Ideals	Toric Rings	The Sets	Results

General Session on Algebra: Searching for Toric Rings with USTP

Dylan Johnson

Mentors: Karl Schwede, Dan Smolkin, and Marcus Robinson

December 10, 2018

Ordinary Power of an Ideal

Let R be a Noetherian ring.

Definition

Let \mathfrak{p} be an ideal of R. The n^{th} ordinary power of \mathfrak{p} , denoted \mathfrak{p}^n , is the ideal generated by all products of n elements of \mathfrak{p} .

Remark

When i > j, we have $\mathfrak{p}^i \subseteq \mathfrak{p}^j$.

Example

Let
$$R := k[x, y]$$
 and $\mathfrak{p} := (x, y)$.
Then $\mathfrak{p}^2 = (x^2, xy, y^2)$ and $\mathfrak{p}^3 = (x^3, xy^2, x^2y, y^3)$.

Symbolic Power of a Prime Ideal

Let R be a Noetherian ring.

Definition

Let \mathfrak{p} be a prime ideal of R. The n^{th} symbolic power of \mathfrak{p} , denoted $\mathfrak{p}^{(n)}$, is the ideal

$$\mathfrak{p}^{(n)}\coloneqq \{x\in R\mid \exists \ s\in (R\smallsetminus \mathfrak{p}), xs\in \mathfrak{p}^n\}.$$

Remark

- When i > j, we have $\mathfrak{p}^{(i)} \subseteq \mathfrak{p}^{(j)}$.
- For fixed *i*, we have $\mathfrak{p}^i \subseteq \mathfrak{p}^{(i)}$.

Symbolic Power of a Prime Ideal (continued)

Example

Let R := k[x, y] and $\mathfrak{p} := (x, y)$. Then $\mathfrak{p}^{(2)} = (x^2, xy, y^2)$ and $\mathfrak{p}^{(3)} = (x^3, xy^2, x^2y, y^3)$.

Example

Let
$$R = \frac{k[x,y,z]}{(xy-z^2)}$$
 and $\mathfrak{p} := (x,z)$.
Then $\mathfrak{p}^{(2)} = (x) \supsetneq (x^2, xz, z^2) = \mathfrak{p}^2$.

Uniform Symbolic Topology Property (USTP)

Question

How far from equality does the containment $\mathfrak{p}^n \subseteq \mathfrak{p}^{(n)}$ lie across the ideals of some ring R?

Definition

A ring R is said to have the **Uniform Symbolic Topology Property** if there exists h such that for all prime ideals \mathfrak{p} of R and all n > 0,

$$\mathfrak{p}^{(hn)} \subseteq \mathfrak{p}^n.$$

In some sense, this says that the "difference" between $\mathfrak{p}^{(n)}$ and \mathfrak{p}^n varies *uniformly* among all the different ideals $\mathfrak{p} \subset R$, where that uniform difference is captured by the value h.

	Toric Rings	The Sets	
D . D			

Toric Rings

Let $v_i \in \mathbb{Z}^n$ be a finite collection of vectors and k a field.

Definition

Let $R = k[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Then the **toric ring** associated to the vectors v_i is the subring of R generated by all monomials $x_1^{\lambda_1} \cdots x_n^{\lambda_n} = x^{\lambda}$ for which $\langle \lambda, v_i \rangle \geq 0$ for all i.

Example

For (1,0) and (0,1), the associated toric ring is k[x,y].

Toric Rings (continued)

Example

For (1,0) and (-1,2), the associated toric ring is $k[y, xy, x^2y]$.

	Toric Rings	The Sets	
The Cote			

The Sets

Let R be a toric ring associated to the vectors v_i . Work in [Smo18] and [CS18] uses the Frobenius endomorphism of the R to define a set $\mathscr{D}^{(m)}$ which detects when R has USTP.

Specifically, they show that if these sets $\mathscr{D}^{(m)}$ are "sufficiently large" for all $m \geq 2$, then R has USTP.

Definition

We say that $\mathscr{D}^{(m)}$ is **sufficiently large** if $\mathscr{D}^{(m)}$ contains an epsilon ball centered around the origin.

Results in Two Dimensions

Using work from [CS18], we show

```
Proposition ([J19])
```

The only two-dimensional toric ring for which $\mathscr{D}^{(2)}$ is sufficiently large is the toric ring associated to e_1 and e_2 .

Remark

Let R be the toric ring associated to e_1 and e_2 . Then $\mathscr{D}^{(2)} = \mathscr{D}^{(m)}, m \geq 3$. Thus, the sets $\mathscr{D}^{(m)}$ are sufficiently large for all m, so R has USTP.

Results in Three Dimensions

Using work from $[CHP^+16]$, we show

Proposition ([J19])

There are only 2 three-dimensional toric rings for which $\mathscr{D}^{(2)}$ is sufficiently large: the toric ring associated to e_1 , e_2 , and e_3 and the toric ring associated to e_1 , e_2 , e_3 , and (-1, 1, 1).

Proposition ([CS18;J19])

In the case of R associated to e_1 , e_2 , e_3 , and (-1, 1, 1), the sets $\mathscr{D}^{(m)}$ are sufficiently large for all m, so R has USTP.

Remark

In the case of R associated to e_1 , e_2 , and e_3 , we have $\mathscr{D}^{(2)} = \mathscr{D}^{(m)}, m \geq 3$. Thus, the sets $\mathscr{D}^{(m)}$ are sufficiently large for all m, so R has USTP.

Results in Higher Dimensions

Let R be the toric ring associated to the vectors

By work in [PST18], the set $\mathscr{D}^{(2)}$ is sufficiently large. Proposition ([J19])

The set $\mathscr{D}^{(3)}$ is sufficiently large. Thus, there exists $h \leq \dim R = 5$ such that for all prime ideals \mathfrak{p} of R,

$$\mathfrak{p}^{(3h)} \subset \mathfrak{p}^3.$$

Toric Rings	The Sets	Results

Acknowledgements

- Mentors: Dr. Karl Schwede, Dan Smolkin, and Marcus Robinson
- Supported by funding from the math department at the University of Utah
- Supported by funding from the Office of Undergraduate Research at the University of Utah

	Toric Rings	The Sets	Results
Refere	ences J. Chou, M. Hering, S. Payr	ne, R. Tramel, and B. Whit	ney.
	Diagonal splittings of toric v ArXiv e-prints, December 20	varieties and unimodularity	
	J. Carvajal-Rojas and D. Sr. The Uniform Symbolic Topo <i>F</i> -regular Algebras. <i>ArXiv e-prints</i> , July 2018.	nolkin. blogy Property for Diagonal	lly

Janet Page, Daniel Smolkin, and Kevin Tucker. Symbolic and Ordinary Powers of Ideals in Hibi Rings. *ArXiv e-prints*, page arXiv:1810.00149, September 2018.

D. Smolkin.

A New Subadditivity Formula for Test Ideals. *ArXiv e-prints*, May 2018.

Working with $\mathscr{D}^{(2)}$ in \mathbb{R}^2

Thus, to understand $\mathscr{D}^{(2)}$ we need to understand when $P_R \cap (v - P_R)$ tiles \mathbb{R}^2 by integer translations.

Remark

In two-dimensions, the intersections $P_R \cap (v - P_R)$ are all parallelograms.

The Sets

Tiling in \mathbb{R}^3

To show that $P_R \cap (v - P_R)$ can tile \mathbb{R}^3 , we consider the cross sections of level planes. These cross sections are 2-dimensional.

We can

prove that this polytope tiles \mathbb{R}^3 by showing that all cross sections of level planes in some unit interval - say, from $-\frac{1}{2}$ to $\frac{1}{2}$ - can tile \mathbb{R}^2 .

