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Abstract

In this thesis, we describe a geometric method for computing diagonal Cartier algebras
of toric rings arising from two-dimensional cones. We introduce the geometric tools
necessary to define toric rings and the positive characteristic algebra that goes into the
construction of Cartier algebras. We then present Smolkin’s work to re-characterize
diagonal Cartier algebras geometrically. In Chapter 3 we present our results and list
potential avenues for future research.





Introduction

Given a parallelogram P in R2, there are a variety of interesting geometric questions
one can ask about P. Of these, one question that will often crop up is whether or not
P can cover R2 via integer translates. Since this question is not so difficult to answer,
the main problem we can consider will be a generalization of this question.

If we have a parallelogram P with upper right-hand vertex x and a vector v ∈ R2,
we can then let Pv be the parallelogram whose upper right-hand vertex is v + x and
whose sides remain parallel to the sides of P. Below, in Figure 1 we have on the left
a parallelogram P outlined in blue shown and on the right we have Pv outlined in
green where v = (−1

5
,−1

5
). From here, we can then ask the following question: for a

parallelogram P what is the vectors v ∈ R2 such that a given parallelogram Pv covers
R2 by integer translates.

P Pv

Figure 1: A parallelogram P and all of its integer translates (left); Pv failing to cover
R2 by integer translates for v = (−1

5
,−1

5
) (right)

In Figure 1, we can begin to see that there is some subtlety to this problem. Even
though P(− 1

5
,− 1

5
) is just a slight perturbation of P (which does actually cover R2 by

integer translates), we can see that P(− 1
5
,− 1

5
) does not cover R2 by integer translates.

In fact, as we will justify later, the set of v such that Pv covers R2 by integer translates
is the set shown in Figure 2.

While it is completely fair to ask why we would care about this seemingly random
geometric problem, the surprising answer is that this question has a deep connection
to a problem in algebraic geometry. In algebraic geometry, algebraists will often
look at various algebraic objects associated to the set of solutions for a system of
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Figure 2: The set of v ∈ R2 such that Pv covers R2 by integer translates.

polynomial equations. This set of solutions is called a variety.
One such algebraic object is the diagonal Cartier algebra. It turns out that com-

puting the diagonal Cartier algebra of a certain kind of variety, called a toric variety,
in two dimensions is the same thing as solving the geometric problem described above.

In Chapter 1, we will introduce the necessary algebraic and geometric tools to
define toric varieties. Chapter 2 will then introduce Cartier algebras and more specif-
ically how it is they relate our initial question to toric varieties. Having then provided
the technical side to the motivation for our question, Chapter 3 will focus on the so-
lution to our initial geometric question.



Chapter 1

Putting the Geometry in Algebraic
Geometry

Our main goal in this chapter is to introduce the notion of toric varieties, as they will
be the central setting for our exploration of diagonal Cartier algebras. Toric varieties
are a nice class of varieties because their construction naturally gives a link between
algebraic objects, rings and varieties, and geometric objects, cones. To that end, in
the first section we will develop some basic concepts and intuition relating to cones
in Euclidean space. Once we have a firm grasp of these geometric objects, we will
shift our focus to defining fundamental algebraic objects, such as monoids and rings.
In the final section, we will introduce the language of algebraic geometry as a means
to further relate the work done in the first two sections, prove some core algebraic
geometric results, and establish a definition of toric varieties.

1.1 The Geometry of Cones

Fundamental to the definition of toric rings are cones.

Definition 1.1.1. Let A = {v1, . . . , vm} be a finite set of vectors in Rn. Then we say
the set

σ(A) =

{
m∑
i=1

λivi
∣∣λi ∈ R, λi ≥ 0

}
is the polyhedral cone generated by A and we will refer to the vi as the generators of
σ. If the set A is clear from context or is unspecified, we will instead write σ instead
of σ(A).

Let us now consider some examples of cones.

Example 1.1.2. Let A = {(0, 1), (1, 0)} and B = {(0, 1), (1, 1)}. Using our definition
of σ(A), we can see that the set of all non-negative combinations of A, i.e. σ(A), is
{(a, b)|0 ≤ a, b}. If we look at the set B, then we can see that σ(B) can be written as
the set {(a, b)|0 ≤ a ≤ b}. Using the explicit forms we have found for both σ(A) and
σ(B), we can then represent both of these cones graphically as is shown in Figure
1.1.
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(0, 1)

(1, 0)

σ(A) σ(B)(0, 1)

(1, 1)

Figure 1.1: σ(A) (left) and σ(B) (right) pictured graphically

For our purposes, we will only consider cones that have the following properties.

Definition 1.1.3. We say that a cone σ is rational if all the generators vi are elements
of the lattice N ∼= Zn.

Definition 1.1.4. We say that σ is strongly convex if it does not contain any straight
lines going through the origin.

Since these properties will be very important as we move forward, it will be helpful
to gain some intuition for cones with these conditions. As we can see in Figure 1.1,
both of the cones σ(A) and σ(B) from Example 1.1 provide examples of rational,
strongly convex cones. While these examples work really well to illustrate rational
cones, the strongly convex condition is best exemplified through a non-example.

Example 1.1.5. Consider the set C = {(1,
√

2
2

), (−1,−
√

2
2

), (0, 1)}. While it is clear
graphically that σ(C) is not strongly convex almost immediately, as seen in figure
1.2, we can also verify that σ(C) is not strongly convex using our definition of a cone.
To do this, first note that the set σ(C) takes the form

σ(C) = {(x, y)|x, y ∈ R and y ≥ 0}.

From here, we can see that σ(C) is not strongly convex because it contains the x-axis
which goes through the origin. Additionally, we can also see that σ(C) is not rational
because the slope of the edge of σ(C) is irrational, and thus the line will never contain
any lattice points.

From here, the next important concept we need to introduce is that of duality.
Because our toric varieties will be defined with the dual of a strongly convex rational
cone, it will be helpful to introduce dual cones. However, before we can understand
what dual cones are we first will need to understand what a dual vector space is.
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σ(C)(0, 1)

(1,
√

2
2

)

(−1,−
√

2
2

)

Figure 1.2: The non-rational, non-strongly convex cone σ(C) from Example 1.1.5

Definition 1.1.6. Let V be a finite-dimensional vector space over a field k. Then
the dual vector space of V , written V ∗, is the set

V ∗ = {f : V → k | f is a linear map}.

Remark 1.1.7. Note that we will sometimes denote V ∗ as HomK(V, k) though we will
save the definition of Hom for Chapter 2.

Since it is non-obvious that V ∗ is a vector space, consider the following proposition.

Proposition 1.1.8. V ∗ is a k-vector space.

Proof. To see that V ∗ is closed under addition and scalar multiplication, consider
f, g ∈ V ∗ and some a ∈ k. Then we need to check that f + ag is a linear map. To
see this, take v, v′ ∈ V and b ∈ V. Then we can see that

(f + ag)(v + bv′) = f(v + bv′) + ag(v + bv′)

= f(v) + bf(v′) + ag(v) + (ab)g(v′)

= f(v) + ag(v) + bf(v′) + (ab)g(v′)

= (f + ag)(v) + b(f + ag)(v′)

and it follows that f + ag ∈ V ∗. Additionally, because the 0 function is linear we can
see that 0 acts as the additive identity for V ∗. From here, all that remains to check
that V ∗ is a vector space is that V ∗ satisfies the distributivity property. To see this,
take a, b ∈ k and f, g ∈ V ∗. Then we can see for all v ∈ V that

(a+ b)f(v) = f((a+ b)v) = f(av + bv) = f(av) + f(bv) = af(v) + bf(v)

and
a(f(v) + g(v)) = f(av) + g(av) = af(v) + ag(v).

Thus we have shown that V ∗ is a k-vector space.
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While V ∗ may seem abstract, once we choose the correct basis V ∗ it will become
clear that V ∗ is quite easy to work with.

Definition 1.1.9. Let B = {v1, . . . , vn} be a basis for some vector space V . Then
vi∗ ∈ V ∗ are the linear maps defined on B ,and extended linearly to the rest of V ,
defined such that

v∗i (vj) =

{
1 i = j;

0 i 6= j.

Proposition 1.1.10. Let V be an n-dimensional k-vector space with basis {v1, . . . , vn}.
Then V ∗ is a n-dimensional k-vector space with basis {v∗1, . . . , v∗n}.

Proof. Since we have already checked that V ∗ is a vector space in Proposition 1.1.8,
all that remains for us to check is that {v∗1, . . . , v∗n} is a basis for V ∗. For linear
independence, consider some linear combination

λ1v
∗
1 + λ2v

∗
2 + . . . λnv

∗
n = 0.

Evaluating both sides at vi, we get

λ1v
∗
1(vi) + λ2v

∗
2(vi) + . . . λnv

∗
n(vi) = λiv

∗
i (vi) = λi = 0(vi) = 0.

Thus we have shown that λi = 0 for all 0 ≤ i ≤ n and we have checked that
{v∗1, . . . , v∗n} is a linearly independent set. To see that {v∗1, . . . , v∗n} is a spanning
set, consider a linear function f ∈ V ∗. Evaluating f and vi, we then can see that
f(vi) = µi. Using these values of µi as coefficients, we get the linear combination of
basis elements

∑n
j=1 µjv

∗
j . To check that this linear combination is in fact equal to f,

take some arbitrary element v =
∑n

i=1 λivi of V. Then we can see by the linearity of
f that

f(v) =
n∑
i=1

λif(vi) =
n∑
i=1

λiµi =
n∑
i=1

µiv
∗
i (λivi) =

n∑
i=1

µiv
∗
i (v).

With this we have shown that
∑n

j=1 µjv
∗
j = f by consequence that {v∗1, . . . , v∗n} is a

spanning set. Thus we know that {v∗1, . . . , v∗n} forms a basis for V ∗ and that V ∗ must
be n-dimensional

Remark 1.1.11. In the case where V is n-dimensional, we know by the previous propo-
sition that both V and V ∗ are n-dimensional and so V ∼= V ∗.

With duality understood for vector spaces, we can now define the dual of a cone.

Definition 1.1.12. Let σ be a cone in Rn. Then we can define the dual cone of σ to
be

σ̌ = {u ∈ (Rn)∗|〈u, v〉 ≥ 0 ∀v ∈ σ}.

Example 1.1.13. If we let e1, e2 be the elements of the standard basis for our lattice
N , then we can see in the following figure a picture of the cone generated by e1 + 2e2

and e1 as well as its dual cone. For the dual cone, we will let e∗1 and e∗2 denote the
basis for the lattice M .
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e2

e1 + 2e2

e1 e∗1

e∗2

2e∗1 − e∗2

Figure 1.3: An example of a cone σ (left) and its dual cone σ̌ (right) in R2

In keeping with this duality theme and our desire to work with rational cones,
it would be useful to also develop a notion of dual lattice. Let us now consider the
lattice N = Zn. Then we can define our dual lattice to be

M :=

{
n∑
i=1

aie
∗
i | ai ∈ Z

}
∼= Zn.

Remark 1.1.14. To those with knowledge of Hom sets, it could be helpful to note that
the dual lattice of N takes the form M := HomZ(N,Z). For those unfamiliar with
Hom sets, we will define them in chapter 2.

With this notion of a dual lattice defined, we can now observe the following prop-
erty having to do with rational cones.

Proposition 1.1.15. Suppose that σ is a rational cone with respect to the lattice N .
Then σ̌ is also a rational cone with respect to the lattice M.

Proof. Let σ({v1, . . . , vm}) be a rational cone and so we get that each vi ∈ Zn. Then
for each vi we can see that the sets

Fi := {v∗ ∈ V ∗ | v∗(vi) = 1}

are hyperplanes that bound σ̌. If we want the generating vectors of our dual cone,
we know that these generating vectors will be the vectors found at the intersections
of these half-planes. Further, because we can arbitrarily scale our generating vectors
by any λ ∈ R and we will get the same cone, to check that σ̌ is a rational cone it
will suffice to show that the intersection of (n − 1)-many Fi sets is either empty or
contains a lattice point of M. To see this, consider some non-empty intersection of
n− 1 of these Fi sets. Without loss of generality, since the order of our {v1, . . . , vm}
doesn’t matter we can assume we are considering the set

n−1⋂
i=1

Fi = {v∗ ∈ V ∗ | v∗(vj) = 1 when 1 ≤ j ≤ n− 1}.
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However, considering v∗ ∈ V ∗ as linear combinations of the basis {e∗1, . . . , e∗n}, we can
rewrite this set as

n−1⋂
i=1

Fi =

{
n∑
i=1

λie
∗
1 ∈ V ∗ | 〈(λ1, . . . , λn), vj〉 = 1 when 1 ≤ j ≤ n− 1

}
where 〈 , 〉 denotes the standard inner product in Rn. Since our vj ∈ Zn because σ
is a rational cone, it then follows when we solve the system of equations our previous
interpretation uses to define (λ1, . . . , λn) that we will find some (λ1, . . . , λn) ∈ Qn such
that v′ =

∑n
i=1 λie

∗
1 ∈

⋂n−1
j=1 Fj as desired. Scaling v′ by the least common multiple of

the denominators of all λi, we then find that

n−1⋂
i=1

Fi ∩M 6= ∅

and thus that σ̌ is rational with respect to the lattice M.

With this property of dual cones, as we introduce new algebraic concepts relating
rational cones to certain algebraic objects we will no longer have to worry about our
definitions breaking down when we wish to apply them to σ̌ rather than σ. Without
this worry, we can now turn our attention towards the algebraic concepts underpinning
toric varieties.

1.2 Monoids and Cone Algebra

In this section, we will provide the basic algebra that will serve as the foundation for
the algebraic geometry we will discuss later. More specifically, in this section we will
provide a definition for monoids and highlight some important links between monoids
and the geometric objects we presented in the previous section. At the end of this
section we will then be completely prepared to start learning the algebraic geometry
necessary to define toric varieties.

To start working our way through this algebraic landscape, let us begin by defining
a monoid.

Definition 1.2.1. Let S be a set equipped with an associative operation + : S×S →
S. Then we say that S is a monoid if + is commutative, has an identity, and satisfies
the cancellation property,

s+ t = s′ + t =⇒ s = s′ for any s, s′ and t ∈ S.

These objects are of use to us because whenever we have a cone σ and some lattice
N, σ ∩N is a monoid.

Much like in groups there is a notion of generators of monoids. Given this, we say
that a monoid S is finitely generated if there exist elements a1, . . . , an ∈ S such that
any s ∈ S can be written in the form

s = λ1a1 + . . . λnan
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with λi ∈ Z ≥ 0. Additionally, we say that our a1, . . . , an are generators of the monoid.
With this, we can then begin to bridge the gap between geometry and algebra by

showing that σ ∩N is a finitely generated monoid for any rational cone σ.

Lemma 1.2.2. If σ is a strongly convex rational polyhedral cone, then σ ∩ N is a
finitely generated monoid.

Proof. Let v1, . . . , vn be the vectors defining our cone σ. First we will verify that σ∩N
is a monoid. To see this, we can immediately note that the 0 vector is contained in
σ∩N and acts as the identity element since our operation is addition. Similarly, since
we are working with addition, which is known to be associative, all that remains for us
to check is that σ∩N is closed under addition. To check this, consider

∑
λivi,

∑
µivi ∈

σ ∩N. Then since these sums are both in σ ∩N, our definition of a cone tells us that
λi ≥ 0 and µi ≥ 0 for all 1 ≤ i ≤ n. This then implies that µi + λi ≥ 0 and thus
that

∑
(λi + µi)vi ∈ σ. Since lattices are closed under addition, it then follows that∑

(λi + µi)vi ∈ σ ∩N and thus that σ ∩N is a monoid.
To see that σ ∩ N is finitely generated, we first note that the set {

∑
rivi, 0 ≤

ri ≤ 1} is bounded, and thus it follows that there are only finitely many points in the
set {

∑
rivi, 0 ≤ ri ≤ 1} ∩N. From here, for any v ∈ σ ∩N by our definition of σ we

can write v =
∑

(ni + si)vi where ni ∈ Z≥0 and 0 ≤ si ≤ 1. Then since
∑
nivi ∈ N

it follows that
∑
sivi ∈ N. This then tells us that σ ∩N will be finitely generated by

{v1, . . . , vn} ∪ {
∑
rivi, 0 ≤ ri ≤ 1} and we have our result.

Example 1.2.3. To see an example of such a monoid, consider the cone σ({e1, e1 +
2e2}) presented in Example 1.1.13. Then looking at Figure 1.4 we can observe that
the monoid σ ∩N is generated by the vectors {e1, e1 + e2, e1 + 2e2}.

e1 + 2e2

e1

e1 + e2

Figure 1.4: The cone σ along with generators of σ ∩N highlighted in blue (Example
1.3.3)

With these results, we can then define a special ring Rσ, that will serve as the last
algebraic tool necessary for defining affine toric varieties. To define this ring Rσ, we
will establish a method of generating a ring from a rational cone σ. To understand
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how we construct Rσ, we will first introduce a helpful motivating result of a similar
flavor and then provide our construction of Rσ.

Let C[z, z−1] = C[z1, . . . , zn, z
−1
1 , . . . , z−1

n ] denote the Laurent polynomial ring.
Then we can establish a connection between the lattice Zn and C[z, z−1].

Proposition 1.2.4. Let φ : Zn → C[z, z−1] be the map defined such that for any
a = (a1, . . . , an) ∈ Zn, φ(a) = za1

1 · · · zann =: za. Then φ is an isomorphism between
the additive group Zn and the multiplicative group of monic Laurent polynomials.

Proof. To show that φ is an isomorphism we will note that φ is clearly a bijection.
This means we only need to check that φ is a group homomorphism and we will be
done. To do so, we first note that φ(0) = z0 and thus that φ preserves the identity.
Now take some a, b ∈ Zn. Then

φ(a)φ(b) = (za1
1 z

a2
2 . . . zann )(zb11 z

b2
2 . . . zbnn ) = (za1+b1

1 za2+b2
2 . . . zan+bn

n ) = φ(a+ b)

and we have seen that φ preserves our group operation and is thus a group homo-
morphism.

With this result as well as the natural relation between lattices and Zn, we can
now put Lemma 1.2.2 to use for constructing Rσ, the objects we need to be able to
suitably define our affine toric varieties.

Definition 1.2.5. The support of a Laurent polynomial f =
∑

finite λaz
a is defined

to be
supp(f) = {a ∈ Zn : λa 6= 0}.

With this notion of support, for a strongly convex rational cone σ we can define
the following important set

Rσ = {f ∈ C[z, z−1] | supp(f) ⊂ σ̌ ∩M}.

For convenience, later in the thesis we will choose to denote Rσ as k[σ̌∩M ]. With the
notation out of the way, we can see that Rσ satisfies the following important property.

Proposition 1.2.6. For a strongly convex lattice cone σ, Rσ is a ring.

Proof. Since Rσ ⊂ C[z, z−1], to verify that Rσ is a ring it will suffice to verify that Rσ

is a subring of C[z, z−1]. This is simpler because it allows us to only check that Rσ

is closed under addition, closed under multiplication, and contains the multiplicative
identity rather than checking that all of the ring axioms are satisfied. Starting with
proving that Rσ is closed under addition, let us consider any f, g ∈ Rσ. We can then
observe from our definition of the support of Laurent polynomial that supp(f + g) ⊆
supp(f) ∪ supp(g). Since supp(f), supp(g) ⊂ σ̌ ∩M by our definition of Rσ, it then
follows from our earlier observation that supp(f+g) ⊂ σ̌∩M and thus that f+g ∈ Rσ

as desired. To verify that Rσ is closed under multiplication we now need to verify
that f + g ∈ Rσ. To see this, note that f takes the form

f =
∑

a∈supp(f)

λaz
a
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and similarly, g takes the form

g =
∑

b∈supp(g)

µbz
b.

Using these forms for f and g, we can clearly more easily compute fg and we see that

fg =
∑

a∈supp(f)

∑
b∈supp(g)

λaµbz
a+b.

Since by assumption we know a, b ∈ σ̌ ∩M for all a ∈ supp(f) and b ∈ supp(g), by
Lemma 1.2.2 it follows that a+b ∈ σ̌∩M. Thus we have shown that supp(fg) ⊂ σ̌∩M
and we have verified that Rσ is closed under multiplication.

Lastly, to check that Rσ contains the multiplicative identity of C[z, z−1] we will
again make use of Lemma 1.2.2. By the aforementiod lemma, we know that σ̌∩M is a
monoid and thus that 0 ∈ σ̌∩M. This then tells us that supp(1) = supp(z0

1z
0
2 . . . z

0
n) =

{0} ⊂ σ̌ ∩M and thus the multiplicative identity of C[z, z−1] is in Rσ. With this, we
have verified that Rσ is a subring of C[z, z−1] and thus that Rσ is a ring.

Example 1.2.7. Building off of our previous examples, we will find Rσ for the σ
presented in Example 1.1.13. To find Rσ, we will first recall by Lemma 1.2.2 that
σ̌∩M is finitely generated. In fact, it is not so hard to see that the set {e∗1, e∗2, 2e∗1−e∗2}
is a generating set for σ̌ ∩M. This observation allows us to then compute Rσ and to
see that Rσ = C[x, y, x2y−1].

1.3 Algebraic Geometry and Toric Varieties

In order to achieve our goal of defining Toric Varieties, and gaining a way to leverage
geometric concepts to generate algebraic results, we first will need to understand some
core algebraic geometry concepts.
For the rest of this section, let C[z] = C[z1, . . . , zk] be the ring of polynomials in k
variables over the field C.

Definition 1.3.1. If E = {f1, . . . , fr} ⊂ C[z], then

V (E) = {x ∈ Ck | f1(x) = · · · = fr(x) = 0}

is called the affine algebraic set defined by E. If I is the ideal generated by E, then
we say that V (I) = V (E).

Less formally, the affine algebraic set defined by some E = {f1, . . . , fn} ⊂ C[z] is
the set of solutions to the system of equations f1(x) = · · · = fr(x) = 0.

Definition 1.3.2. Let X ⊂ Ck. Then

I(X) = {f ∈ C(z) | ∀x ∈ X, f(x) = 0}

is called the vanishing ideal of X
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Figure 1.5: Xσ graphed for Example 1.3.7

Proposition 1.3.3. For any X ⊂ Ck, I(X) is an ideal of C[z].

Proof. Let X ⊂ Ck and I(X) be the vanishing ideal of X. Then we can see that for
any f, g ∈ I(X) that f + g ∈ I(X) since f + g(x) = f(x) + g(x) = 0 for all x ∈ X.
Additionally, we can see that the zero function is clearly in I(X) and we know that
I(X) is an Abelian subgroup of C[z]. To see that I(X) is an ideal, it then suffices to
show that for f ∈ I(X) and g ∈ C[z] that the function h(x) := f(x)g(x) ∈ I(X). To
see this, we simply observe for all x ∈ X that h(x) = f(x)g(x) = 0g(x) = 0 and thus
h(x) ∈ I(X) as desired.

With this vanishing ideal definition, we can then notice that for any x ∈ Ck,
I({x}) is a maximal ideal we denote Mx. With this language of maximal ideals, we
can then introduce a key result from algebraic geometry that will allow us to bring
together the geometric and algebraic objects we established in the previous sections.

Theorem 1.3.4 ([Bra01], Theorem 2.1). Every maximal ideal in C[z] can be written
Mx for a point x.

As for why we find this useful, this result shows that there is a one-to-one corre-
spondence between points in Ck and maximal ideals of C[z]. While this result does not
yet provide a direct application for our algebraic and geometric objects, the following
corollary of it does.

Corollary 1.3.5 ([Bra01],Corollary 2.2). Let V be an affine algebraic set and let
RV = C[z]/I(V ). Then there is a one-to-one correspondence

V ←→ {M ⊂ RV |M maximal ideal} =: Spec(RV)

Applying this result to our rings Rσ, where σ is a rational, strongly convex cone,
then gives us a natural method to give our cones algebraic representations that we
can work with. Seeking to study these specific objects which arise from our cones, we
get the following definition of affine toric varieties:
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Definition 1.3.6. Let σ be a rational, polyhedral, strictly convex cone. Then the
affine toric variety corresponding to σ is Xσ := Spec(Rσ) .

To see how we can leverage these results, we will look at some examples of different
toric varieties and how we can construct our aforementioned one-to-one correspon-
dence.

Example 1.3.7. In keeping with our running example, lets again look at the cone
σ = σ({e1, e1 +2e2}). Then in Example 1.2.7 we saw that Rσ = C[x, y, x2y−1]. Setting
z = x2y−1, we can then see that Rσ can also be represented as

Rσ = C[x, y, z] = C[z1, z2, z3]/(z2z3 − z2
1).

Taking this ideal Iσ = (z2z3− z2
1) from our new representation of Rσ, we can then see

that the toric variety Xσ takes the form

Xσ = V (Iσ) = {x = (x1, x2, x3) ∈ C3 |x2x3 = x2
1}.





Chapter 2

Putting the Algebra in
Commutative Algebra

Having defined toric varieties and showcased how they can serve as a bridge between
algebra and geometry, we will now shift our perspective to the world of commutative
algebra. In this chapter, we will start by providing a basic overview of the requisite
language and definitions required to work in our new setting. Once we are able to,
we will then introduce the diagonal Cartier algebras that we wish to study and see
how, in the context of toric varieties, these Cartier algebras possess a more workable
interpretation.

2.1 Modules and Commutative Algebra

In this section, our primary goal will be to introduce the key concepts from com-
mutative algebra that will be necessary for setting up our future question. To start,
we will begin by defining a tool that will not only set the stage for the section to
come but will also play a key role throughout the entirety of the chapter. However,
before we can define what will be our main tool, the Frobenius map, we first need to
establish what types of rings we will be considering.

Definition 2.1.1. Let R be a ring. Then we say the characteristic of R is the smallest
number of times one must add 1 (the multiplicative identity) to itself in order to get
0 (the additive identity). If such a sum does not exist, we say R has characteristic
zero.

For the rest of the section, the rings we consider will be rings of positive character-
istic. Another important property in commutative algebra is the Noetherian property
of While this may seem like an odd choice, it will be necessary for ensuring that our
main tool the Frobenius map behaves in the way that we need it to.

Definition 2.1.2. Let R be a commutative Noetherian ring of characteristic p > 0.
Then we can define the Frobenius map as follows:

F :R→ R

x 7→ xp
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Similarly, we let F e denote the eth iterate of the Frobenius map. That is, F e(x) =
F (F · · · (F (x))) = xp

e
.

While it may not seem interesting upon first inspection, because we are working
with commutative rings of positive characteristic the Frobenius map has a lot of
interesting properties. One such property that we can verify now is that the Frobenius
map is a ring homomorphism.

Proposition 2.1.3. Let R be a Noetherian ring of characteristic p > 0 and F be the
Frobenius map. Then F is a ring homomorphism.

Proof. To verify that F is a ring homomorphism, we need to check that F is unit
preserving and respects both multiplication and addition. Starting with the unit
preserving property, we can see that F (1R) = 1pR = 1R as desired. To check that
multiplication is preserved first take some a, b ∈ R. Then we can see F (ab) = (ab)p

and, because R is commutative, it follows that (ab)p = apbp = F (a)F (b). Thus we
see that F (ab) = F (a)F (b) as desired. Finally, to see that F respects addition, recall
that in a ring of characteristic p > 0 (a+ b)p = ap + bp for all a, b ∈ R. With this we
can then see F (a+ b) = (a+ b)p = ap + bp = F (a) + F (b).

However, before we can see some other useful aspects of the Frobenius map we
will need to define a module.

Definition 2.1.4. Let R be a ring with multiplicative identity 1. Then a module M is
an abelian group, whose operation we will denote with +, together with an operation
· : R ×M → M , which we will refer to as scalar multiplication, that satisfies the
following conditions for all r, s ∈ R and x, y ∈M :

1. r · (x+ y) = r · x+ r · y,

2. (r + s) · x = r · x+ s · x,

3. (rs) · x = r · (s · x),

4. 1 · x = x.

We will call such a module M a left R-module and note that a similar set of conditions
can define a right module whose operation takes inputs from M×R rather than R×M.
Additionally, we say that N ⊆ M is a submodule of M if it is closed under addition
and scalar multiplication

Remark 2.1.5. While this definition may seem new, in the case where R is a field our
modules are actually just vector spaces.

To better understand the definition of a module, we can look at some key examples
of modules that we can construct using the Frobenius map that will be important to
us later.

Proposition 2.1.6. Consider the set F e
∗R := {F e

∗ r | r ∈ R}. Then F e
∗R is an R-

module with R-module structure given by sF e
∗ r = F e

∗ s
per for all s, r ∈ R.
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Proof. To see that F e
∗R is an R-module, take some x, y, s, r ∈ R. Then we can see

that

sF e
∗ (x+ y) = F e

∗
(
sp

e

(x+ y)
)

= F e
∗ (s

pex+ sp
e

y)

= F e
∗ (s

pex) + F e
∗ (s

pey)

= sF e
∗x+ sF e

∗ y

and thus our scalar multiplication distributes as we need. Next, to check that scalar
multiplication respects addition in R we do the following computation:

(s+ r)F e
∗x = F e

∗ (s+ r)p
e

x

= F e
∗ (s

pe + rp
e

)x

= F e
∗ (s

pex+ rp
e

x)

= F e
∗ s

pex+ F e
∗ r

pex

= sF e
∗x+ rF e

∗x.

With this, we have shown that our scalar multiplication respects addition in the un-
derlying ring R so now we need to check the same for multiplication in the underlying
ring R. To do so, we can see that

(sr)F e
∗x = F e

∗ (sr)
pex

= F e
∗ s

perp
e

x

= s
(
F e
∗ r

pex
)

= s (rF e
∗x) .

From here all that remains is to check is that scalar multiplication by the identity
acts as an identity element. This follows directly though because 1F e

∗x = F e
∗ 1

pex =
F e
∗x.

Example 2.1.7. Let R = F2[x, y]. Then we will show that F∗R is really just the
free R-module generated by B = {F∗1, F∗x, F∗y, F∗xy}. To see these basis elements
span, it suffices to show that for all F∗x

nym ∈ F∗R there exists some r ∈ R and basis
element b ∈ B such that rb = F∗x

nym. To see this, consider some arbitrary xnym ∈ R.
Then we can compute that

xnymF∗1 = F∗x
2ny2m

xnymF∗x = F∗x
2n+1y2m

xnymF∗y = F∗x
2ny2m+1

xnymF∗xy = F∗x
2n+1y2m+1

and it is clear to see that any F∗x
nym ∈ F∗R can be written as just rb with r ∈ R

and b ∈ B. Similarly, this same computation shows that our basis elements cannot be
obtained from each other since the parities of the exponents will always be different
depending on which basis element we choose. Thus now know that F∗R is the free
R-module generated by the points F∗1, F∗x, F∗y, and F∗xy.
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Example 2.1.8. Let k be a field of positive characteristic p > 0. Then for a toric
ring R = k[σ̌ ∩ Zd] we can see that F e

∗R = k[σ̌ ∩ 1
pe
Zd]. This is worked out in the

preliminaries of [Pay09].

Before we can get to our other interesting R-modules that we can construct using
the Frobenius map, we need another two definitions.

Definition 2.1.9. Let V and W be R-modules. Then we say f : V → W is a module
homomorphism so long as f preserves the module structures. That is, for all x, y ∈ V
and r ∈ R

f(x+ y) = f(x) + f(y)

and

f(rx) = rf(x).

Definition 2.1.10. Let R and S be rings. Then we can define the group

Hom(R, S) := {f : R→ S | f is a ring homomorphism}

with addition given by the standard addition of functions. If R and S are modules of
the same ring, then we say

Hom(R, S) := {f : R→ S | f is a module homomorphism}.

With these Hom sets defined and our previous example F e
∗R, we can then give two

more examples of R-modules that will each play an important role in the definition
of a Cartier algebra.

Definition 2.1.11. Let R be a Noetherian ring of characteristic p > 0. Then
Hom(F e

∗R,R) forms a left R-module with scalar multiplication given by

r · (φ(F e
∗x)) = rφ(F e

∗x)

for all r, x ∈ R and φ ∈ Hom(F e
∗R,R). We will denote this module HomR(F e

∗R,R).

Definition 2.1.12. Let R be a Noetherian ring of characteristic p > 0. Then
Hom(F e

∗R,R) forms a right R-module with scalar multiplication given by

(φ · r)(F e
∗x) = φ(F e

∗ rx)

for all r, x ∈ R and φ ∈ Hom(F e
∗R,R). We will refer to this as the pre-multiplication

module for HomR(F e
∗R,R).

Now that we have this R-module structures on Hom(F e
∗R,R), there is one more

necessary definition we need before we can talk about Cartier algebras.

Definition 2.1.13. A ring R is F -finite if F e
∗R is a finitely generated R-module for

some e > 0.
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2.2 Introducing Cartier Algebras

Cartier algebras are an interesting algebraic invariant that help algebraic geometers
study rings. For example, they are an essential ingredient in the proof of a subaddi-
tivity formula for test ideals of regular rings [HY03]. The diagonal Cartier algebras
were then developed by Smolkin [Smo20] as a generalization of Cartier algebras meant
to study potential subadditivity formula for test ideals of non-regular rings.

With some motivation behind our interest in diagonal Cartier algebras, we can
now establish the algebraic setting in which we will be looking at Cartier algebras.
To that end, we will assume for the rest of this section that our rings R are F -finite,
Noetherian, commutative, and of positive characteristic.

With the setting established, we will now work towards defining the diagonal
Cartier algebras that we care about. To start down this path, it is only natural that
we start with the definition of a Cartier algebra.

Definition 2.2.1. A Cartier algebra on R is an additive Abelian group C =
⊕

e Ce

where Ce ⊆ HomR(F e
∗R,R) is a submodule of HomR(F e

∗R,R) with respect to the
module structures given in Definition 2.1.11 and Definition 2.1.12. Additionally, we
also require that for all φ ∈ Ce and ψ ∈ Cd that the maps “compose” in that

φ ◦ F e
∗ψ ∈ Ce+d

where F e
∗ψ is the map from F e+d

∗ R→ F e
∗R such that

F e
∗ψ(F e+d

∗ x) = F e
∗ψ(F d

∗ x)

With this definition of Cartier algebras, in order for us to define diagonal Cartier
algebras we will need to introduce the concept of compatibility. Not only will this
definition move us one step closer to defining our diagonal algebras, but it will also
allow us to provide useful examples of Cartier algebras.

Definition 2.2.2. Let R be a ring and J an ideal of R, and let ϕ : F e
∗R → R (be

a morphism?). Then we say J is compatible with ϕ, is ϕ-compatible, or that ϕ is
compatible with J if ϕ(F e

∗J) ⊆ J.

Because we will be depending on this compatibility criterion quite heavily, it will
useful for us to see some examples of compatibility separate from Cartier algebras
before linking the two concepts.

Example 2.2.3. Let R = F2[x, y] as in Example 2.1.7. Then we can consider the
maps α : F∗R→ R defined on the basis elements of F∗R as

α(F∗1) = 0,

α(F∗x) = 1,

α(F∗y) = 0,

α(F∗xy) = 0.
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Then consider the ideal 〈y〉. To check that 〈y〉 is α compatible, we need to verify that
α(F∗〈y〉) ⊆ 〈y〉. To see this, it will suffice to check that α(F∗x

iyj) is divisible by y
for 1 ≤ j and 0 ≤ i. By our computations in Example 2.1.7 we already know that
α(F∗x

nym) 6= 0 only when n is odd and m is even. Thus we can see that

α(F∗x
iyj) =

{
0 if i is even or j is odd

x(i−1)/2yj/2 otherwise

and because 1 ≤ j we know that α(F∗x
iyj) ∈ 〈Y 〉 when xiyj ∈ 〈y〉 as desired. Thus

we have shown that the ideal 〈y〉 is α-compatible.

Having seen compatibility in action, we can see a clear extension of this compati-
bility concept to Cartier algebras.

Definition 2.2.4. Let C be a Cartier algebra on R. Then we say that J is C -
compatible or that C is compatible with J if J is compatible with each map in C .

Using this notion of compatibility, we can see some interesting examples of specific
types of Cartier algebras.

Definition 2.2.5. Let C be a Cartier algebra on R compatible with some ideal
I ⊆ R. We define the restriction of C to R/I, denoted C |R/I , to be the set of maps⊕

e≥0 Ce|R/I , where

Ce|R/I := {ϕ̄ : F e
∗ (R/I)→ R/I | ϕ ∈ Ce}.

Proposition 2.2.6 ([Smo20], Proposition 3.2). Let C be a Cartier algebra on R
compatible with some ideal I ⊆ R. Then C |R/I is a Cartier algebra on R/I.

Definition 2.2.7. Let C be a Cartier algebra on R and let I ⊆ R be an ideal.
Then we define the subalgebra compatible with I, denoted C I	, to be the set of maps⊕

e≥0 C I	
e where

C I	
e := {ϕ|ϕ ∈ Ce, ϕ(F e

∗ I) ⊆ I}.

Proposition 2.2.8. Let C be a Cartier algebra on R and I ⊆ R an ideal. Then C I	

is a Cartier algebra.

Proof. Take some φ ∈ C I	
e and ψ ∈ C I	

d . Then to check our submodule condition we
can see that for all x ∈ R that xφ(F e

∗ I) ⊆ xI and, because I is an ideal, it follows
that xφ(F e

∗ I) ⊆ I. Similarly, again making use of the fact that I is an ideal, we can
see xI ⊆ I and thus φ(F e

∗xI) ⊆ φ(F e
∗xI) ⊆ I. Lastly, because I is an ideal and is

closed under addition we know that for all φ1, φ2 ∈ C I	
e that φ1(F e

∗ I) + φ2(F e
∗ I) ⊆ I,

thus showing that C I	
e satisfies our submodule condition. To verify that C I	 satisfies

our composition condition, we simply compute that

φ ◦ F e
∗ψ(F e+d

∗ I) = φ(F e
∗ψ(F d

∗ I)) ⊆ φ(F e
∗ I) ⊆ I

and we see that φ ◦ F e
∗ψ ∈ C I	

e+d as desired.
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With these classes of Cartier algebras, all that we need before we can define
diagonal Cartier algebras is the definition of a tensor product.

Definition 2.2.9. Let M and N be R-modules. Then the tensor product M ⊗R N
is an R-module equipped with a bilinear map ⊗ : M × N → M ⊗R N such that for
each bilinear map B : M ⊗ N → P there is a unique linear map L : M ⊗R N → P
makes the following diagram commute.

M ⊗R N

M ×N

P

L

⊗

B

Given the abstract nature of this definition, for the sake of understanding, we will
look at an example of a tensor product that will be quite important for us.

Example 2.2.10. Let k[x] and k[y] to be polynomial rings. Then k[x] ⊗k k[y] ∼=
k[x, y]. To see this we simply take the isomorphism f : k[x] ⊗ k[y] defined on the
generating elements as

f(xn ⊗ ym) = xnym

and expand f k-linearly. Then it is clear that k[x]⊗k k[y] ∼= k[x, y] and in the context
of tensoring polynomial rings we will typically favor the k[x, y] interpretation.

With the tensor, we can now define the diagonal ideal for a ring R.

Definition 2.2.11. Let R be a k-algebra essentially of finite type, where k is a
perfect field of positive characteristic. Then I∆ ⊆ R ⊗k R denotes the kernel of the
map µ : R⊗k R→ R given by µ(x⊗k y) = xy.

With this new ideal, we can bring back our notion of compatibility to define our
diagonal Cartier algebra.

Definition 2.2.12. We let C R⊗kR,I∆	 :=
(
C R⊗kR

)I∆ denote the Cartier algebra on
R⊗kR compatible with I∆. We say that such maps are compatible with the diagonal.

Definition 2.2.13. We define the second diagonal Cartier algebra on R to be

D (2)(R) := C R⊗kR,I∆	|(R⊗kR)/I∆ .

If the ring R is clear from the context we will simply denote the second diagonal
Cartier algebra as D (2).

While it may seem odd that we care about these D (2) objects, for those interested
D (2)
e (R) is the set of the maps φ : F e

∗R→ R that admit a lifting property to R⊗k R.
That is, they are the maps φ such that the following diagram commutes:
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F e
∗ (R⊗k R) R⊗k R

F e
∗R R

F e
∗µ µ

φ

Making use of this interesting property of D (2)(R), in the next section we will
introduce a key result re-characterizing D (2)(R) in terms of a more workable definition
when working in the toric setting.

2.3 Understanding D (2) in the Toric Setting

Throughout the rest of the chapter, let σ = σ({v1, . . . , vm}) be a rational, strongly
convex cone and then let X = Xσ be the associated affine toric variety. With this
established, throughout the rest of this chapter we will be presenting the work of
Smolkin that re-characterizes D (2) in the toric setting. Since many of the proofs
are quite difficult and do not pertain to the goal of our thesis, we will primarily be
presenting proof ideas and anyone interested in the proofs is encouraged to look at
chapter 6 of [Smo20].

With that said, now that we are working with toric varieties we immediately have
tools with which we can describe the maps in our Cartier algebra.

Definition 2.3.1. For a ∈ 1
pe
Zn. let πa : F e

∗C[z, z−1] → C[z, z−1] be the map such
that

πa(u) =

{
xa+u a+ u ∈ Zn;

0, otherwise

Noting that R = Rσ ⊆ C[z, z−1], we can then see that any map in Hom(F e
∗R,R)

can be extended to a map in Hom(F e
∗C[z, z−1],C[z, z−1]) that maps F e

∗R into R. To
characterize these maps, we need the following definition from Payne.

Definition 2.3.2. The anticanonical polytope of sigma is

PR = {u ∈ Rn|〈u, vi〉 ≥ −1 for 1 ≤ i ≤ m}

where vi are the generating rays of σ.

With this, Payne then characterizes such maps in the following way

Proposition 2.3.3 ([Pay09], Lemma 4.1). The set of maps πa form a basis for
HomR(F e

∗R,R) where a ∈ int(PR) ∩ 1
pe
Z.

With this context established, we can finally start presenting the recharacteriza-
tion of D (2) in the toric variety setting as well as the general idea of the proof behind
it.

Theorem 2.3.4 ([Smo20], Theorem 6.4). D (2)
e (R) is generated by the maps πa where

a ∈ 1
pe
Zn∩ int(PR) and the interior of PR∩ (a−PR) contains a representative of each

equivalence class in 1
pe
Zn/Zn.
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In order to best present the proof of this theorem, it will be important that
we remember what exactly D (2)

e (R) is a set of. First, as we argued before, because
any maps in Hom(F e

∗R,R) can be extended to maps in Hom(F e
∗C[z, z−1],C[z, z−1]) to

gain some intuition we will begin by working with C[z, z−1]. For the sake of notational
convenience, let T = C[z, z−1]. Then, as we saw at the end of the previous section,

we know that D (2)
e (R) is the set of maps φ : F e

∗R → R that are compatible with the
ideal I∆ and also make the following diagram commute.

F e
∗ (T ⊗k T ) T ⊗k T

F e
∗T T

F e
∗µ µ

φ

Utilizing the conditions given by the diagram, one can prove, as can be seen in
[Smo20], the following technical Lemma providing conditions for which maps are
compatible with I∆.

Lemma 2.3.5 ([Smo20], Lemma 6.5). Let φ =
∑
ca,a′πa⊗kπa′ be a map in Homk[T×T ](F∗k[T×

T ], k[T × T ]). Then φ is compatible with I∆ if and only if for all equivalence classes
[u1], [u2] ∈ 1

pe
Zn/Zn, we have ∑

a∈[u1]

ca,d−a =
∑
b∈[u2]

cb,d−b

for all d ∈ 1
pe
Zn.

With this new technical lemma not only do we have a better picture of what maps
lie in D (2)

e but we also find another technical result that will be useful in our proof
of Theorem 2.3.4. Like the previous lemma, this new corollary helps us to determine
which maps are in D (2)

e by showing which maps generate D (2).

Corollary 2.3.6 ([Smo20], Corollary 6.6). Let R be a toric ring. Then the maps∑
a,a′ ca,a′πa ⊗ πa′ is compatible with the diagonal if and only if, for each d ∈ 1

pe
Zn,

we have
∑

a+a′=d ca,a′πa⊗ πa′ is compatible with the diagonal. Additionally, it follows

that D (2)(R) is generated over k by the maps πd ∈ D (2).

With both of these technical results doing the heavy lifting we can then present
Smolkin’s proof of Theorem 2.3.4.

Proof of Theorem 2.3.4. We will present the proof for when R = T and note that it is
not much work to extend the proof for T to any toric ring R. To check if πd ∈ D (2)(R),
by Corollary 2.3.6 we need for there to exist a map

φ =
∑
a,a′

ca,a′πa ⊗ πa′ ∈ Hom(F e
∗ (T ⊗ T ), T ⊗ T )

such that φ is compatible with I∆ and such that the sum
∑

a+a′=d ca,a′ 6= 0. Rewriting
this sum, we can then rewrite this condition as∑

a+a′=d

ca,a′ =
∑

[u]∈ 1
pe

Zn/Zn

∑
a∈[u]

ca,d−a 6= 0.
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In order for this condition to be satisfied there would then have to exist some [u] ∈
1
pe
Zn/Zn such that

∑
a∈[u] ca,d−a 6= 0. Since we also require that φ be compatible with

I∆, we can then use Lemma 2.3.5 to see that
∑

a∈[u] ca,d−a 6= 0 for all [u] ∈ 1
pe
Zn/Zn

because ∑
a∈[u1]

ca,d−a =
∑
b∈[u2]

cb,d−b

for all [u1], [u2] ∈ 1
pe
Zn/Zn. Because we need

∑
a∈[u] ca,d−a 6= 0 for all [u] ∈ 1

pe
Zn/Zn,

we know that there will always be some a ∈ [u] such that ca,d−a 6= 0. Since φ ∈
Hom(F e

∗ (T⊗T ), T⊗T ) we know by Proposition 2.3.3 that a, d−a ∈ int(PT ) because πa
and πd−a are basis elements of HomR(F e

∗T, T ). However, we can rewrite this condition
as a ∈ PT ∩ (d − PT ) where a ∈ [u] for all equivalence classes [u] and we obtain the
desired condition on πd.

Conversely, for any d such that each equivalence class [ui] ∈ 1
pe
Zn/Zn has a repre-

sentative ai in the interior of PT ∩ (d− PT ). Then it follows from Smolkin’s proof of
Corollary 2.3.6 that the map

∑
i πai ⊗ πd−ai is a map compatible with the diagonal

and its restriction to the diagonal is πd. Thus we have shown that πd ∈ D (2)(T ) where
a ∈ 1

pe
Zn ∩ int(PR) and the interior of PR ∩ (a−PR) contains a representative of each

equivalence class in 1
pe
Zn/Zn, completing our proof of Theorem 2.3.4 when R = T as

we set out to.



Chapter 3

It Was Just Cones All Along!

In the previous chapter, we defined the sets D (2)(R) and saw how involved computing
such sets can be for toric rings. In order to streamline this computation process, we
will show that computing D (2)(R) is equivalent to solving the geometric problem we
stated in the introduction. With this link established, we will then present a new
algorithmic method of computing D (2)(R) whenever R = K[σ̌∩Z2] with σ a strongly
convex rational cone in R2.

3.1 Results

Beginning with our reformulation of the sets D (2)(R), let us first introduce some key
definitions.

Definition 3.1.1. Let P ⊆ Rd. Then for any v ∈ Zd we call the set

v + P := {v + x |x ∈ P}

an integer translate of P. Sometimes we will also say that v+P is an integer translate
of P by v.

Definition 3.1.2. Let P ⊆ Rd. Then we say P covers Rd by integer translates when⋃
v∈Zd

v + P = Rd.

Similarly, we say P tiles Rd by integer translates if P covers Rd by integer translates
and int(v + P ) ∩ int(v′ + P ) = ∅ implies that v = v′ for v, v′ ∈ Zd.

We can define a new set D(2)(R) which will be the set of points that solve our
problem from the introduction.

Definition 3.1.3. For R = K[σ̌ ∩ Zd] a toric ring, we say v ∈ D(2)(R) if and only if
for all x ∈ Rd there exists an integer translate x′ of x such that x′ ∈ PR ∩ (v − PR).
As before, if R is understood from context, or unspecified, we will write D(2) rather
than D(2)(R).
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To see that this set is indeed the set points that solve our problem from the
introduction, we then need the following result.

Proposition 3.1.4. Let R = K[σ̌ ∩ Zd] be a toric ring. Then v ∈ D(2) if and only if
integer translates of PR ∩ (v − PR) cover Rd.

Proof. First suppose that v ∈ D(2)(R). Then we know from our definition of D(2)

that for any x ∈ Rd there exists an integer translate x′ = x + t of x such that
x′ ∈ PR ∩ (v−PR). We can then see that x ∈ (x−x′) + (PR ∩ (v − PR)), x−x′ ∈ Zd,
and thus that Rd can be covered by integer translates of PR ∩ (v − PR).

For the other direction assume that PR ∩ (v− PR) covers Rd. Then we know that
for any x ∈ Rd that there exists some t ∈ Zd such that x ∈ t+ (PR ∩ (v − PR)) . This
then tells us that x− t ∈ PR ∩ (v − PR) and, because x− t is an integer translate of
x, we have shown that v ∈ D(2)(R) as desired.

In addition to providing context for our new D(2)(R) definition, this interpretation
of our D(2)(R) allows us to see that D(2) = D (2) are equal.

Corollary 3.1.5. Let σ be a strongly convex rational cone and R = K[σ̌ ∩Zd]. Then

D (2)(R) = D(2)(R).

Proof. By Theorem 2.3.4 we know that the maps πv that generate D (2)(R) are pre-
cisely the maps such that PR ∩ (v − PR) contain representatives of each equivalence
class in 1

pe
Zd/Zd for all e. This condition of containing each equivalence class for all e

is then equivalent to PR ∩ (v−PR) covering R2 by integer translates. Thus it follows
that D (2)(R) = D(2)(R) as desired.

QR

Figure 3.1: PR ∩ −PR in red along with the fundamental parallelogram QR in gray
for the cone σ(1, 2).

Since by proposition 3.1.5 our notation for D(2) is interchangeable, from now on
we will favor the D(2) notation over the D (2) notation to indicate we are using our
new reformulation.
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p1

p2

Figure 3.2: P ′ (grey) tiling R2 and the associated pi outlined in red for the cone
σ(1, 2).

From here, our next goal will be to compute D(2)(R) toric rings of the form
R = K[σ̌ ∩ Z2] with σ a cone of the form σ({e1,−ae1 + be2}). Since we will only
consider cones of the aforementioned form, it will be convenient to introduce the
following definition.

Definition 3.1.6. Consider a cone of the form σ({e1,−ae1 + be2}). Then we will
write σ(a, b) to denote the cone σ({e1,−ae1 + be2}).

Definition 3.1.7. Let R = K[σ̌ ∩ Z2] be a toric ring. Then the parallelogram

QR = PR ∩
((
−1,−a+ 1

b

)
− PR

)
is the fundamental parallelogram of R.

With this, we can proceed by first finding an obvious choice for elements of D(2).
We can see that the parallelogram P ′ = PR ∩

(
(−1, b−a

b
)− PR

)
tiles R2 by integer

translates since it has height 1 and width 1. This tells us then that (−1, b−a
b

) ∈
D(2)(R).

To find a bound for D(2) we will notice that we can build the previous tiling
parallelogram P ′ by stacking b translations of our fundamental parallelogram of R. If
we label each of these translations of our fundamental parallelogram as p1, p2, . . . , pb
with p1 = QR and each successive pi taking the form pi = (0, 1/b) + pi−1.

In Figure 3.2, we see the tiling parallelogram P ′ and that P ′ can be built by
stacking p2 on top of p1. Since P ′ tiles R2 by integer translates, we then get the
following lemma.

Lemma 3.1.8. Let v ∈ R2 and let Pv = PR ∩ v− PR. Then Pv covers R2 if and only
if there exists an integer translate of pi contained in Pv for all pi. In other words,
v ∈ D(2)(R) if and only if there exists some vi ∈ Z2 such that vi + pi ⊆ Pv for
1 ≤ i ≤ b.
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Proof. For the forward direction, suppose that there exist vi ∈ Z2 such that vi + pi ⊆
Pv for 1 ≤ i ≤ b. Because P ′ =

⋃b
i=1 pi and P ′ tiles R2 by integer translates, we can

see that Pv covers R2 by integer translates because integer translates of Pv cover P ′.
For the other direction, now assume that Pv covers R2. Since Pv covers R2, we

know that for all x ∈ pi that there exists a point vx ∈ Z2 such that vx+x ∈ Pv. Since
Pv is compact, it will then suffice to show that there exists some v′ ∈ Z2 such that
v′ + int(pi) ⊆ Pv since the compactness of Pv would then imply that v′ + pi ⊆ Pv.
To see this, first observe that if x = (x1, x2) ∈ int(pi) and vx + x ∈ Pv, then for
all y ∈ px := {(y1, y2) ∈ pi|y1 ≤ x1, ay1 + bz2 ≤ −ax1 + bx2} we can see that
vx + y ∈ Pv. This follows by considering the inequalities that bound Pv and noticing
that if vx + x ∈ Pv, then our conditions upon y by imposing that y ∈ px tell us that
vx + y satisfy the same inequalities needed to ensure that vx + y ∈ Pv.

With this fact, we can proceed by contradiction and assume there does not exist
a v′ ∈ Z2 such that v′ + int(pi) ⊆ Pv. Take some point x ∈ int(pi) and consider the
line segment `x that connects x to the upper right most vertex of pi, which we will
denote w. Since there does not exist a v′ ∈ Z2 such that v′ + int(pi) ⊆ Pv, we know
that for any vx ∈ Z2 such that vx + x ∈ Pv there must exist a point z1 ∈ `x \ {w}
such that vx + z /∈ Pv. By our previous observation, this tells us that

{vz1 ∈ Z2 | vz1 + z1 ∈ Pv} ⊂ {vx ∈ Z2 | vx + x ∈ Pv}.

We can then iterate this process with zj ∈ `zj−1
\ {w} to get the series of proper

inclusions

{vx ∈ Z2 | vx + x ∈ Pv} ⊃ {vz1 ∈ Z2 | vz1 + z1 ∈ Pv} ⊃ · · · ⊃ {vzj ∈ Z2 | vzj + zj ∈ Pv}

Since {vx ∈ Z2 | vx + x ∈ Pv} is a finite set and Pv is bounded, this means that
eventually there must exist some zj ∈ int(pi) such that {vzj ∈ Z2 | vzj + zj ∈ Pv} = ∅.
This then contradicts our assumption that Pv covers and thus we have shown there
exists some v′ ∈ Z2 such that v′ + int(pi) ⊆ Pv.

p1

p2

p3

p4

p5
p4

p5

p1

Figure 3.3: Minimal Pv (in blue) of width 2 containing integer translates of all pi for
σ(3, 5)
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Corollary 3.1.9. v ∈ D(2)(R) if and only if Pv contains integer translates of all pi.

Proof. This is a restatement of Lemma 3.1.8.

To see how this new formulation D(2)(R) can help us compute D (2)(R) let us
consider the following example.

Example 3.1.10. Let us consider the cone σ({e1,−3e1 +5e2}) and R = K[σ̌∩Z2] be
the associated toric ring. To compute D(2)(R), as we have shown in Corollary 3.1.9
we only need to care about the fundamental parallelogram QR and the translations
of QR, pi = (0, i−1

5
) + QR for 1 ≤ i ≤ 5. Noting that QR = p1, we can then see that⋃5

i=1 pi tiles R2 since it is a parallelogram with a height and width of 1. With these
pi established, we can then try to find the values of v such that Pv minimally covers
an integer translation of the pi. While we have seen already that the parallelogram⋃5
i=1 pi covers all pi minimally, we can also find the other points by simply looking at

the correct picture. For the parallelogram with width 2, to find the correct shift by v
we can see in Figure that our minimal parallelogram is made up of 2 stacks of 3 pi.
Thus we get that the correct v = (0, 1/5).

Overlaying all the minimal parallelograms onto one graph, as we can see is done
in Figure 3.4, we can then see that the corners of each colored edge in Figure 3.1.10

Figure 3.4: Stacks of pi for Example 3.1.10

From Example 3.1.10 and Figure 3.4, we can start to see that the important points
we need to find for computing D(2)(R) are precisely the v such that we minimally
contain translates of each pi.

Definition 3.1.11. Let R = k[σ̌ ∩ Z2] with σ = σ(a, b). Then we let vi ∈ R2 denote
the point such that Pvi is a parallelogram of width i and minimally covers translates
of all pj.

As we saw in 3.1.10, to find these vi points it will suffice to find the minimal height
of the parallelogram in terms of pi. To do this we can note that v1 will always yield
the parallelogram Pv1 = P ′ which is made by stacking b-many pi in one column. To
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find Pv2 , we can add another column of pi to Pv1 and remove rows of pi until we no
longer translates of all pi. Stopping before the step before we no longer contain all pi
will then tell us Pv2 . We can then iterate this process, going from Pvj to Pvj+1

, to find
all vj.

Now that we can compute these vj reliably, all that is left is to show that finding
these vj points is sufficient to compute D(2)(R). To show this, we begin with the
following proposition.

Proposition 3.1.12. Suppose that v ∈ D(2)(R). Then

v + σ̌ ⊆ D(2)(R).

Proof. First note that v ∈ R, and v′ ∈ C∨,

v − PR ⊆ (v + v′)− PR.

Then because v ∈ D(2)(R) we know that PR∩(v−PR) covers R2 by integer translates.
Since (v + v′)− PR ⊇ v − PR, we can then see that

PR ∩ (v − PR) ⊆ PR ∩ ((v + v′)− PR)

and thus that PR ∩ ((v + v′) − PR) covers R2 by integer translates. By Proposition
3.1.5, it then follows that v + v′ ∈ D(2) as desired.

v

−PR

v − PR

Figure 3.5: A geometric interpretation of the proof of Proposition 3.1.12: σ̌ and v
graphed (left), v − PR on the right

This then tells us that
⋃b
i=1 vi + σ̌ ⊆ D(2)(R) and establishes

⋃b
i=1 vi + σ̌ as a

lower bound for D(2)(R). From here, we will then show that D(2)(R) ⊆
⋃b
i=1 vi + σ̌

and we will have computed D(2)(R). To do so, first write vi as the coordinate pair
vi = (xi, yi).

Then will show that for all ε > 0 and 1 ≤ i ≤ b, wi = (xi−ε, yi−ε) /∈ D(2)(R) and
w′i = (xi+1− ε, yi+ a

b
− ε) /∈ D(2)(R). Since these wi and w′i points make up the points

just outside of the cones vi + σ̌ and their intersections, showing that these points do
not lie in D(2)(R) will then prove that D(2)(R) ⊆

⋃b
i=1 vi + σ̌.



3.1. Results 31

Theorem 3.1.13. Let σ be a strongly convex rational cone and R = K[σ̌∩Z2]. Then

D(2)(R) =
b⋃
i=1

vi + σ̌

Proof. First we are going to note that to show wi and w′i are not in D(2)(R) it is
sufficient to show that Pwi

and Pw′i do not cover R2 by integer translates respectively.
For Pwi

, this is immediately clear because Pwi
⊂ Pvi and we have already defined our

vi to be the points that minimally cover translates of each pi.
For the Pw′i , let us again let vi = (xi, yi). Then by definition we know these

P(xi,yi) are parallelograms with i many columns of stacked pi. We also know that the
height of these columns must either stay the same of decrease due to our minimality
assumption. From this we can notice that P(xi+1,yi+

a
b

) is the parallelogram whose
columns of pj are the same height as the parallelogram P(xi,yi) but who has one more
column. If yi+1 = yi+

a
b
, then we are back in the wi case and we are done. Otherwise,

we know that yi+1 ≤ yi+
a
b

and the parallelogram P(xi+1,yi+1) has shorter columns than
P(xi,yi). Since our columns are shorter, our minimality assumption gives us that there
must be some unique pj in the right most column of P(xi+1,yi+1) that was uniquely found
in the top most row of P(xi,yi). From here we then get that within P(xi+1,yi+

a
b

) that the
pj from earlier only lies within the top row or the rightmost column of P(xi+1,yi+

a
b

).
This then tells us that pj is not covered by Pw′i and it follows from Corollary 3.1.9

that Pw′i /∈ D
(2)(R). Thus we have shown that D(2)(R) =

⋃b
i=1(xi, yi) + σ̌.

Having now proven Theorem 3.1.13, we can see how helpful these vi can be in
computing D(2). For instance, we can use Figure 3.4 to compute D(2)(R) for the ring
R from Example 3.1.10.

Figure 3.6: D(2)(R) for σ = σ({e1,−3e1 + 5e2})

Additionally, since we now only care about the height of the columns in each Pvi ,
we can see in the following example another way to determine the height of each Pvi .



32 Chapter 3. It Was Just Cones All Along!

Example 3.1.14. To see another method in for finding the vi of D(2)(R) for a specific
σ, let us consider the cone σ({e1,−3e1 + 5e2}). As we saw in the previous example,
all that matters for finding D(2)(R) is just what our minimal polynomials look like.
However, instead of looking at the geometric pictures to compute D(2)(R), we can use
modular arithmetic in the group Z/5Z to find out what the height of our minimal
parallelograms must be. With this height, we will then have everything we need to
compute D(2)(R).

In order to use a modular arithmetic approach, we first need to figure out why
Z/5Z relates to the height of our parallelograms. First, since our minimal parallel-
ograms are made up of columns of pi stacked on each other, we can see that the
bottom pi in the first columns will be 1 and will increase in index by 3 for every col-
umn. However, since there are only 5 distinct pi, eventually we will need to consider
the columns modulo 5, thus highlighting our reason for working modulo 5. Consider-
ing our problem in this way, a column of stacked j-many stacked pi corresponds to a
set of j-many consecutive elements of Z/5Z. Similarly, the starting point of each of
these sets will be determined by the first pi in the column, and thus we know each of
these sets will have starting points staggered by 3 modulo 5. To find the height of a
minimal parallelogram of width m, the problem becomes computing the minimal size
our staggered sets must be in order to completely cover Z/5Z. To find this size, we
can use another helpful picture. As seen in Figure 3.7, at each step i in the splitting
of our blocks we see that we recover the heights of minimally covering polynomials
pictured in Figure 3.7 by simply finding the size of the largest clump of blocks.

p1

p2

p3

p4

p5

Figure 3.7: Visual representation of Example 3.1.14

Remark 3.1.15. The method established in Example 3.1.14 only works because we
are considering cones of the form σ({e1,−ae1 + be2}) where a and b are relatively
prime. If a and b were not relatively prime eventually you could wind up with clumps
of more than 1 block that will never be split which is an issue.



3.2. Future Questions 33

3.2 Future Questions

While these examples, along with the rest of the work in this chapter, showcase an
easy and workable method of computing D(2)(R) for all toric rings arising from two-
dimensional cones, there are a variety of interesting questions out there to be solved.
Most pertinent to the work we have presented, it is not clear that there exists an
explicit form for the set D(2)(Rσ) that depends entirely on σ and its generating set and
determining whether or not such a form exists could be an interesting combinatorial
problem attempting to leverage our methods of computing D(2)(Rσ) in the examples.

Another interesting question that arises is whether or not this method can be
generalized to computing D(2)(Rσ) for higher dimensional σ. In two dimensions our
method works because of the convenient geometry of parallelograms whereas in higher
dimensions the complex geometry of PR could pose issues. While it is likely that this
method of finding some minimal pi that PR ∩ v − PR may not behave as nicely
geometrically, it would interesting to see whether or not a refinement in the choice of
pi could lead to a nice bound on D(2)(Rσ).

The last area we will touch on for how this thesis could be expanded on revolves
around a class of Cartier algebras we did not touch on in the thesis.

Definition 3.2.1. We define the nth diagonal Cartier algebra on R to be

D (n)(R) := C R⊗n,I∆	|R⊗n/I∆

where R⊗n is the k-tensor product of n copies of R.

Just like D (2)(R) has a nice geometric interpretation when R is a toric ring, the
problem of computing D (n)(R) also can be made geometric when R is a toric ring.
Similarly to D (2)(R), D (n)(R) can also be re-characterized geometrically.

Theorem 3.2.2 ([PST18], Theorem 3.4). For R = K[σ̌ ∩ Zd] a toric ring, we say
v ∈ D (n)(R) if and only if for all v1, . . . , vn+1 ∈ Rd there exist integer translates
v′1, . . . , v

′
n+1 of the original vi such that v′i ∈ PR and

∑n+1
i=1 v

′
i ∈ (v − PR).

Although computing these D (n)(R) is a difficult problem even in two dimensions,
a natural extension of this thesis would be to attempt to compute such D(n)(R). In
fact, one such place to start would be attempting to find some lower bound to the set
D(n)(R) leveraging our newfound understanding of D(2)(R).





References

[Bra01] Jean-Paul Brasselet. Introduction to toric varieties. Publicações
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