likely to choose an edge
whose contraction merges a size 1 skip graph with a larger skip graph. This means
CME is likely to output a skip graph G that contains a large spine – that is, a large
sub-skip graph of G such that for all non-singleton linked lists Gw within that sub-skip
graph, either Gw0 or Gw1 is a singleton (Fig. 4.9). Large spines only contribute at
most one link to the network per level (Fig. 4.8), leading to a sparser network. This
may help explain CME’s inferior performance, at least over random demand.

On the other hand, CMM uses the MaxMatching subroutine, which contracts all

3Code necessary for the experiments are available in a public repository:
https://github.com/shastrihm/Thesis

https://github.com/shastrihm/Thesis
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Figure 4.7: Weighted path length of size n skip graphs returned by the heuristics.
Each data point is averaged over 100 trials. Due to computational constraints, suffi-
cient data could not be collected for n > 80.
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Figure 4.8: Spine skip graph on n = 6 nodes. Each level contributes only at most
one link to the network.
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Figure 4.9: Skip graph output by CME when given uniform demand on n = 20 nodes.
Note the spine sub-skip graph G01 = {0, 1, 2, 5, 8, 11, 12, 15, 17, 19}.
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Figure 4.10: Skip graph output by CMM when given uniform demand on n = 20 nodes.
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Figure 4.11: A spine skip graph is optimal for single-source demand.

edges in a maximum matching every iteration. Therefore the resulting skip graph will
likely appear more balanced and less sparse when compared to CME, and additionally
helps explain why it performs better across random demand (Fig. 4.10).

This does not discount the existence of demands where CME may outperform CMM
– perhaps demands that benefit from spine skip graphs and are neglected by more
balanced ones.

Example 4.2.1. An example of a demand that benefits from a spine skip graph is a
single-source demand – e.g. D(0, v) > 0 and D(u, v) = 0 if u 6= 0, for all v.

In this case, the optimal skip graph connects 0 to every node, which can be given
by a spine (Fig. 4.11). A balanced skip graph would only be able to induce at most
log n neighbors for 0 and thus would neglect this demand. Unfortunately, neither CME
nor CMM discovers the optimal solution. This may be a future avenue to improve the
heuristics.

4.2.2 Spread
Here, we plot histograms of weighted path lengths for skip graphs output by Random,
CME, and CMM over random demand to get a sense of how spread out the distributions
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(a) Histogram of approximation factors for
CME and Random, over 500 random demands
on n = 7 nodes.

(b) Histogram of approximation factors for
CMM and Random, over 500 random demands
on n = 7 nodes.

Figure 4.12: Histograms of approximation factors for n = 7. Here, the means are
µrandom = 1.45, µCMM = 1.05, and µCME = 1.04 and the standard deviations are
σrandom = 0.21, σCMM = 0.04 and σCME = 0.03.

are.
For very small n, computing the optimal skip graph for a given demand is tractable.

We first compute a histogram of approximation factors for n = 7. For a given demand
D, the approximation factor α is simply defined as α = ALG/OPT where ALG is
the weighted path length of the skip graph output by the heuristic in question and
OPT is the optimal weighted path length. Because this is a minimization problem,
α ≥ 1 with α = 1 signifying that ALG is optimal.

In Fig. 4.12, note that both CMM and CME are tightly clustered around α = 1.0
while Random is spread much more between α = 1.0 to α ≈ 2.0. This is reflected
in the standard deviation, where σCMM = 0.04, σCME = 0.03 are almost an order of
magnitude smaller than σrandom = 0.21. Furthermore, CME found the optimal solution
(i.e. α = 1) 22% of the time and CMM found the optimal solution 23% of the time,
while Random never found the optimal solution.

For larger n, computing the optimal solution is no longer tractable. We instead
plot histograms of weighted path length (Fig. 4.13).

In Fig. 4.13, the fact that the distribution of CME shifts further to the right as n
grows (eventually surpassing Random) reflects the scaling behavior in Fig. 4.7. Not
only does CMM outperform both CME and CMM, but its spread is slightly smaller than
CME and significantly smaller than Random, even as n grows, as illustrated by the
standard deviations in Table 4.2.

The standard deviation of CMM is approximately an order of magnitude smaller
than Random even as n grows. According to these results, if this trend holds across
random demand, obtaining a skip graph from CMM will likely result in a weighted path
length very close to the mean, which is already significantly smaller than Random.

Remark 4.2.1. Interestingly, the interleaved skip graph (which we have conjectured
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(a) Across 300 random demands for n = 30. (b) Across 100 random demands for n = 50.

(c) Across 100 random demands for n = 70. (d) Across 100 random demands for n = 80.

Figure 4.13: Histograms of weighted path length for n = 30, 50, 70 and 80.

Table 4.2: Mean and standard deviation (in parentheses) of weighted path lengths
for Random, CME, and CMM as given in Fig. 4.13.

n = 30 n = 50 n = 70 n = 80
CMM 2.24 (0.05) 2.71 (0.05) 2.99 (0.04) 3.11 (0.04)
CME 2.74 (0.10) 3.89 (0.11) 5.00 (0.17) 5.54 (0.16)

Random 3.55 (0.35) 4.32 (0.35) 5.00 (0.42) 5.17 (0.41)
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Figure 4.14: Weighted path length over random demand, with the interleaved skip
graph (Each data point averaged over at least 100 trials).

to be optimal for uniform demand) outperforms CMM and CME over random demand,
despite the fact that it does not depend on the input demand at all (Fig. 4.14).
This speaks to a weakness of our heuristics and perhaps to the strength of the in-
terleaved, suggesting that the extent to which our heuristics are exploiting the input
demand can be significantly improved upon. Whether this occurs through an im-
proved heuristic function, edge contraction subroutine, separate heuristic framework,
or some combination of the three can be a subject of further inquiry.





Open Problems

Our exploration of network design through the lens of interleaved and demand aware
skip graphs has gifted us with a rich assortment of potential future directions. Some
could take an entire thesis to explore while others could be resolved in a page. In
order of what I personally find most pressing to least:

1. In Section 3.3.3, we posed a conjecture that the interleaved skip graph on n = 2k
has optimal average path length over all size n = 2k skip graphs. Proving this,
or even the relaxed conjecture that it is optimal over all such balanced skip
graphs, is a concrete question that can be immediately attacked. Extending it
to when n is not a power of two is also an open problem.

2. In Remark 4.2.1, we observed that the interleaved skip graph outperforms the
CMM heuristic across random demand. Understanding why this is the case could
motivate improvements to our heuristics.

3. Understanding the hardness of the optimal skip graph problem (Problem 3.1.1)
would clarify the need for heuristics. It would be especially neat if the problem
admits a polynomial time algorithm.

4. Our definition of the optimal skip graph problem assumed that the input de-
mand graph D and the skip graph to be optimized both had identical node sets
V . A caveat with this formulation is that it causes the demands between nodes
that have rank difference 1 to be essentially irrelevant to the problem. In other
words, regardless of whether D(u, u + 1) is small or large, u and u + 1 will be
linked together in the resulting skip graph, because we mandate that lists be in
sorted order.

A formulation of the optimal skip graph problem that might be more practically
interesting (and left for future work) is to combine our notions of MEPL and
OSG: to find an embedding of demands onto machines while searching for a skip
graph topology to interconnect the machines that together minimizes expected
path length. To do this, we make the node set V for the input demand graph
D be unrelated to the set of nodes V ′ with which we are trying to find an
optimal skip graph. Then, the problem becomes one of finding an embedding
φ∗ : V → V ′ and a skip graph G∗ such that (φ∗,G∗) = arg minφ,G EPL(D,G, φ)
for an input demand D.
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5. Considering the interleaved skip graph’s close relationship with BiChord, we are
left to wonder whether we can draw inspiration from [13], [11], and [9] to devise
improved or even optimal routing algorithms for the interleaved skip graph.
Perhaps these improvements could help improve the general skip graph routing
algorithm as well.

6. Understanding the hardness of MEPL (Problem 2.2.3) when restricted to the
interleaved skip graph is an interesting question. Our reductions in Section 2.3
obviously do not work because the interleaved skip graph is not isomorphic to
the path graph, but it still seems possible that this special case is NP-complete.

7. In Section 3.2, we enumerated skip graphs by equating them with permutations
on prefix tree leaves, and obtained a result for the number of skip graphs which
distinguishes between skip graphs with different prefix tree representations but
otherwise isomorphic network topologies. Tightening this result by enumerating
skip graphs that determine non-isomorphic topologies appears to be a more
challenging exercise.

Of course, this list is not exhaustive. Happy researching!
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