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Ordinary Power of an Ideal

Let R be a Noetherian ring.

Definition

Let p be an ideal of R. The nth ordinary power of p, denoted
pn, is the ideal generated by all products of n elements of p.

Remark

When i > j, we have pi ⊆ pj .

Example

Let R := k[x, y] and p := (x, y).

Then p2 = (x2, xy, y2) and p3 = (x3, xy2, x2y, y3).
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Symbolic Power of a Prime Ideal

Let R be a Noetherian ring.

Definition

Let p be a prime ideal of R. The nth symbolic power of p,
denoted p(n), is the ideal

p(n) := {x ∈ R | ∃ s ∈ (Rr p), xs ∈ pn}.

Remark

• When i > j, we have p(i) ⊆ p(j).

• For fixed i, we have pi ⊆ p(i).
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Symbolic Power of a Prime Ideal (continued)

Example

Let R := k[x, y] and p := (x, y).

Then p(2) = (x2, xy, y2) and p(3) = (x3, xy2, x2y, y3).

Example

Let R = k[x,y,z]
(xy−z2) and p := (x, z).

Then p(2) = (x) ) (x2, xz, z2) = p2.
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Uniform Symbolic Topology Property (USTP)

Question

How far from equality does the containment pn ⊆ p(n) lie across
the ideals of some ring R?

Definition

A ring R is said to have the Uniform Symbolic Topology
Property if there exists h such that for all prime ideals p of R
and all n > 0,

p(hn) ⊆ pn.

In some sense, this says that the “difference” between p(n) and
pn varies uniformly among all the different ideals p ⊂ R, where
that uniform difference is captured by the value h.
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Toric Rings

Let vi ∈ Zn be a finite collection of vectors and k a field.

Definition

Let R = k[x±1
1 , . . . , x±1

n ]. Then the toric ring associated to the
vectors vi is the subring of R generated by all monomials
xλ11 · · ·xλnn = xλ for which 〈λ, vi〉 ≥ 0 for all i.

Example

For (1, 0) and (0, 1), the associated toric ring is k[x, y].

Dylan Johnson Mentors: Karl Schwede, Dan Smolkin, and Marcus Robinson

General Session on Algebra: Searching for Toric Rings with USTP



Ideals Toric Rings The Sets Results

Toric Rings (continued)

Example

For (1, 0) and (−1, 2), the associated toric ring is k[y, xy, x2y].

Figure 1: This is an individual, centered figure
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The Sets

Let R be a toric ring associated to the vectors vi. Work in
[Smo18] and [CS18] uses the Frobenius endomorphism of the R
to define a set D (m) which detects when R has USTP.

Specifically, they show that if these sets D (m) are “sufficiently
large” for all m ≥ 2, then R has USTP.

Definition

We say that D (m) is sufficiently large if D (m) contains an
epsilon ball centered around the origin.
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Results in Two Dimensions

Using work from [CS18], we show

Proposition ([J19])

The only two-dimensional toric ring for which D (2) is
sufficiently large is the toric ring associated to e1 and e2.

Remark

Let R be the toric ring associated to e1 and e2. Then
D (2) = D (m),m ≥ 3. Thus, the sets D (m) are sufficiently large
for all m, so R has USTP.
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Results in Three Dimensions
Using work from [CHP+16], we show

Proposition ([J19])

There are only 2 three-dimensional toric rings for which D (2) is
sufficiently large: the toric ring associated to e1, e2, and e3 and
the toric ring associated to e1, e2, e3, and (−1, 1, 1).

Proposition ([CS18;J19])

In the case of R associated to e1, e2, e3, and (−1, 1, 1), the sets
D (m) are sufficiently large for all m, so R has USTP.

Remark

In the case of R associated to e1, e2, and e3, we have
D (2) = D (m),m ≥ 3. Thus, the sets D (m) are sufficiently large
for all m, so R has USTP.
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Results in Higher Dimensions
Let R be the toric ring associated to the vectors
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By work in [PST18], the set D (2) is sufficiently large.

Proposition ([J19])

The set D (3) is sufficiently large. Thus, there exists
h ≤ dimR = 5 such that for all prime ideals p of R,

p(3h) ⊂ p3.
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Working with D (2) in R2

Thus, to understand D (2) we need to understand when
PR ∩ (v − PR) tiles R2 by integer translations.

Remark

In two-dimensions, the intersections PR ∩ (v − PR) are all
parallelograms.

PR

− 1
a

− 1, − 1 − b
a

PR ∩ (v − PR)

(a, b)

(0,1)

h

w
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Tiling in R3

To show that PR ∩ (v − PR)
can tile R3, we consider the
cross sections of level planes. These
cross sections are 2-dimensional.

We can
prove that this polytope tiles R3

by showing that all cross sections
of level planes in some unit interval
– say, from −1

2 to 1
2 – can tile R2.
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