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Chapter 0

Introduction

An Overview of the Course

In the first part of these notes we consider the problem of calculating the areas
of various plane figures. The technique we use for finding the area of a figure
A will be to construct a sequence In of sets contained in A, and a sequence
On of sets containing A, such that

1. The areas of In and On are easy to calculate.

2. When n is large then both In and On are in some sense “good approxi-
mations” for A.

Then by examining the areas of In and On we will determine the area of A.
The figure below shows the sorts of sets we might take for In and On in the case
where A is the set of points in the first quadrant inside of the circle x2+y2 = 1.

1 n
1

0 1

n
1

0

1

1 0

1

1

n
1

I
n

O
n

area(O
n
) − area(I

n
) = 1

n

1
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In this example, both of the sets In and On are composed of a finite number

of rectangles of width
1

n
, and from the equation of the circle we can calcu-

late the heights of the rectangles, and hence we can find the areas of In and

On. From the third figure we see that area(On)− area(In) =
1

n
. Hence if

n = 100000, then either of the numbers area(In) or area(On) will give the
area of the quarter-circle with an error of no more than 10−5. This calcula-
tion will involve taking many square roots, so you probably would not want
to carry it out by hand, but with the help of a computer you could easily
find the area of the circle to five decimals accuracy. However no amount of
computing power would allow you to get thirty decimals of accuracy from this
method in a lifetime, and we will need to develop some theory to get better
approximations.

In some cases we can find exact areas. For example, we will show that the
area of one arch of a sine curve is 2, and the area bounded by the parabola

y = x2 and the line y = 1 is
4

3
.

π

A

y = 1

B

y = sin(x) area(A) = 2 y = x2 area(B) = 4

3

However in other cases the areas are not simply expressible in terms of
known numbers. In these cases we define certain numbers in terms of areas,
for example we will define

π = the area of a circle of radius 1,

and for all numbers a > 1 we will define

ln(a) = the area of the region bounded by the curves

y = 0, xy = 1, x = 1, and x = a.
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We will describe methods for calculating these numbers to any degree of ac-
curacy, and then we will consider them to be known numbers, just as you
probably now think of

√
2 as being a known number. (Many calculators cal-

culate these numbers almost as easily as they calculate square roots.) The
numbers ln(a) have many interesting properties which we will discuss, and
they have many applications to mathematics and science.

Often we consider general classes of figures, in which case we want to find
a simple formula giving areas for all of the figures in the class. For example
we will express the area of the ellipse bounded by the curve whose equation is

x2

a2
+

y2

b2
= 1

by means of a simple formula involving a and b.

−b

−a

b

a

The mathematical tools that we develop for calculating areas, (i.e. the
theory of integration) have many applications that seem to have little to do
with area. Consider a moving object that is acted upon by a known force
F (x) that depends on the position x of the object. (For example, a rocket
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propelled upward from the surface of the moon is acted upon by the moon’s
gravitational attraction, which is given by

F (x) =
C

x2
,

where x is the distance from the rocket to the center of the moon, and C is
some constant that can be calculated in terms of the mass of the rocket and
known information.) Then the amount of work needed to move the object
from a position x = x0 to a position x = x1 is equal to the area of the region
bounded by the lines x = x0, x = x1, y = 0 and y = F (x).

y=F(x)

R+HR

Work is represened by an area

In the case of the moon rocket, the work needed to raise the rocket a height
H above the surface of the moon is the area bounded by the lines x = R,

x = R + H, y = 0, and y =
C

x2
, where R is the radius of the moon. After we

have developed a little bit of machinery, this will be an easy area to calculate.
The amount of work here determines the amount of fuel necessary to raise the
rocket.

Some of the ideas used in the theory of integration are thousands of years
old. Quite a few of the technical results in the calculations presented in these
notes can be found in the writings of Archimedes(287–212 B.C.), although the
way the ideas are presented here is not at all like the way they are presented
by Archimedes.

In the second part of the notes we study the idea of rate of change. The
ideas used in this section began to become common in early seventeenth cen-
tury, and they have no counterpart in Greek mathematics or physics. The
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problems considered involve describing motions of moving objects (e.g. can-
non balls or planets), or finding tangents to curves. An important example of
a rate of change is velocity. The problem of what is meant by the velocity of
a moving object at a given instant is a delicate one. At a particular instant of
time, the object occupies just one position in space. Hence during that instant
the object does not move. If it does not move, it is at rest. If it is at rest,
then its velocity must be 0(?)

The ability to find tangents to curves allows us to find maximum and
minimum values of functions. Suppose I want to design a tin can that holds
1000 cc., and requires a minimum amount of tin. It is not hard to find a
function S such that for each positive number h, the total surface area of a
can with height h and volume 1000 is equal to S(h). The graph of S has the
general shape shown in the figure, and the minimum surface area corresponds
to the height h0 shown in the figure. This value h0 corresponds to the point
on the graph of S where the tangent line is horizontal, i.e. where the slope
of the tangent is zero. From the formula for S(h) we will be able to find a
formula for the slope of the tangent to the graph of S at an arbitrary height
h, and to determine when the slope is zero. Thus we will find h0.

y=S(h)

0h h

y

h  is too  small

h

Badly  designed  cans

h  is too  large

h

The tool for solving rate problems is the derivative, and the process of
calculating derivatives is called differentiation. (There are two systems of
notation working here. The term differential was introduced by Gottfried
Leibniz(1646–1716) to describe a concept that later developed into what Joseph
Louis Lagrange(1736–1813) called the derived function. From Lagrange we get
our word derivative, but the older name due to Leibniz is still used to describe
the general theory – from which differentials in the sense of Leibniz have been
banished.) The idea of derivative (or fluxion or differential) appears in the
work of Isaac Newton(1642–1727) and of Leibniz, but can be found in various
disguises in the work of a number of earlier mathematicians.
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As a rule, it is quite easy to calculate the velocity and acceleration of a
moving object, if a formula for the position of the object at an arbitrary time
is known. However usually no such formula is obvious. Newton’s Second Law
states that the acceleration of a moving object is proportional to the sum of
the forces acting on the object, divided by the mass of the object. Now often
we have a good idea of what the forces acting on an object are, so we know
the acceleration. The interesting problems involve calculating velocity and
position from acceleration. This is a harder problem than the problem going
in the opposite direction, but we will find ways of solving this problem in
many cases. The natural statements of many physical laws require the notion
of derivative for their statements. According to Salomon Bochner

The mathematical concept of derivative is a master concept, one of
the most creative concepts in analysis and also in human cognition
altogether. Without it there would be no velocity or acceleration
or momentum, no density of mass or electric charge or any other
density, no gradient of a potential and hence no concept of potential
in any part of physics, no wave equation; no mechanics no physics,
no technology, nothing[11, page 276].

At the time that ideas associated with differentiation were being devel-
oped, it was widely recognized that a logical justification for the subject was
completely lacking. However it was generally agreed that the results of the
calculations based on differentiation were correct. It took more than a cen-
tury before a logical basis for derivatives was developed, and the concepts of
function and real number and limit and continuity had to be developed before
the foundations could be described. The story is probably not complete. The
modern “constructions” of real numbers based on a general theory of “sets”
appear to me to be very vague, and more closely related to philosophy than to
mathematics. However in these notes we will not worry about the foundations
of the real numbers. We will assume that they are there waiting for us to use,
but we will need to discuss the concepts of function, limit and continuity in
order to get our results.

The fundamental theorem of the calculus says that the theory of integration,
and the theory of differentiation are very closely related, and that differentia-
tion techniques can be used for solving integration problems, and vice versa.
The fundamental theorem is usually credited to Newton and Leibniz indepen-
dently, but it can be found in various degrees of generality in a number of
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earlier writers. It was an idea floating in the air, waiting to be discovered at
the close of the seventeenth century.

Prerequisites

The prerequisites for this course are listed in appendix C. You should look
over this appendix, and make sure that everything in it is more or less familiar
to you. If you are unfamiliar with much of this material, you might want to
discuss with your instructor whether you are prepared to take the course. It
will be helpful to have studied some trigonometry, but all of the trigonometry
used in these notes will be developed as it is needed.

You should read these notes carefully and critically. There are quite a
few cases where I have tried to trick you by giving proofs that use unjustified
assumptions. In these cases I point out that there is an error after the proof is
complete, and either give a new proof, or add some hypotheses to the statement
of the theorem. If there is something in a proof that you do not understand,
there is a good chance that the proof is wrong.

Exercises and Entertainments

The exercises are an important part of the course. Do not expect to be able
to do all of them the first time you try them, but you should understand them
after they have been discussed in class. Some important theorems will be
proved in the exercises. There are hints for some of the questions in appendix
A, but you should not look for a hint unless you have made some effort to
answer a question.

Sections whose titles are marked by an asterisk (e.g. section 2.6) are not
used later in the notes, and may be omitted. Hovever they contain really neat
material, so you will not want to omit them.

In addition to the exercises, there are some questions and statements with
the label “entertainment”. These are for people who find them entertaining.
They require more time and thought than the exercises. Some of them are
more metaphysical than mathematical, and some of them require the use of a
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computer or a programmable calculator. If you do not find the entertainments
entertaining, you may ignore them. Here is one to start you off.

1 Entertainment (Calculation of π.) . The area of a circle of radius 1 is
denoted by π. Calculate π as accurately as you can.

Archimedes showed that π is half of the circumference of a circle of radius 1.
More precisely, he showed that the area of a circle is equal to the area of
a triangle whose base is equal to the circumference of the circle, and whose
altitude is equal to the radius of the circle. If we take a circle of radius 1, we
get the result stated.

circumference

rr

You should assume Archimedes’ theorem, and then entertainment 1 is equiv-
alent to the problem of calculating the circumference of a circle as accurately
as you can. An answer to this problem will be a pair of rational numbers b
and c, together with an argument that b < π and π < c. It is desired to make
the difference c− b as small as possible.

This problem is very old. The Rhind Papyrus[16, page 92] (c. 1800 B.C.?)
contains the following rule for finding the area of a circle:

RULE I: Divide the diameter of the circle into nine equal parts, and form a
square whose side is equal to eight of the parts. Then the area of the square
is equal to the area of the circle.

The early Babylonians (1800-1600BC) [38, pages 47 and 51] gave the fol-
lowing rule:
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RULE II: The area of a circle is 5/60th of the square of the circumference of
the circle.

Archimedes (287–212 B.C.) proved that the circumference of a circle is
three times the diameter plus a part smaller than one seventh of the diam-
eter, but greater than 10/71 of the diameter[3, page 134]. In fact, by using
only elementary geometry, he gave a method by which π can be calculated
to any degree of accuracy by someone who can calculate square roots to any
degree of accuracy. We do not know how Archimedes calculated square roots,
but people have tried to figure out what method he used by the form of his
approximations. For example he says with no justification that

265

153
<
√

3 <
1351

780

and √
3380929 < 1838

9

11
.

By using your calculator you can easily verify that these results are correct.
Presumably when you calculate π you will use a calculator or computer to
estimate any square roots you need. This immediately suggests a new problem.

2 Entertainment (Square root problem.) Write, or at least describe, a
computer program that will calculate square roots to a good deal of accuracy.
This program should use only the standard arithmetic operations and the
constructions available in all computer languages, and should not use any
special functions like square roots or logarithms. An answer to this question
must include some sort of explanation of why the method works.

Zǔ Chōngzh̄ı (429–500 A.D.) stated that π is between 3.1415926 and 3.1415927,
and gave 355/113 as a good approximation to π.[47, page 82]

Here is a first approximation to π. Consider a circle of radius 1 with
center at (0, 0), and inscribe inside of it a square ABCD of side s with ver-
tices at (1, 0), (0, 1), (−1, 0) and (0,−1). Then by the Pythagorean theorem,
s2 = 12 + 12 = 2. But s2 is the area of the square ABCD, and since ABCD
is contained inside of the circle we have
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W

B

DZ

C

Y X

A

2 = Area of inscribed square < Area of circle = π.

Consider also the circumscribed square WXY Z with horizontal and vertical
sides. This square has side 2, and hence has area 4. Thus, since the circle is
contained in WXY Z,

π = area of circle < area(WXY Z) = 4.

It now follows that 2 < π < 4.

A number of extraordinary formulas for π are given in a recent paper on
How to Compute One Billion Digits of Pi[12]. One amazing formula given in
this paper is the following result

1

π
=

√
8

9801

∞∑

n=0

(4n)!

(n!)4

[1103 + 26390n]

3964n
,

which is due to S. Ramanujan(1887–1920)[12, p 201,p 215]. The reciprocal of
the zeroth term of this sum i.e.

9801

1103
√

8

gives a good approximation to π (see exercise 4).

3 Exercise. The formulas described in RULES I and II above each de-
termine an approximate value for π. Determine the two approximate values.
Explain your reasoning.

4 Exercise. Use a calculator to find the value of

9801

1103
√

8
,

and compare this with the correct value of π, which is 3.14159265358979 . . ..



Chapter 1

Some Notation for Sets

A set is any collection of objects. Usually the objects we consider are things like
numbers, points in the plane, geometrical figures, or functions. Sets are often
described by listing the objects they contain inside curly braces, for example

A = {1, 2, 3, 4},
B = {2, 3, 4},
C = {4, 3, 3, 2},
D = {1, 1

2
,
1

3
,
1

4
,
1

5
}.

There are a few sets that occur very often in mathematics, and that have
special names:

N = the set of all natural numbers = {0, 1, 2, 3, . . .}.
Z = the set of all integers = {0,−1, 1,−2, 2, . . .}.
Z+ = the set of all positive integers.
Z− = the set of all negative integers.
R = the set of all real numbers.
R+ = the set of all positive real numbers.
R− = the set of all negative real numbers.
R2 = the set of all points in the plane.
Q = the set of all rational numbers.
Q+ = the set of all positive rational numbers.
Q− = the set of all negative rational numbers.
∅ = the empty set = the set containing no elements.

11
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A rational number is a number that can be expressed as a quotient of two
integers. Thus a real number x is rational if and only if there exist integers a
and b with b 6= 0 such that x = a/b.

The terms “point in the plane” and “ordered pair of real numbers” are
taken to be synonymous. I assume that you are familiar with the usual rep-
resentation of points in the plane by pairs of numbers, and the usual way of
representing geometrical objects by equations and inequalities.

Figure a

1

2

3

4

-1 0 1 2
Figure b

1

2

3

4

-1 0 1 2

Thus the set of points (x, y) such that y = x2 is represented in figure a, and
the set of points (x, y) such that −1 ≤ x ≤ 2 and 0 ≤ y ≤ x2 is represented in
figure b. The arrowheads in figure a indicate that only part of the figure has
been drawn.

The objects in a set S are called elements of S or points in S. If x is an
object and S is a set then

x ∈ S means that x is an element of S,

and

x 6∈ S means that x is not an element of S.

Thus in the examples above

2 ∈ A. 2/6 ∈ D. 1 6∈ C. 0 6∈ Z+.
0 6∈ ∅. ∅ 6∈ A. 6/3 ∈ N. 0 ∈ N.

To see that ∅ 6∈ A, observe that A has exactly four elements, and none of
these elements is ∅.
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Let S and T be sets. We say that S is a subset of T and write S ⊂ T
if and only if every element in S is also in T. Two sets are considered to be
equal if and only if they have exactly the same elements. Thus

S = T means (S ⊂ T and T ⊂ S).

You can show that two sets are not equal, by finding an element in one of the
sets that is not in the other.

In the examples above, B ⊂ A and B = C. For every set S we have

S ⊂ S and ∅ ⊂ S.

Also
1 ∈ {1, 2, 3}. ∅ 6∈ {1, 2, 3}.
{1} ⊂ {1}. ∅ ⊂ {1, 2, 3}.
{1} 6∈ {1}. 1 ∈ {1}.

The idea of set was introduced into mathematics by Georg Cantor near
the end of the nineteenth century. Since then it has become one of the most
important ideas in mathematics. In these notes we use very little from the
theory of sets, but the language of sets will be very evident.

1.1 Definition (Box, width, height, area.) Let a, b, c, d be real numbers
with a ≤ b and c ≤ d. We define the set B(a, b: c, d) by

B(a, b: c, d) = the set of points (x, y) in R2 such that

a ≤ x ≤ b and c ≤ y ≤ d.

A set of this type will be called a box. If R = B(a, b : c, d), then we will refer
to the number b − a as the width of R, and we refer to d − c as the height of
R.

B(a,b:c,d)

height

width

(b,c)

(b,d)(a,d)

R

(a,c)
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The area of the box B(a, b : c, d) is the number

area(B(a, b : c, d)) = (b− a)(d− c).

Remark: Notice that in the definition of box, the inequalities are “≤” and
not “<”. The choice of which sort of inequality to use is somewhat arbitrary,
but some of the assertions we will be making about boxes would turn out to
be false if the boxes did not contain their boundaries.

In Euclid’s geometry no distinction is made between sets that contain their
boundaries and sets that do not. In fact the early Greek geometers did not
think in terms of sets at all. Aristotle maintained that

A line cannot be made up of points, seeing that a line is a contin-
uous thing, and a point is indivisible[25, page 123].

The notion that geometric figures are sets of points is a very modern one. Also
the idea that area is a number has no counterpart in Euclid’s geometry, and
in fact Euclid does not talk about area at all. He makes statements like

Triangles which are on equal bases and in the same parallels are
equal to one another[17, vol I page 333].

We interpret “are equal to one another” to mean “have equal areas”, but
Euclid does not define “equal” or mention “area”.

1.2 Definition (Unions and Intersections.) Let F = {S1, · · · , Sn} be a
set of sets. The union of the sets S1, · · · , Sn is defined to be the set of all points
x that belong to at least one of the sets S1, · · · , Sn. This union is denoted by

S1 ∪ S2 ∪ · · · ∪ Sn

or by
n⋃

i=1

Si. (1.3)

The intersection of the sets S1, S2, · · · , Sn is defined to be the set of points
x that are in every one of the sets Si. This intersection is denoted by

S1 ∩ S2 ∩ · · · ∩ Sn

or by
n⋂

i=1

Si. (1.4)
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The index i in equations 1.3 and 1.4 is called a dummy index and it can be
replaced by any symbol that does not have a meaning assigned to it. Thus,

n⋃

i=1

Si =
n⋃

k=1

Sk =
n⋃

t=1

St,

but expressions such as
n⋃

n=1

Sn or
n⋃

3=1

S3 will be considered to be ungrammatical.

1.5 Example. For i ∈ Z+ let Ri = B(i, i +
3

2
: −1

i
,
1

i
). Then

4⋃

i=1

Ri is

represented in the figure, and
4⋂

i=1

Ri = ∅. Also R1 ∩R2 = B(2,
5

2
:−1

2
,
1

2
).

431

1

0

−1

2

In the figure below,

B(0, 4: 0, 2) ∩B(1, 5:−1, 1) ∩B(2, 3 : −2, 3) = B(2, 3: 0, 1).

(5,1)

(5,−1)

(3,−2)

(4,2)



16 CHAPTER 1. SOME NOTATION FOR SETS

1.6 Definition (Set difference.) If A and B are sets then the set difference
A \B is the set of all points that are in A but not in B.

In the figure, the shaded region represents B(2, 4: 0, 4) \B(3, 5:−1, 3).

(2,0)

(5,−1)

(5,3)

(4,4)(2,4)

(3,−1)

1.7 Exercise. Explain why it is not true that

B(2, 4: 0, 4) \B(3, 5:−1, 3) = B(2, 3: 0, 4) ∪B(3, 4: 3, 4).

I will often use set relations such as

A ∪B = (A \B) ∪B

or
A = (A \B) ∪ (A ∩B)

without explanation or justification. The second statement says that A con-
sists of the points in A which are not in B together with the points in A that
are in B, and I take this and similar statements to be clear.

1.8 Definition (Intervals.) Let a, b be real numbers with a ≤ b. We define
the following subsets of R:

(a, b) = the set of real numbers x such that a < x < b.

(a, b] = the set of real numbers x such that a < x ≤ b.

[a, b) = the set of real numbers x such that a ≤ x < b.

[a, b] = the set of real numbers x such that a ≤ x ≤ b.

(a,∞) = the set of real numbers x such that x > a.

[a,∞) = the set of real numbers x such that x ≥ a.

(−∞, a) = the set of real numbers x such that x < a.

(−∞, a] = the set of real numbers x such that x ≤ a.

(−∞,∞) = the set of real numbers.
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A subset of R is called an interval if it is equal to a set of one of these nine
types. Note that (a, a) = ∅ and [a, a] = {a}, so the empty set and a set
consisting of just one point are both intervals.

1.9 Definition (End points: open and closed intervals.) If I is a non-
empty interval of one of the first four types in the above list, then we will say
that the end points of I are the numbers a and b. If I is an interval of one of
the next four types, then I has the unique end point a. The empty set and
the interval (−∞,∞) have no end points. An interval is closed if it contains
all of its end points, and it is open if it contains none of its end points.

1.10 Exercise. Let a, b be real numbers with a < b. For each of the nine
types of interval described in definition 1.8, decide whether an interval of the
type is open or closed. (Note that some types are both open and closed, and
some types are neither open nor closed.) Is the interval (0, 0] open? Is it
closed? What about the interval [0, 0]?

1.11 Exercise. In the figure below, A, C, and F are boxes.
a) Express each of A, C, F in the form B(?, ? :?, ?).
b) Express D, E, and A ∩ C as intersections or unions or set differences of
boxes. The dotted edge of E indicates that the edge is missing from the set.
c) Find a box that contains A ∪ C.

2

5

4

1

C

4

3

2

0

1

0

F

E

DA

7653 8

1.12 Exercise. Let S be the set of points (x, y) in R2 such that 1 ≤ x ≤ 4

and 0 ≤ y ≤ 1

x2
. Let T be the set of points (x, y) in R2 such that

(x, y) ∈ B(−1, 1 : −1, 1) and xy > 0.
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Make sketches of the sets S and T .

1.13 Exercise. Describe the sets S and T below in terms of unions or
intersections or differences of boxes.

3

0

1 S

54321

2

0

(3,1/2)

2

(1,1)

(4,1/3)

6

(2,1)

5
0

43

(5,1/4)

10

2

1

T



Chapter 2

Some Area Calculations

2.1 The Area Under a Power Function

Let a be a positive number, let r be a positive number, and let Sr
a be the set

of points (x, y) in R2 such that 0 ≤ x ≤ a and 0 ≤ y ≤ xr. In this section we
will begin an investigation of the area of Sr

a.

2

r=2

(a,a  ) (a,a)

r=1

1/2

r=1/2

(a,a     )

Sr

a
for various positive values of r

Our discussion will not apply to negative values of r, since we make frequent
use of the fact that for all non-negative numbers x and t

(x ≤ t) implies that (xr ≤ tr).

Also 0r is not defined when r is negative.

19
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The figures for the argument given below are for the case r = 2, but you
should observe that the proof does not depend on the pictures.

a
r

(a,0)

r

S

(a,a  ) (a,a  )

(a,0)

r

(a,0)

r(a,a  )

S
r

a
⊂

⋃
4

i=1
Oi

⋃
4

i=1
Ii ⊂ S

r

a

Let n be a positive integer, and for 0 ≤ i ≤ n, let xi =
ia

n
.

Then xi − xi−1 =
a

n
for 1 ≤ i ≤ n, so the points xi divide the interval [0, a]

into n equal subintervals. For 1 ≤ i ≤ n, let

Ii = B(xi−1, xi: 0, x
r
i−1)

Oi = B(xi−1, xi: 0, x
r
i ).

If (x, y) ∈ Sr
a, then xi−1 ≤ x ≤ xi for some index i, and 0 ≤ y ≤ xr ≤ xr

i , so

(x, y) ∈ B(xi−1, xi: 0, xr
i ) = Oi for some i ∈ {1, · · · , n}.

Hence we have

Sr
a ⊂

n⋃

i=1

Oi,

and thus

area(Sr
a) ≤ area(

n⋃

i=1

Oi). (2.1)

If (x, y) ∈ Ii, then 0 ≤ xi−1 ≤ x ≤ xi ≤ a and 0 ≤ y ≤ xr
i−1 ≤ xr so

(x, y) ∈ Sr
a. Hence, Ii ⊂ Sr

a for all i, and hence

n⋃

i=1

Ii ⊂ Sr
a,
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so that

area(
n⋃

i=1

Ii) ≤ area(Sr
a). (2.2)

Now

area(Ii) = area
(
B(xi−1, xi: 0, x

r
i−1)

)

= (xi − xi−1)x
r
i−1 =

a

n

(
(i− 1)a

n

)r

=
ar+1

nr+1
(i− 1)r,

and

area(Oi) = area (B(xi−1, xi: 0, x
r
i ))

= (xi − xi−1)x
r
i =

a

n

(
ia

n

)r

=
ar+1

nr+1
ir.

Since the boxes Ii intersect only along their boundaries, we have

area(
n⋃

i=1

Ii) = area(I1) + area(I2) + · · ·+ area(In)

=
ar+1

nr+1
0r +

ar+1

nr+1
1r + · · ·+ ar+1

nr+1
(n− 1)r

=
ar+1

nr+1
(1r + 2r + · · ·+ (n− 1)r), (2.3)

and similarly

area(
n⋃

i=1

Oi) = area(O1) + area(O2) + · · ·+ area(On)

=
ar+1

nr+1
1r +

ar+1

nr+1
2r + · · ·+ ar+1

nr+1
nr

=
ar+1

nr+1
(1r + 2r + · · ·+ nr).

Thus it follows from equations (2.1) and (2.2) that

ar+1

nr+1
(1r + 2r + · · ·+ (n− 1)r) ≤ area(Sr

a) ≤
ar+1

nr+1
(1r + 2r + · · ·+ nr).

(2.4)
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The geometrical question of finding the area of Sr
a has led us to the numer-

ical problem of finding the sum

1r + 2r + · · ·+ nr.

We will study this problem in the next section.

2.5 Definition (Circumscribed box.) Let cir(Sr
a) be the smallest box

containing (Sr
a). i.e.

cir(Sr
a) = B(0, a; 0, ar) (r ≥ 0).

r(a,a  )

circumscribed box cir(B(Sr

a
))

Notice that area(cir(Sr
a)) = a · ar = ar+1. Thus equation (2.4) can be

written as

(1r + 2r + · · ·+ (n− 1)r)

nr+1
≤ area(Sr

a)

area(cir(Sr
a))

≤ (1r + 2r + · · ·+ nr)

nr+1
. (2.6)

Observe that the outside terms in (2.6) do not depend on a.

Now we will specialize to the case when r = 2. A direct calculation shows
that

12 = 1,

12 + 22 = 5,

12 + 22 + 32 = 14,

12 + 22 + 32 + 42 = 30,

12 + 22 + 32 + 42 + 52 = 55. (2.7)
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There is a simple (?) formula for 12 + 22 + · · ·+ n2, but it is not particularly
easy to guess this formula on the basis of these calculations. With the help of
my computer, I checked that

12 + · · ·+ 102 = 385 so
12 + · · ·+ 102

103
= .385

12 + · · ·+ 1002 = 338350 so
12 + · · ·+ 1002

1003
= .33835

12 + · · ·+ 10002 = 333833500 so
12 + · · ·+ 10002

10003
= .3338335

Also

12 + · · ·+ 9992

10003
=

12 + · · ·+ 10002

10003
− 10002

10003
= .3338335− .001

= .3328335.

Thus by taking n = 1000 in equation (2.6) we see that

.332 ≤ area(S2
a)

area(cir(S2
a))

≤ .3339.

On the basis of the computer evidence it is very tempting to guess that

area(S2
a) =

1

3
area(cir(S2

a)) =
1

3
a3.

2.2 Some Summation Formulas

We will now develop a formula for the sum

1 + 2 + · · ·+ n.

nn

figure  a

n

n

figure  b

n+1
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Figure (a) shows two polygons, each having area 1+2+ · · ·+n. If we slide
the two polygons so that they touch, we create a rectangle as in figure (b)
whose area is n(n + 1). Thus

2(1 + 2 + · · ·+ n) = n(n + 1)

i.e.,

1 + 2 + · · ·+ n =
n(n + 1)

2
. (2.8)

The proof just given is quite attractive, and a proof similar to this was
probably known to the Pythagoreans in the 6th or 5th centuries B.C. Cf [29,
page 30]. The formula itself was known to the Babylonians much earlier than
this[45, page 77], but we have no idea how they discovered it.

The idea here is special, and does not generalize to give a formula for
12 + 22 + · · ·+ n2. (A nice geometrical proof of the formula for the sum of the
first n squares can be found in Proofs Without Words by Roger Nelsen[37, page
77], but it is different enough from the one just given that I would not call it
a “generalization”.) We will now give a second proof of (2.8) that generalizes
to give formulas for 1p + 2p + · · ·+ np for positive integers p. The idea we use
was introduced by Blaise Pascal [6, page 197] circa 1654.

For any real number k, we have

(k + 1)2 − k2 = k2 + 2k + 1− k2 = 2k + 1.

Hence

12 − 02 = 2 · 0 + 1,

22 − 12 = 2 · 1 + 1,

32 − 22 = 2 · 2 + 1,
...

(n + 1)2 − n2 = 2 · n + 1.

Add the left sides of these (n + 1) equations together, and equate the result
to the sum of the right sides:

(n + 1)2 − n2 + · · ·+ 32 − 22 + 22 − 12 + 12 − 02 = 2 · (1 + · · ·+ n) + (n + 1).

In the left side of this equation all of the terms except the first cancel. Thus

(n + 1)2 = 2(1 + 2 + · · ·+ n) + (n + 1)
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so

2(1 + 2 + · · ·+ n) = (n + 1)2 − (n + 1) = (n + 1)(n + 1− 1) = (n + 1)n

and

1 + 2 + · · ·+ n =
n(n + 1)

2
.

This completes the second proof of (2.8).

To find 12 + 22 + · · ·+ n2 we use the same sort of argument. For any real
number k we have

(k + 1)3 − k3 = k3 + 3k2 + 3k + 1− k3 = 3k2 + 3k + 1.

Hence,

13 − 03 = 3 · 02 + 3 · 0 + 1,

23 − 13 = 3 · 12 + 3 · 1 + 1,

33 − 23 = 3 · 22 + 3 · 2 + 1,
...

(n + 1)3 − n3 = 3 · n2 + 3 · n + 1.

Next we equate the sum of the left sides of these n+1 equations with the sum
of the right sides. As before, most of the terms on the left side cancel and we
obtain

(n + 1)3 = 3(12 + 22 + · · ·+ n2) + 3(1 + 2 + · · ·+ n) + (n + 1).

We now use the known formula for 1 + 2 + 3 + · · ·+ n:

(n + 1)3 = 3(12 + 22 + · · ·+ n2) +
3

2
n(n + 1) + (n + 1)

so

3(12 + 22 + · · ·+ n2) = (n + 1)3 − 3

2
n(n + 1)− (n + 1)

= (n + 1)
(
(n + 1)2 − 3

2
n− 1

)

= (n + 1)(n2 + 2n + 1− 3

2
n− 1)

= (n + 1)
(
n2 +

1

2
n

)
= (n + 1)n

(
n +

1

2

)

=
n(n + 1)(2n + 1)

2
,
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and finally

12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
. (2.9)

You should check that this formula agrees with the calculations made in (2.7).
The argument we just gave can be used to find formulas for 13 + 23 + · · ·+ n3,
and for sums of higher powers, but it takes a certain amount of stamina to
carry out the details. To find 13 + 23 + · · ·+ n3, you could begin with

(k + 1)4 − k4 = 4k3 + 6k2 + 4k + 1 for all k ∈ R.

Add together the results of this equation for k = 0, 1, · · · , n and get

(n+1)4 = 4(13 +23 + · · ·+n3)+6(12 +22 + · · ·+n2)+4(1+ · · ·+n)+ (n+1).

Then use equations (2.8) and (2.9) to eliminate 12+22+· · ·+n2 and 1+· · ·+n,
and solve for 13 + 23 + · · ·+ n3.

2.10 Exercise. Complete the argument started above, and find the formula
for 13 + 23 + · · ·+ n3.

Jacob Bernoulli (1654–1705) considered the general formula for power sums.
By using a technique similar to, but slightly different from Pascal’s, he con-
structed the table below. Here f(1) + f(2) + · · · f(n) is denoted by

∫
f(n),

and ∗ denotes a missing term: Thus the ∗ in the fourth line of the table below
indicates that there is no n2 term, i.e. the coefficient of n2 is zero.)

Thus we can step by step reach higher and higher powers and with
slight effort form the following table.
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Sums of Powers
∫

n = 1
2
nn +1

2
n,

∫
nn = 1

3
n3 +1

2
nn +1

6
n,

∫
n3 = 1

4
n4 +1

2
n3 +1

4
nn,

∫
n4 = 1

5
n5 +1

2
n4 +1

3
n3 ∗ − 1

30
n,

∫
n5 = 1

6
n6 +1

2
n5 + 5

12
n4 ∗ − 1

12
nn,

∫
n6 = 1

7
n7 +1

2
n6 +1

2
n5 ∗ − 1

6
n3 ∗+ 1

42
n,

∫
n7 = 1

8
n8 +1

2
n7 + 7

12
n6 ∗ − 7

24
n4 ∗+ 1

12
nn,

∫
n8 = 1

9
n9 +1

2
n8 +2

3
n7 ∗ − 7

15
n5 ∗+ 2

9
n3 ∗ − 1

30
n,

∫
n9 = 1

10
n10 +1

2
n9 +3

4
n8 ∗ − 7

10
n6 ∗+ 1

2
n4 ∗ − 3

20
nn,

∫
n10 = 1

11
n11 +1

2
n10 +5

6
n9 ∗ − 1n7 ∗+ 1n5 ∗ − 1

2
n3 ∗+ 5

66
n.

Whoever will examine the series as to their regularity may be able
to continue the table[9, pages 317–320]. 1

He then states a rule for continuing the table. The rule is not quite an
explicit formula, rather it tells how to compute the next line easily when the
previous lines are known.

2.11 Entertainment (Bernoulli’s problem.) Guess a way to continue
the table. Your answer should be explicit enough so that you can actually
calculate the next two lines of the table.

A formula for 12 +22 + · · ·+n2 was proved by Archimedes (287-212 B.C.).
(See Archimedes On Conoids and Spheroids in [2, pages 107-109]). The for-
mula was known to the Babylonians[45, page 77] much earlier than this in the
form

12 + 22 + · · ·+ n2 = (
1

3
+ n · 2

3
)(1 + 2 + · · ·+ n).

A technique for calculating general power sums has been known since circa
1000 A.D. At about this time Ibn-al-Haitham, gave a method based on the
picture below, and used it to calculate the power sums up to 14 +24 + · · ·+n4.
The method is discussed in [6, pages 66–69]

1A typographical error in Bernoulli’s table has been corrected here.
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+  

2

2

p

2+  

3

p+  

+  

p

p

p1

pn+1

p1

. . .+    n p+  p+  2+  p1

1

3

p

p

2

p

3

2 p

4

31 p4p

+  

+  

3

p+1
p+1

1

p+1

4 p

p

2.3 The Area Under a Parabola

If S2
a is the set of points (x, y) in R2 such that 0 ≤ x ≤ a and 0 ≤ y ≤ x2,

then we showed in (2.6) that

12 + 22 + · · ·+ (n− 1)2

n3
≤ area(S2

a)

area(cir(S2
a))

≤ 12 + · · ·+ n2

n3
.

By (2.9)

12 + 22 + · · ·+ n2

n3
=

n(n + 1)(2n + 1)

n3 · 6 =
1

3

(
n + 1

n

) (
2n + 1

2n

)

=
1

3

(
1 +

1

n

) (
1 +

1

2n

)
.

Also

12 + 22 + · · ·+ (n− 1)2

n3
=

(n− 1)n((2(n− 1) + 1)

n3 · 6 =
1

3

(
n− 1

n

) (
2n− 1

2n

)

=
1

3

(
1− 1

n

) (
1− 1

2n

)
, (2.12)

so

1

3

(
1− 1

n

) (
1− 1

2n

)
≤ area(S2

a)

area(cir(S2
a))

≤ 1

3

(
1 +

1

n

) (
1 +

1

2n

)
(2.13)

for all n ∈ Z+.
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The right side of (2.13) is greater than
1

3
and the left side is less than

1

3
for all n ∈ Z+, but by taking n large enough, both sides can be made as close

to
1

3
as we please. Hence we conclude that the ratio

area(S2
a)

area(cir(S2
a))

is equal to

1

3
. Thus, we have proved the following theorem:

2.14 Theorem (Area Under a Parabola.) Let a be a positive real number
and let S2

a be the set of points (x, y) in R2 such that 0 ≤ x ≤ a and 0 ≤ y ≤ x2.
Then

area(S2
a)

area(box circumscribed about S2
a)

=
1

3
,

i.e.

area(S2
a) =

1

3
a3.

Remark: The last paragraph of the proof of theorem 2.14 is a little bit
vague. How large is “large enough” and what does “as close as we please”
mean? Archimedes and Euclid would not have considered such an argument
to be a proof. We will reconsider the end of this proof after we have developed
the language to complete it more carefully. (Cf Example 6.54.)

The first person to calculate the area of a parabolic segment was
Archimedes (287-212 B.C.). The parabolic segment considered by Archimedes
corresponds to the set S(a, b) bounded by the parabola y = x2 and the line
joining P (a) = (a, a2) to P (b) = (b, b2) where (a < b).

P(b)

P(a)

P(b)

P(a) P(b)

P(a)

Parabolic Segments
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2.15 Exercise. Show that the area of the parabolic segment S(a, b) just

described is
(b− a)3

6
. Use theorem 2.14 and any results from Euclidean ge-

ometry that you need. You may assume that 0 < a ≤ b. The cases where
a < 0 < b and a < b < 0 are all handled by similar arguments.

The result of this exercise shows that the area of a parabolic segment
depends only on its width. Thus the segment determined by the points (−1, 1)
and (1, 1) has the same area as the segment determined by the points (99, 9801)
and (101, 10201), even though the second segment is 400 times as tall as the
first, and both segments have the same width. Does this seem reasonable?

Remark: Archimedes stated his result about the area of a parabolic segment
as follows. The area of the parabolic segment cut off by the line AB is four
thirds of the area of the inscribed triangle ABC, where C is the point on
the parabola at which the tangent line is parallel to AB. We cannot verify
Archimedes formula at this time, because we do not know how to find the
point C.

C

B

A

2.16 Exercise. Verify Archimedes’ formula as stated in the above remark
for the parabolic segment S(−a, a). In this case you can use your intuition to
find the tangent line.

The following definition is introduced as a hint for exercise 2.18

2.17 Definition (Reflection about the line y = x) If S is a subset of
R2, then the reflection of S about the line y = x is defined to be the set of all
points (x, y) such that (y, x) ∈ S.
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(b,b)(a,b)

(b,a)
(a,a)

A
A*

A∗
is the reflection of A about the line y = x

If S∗ denotes the reflection of S about the line y = x, then S and S∗ have
the same area.

2.18 Exercise. Let a ∈ R+ and let Ta be the set of all points (x, y) such
that 0 ≤ x ≤ a and 0 ≤ y ≤ √

x. Sketch the set Ta and find its area.

2.19 Exercise. In the first figure below, the 8× 8 square ABCD has been
divided into two 3× 8 triangles and two trapezoids by means of the lines EF ,
EB and GH. In the second figure the four pieces have been rearranged to
form an 5× 13 rectangle. The square has area 64 , and the rectangle has area
65. Where did the extra unit of area come from? (This problem was taken
from W. W. Rouse Ball’s Mathematical Recreations [4, page 35]. Ball says
that the earliest reference he could find for the problem is 1868.)

H FE

BA

CGD
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2.4 Finite Geometric Series

For each n in Z+ let Bn denote the box

Bn = B
(

1

2n−1
,

2

2n−1
: 0,

1

2n−1

)
,

and let

Sn = B1 ∪B2 ∪ · · · ∪ Bn =
n⋃

j=1

Bj.

3

4SThe  set

4B
B

2B

1B

(1/4,1/4)

(1/2,1/2)

(1,1)

(2,0)

I want to find the area of Sn. I have

area(Bn) =
(

2

2n−1
− 1

2n−1

)
·
(

1

2n−1
− 0

)
=

1

2n−1
· 1

2n−1
=

1

4n−1
.

Since the boxes Bi intersect only along their boundaries, we have

area(Sn) = area(B1) + area(B2) + · · ·+ area(Bn)

= 1 +
1

4
+ · · ·+ 1

4n−1
. (2.20)

Thus

area(S1) = 1,

area(S2) = 1 +
1

4
=

5

4
,

area(S3) =
5

4
+

1

16
=

20

16
+

1

16
=

21

16
=

21

42
,

area(S4) =
21

16
+

1

64
=

84

64
+

1

64
=

85

64
=

85

43
. (2.21)
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You probably do not see any pattern in the numerators of these fractions, but
in fact area(Sn) is given by a simple formula, which we will now derive.

2.22 Theorem (Finite Geometric Series.) Let r be a real number such
that r 6= 1. Then for all n ∈ Z+

1 + r + r2 + · · ·+ rn−1 =
1− rn

1− r
. (2.23)

Proof: Let
S = 1 + r + r2 + · · ·+ rn−1.

Then
rS = r + r2 + · · ·+ rn−1 + rn.

Subtract the second equation from the first to get

S(1− r) = 1− rn,

and thus

S =
1− rn

1− r
. |||2

Remark: Theorem 2.22 is very important, and you should remember it. Some
people find it easier to remember the proof than to remember the formula. It
would be good to remember both.

If we let r =
1

4
in (2.23), then from equation (2.20) we obtain

area(Sn) = 1 +
1

4
+ · · ·+ 1

4n−1

=
1− 1

4n

1− 1
4

=
4

3

(
1− 1

4n

)
(2.24)

=
4n − 1

3 · 4n−1
.

As a special case, we have

area(S4) =
44 − 1

3 · 43
=

256− 1

3 · 43
=

255

3 · 43
=

85

43

which agrees with equation (2.21).

2We use the symbol ||| to denote the end of a proof.
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2.25 Entertainment (Pine Tree Problem.) Let T be the subset of R2

sketched below:

1A0B

3B A

2B 3

2

A

1B A

P

y=1

4

Here P = (0, 4), B0 = (1, 0), A1 = (2, 0), and B1 is the point where the line
B0P intersects the line y = 1. All of the points Aj lie on the line PA1, and all
of the points Bj lie on the line PB0. All of the segments AiBi−1 are horizontal,
and all segments AjBj are parallel to A1B1. Show that the area of T is 44

7
.

You will probably need to use the formula for a geometric series.

2.26 Exercise.
(a) Find the number

1 +
1

7
+

1

72
+

1

73
+ · · ·+ 1

7100

accurate to 8 decimal places.
(b) Find the number

1 +
1

7
+

1

72
+

1

73
+ · · ·+ 1

71000

accurate to 8 decimal places.
(You may use a calculator, but you can probably do this without using a

calculator.)
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2.27 Exercise. Let

a1 = .027

a2 = .027027

a3 = .027027027

etc.

Use the formula for a finite geometric series to get a simple formula for an.
What rational number should the infinite decimal .027027027 · · · represent?
Note that

a3 = .027(1.001001) = .027(1 +
1

1000
+

1

10002
).

The Babylonians[45, page 77] knew that

1 + 2 + 22 + 23 + · · ·+ 2n = 2n + (2n − 1), (2.28)

i.e. they knew the formula for a finite geometric series when r = 2.
Euclid knew a version of the formula for a finite geometric series in the

case where r is a positive integer.
Archimedes knew the sum of the finite geometric series when r = 1

4
. The

idea of Archimedes’ proof is illustrated in the figure.

E
D

C

B

A

If the large square has side equal to 2, then

A = A = 3
1
4
A = B

(1
4
)2A = 1

4
B = C

(1
4
)3A = 1

4
C = D.
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Hence

(1 + 1
4

+ (1
4
)2 + (1

4
)3)A = (A + B + C + D) = 4− E

= 4− (1
8
)2 = 4− (1

4
)3 = 4(1− (1

4
)4).

i.e.

(1 + 1
4

+ (1
4
)2 + (1

4
)3) · 3 = 4(1− (1

4
)4).

For the details of Archimedes’ argument see [2, pages 249-250].

2.29 Exercise. Explain why formula (2.28) is a special case of the formula
for a finite geometric series.

2.5 Area Under the Curve y = 1
x2

The following argument is due to Pierre de Fermat (1601-1665) [19, pages
219-222]. Later we will use Fermat’s method to find the area under the curve
y = xα for all α in R \ {−1}.

Let a be a real number with a > 1, and let Sa be the set of points (x, y) in

R2 such that 1 ≤ x ≤ a and 0 ≤ y ≤ 1

x2
. I want to find the area of Sa.

2 4

2y=  1/x

O3OO1O

1 a

1

4 a

2

4 a

3

4 a

4

4

Let n be a positive integer. Note that since a > 1, we have

1 < a
1
n < a

2
n < · · · < a

n
n = a.
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Let Oj be the box

Oj = B


a

j−1
n , a

j
n : 0,

1
(
a

j−1
n

)2


 .

Thus the upper left corner of Oj lies on the curve y =
1

x2
.

To simplify the notation, I will write

b = a
1
n .

Then

Oj = B
(
bj−1, bj : 0,

1

b2(j−1)

)
,

and

area(Oj) =
bj − bj−1

b2(j−1)
=

(b− 1)bj−1

b2(j−1)
=

(b− 1)

b(j−1)
.

Hence

area




n⋃

j=1

Oj


 = area(O1) + area(O2) + · · ·+ area(On)

= (b− 1) +
(b− 1)

b
+ · · ·+ (b− 1)

b(n−1)

= (b− 1)
(
1 +

1

b
+ · · ·+ 1

b(n−1)

)
.

Observe that we have here a finite geometric series, so

area




n⋃

j=1

Oj


 = (b− 1)

(
1− 1

bn

1− 1
b

)
(2.30)

= b
(
1− 1

b

) (
1− 1

bn

1− 1
b

)
= b

(
1− 1

bn

)
. (2.31)

Now

Sa ⊂
n⋃

j=1

Oj (2.32)
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so

area(Sa) ≤ area(
n⋃

j=1

Oj) = b
(
1− 1

bn

)
. (2.33)

Let Ij be the box

Ij = B

(
a

j−1
n , a

j
n : 0,

1

a
2j
n

)
= B

(
bj−1, bj : 0,

1

b2j

)

2y=  1/x

3I2I1I

1 a

1

4 a

2

4 a

3

4 a

4

4

so that the upper right corner of Ij lies on the curve y = 1
x2 and Ij lies

underneath the curve y = 1
x2 . Then

area(Ij) =

(
bj − bj−1

b2j

)
=

(b− 1) bj−1

b2j

=
(b− 1)

b(j+1)
=

(b− 1)

b2bj−1
=

area(Oj)

b2
.

Hence,

area




n⋃

j=1

Ij


 = area(I1) + · · ·+ area(In)

=
area(O1)

b2
+ · · ·+ area(On)

b2
=

(area(O1) + · · ·+ area(On))

b2

=
1

b2
area




n⋃

j=1

Oj


 =

1

b2
· b(1− 1

bn
) = b−1(1− b−n).

Since
n⋃

j=1

Ij ⊂ Sa,
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we have

area




n⋃

j=1

Ij


 ≤ area(Sa);

i.e.,
b−1(1− b−n) ≤ area(Sa).

By combining this result with (2.33), we get

b−1(1− b−n) ≤ area(Sa) ≤ b(1− b−n) for all n ∈ Z+.

Since b = a
1
n , we can rewrite this as

a−
1
n (1− a−1) ≤ area(Sa) ≤ a

1
n (1− a−1). (2.34)

2.35 Exercise. What do you think the area of Sa should be? Explain your
answer. If you have no ideas, take a = 2 in (2.34), take large values of n,
and by using a calculator, estimate area(Sa) to three or four decimal places of
accuracy.

2.36 Exercise. Let a be a real number with 0 < a < 1, and let N be a
positive integer. Then

a = a
N
N < a

N−1
N < · · · < a

2
N < a

1
N < 1.

Let Ta be the set of points (x, y) such that a ≤ x ≤ 1 and 0 ≤ y ≤ 1

x2
. Draw

a sketch of Ta, and show that

a
1
N (a−1 − 1) ≤ area(Ta) ≤ a−

1
N (a−1 − 1).

The calculation of area(Ta) is very similar to the calculation of area(Sa).
What do you think the area of Ta should be?

2.37 Exercise. Using the inequalities (2.6), and the results of Bernoulli’s
table on page 27, try to guess what the area of Sr

a is for an arbitrary positive
integer r. Explain the basis for your guess. ( The correct formula for area(Sr

a)
for positive integers r was stated by Bonaventura Cavalieri in 1647[6, 122 ff].
Cavalieri also found a method for computing general positive integer power
sums.)
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2.6 ∗Area of a Snowflake.

In this section we will find the areas of two rather complicated sets, called the
inner snowflake and the outer snowflake. To construct the inner snowflake,
we first construct a family of polygons I1, I2, I3 . . . as follows:

I1 is an equilateral triangle.
I2 is obtained from I1 by adding an equilateral triangle to the middle third

of each side of I1, (see the figure on page 41).
I3 is obtained from I2 by adding an equilateral triangle to the middle third

of each side of I2, and in general
In+1 is obtained from In by adding an equilateral triangle to the middle

third of each side of In.
The inner snowflake is the set

KI =
∞⋃

n=1

In,

i.e. a point is in the inner snowflake if and only if it lies in In for some positive
integer n. Observe that the inner snowflake is not a polygon.

To construct the outer snowflake, we first construct a family of polygons
O1, O2, O3 . . . as follows:

O1 is a regular hexagon.
O2 is obtained from O1 by removing an equilateral triangle from the middle

third of each side of O1, (see the figure on page 41).
O3 is obtained from O2 by removing an equilateral triangle from the middle

third of each side of O2, and in general
On+1 is obtained from On by removing an equilateral triangle from the

middle third of each side of On.
The outer snowflake is the set

KO =
∞⋂

n=1

On,

i.e. a point is in the outer snowflake if and only if it lies in On for all positive
integers n. Observe that the outer snowflake is not a polygon.

An isosceles 120◦ triangle is an isosceles triangle having a vertex angle of
120◦. Since the sum of the angles of a triangle is two right angles, the base

angles of such a triangle will be
1

2
(180◦ − 120◦) = 30◦.
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Snowflakes

I 1 O1 O1 \ I1

I 2 O2 O2 \ I2

I 3 O3 O3 \ I3

I 6 O6 O6 \ I6
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The following two technical lemmas3 guarantee that in the process of build-
ing In+1 from In we never reach a situation where two of the added triangles
intersect each other, or where one of the added triangles intersects In, and in
the process of building On+1 from On we never reach a situation where two
of the removed triangles intersect each other, or where one of the removed
triangles fails to lie inside On.

2.38 Lemma. Let 4BAC be an isosceles 120◦ triangle with 6 BAC = 120◦.
Let E, F be the points that trisect BC, as shown in the figure. Then 4AEF is
an equilateral triangle, and the two triangles 4AEB and4AFC are congruent
isosceles 120◦ triangles.

A

X Y

FE
CB

Proof: Let 4BAC be an isosceles triangle with 6 BAC = 120◦. Construct 30◦

angles BAX and CAY as shown in the figure, and let E and F denote the
points where the lines AX and AY intersect BC. Then since the sum of the
angles of a triangle is two right angles, we have

6 AEB = 180◦ − 6 ABE − 6 BAE = 180◦ − 30◦ − 30◦ = 120◦.

Hence
6 AEF = 180◦ − 6 AEB = 180◦ − 120◦ = 60◦,

and similarly 6 AFE = 60◦. Thus 4AEF is an isosceles triangle with two 60◦

angles, and thus4AEF is equilateral. Now 6 BAE = 30◦ by construction, and
6 ABE = 30◦ since 6 ABE is a base angle of an isosceles 120◦ triangle. It follows
that 4BEA is isosceles and BE = EA. (If a triangle has two equal angles,
then the sides opposite those angles are equal.) Thus, BE = EA = EF , and
a similar argument shows that CF = EF . It follows that the points E and F

3A lemma is a theorem which is proved in order to help prove some other theorem.
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trisect BC, and that 4AEB is an isosceles 120◦ triangle. A similar argument
shows that 4AFC is an isosceles 120◦ triangle.

Now suppose we begin with the isosceles 120◦ triangle 4BAC with angle
BAC = 120◦, and we let E, F be the points that trisect BC. Since A and
E determine a unique line, it follows from the previous discussion that EA
makes a 30◦ angle with BA and FA makes a 30◦ angle with AC, and that all
the conclusions stated in the lemma are valid. |||

2.39 Lemma. If T is an equilateral triangle with side of length a, then the

altitude of T has length
a
√

3

2
, and the area of T is

√
3

4
a2. If R is an isosceles

120◦ triangle with two sides of length a, then the third side of R has length
a
√

3.

A

a

M

a/2

a

CB

Proof: Let T = 4ABC be an equilateral triangle with side of length a, and
let M be the midpoint of BC. Then the altitude of T is AM , and by the
Pythagorean theorem

AM =
√

(AB)2 − (BM)2 =

√
a2 −

(
1

2
a
)2

=

√
3

4
a2 =

√
3

2
a.

Hence

area(T ) =
1

2
(base)(altitude) =

1

2
a ·
√

3

2
a =

√
3

4
a2.

An isosceles 120◦ triangle with two sides of length a can be constructed by
taking halves of two equilateral triangles of side a, and joining them along
their common side of length a

2
, as indicated in the following figure.
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a/2a/2

a

a

a

a

Hence the third side of an isosceles 120◦ triangle with two sides of length a is

twice the altitude of an equilateral triangle of side a, i.e., is 2

(√
3

2
a

)
=
√

3a. |||
We now construct two sequences of polygons. I1, I2, I3, · · ·, and

O1, O2, O3, · · · such that

I1 ⊂ I2 ⊂ I3 ⊂ · · · ⊂ O3 ⊂ O2 ⊂ O1.

Let O1 be a regular hexagon with side 1, and let I1 be an equilateral triangle
inscribed in O1. Then O1 \ I1 consists of three isosceles 120◦ triangles with
short side 1, and from lemma 2.39, it follows that the sides of I1 have length√

3. (See figure on page 41.)
Our general procedure for constructing polygons will be:

subtriangle of O
n
\ I

n
→ subtriangles of O

n+1 \ I
n+1

On+1 is constructed from On by removing an equilateral triangle from the
middle third of each side of On, and In+1 is constructed from In by adding an
equilateral triangle to the middle third of each side of In. For each n, On \ In

will consist of a family of congruent isosceles 120◦ triangles and On+1 \ In+1

is obtained from On \ In by removing an equilateral triangle from the middle
third of each side of each isosceles 120◦ triangle. Pictures of In, On, and On\In

are given on page 41. Details of the pictures are shown on page 45.
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Details of snowflakes
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Lemma 2.38 guarantees that this process always leads from a set of isosceles
120◦ triangles to a new set of isosceles 120◦ triangles. Note that every vertex
of On is a vertex of On+1 and of In+1, and every vertex of In is a vertex of On

and of In+1.
Let

sn = length of a side of In.

tn = area of equilateral triangle with side sn.

mn = number of sides of In.

an = area of In.

Sn = length of a side of On.

Tn = area of equilateral triangle with side Sn.

Mn = number of sides of On.

An = area of On.

Then
sn+1 = 1

3
sn, Sn+1 = 1

3
Sn,

mn+1 = 4mn, Mn+1 = 4Mn,
an+1 = an + mntn+1 An+1 = An −MnTn+1.

Since an equilateral triangle with side s can be decomposed into nine equilat-

eral triangles of side
s

3
(see the figure),

we have

tn+1 =
tn
9

and Tn+1 =
Tn

9
.

Also
a1 = area(I1) = t1,

and since O1 can be written as a union of six equilateral triangles,

A1 = 6T1.
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The following table summarizes the values of sn, mn, tn, Sn, Mn and Tn:

n mn tn mn−1tn Mn Tn Mn−1Tn

1 3 a1 6 A1

6

2 3 · 4 a1

9
3
9
a1 6 · 4 1

9
A1

6
A1

9

3 3 · 42 a1

92
3
9
· 4

9
a1 6 · 42 1

92
A1

6
4
9

A1

9

...
...

...
...

...
...

...

n 3 · 4n−1 a1

9n−1
3
9

(
4
9

)n−2
a1 6 · 4n−1 1

9n−1
A1

6

(
4
9

)n−2
A1

9

Now

A2 = A1 −M1T2 = A1 − A1

9
,

A3 = A2 −M2T3 = A1 − A1

9
−

(
4

9

)
A1

9
,

...

An+1 = An −MnTn+1

= A1 − A1

9
−

(
4

9

)
A1

9
−

(
4

9

)2 A1

9
− · · · −

(
4

9

)n−1 A1

9

= A1 − A1

9

(
1 +

4

9
+

(
4

9

)2

+ · · ·+
(

4

9

)n−1
)

. (2.40)

Also,

a2 = a1 + m1t2 = a1 +
3

9
a1,

a3 = a2 + m2t3 = a1 +
3

9
a1 +

3

9

(
4

9

)
a1,

...

an+1 = an + mntn+1

= a1 +
3

9
a1 +

3

9

(
4

9

)
a1 +

3

9

(
4

9

)2

a1 + · · ·+ 3

9

(
4

9

)n−1

a1

= a1 +
a1

3

(
1 +

4

9
+

(
4

9

)2

+ · · ·+
(

4

9

)n−1
)

. (2.41)
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By the formula for a finite geometric series we have

1 +
4

9
+ (

4

9
) + · · ·+ (

4

9
)n−1 =

1− (4
9
)n

1− 4
9

=
9

5

[
1− (

4

9
)n

]
.

By using this result in equations (2.40) and (2.41) we obtain

area(On+1) = An+1 = A1 − A1

5

[
1−

(
4

9

)n]

=
4

5
A1 +

A1

5

(
4

9

)n

, (2.42)

and

area(In+1) = an+1 = a1 +
a1

3
· 9

5

[
1−

(
4

9

)n]

=
8

5
a1 − 3a1

5

(
4

9

)n

.

Now you can show that a1 =
A1

2
, so the last equation may be written as

area(In+1) =
4

5
A1 − 3a1

5

(
4

9

)n

. (2.43)

2.44 Exercise. Show that a1 =
A1

2
, i.e. show that area(I1) =

1

2
area(O1).

2.45 Definition (Snowflakes.) Let KI =
∞⋃

n=1

In and KO =
∞⋂

n=1

On.

Here the infinite union
∞⋃

n=1

In means the set of all points x such that x ∈ In

for some n in Z+, and the infinite intersection
∞⋂

n=1

On means the set of points

x that are in all of the sets On where n ∈ Z+. I will call the sets KI and KO

the inner snowflake and the outer snowflake, respectively.

For all k in Z+, we have

Ik ⊂
∞⋃

n=1

In = KI ⊂ KO =
∞⋂

n=1

On ⊂ Ok,
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so
area(Ik) ≤ area(KI) ≤ area(KO) ≤ area(Ok).

Since
(

4

9

)n

can be made very small by taking n large (see theorem 6.71), we

conclude from equations 2.43 and 2.42 that

area(KI) = area(KO) =
4

5
A1 =

4

5
area(O1).

We will call O1 the circumscribed hexagon for KI and for KO. We have proved
the following theorem:

2.46 Theorem. The area of the inner snowflake and the outer snowflake

are both
4

5
of the area of the circumscribed hexagon.

Note that both snowflakes touch the boundary of the circumscribed hexagon
in infinitely many points.

It is natural to ask whether the sets KO and KI are the same.

2.47 Entertainment (Snowflake Problem.) Show that the inner snowflake
is not equal to the outer snowflake. In fact, there are points in the boundary
of the circumscribed hexagon that are in the outer snowflake but not in the
inner snowflake.

The snowflakes were discovered by Helge von Koch(1870–1924), who pub-
lished his results in 1906 [31]. Actually Koch was not interested in the snowflakes
as two-dimensional objects, but as one-dimensional curves. He considered only
part of the boundary of the regions we have described. He showed that the
boundary of KO and KI is a curve that does not have a tangent at any point.
You should think about the question: “In what sense is the boundary of KO

a curve?” In order to answer this question you would need to answer the
questions “what is a curve?” and “what is the boundary of a set in R2?” We
will not consider these questions in this course, but you might want to think
about them.

I will leave the problem of calculating the perimeter of a snowflake as an
exercise. It is considerably easier than finding the area.
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2.48 Exercise. Let In and On be the polygons described in section 2.6,
which are contained inside and outside of the snowflakes KI and KO.

a) Calculate the length of the perimeter of In.

b) Calculate the length of the perimeter of On.
What do you think the perimeter of KO should be? (Since it isn’t really

clear what we mean by “the perimeter of KO,” this question doesn’t really
have a “correct” answer – but you should come up with some answer.)



Chapter 3

Propositions and Functions

In this chapter we will introduce some general mathematical ideas and notation
that will be useful in the following chapters.

3.1 Propositions

3.1 Definition (Proposition.) A proposition is a statement that is either
true or false. I will sometimes write a proposition inside of quotes (“ ”), when
I want to emphasize where the proposition begins and ends.

3.2 Examples.
If P1 = “1 + 1 = 2”, then P1 is a true proposition.
If P2 = “1 + 1 = 3”, then P2 is a false proposition.
If P3 = “2 is an even number”, then P3 is a true proposition.
If P4 = “7 is a lucky number”, then I will not consider P4 to be a proposi-

tion (unless lucky number has been defined.)

3.3 Definition (And, or, not.) Suppose that P and Q are propositions.
Then we can form new propositions denoted by “P and Q”, “P or Q”, and
“not P”.

“P and Q” is true if and only if both of P,Q are true.
“P or Q” is true if and only if at least one of P, Q is true.
“not P” is true if and only if P is false.
Observe that in mathematics, “or” is always assumed to be inclusive or: If

“P” and “Q” are both true, then “P or Q” is true.

51
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3.4 Examples.
“1 + 1 = 2 and 1 + 1 = 3” is false.
“1 + 1 = 2 or 1 + 1 = 3” is true.
“1 + 1 = 2 or 2 + 2 = 4” is true.
“not(not P )” is true if and only if P is true.

For each element x of Q let R(x) be the proposition
“x2 + 5x + 6 = 0”. Thus R(−3) = “(−3)2 + 5 · (−3) + 6 = 0”, so R(−3) is
true, while R(0) = “02 + 5 · 0 + 6 = 0”, so R(0) is false. Here I consider R to
be a rule which assigns to each element x of Q a proposition R(x).

3.5 Definition (Proposition form.) Let S be a set. A rule P that assigns
to each element x of S a unique proposition P (x) is called a proposition form
over S.

Thus the rule R defined in the previous paragraph is a proposition form
over Q. Note that a proposition form is neither true nor false, i.e. a proposition
form is not a proposition.

3.6 Definition (⇐⇒, Equivalent propositions.) Let P, Q be two propo-
sitions. We say that “P is equivalent to Q” if either (P, Q are both true) or
(P, Q are both false). Thus every proposition is equivalent either to “1+1 = 2”
or to “1+1 = 3. ” We write “P ⇐⇒ Q” as an abbreviation for “P is equivalent
to Q.” If P,Q are propositions, then “P ⇐⇒ Q” is a proposition, and

“P ⇐⇒ Q” is true if and only if ((P,Q are both true) or (P,Q are both
false)).

Ordinarily one would not make a statement like
“(1 + 1 = 2) ⇐⇒ (4421 is a prime number)”

even though this is a true proposition. One writes “P⇐⇒ Q” in an argu-
ment, only when the person reading the argument can be expected to see the
equivalence of the two statements P and Q.

If P,Q, R and S are propositions,then

P⇐⇒ Q⇐⇒ R⇐⇒ S (3.7)

is an abbreviation for

((P⇐⇒ Q) and (Q⇐⇒ R)) and (R⇐⇒ S).

Thus if we know that (3.7) is true, then we can conclude that P⇐⇒ S is true.
The statement “P⇐⇒Q” is sometimes read as “ P if and only if Q”.
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3.8 Example. Find all real numbers x such that

x2 − 5x + 6 = 0. (3.9)

Let x be an arbitrary real number. Then

x2 − 5x + 6 = 0 ⇐⇒ (x− 2)(x− 3) = 0

⇐⇒ ((x− 2) = 0) or ((x− 3) = 0)

⇐⇒ (x = 2) or (x = 3).

Thus the set of all numbers that satisfy equation (3.9) is {2,3}. |||

3.10 Definition (=⇒, Implication.) If P and Q are propositions then we
say “P implies Q” and write “P=⇒Q”, if the truth of Q follows from the truth
of P . We make the convention that if P is false then (P=⇒Q) is true for all
propositions Q, and in fact that

(P=⇒ Q) is true unless (P is true and Q is false). (3.11)

Hence for all propositions P and Q

(P=⇒ Q) ⇐⇒ (Q or not(P )). (3.12)

3.13 Example. For every element x in Q

x = 2 =⇒ x2 = 4. (3.14)

In particular, the following statements are all true.

2 = 2 =⇒ 22 = 4. (3.15)

−2 = 2 =⇒ (−2)2 = 4. (3.16)

3 = 2 =⇒ 32 = 4. (3.17)

In proposition 3.16, P is false, Q is true, and P=⇒ Q is true.
In proposition 3.17, P is false, Q is false, and P=⇒ Q is true.

The usual way to prove P=⇒ Q is to assume that P is true and show that
then Q must be true. This is sufficient by our convention in (3.11).

If P and Q are propositions, then “P=⇒ Q” is also a proposition, and

(P⇐⇒ Q) is equivalent to (P=⇒ Q and Q=⇒ P ) (3.18)
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(the right side of (3.18) is true if and only if P, Q are both true or both false.)
An alternate way of writing “P=⇒ Q” is “if P then Q”.

We will not make much use of the idea of two propositions being equal.
Roughly, two propositions are equal if and only if they are word for word the
same. Thus “1 + 1 = 2” and “2 = 1 + 1” are not equal propositions, although
they are equivalent. The only time I will use an “=” sign between propositions
is in definitions. For example, I might define a proposition form P over N by
saying

for all n ∈ N, P (n) =“n + 1 = 2”,
or

for all n ∈ N, P (n) = [n + 1 = 2].

The definition we have given for “implies” is a matter of convention, and
there is a school of contemporary mathematicians (called constructivists) who
define P=⇒ Q to be true only if a “constructive” argument can be given that
the truth of Q follows from the truth of P . For the constructivists, some of
the propositions of the sort we use are neither true nor false, and some of
the theorems we prove are not provable (or disprovable). A very readable
description of the constructivist point of view can be found in the article
Schizophrenia in Contemporary Mathematics[10, pages 1–10].

3.19 Exercise.
a) Give examples of propositions P,Q such that “P=⇒ Q” and “Q=⇒ P”

are both true, or else explain why no such examples exist.
b) Give examples of propositions R,S such that “R=⇒ S” and “S=⇒ R”

are both false, or explain why no such examples exist.
c) Give examples of propositions T, V such that “T=⇒ V ” is true but

“V =⇒ T” is false, or explain why no such examples exist.

3.20 Exercise. Let P, Q be two propositions. Show that the propositions
“P=⇒ Q” and “ notQ=⇒ notP” are equivalent. (“notQ=⇒ notP” is called
the contrapositive of the statement “P=⇒ Q”.)

3.21 Exercise. Which of the proposition forms below are true for all real
numbers x? If a proposition form is not true for all real numbers x, give a
number for which it is false.

a) x = 1 =⇒ x2 = 1.
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b) x2 = 1 =⇒ x = 1.

c) x < 1
2

=⇒ 2x < 1.

d) 2 < 1
x
⇐⇒ 2x < 1. (Here assume x 6= 0.)

e) x < 1 =⇒ x + 1 < 3.

f) x < 1 ⇐⇒ x + 1 < 3.

g) x ≤ 1 =⇒ x < 1.

h) x < 1 =⇒ x ≤ 1.

3.22 Exercise. Both of the arguments A and B given below are faulty,
although one of them leads to a correct conclusion. Criticize both arguments,
and correct one of them.

Problem: Let S be the set of all real numbers x such that x 6= −2. Describe
the set of all elements x ∈ S such that

12

x + 2
< 4. (3.23)

Note that if x ∈ S then 12
x+2

is defined.
ARGUMENT A: Let x be an arbitrary element of S. Then

12

x + 2
< 4 ⇐⇒ 12 < 4x + 8

⇐⇒ 0 < 4x− 4

⇐⇒ 0 < 4(x− 1)

⇐⇒ 0 < x− 1

⇐⇒ 1 < x.

Hence the set of all real numbers that satisfy inequality (3.23) is the set of all
real numbers x such that 1 < x. |||

ARGUMENT B: Let x be an arbitrary element of S. Then

12

x + 2
< 4 =⇒ 0 < 4− 12

x + 2

=⇒ 0 <
4x + 8− 12

x + 2
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=⇒ 0 <
4x− 4

x + 2

=⇒ 0 <
4(x− 1)

x + 2

=⇒ 0 <
x− 1

x + 2
.

Now

0 <
x− 1

x + 2
⇐⇒ (0 < x− 1 and 0 < x + 2) or (0 > x− 1 and 0 > x + 2)

⇐⇒ (1 < x and − 2 < x) or (1 > x and − 2 > x)

⇐⇒ 1 < x or − 2 > x.

Hence the set of all real numbers that satisfy inequality (3.23) is the set of all
x ∈ R such that either x < −2 or x > 1. |||

3.2 Sets Defined by Propositions

The most common way of describing sets is by means of proposition forms.

3.24 Notation ({x : P (x)}) Let P be a proposition form over a set S, and
let T be a subset of S. Then

{x : x ∈ T and P (x)} (3.25)

is defined to be the set of all elements x in T such that P (x) is true. The set
described in (3.25) is also written

{x ∈ T : P (x)}.
In cases where the meaning of “T” is clear from the context, we may abbreviate
(3.25) by

{x : P (x)}.
3.26 Examples.

{x ∈ Z : for some y ∈ Z (x = 2y)}
is the set of all even integers, and

Z+ = {x : x ∈ Z and x > 0}.
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If A and B are sets, then

A ∪B = {x : x ∈ A or x ∈ B}, (3.27)

A ∩B = {x : x ∈ A and x ∈ B}, (3.28)

A \B = {x : x ∈ A and x 6∈ B}. (3.29)

We will use the following notation throughout these notes.

3.30 Notation (Z≥n, R≥a) If n is an integer we define

Z≥n = {k ∈ Z : k ≥ n}.
Thus

Z≥1 = Z+ and Z≥0 = the set of non-negative integers = N.

Similarly, if a is a real number, we define

R≥a = {x ∈ R : x ≥ a}.
3.31 Definition (Ordered pair.) If a, b are objects, then the ordered pair

(a, b) is a new object obtained by combining a and b. Two ordered pairs
(a, b) and (c, d) are equal if and only if a = c and b = d. Similarly we may
consider ordered triples. Two ordered triples (a, b, x) and (c, d, y) are equal
if and only if a = c and b = d and x = y. We use the same notation (a, b)
to represent an open interval in R and an ordered pair in R2. The context
should always make it clear which meaning is intended.

3.32 Definition (Cartesian product) If A,B are sets then the Cartesian
product of A and B is defined to be the set of all ordered pairs (x, y) such that
x ∈ A and y ∈ B :

A×B = {(x, y) : x ∈ A and y ∈ B} (3.33)

3.34 Examples. Let a, b, c, d be real numbers with a ≤ b and c ≤ d. Then

[a, b]× [c, d] = B(a, b : c, d)

and
[c, d]× [a, b] = B(c, d : a, b).

Thus in general A×B 6= B × A.
The set A × A is denoted by A2. You are familiar with one Cartesian

product. The euclidean plane R2 is the Cartesian product of R with itself.
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3.35 Exercise. Let S = B(−2, 2 : −2, 2) and let
R1 = {(x, y) ∈ S : xy ≤ 0}
R2 = {(x, y) ∈ S : x2 − 1 ≤ 0}
R3 = {(x, y) ∈ S : y2 − 1 ≤ 0}
R4 = {(x, y) ∈ S : xy(x2 − 1)(y2 − 1) ≤ 0}
Sketch the sets S,R1, R2, R3, R4. For R4 you should include an explana-

tion of how you arrived at your answer. For the other sets no explanation is
required.

3.36 Exercise. Do there exist sets A,B such that A × B has exactly five
elements?

3.3 Functions

3.37 Definition (Function.) Let A,B be sets. A function with domain A
and codomain B is an ordered triple (A,B, f), where f is a rule which assigns
to each element of A a unique element of B. The element of B which f assigns
to an element x of A is denoted by f(x). We call f(x) the f -image of x or the
image of x under f . The notation f : A−→ B is an abbreviation for “f is a
function with domain A and codomain B”. We read “f : A−→ B” as “f is a
function from A to B.”

3.38 Examples. Let f : Z −→ N be defined by the rule

f(n) = n2 for all n ∈ Z.

Then f(2) = 4, f(−2) = 4, and f(1/2) is not defined, because 1/2 6∈ Z .

Let g : N −→ N be defined by the rule: for all n ∈ N

g(n) = the last digit in the decimal expansion for n.

Thus g(21) = 1, g(0) = 0, g(1984) = 4, g(666) = 6.

3.39 Definition (Maximum and minimum functions.) We define func-
tions max and min from R2 to R by the rule

max(x, y) =

{
x if x ≥ y
y otherwise.

(3.40)
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min(x, y) =

{
y if x ≥ y
x otherwise.

(3.41)

Thus we have
min(x, y) ≤ x ≤ max(x, y)

and
min(x, y) ≤ y ≤ max(x, y)

for all (x, y) ∈ R2. Also

max(2, 7) = 7 and min(−2,−7) = −7.

3.42 Definition (Absolute value function.) Let A:R → R be defined
by the rule

A(x) =





x if x > 0,
0 if x = 0,
−x if x < 0.

We call A the absolute value function and we usually designate A(x) by |x|.

3.43 Definition (Sequence) Let S be a set. A sequence in S is a function
f :Z+ → S. I will refer to a sequence in R as a real sequence.

The sequence f is sometimes denoted by {f(n)}. Thus
{

1
n2+1

}
is the sequence

f :Z+ → R such that f(n) = 1
n2+1

for all n ∈ Z+. Sometimes the sequence f
is denoted by

{f(1), f(2), f(3), · · ·}, (3.44)

for example {1, 1
2
, 1

3
, · · ·} is the same as { 1

n
}. The notation in formula (3.44)

is always ambiguous. I will use it for sequences like

{1, 1,−1,−1, 1, 1,−1,−1, 1, 1 · · ·}

in which it is somewhat complicated to give an analytic description for f(n).

If f is a sequence, and n ∈ Z+, then we often denote f(n) by fn.

3.45 Examples. Let P denote the set of all polygons in the plane. For
each number a in R+ let

S2
a = {(x, y) ∈ R2 : 0 ≤ x ≤ a and 0 ≤ y ≤ x2}.
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For each n ∈ Z+ let

Qn =
n⋃

i=1

Ii

and

Rn =
n⋃

i=1

Oi

denote the polygons inscribed in S2
a and containing S2

a described on page 20.
Then

{Qn} and {Rn} are sequences in P .
{area(Qn)} = {a3

3
(1− 1

n
)(1− 1

2n
)} is a real sequence. (Cf. (2.3) and (2.12).)

{[area(Qn), area(Rn)]} is a sequence of intervals.

3.46 Definition (Equality for functions.) Let (A, B, f) and (C, D, g) be
two functions. Then, since a function is an ordered triple, we have

(A,B, f) = (C, D, g) if and only if A = C and B = D, and f = g.

The rules f and g are equal if and only if f(a) = g(a) for all a ∈ A. If
f : A−→ B and g : C−→ D then it is customary to write f = g to mean
(A,B, f) = (C,D, g). This is an abuse of notation, but it is a standard
practice.

3.47 Examples. If f : Z −→ Z is defined by the rule

f(x) = x2 for all x in Z

and g : Z −→ N is defined by the rule

g(x) = x2 for all x in Z

then f 6= g since f and g have different codomains.

If f : Q −→ Q and g : Q −→ Q are defined by the rules

f(x) = x2 − 1 for all x ∈ Q

g(y) = (y − 1)(y + 1) for all y ∈ Q

then f = g.
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In certain applications it is important to know the precise codomain of
a function, but in many applications the precise codomain is not important,
and in such cases I will often omit all mention of the codomain. For example,
I might say “For each positive number a, let J(a) = [0, a].” and proceed as
though I had defined a function. Here you could reasonably take the codomain
to be the set of real intervals, or the set of closed intervals, or the set of all
subsets of R.

3.48 Definition (Image of f) Let A,B be sets, and let f : A−→ B. The
set

{y ∈ B : for some x ∈ A (y = f(x))}
is called the image of f , and is denoted by f(A). More generally, if T is any
subset of A then we define

f(T ) = {y ∈ B : for some x ∈ T (y = f(x))}.
We call f(T ) the f -image of T . Clearly, for every subset T of A we have
f(T ) ⊂ B.

3.49 Examples. If f : Z −→ Z is defined by the rule

f(n) = n + 3 for all n ∈ Z

then f(2) = 5 so f(2) ∈ Z,
f({2}) = {5} so f({2}) ⊂ Z,
f(N) = Z≥3.

3.50 Definition (Graph of f) Let A,B be sets, and let f : A−→ B. The
graph of f is defined to be

{(x, y) ∈ A×B : y = f(x)}
If the domain and codomain of f are subsets of R, then the graph of f can be
identified with a subset of the plane.

3.51 Examples. Let f : R −→ R be defined by the rule

f(x) = x2 for all x ∈ R.

The graph of f is sketched below. The arrowheads on the graph are intended
to indicate that the complete graph has not been drawn.
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Let S = {x ∈ R : 1 ≤ x < 3}. Let g be the function from S to R defined
by the rule

g(x) =
1

x
for all x ∈ S.

The graph of g is sketched above. The solid dot at (1, 1) indicates that (1, 1)
is in the graph. The hollow dot at (3, 1/3) indicates that (3, 1/3) is not in the
graph.

Let h : R −→ R be defined by the rule

h(x) = the greatest integer less than or equal to x.

Thus h(3.14) = 3 and h(−3.14) = −4. The graph of h is sketched above.

The term function (functio) was introduced into mathematics by Leibniz
[33, page 272 footnote]. During the seventeenth century the ideas of function
and curve were usually thought of as being the same, and a curve was often
thought of as the path of a moving point. By the eighteenth century the
idea of function was associated with “analytic expression”. Leonard Euler
(1707–1783) gave the following definition:

A function of a variable quantity is an analytic expression com-
posed in any way whatsoever of the variable quantity and numbers
or constant quantities.

Hence every analytic expression, in which all component quan-
tities except the variable z are constants, will be a function of that
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z; Thus a + 3z; az − 4z2; az + b
√

a2 − z2; cz; etc. are functions of
z[18, page 3].

The use of the notation “f(x)” to represent the value of f at x was intro-
duced by Euler in 1734 [29, page 340].

3.52 Exercise. Sketch the graphs of the following functions:

a) f(x) = (x− 1)2 for all x ∈ [0, 4].

b) g(x) = (x− 2)2 for all x ∈ [−1, 3].

c) h(x) = x2 − 1 for all x ∈ [−2, 2].

d) k(x) = x2 − 22 for all x ∈ [−2, 2].

3.4 Summation Notation

Let k and n be integers with k ≤ n. Let xk, xk+1, . . . xn, be real numbers,
indexed by the integers from k to n. We define

n∑

i=k

xi = xk + xk+1 + · · ·+ xn, (3.53)

i.e.
n∑

i=k

xi is the sum of all the numbers xk, . . . xn. A sum of one number is

defined to be that number, so that

k∑

i=k

xi = xk.

The “i” in equation (3.53) is a dummy variable, and can be replaced by any
symbol that has no meaning assigned to it. Thus

4∑

j=2

1

j
=

1

2
+

1

3
+

1

4
=

13

12
.
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The following properties of the summation notation should be clear from the
definition. (Here c ∈ R, k and n are integers with k ≤ n and xk, . . . , xn and
yk, . . . yn are real numbers.)

n∑

j=k

xj +
n∑

j=k

yj =
n∑

j=k

(xj + yj).

c
n∑

j=k

xj =
n∑

j=k

cxj.

n∑

j=k

1 =
n∑

j=k

1j = n− k + 1.




n∑

j=k

xj


 + xn+1 =

n+1∑

j=k

xj.

If xj ≤ yj for all j satisfying k ≤ j ≤ n then

n∑

j=k

xj ≤
n∑

j=k

yj.

Also
n∑

j=k

xj =
n−1∑

j=k−1

xj+1 =
n+1∑

j=k+1

xj−1 = xk + · · ·+ xn.

Using the summation notation, we can rewrite equations (2.9) and (2.23)
as

n∑

p=1

p2 =
n(n + 1)(2n + 1)

6

and
n−1∑

j=0

rj =
1− rn

1− r
.

The use of the Greek letter Σ to denote sums was introduced by Euler in
1755[15, page 61]. Euler writes

Σx2 =
x3

3
− x2

2
+

x

6
.
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Compare this with the notation in Bernoulli’s table on page 27. (The apparent
difference is due to the fact that for Euler, Σx2 denotes the sum of x squares,
starting with 02, whereas for Bernoulli

∫
nn denotes the sum of n squares

starting with 12.) The use of the symbol
∫

(which is a form of S) for sums was
introduced by Leibniz. The use of limits on sums was introduced by Augustin

Cauchy(1789-1857). Cauchy used the notation
n∑
m

r fr to denote what we would

write as
n∑

r=m

f(r)[15, page 61].

3.54 Exercise. Find the following sums:

a)
n∑

j=1

(2j − 1) for n = 1, 2, 3, 4.

b)
n∑

j=1

1

j(j + 1)
for n = 1, 2, 3, 4.

c)
9∑

j=1

9

10j
.

3.5 Mathematical Induction

The induction principle is a way of formalizing the intuitive idea that if you
begin at 1 and start counting “1, 2, 3, . . .”, then eventually you will reach any
preassigned number (such as for example, 200004).

3.55 Assumption (The Induction Principle) Let k be an integer, and
let P be a proposition form over Z≥k. If

P (k) is true,
and

“for all n ∈ Z≥k[P (n)=⇒ P (n + 1)]” is true,
then

“for all n ∈ Z≥k[P (n)]” is true.

In order to prove “for all n ∈ Z≥k, P (n)” by using the induction principle, you
should
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1. Prove that P (k) is true.
2. Take a generic element n of Z≥k and prove (P (n)=⇒ P (n + 1)).

Recall that the way to prove “P (n)=⇒P (n + 1)” is true, is to assume that
P (n) is true and show that then P (n + 1) must be true.

3.56 Example. We will use the induction principle to do exercise 2.10.
For all n ∈ Z≥1, let

P (n) =




n∑

p=1

p3 =
n2(n + 1)2

4


 .

Then P (1) says
1∑

p=1

p3 =
(12)(1 + 1)2

4

which is true, since both sides of this equation are equal to 1. Now let n be a
generic element of Z≥1 Then

P (n) ⇐⇒
n∑

p=1

p3 =
n2(n + 1)2

4

=⇒



n∑

p=1

p3


 + (n + 1)3 =

n2(n + 1)2

4
+ (n + 1)3

=⇒
n+1∑

p=1

p3 =
(n + 1)2

4
(n2 + 4(n + 1)) =

(n + 1)2

4
(n2 + 4n + 4)

=⇒
n+1∑

p=1

p3 =
(n + 1)2(n + 2)2

4

⇐⇒ P (n + 1).

It follows from the induction principle that P (n) is true for all n ∈ Z≥1, which
is what we wanted to prove. |||

3.57 Example. We will show that for all n ∈ Z≥4[n! > 2n].
Proof: Define a proposition form P over Z≥4 by

P (n) = [n! > 2n].
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Now 4! = 24 > 16 = 24, so 4! > 24 and thus P (4) is true.
Let n be a generic element of Z≥4. Since n ∈ Z≥4, we know that

n + 1 ≥ 4 + 1 > 2.

Hence

P (n) =⇒ (n! > 2n > 0) and (n + 1 > 2 > 0)

=⇒ (n + 1) · n! > 2 · 2n

=⇒ ((n + 1)! > 2n+1)=⇒P (n + 1).

Hence, for all n ∈ Z≥4[P (n)=⇒P (n + 1)]. It follows from the induction
principle that for all n ∈ Z≥4[n! > 2n]. |||



Chapter 4

Analytic Geometry

4.1 Addition of Points

From now on I will denote points in the plane by lower case boldface letters,
e.g. a,b, · · ·. If I specify a point a and do not explicitly write down its
components, you should assume a = (a1, a2), b = (b1, b2), · · · ,k = (k1, k2),
etc. The one exception to this rule is that I will always take

x = (x, y).

4.1 Definition (Addition of Points) If a and b are points in R2 and
t ∈ R, we define

a + b = (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2)

a− b = (a1, a2)− (b1, b2) = (a1 − b1, a2 − b2)

ta = t(a1, a2) = (ta1, ta2).

If t 6= 0, we will write
a

t
for

1

t
a; i.e.,

a

t
=

(
a1

t
,
b1

t

)
. We will abbreviate (−1)a

by −a, and we will write 0 = (0, 0).

4.2 Theorem. Let a, b, c be arbitrary points in R2 and let s, t be arbitrary
numbers. Then we have:

68
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Addition is commutative,

a + b = b + a.

Addition is associative,

(a + b) + c = a + (b + c).

We have the following law that resembles the associative law for multipli-
cation:

s(ta) = (st)a.

We have the following distributive laws:

(s + t)a = sa + ta, (4.3)

s(a + b) = sa + sb. (4.4)

Also,
1a = a, 0a = 0 and a + (−a) = 0.

All of these properties follow easily from the corresponding properties of
real numbers. I will prove the commutative law and one of the distributive
laws, and omit the remaining proofs.

Proof of Commutative Law: Let a, b be points in R2. By the commutative
law for R,

a1 + b1 = b1 + a1 and a2 + b2 = b2 + a2.

Hence

a + b = (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2) = (b1 + a1, b2 + a2)

= (b1, b2) + (a1, a2) = b + a.

and hence a + b = b + a.

Proof of (4.3): Let s, t ∈ R and let a ∈ R2. By the distributive law for R we
have

(s + t)a1 = sa1 + ta1 and (s + t)a2 = sa2 + ta2.

Hence,

(s + t)a = (s + t)(a1, a2) = ((s + t)a1, (s + t)a2) = (sa1 + ta1, sa2 + ta2)

= (sa1, sa2) + (ta1, ta2) = s(a1, a2) + t(a1, a2)

= sa + ta,
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i.e,
(s + t)a = sa + ta. |||

4.5 Notation (Lines in R2.) If a,b are distinct points in R2, I will denote
the (infinite) line through a and b by ab, and I will denote the line segment
joining a to b by [ab]. Hence [ab] = [ba].

Remark: Let a, b be points in R2 such that 0, a and b are not all in a
straight line. Then a + b is the vertex opposite 0 in the parallelogram whose
other three vertices are b, 0 and a.

a+b
b

a

Proof: In this proof I will suppose a1 6= 0 and b1 6= 0, so that neither of 0a,0b
is a vertical line. (I leave the other cases to you.) The slope of line 0a is
a2 − 0

a1 − 0
=

a2

a1

, and the slope of b(a + b) is
(a2 + b2)− b2

(a1 + b1)− b1

=
a2

a1

. Thus the lines

0a and b(a + b) are parallel.

The slope of line 0b is
b2 − 0

b1 − 0
=

b2

b1

, and the slope of a(a + b) is

(a2 + b2)− a2

(a1 + b1)− a1

=
b2

b1

. Thus the lines 0b and a(a + b) are parallel. It follows

that the figure 0a(a + b)b is a parallelogram, i.e., a + b is the fourth vertex
of a parallelogram having 0, a, and b as its other vertices. |||
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b+c

a+b

b

a

0

x

a+b+c

c

4.6 Example. In the figure you should be able to see the parallelograms
defining a+b, (a+b) + c, b+ c and a+ (b+ c). Also you should be able to
see geometrically that (a + b) + c = a + (b + c). What is the point marked x
in the figure?

4.7 Exercise. In figure a), a, b, c, d, e, and f are the vertices of
a regular hexagon centered at 0. Sketch the points a + b, (a + b) + c,
(a + b + c) + d, (a + b + c + d) + e, and (a + b + c + d + e) + f as ac-
curately as you can.

f

b

d

figure  a

c

a

e a

c

e

figure  b

d

b

f=0

In figure b), a, b, c, d, e and f are the vertices of a regular hexagon with
f = 0. Sketch the points a+b, (a+b)+c, (a+b+c)+d, and (a+b+c+d)+e
as accurately as you can. (This problem should be done geometrically. Do not
calculate the coordinates of any of these points.)
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4.8 Example (Line segment) We will now give an analytical description
for a non-vertical line segment [ab], (a1 6= b1). Suppose first that a1 < b1. The
equation for the line through a and b is

y = a2 +
b2 − a2

b1 − a1

(x− a1).

Hence a point (x, y) is in [ab] if and only if there is a number x ∈ [a1, b1] such
that

(x, y) =
(
x, a2 +

b2 − a2

b1 − a1

(x− a1)
)

=
(
a1 + (x− a1), a2 +

b2 − a2

b1 − a1

(x− a1)
)

= (a1, a2) + (x− a1)(1,
b2 − a2

b1 − a1

)

= a +
x− a1

b1 − a1

(b1 − a1, b2 − a2)

= a +
x− a1

b1 − a1

(b− a).

Now

x ∈ [a1, b1] ⇐⇒ a1 ≤ x ≤ b1

⇐⇒ 0 ≤ x− a1 ≤ b1 − a1

⇐⇒ 0 ≤ x− a1

b1 − a1

≤ 1.

Thus
[ab] = {a + t(b− a) : 0 ≤ t ≤ 1}.

If b1 < a1 then

[ab] = [ba] = {b + t(a− b) : 0 ≤ t ≤ 1}
= {a + (1− t)(b− a) : 0 ≤ t ≤ 1}.

Now as t runs through all values in [0, 1], we see that 1 − t also takes on all
values in [0, 1] so we get the same description for [ab] when b1 < a1 as we do
when a1 < b1. Note that this description is exactly what you would expect
from the pictures, and that it also works for vertical segments.
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4.2 Reflections, Rotations and Translations

4.9 Definition (Reflections and Rotations.) We now define a family of
functions from R2 to R2. If (x, y) ∈ R2, we define

I(x, y) = (x, y) (Identity function.) (4.10)

H(x, y) = (x,−y) (Reflection of (x, y) about the horizontal axis.)

V (x, y) = (−x, y) (Reflection of (x, y) about the vertical axis.)

D+(x, y) = (y, x) (Reflection of (x, y) about the line y = x.)

D−(x, y) = (−y,−x) (Reflection of (x, y) about the line y = −x.)

Rπ/2(x, y) = (y,−x) (Clockwise rotation of (x, y) by π
2
.)

R−π
2
(x, y) = (−y, x) (Counter-clockwise rotation of (x, y) by π

2
.)

Rπ(x, y) = (−x,−y) Rotation by π. (4.11)

(y,−x)

(a,−d)

(y,x)

(x,−y)

(x,y)(−x,y)

(b,−d)

(b,d)

(b,−c)

(−x,−y)

(−y,−x)

(b,c)

(a,d)

(a,−c)

(a,c)
(−y,x)

Each of the eight functions just defined carries every box to another box
with the same area. You should be able to see from the picture that

H (B(a, b: c, d)) = B(a, b:−d,−c).

We can see this analytically as follows:

(x, y) ∈ B(a, b: c, d) ⇐⇒ a ≤ x ≤ b and c ≤ y ≤ d

⇐⇒ a ≤ x ≤ b and −d ≤ −y ≤ −c

⇐⇒ (x,−y) ∈ B(a, b:−d,−c)

⇐⇒ H(x, y) ∈ B(a, b:−d,−c).

I will usually omit the analytic justification in cases like this.
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Each of the eight functions described in definition 4.9 carries the square
B(−1, 1:−1, 1) to itself.

4.12 Definition (Symmetry of the square.) The eight functions defined
in equations (4.10)-(4.11) are called symmetries of the square.

4.13 Exercise. Let F be the set shown in the figure. On one set of axes
draw the sets F, Rπ/2(F ), R−π

2
(F ) and Rπ(F ) (label the four sets). On another

set of axes draw and label the sets V (F ), H(F ), D+(F ) and D−(F ).

F

4.14 Example. Let a ∈ R+ and let

S = {(x, y): 0 ≤ x ≤ √
a and 0 ≤ y ≤ x2}

T = {(x, y): 0 ≤ x ≤ a and
√

x ≤ y ≤ a}.

1/2(a    ,a)

S

1/2(a,a     )

T

From the picture it is clear that D+(S) = T . An analytic proof of this result
is as follows:

(x, y) ∈ S ⇐⇒ 0 ≤ x ≤ √
a and 0 ≤ y ≤ x2 (4.15)
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=⇒ 0 ≤ y ≤ x2 ≤ (
√

a)2 and 0 ≤ √
y ≤ x ≤ √

a

=⇒ 0 ≤ y ≤ a and
√

y ≤ x ≤ √
a (4.16)

⇐⇒ (y, x) ∈ T

⇐⇒ D+(x, y) ∈ T.

To show that D+(x, y) ∈ T=⇒(x, y) ∈ S, I need to show that (4.16) implies
(4.15). This follows because

0 ≤ y ≤ a and
√

y ≤ x ≤ √
a =⇒ 0 ≤ x ≤ √

a and 0 ≤ y = (
√

y)2 ≤ x2.

In exercise 2.18 you assumed that S and T have the same area. In general we
will assume that if S is a set and F is a symmetry of the square, then S and
F (S) have the same area. (Cf. Assumption 5.11.)

4.17 Definition (Translate of a set.) Let S be a set in R2 and let a ∈ R2.
We define the set a + S by

a + S = {a + s: s ∈ S}.

Sets of the form a + S will be called translates of S.

4.18 Example. The pictures below show some examples of translates.
Intuitively each translate of S has the same shape as S and each translate of
S has the same area as S.

0

+S

p
S

b
b+p

+S

a+p

b

a

a
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4.19 Example (Translates of line segments.) Let a,b ∈ R2. If c ∈ R2,
then

c + [ab] = c + {a + t(b− a) : 0 ≤ t ≤ 1}
= {c + a + t(b− a): 0 ≤ t ≤ 1}
= {c + a + t ((c + b)− (c + a)) : 0 ≤ t ≤ 1}
= [(c + a)(c + b)].

c+a

a
c

c+b0

b

In particular −a + [a,b] = [0,b − a], so any segment can be translated to a
segment with 0 as an endpoint.

4.20 Exercise. Let a, b, c, d, r, s be real numbers with a ≤ b and c ≤ d.
Show that

(r, s) + B(a, b: c, d) = B(?, ?; ?, ?)

if the four question marks are replaced by suitable expressions. Include some
explanation for your answer.

4.21 Exercise. Let P be the set shown in the figure below.

543

4

21

5

P3

2

1

a) Sketch the sets (−2,−2) + P and (4, 1) + P .
b) Sketch the sets Rπ

2
((1, 1) + P ) and (1, 1) + Rπ

2
(P ), where Rπ

2
is defined

as in definition 4.9



4.3. THE PYTHAGOREAN THEOREM AND DISTANCE. 77

4.3 The Pythagorean Theorem and Distance.

Even though you are probably familiar with the Pythagorean theorem, the
result is so important and non-obvious that I am including a proof of it.

4.22 Theorem (Pythagorean Theorem.) In any right triangle, the square
on the hypotenuse is equal to the sum of the squares on the two legs.

Proof: Consider a right triangle T whose legs have length b and c, and whose
hypotenuse has length a, and whose angles are φ and θ as shown in the figure.

c

b

aθ

φ

We have φ + θ = 90◦ since T is a right triangle.

2

W

R1

F

S

2

Z

S

H

φ

E

1

Q

R

b

S

c

c

A

b

XP

Y

b

B

c

R

b

b

C

c

c

b
figure  1

cD
figure  2

θ

φ

θ

L

φ

φ

θ

θ

G

K

Construct a square ABCD with sides of length b+c, and find points P,Q, R, S
dividing the sides of ABCD into pieces of sizes b and c as shown in figure 1.
Draw the lines PQ, QR, RS, and SP , thus creating four triangles congruent to
T (i.e., four right triangles with legs of length b and c). Each angle of PQRS
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is 180◦ − (φ + θ) = 180◦ − 90◦ = 90◦ so PQRS is a square of side a. The four

triangles in figure 1 each have area
1

2
bc, so

area(ABCD)− 4 · area(T ) = a2 (4.23)

or
(b + c)2 − 2bc = a2

and hence
b2 + c2 = a2 ||| (4.24)

The proof just given uses a combination of algebra and geometry. I will
now give a second proof that is completely geometrical.

Construct a second square WXY Z with sides of length b + c, and mark
off segments WE and WF of length c as shown in figure 2. Then draw
EK perpendicular to WX and let EK intersect ZY at G, and draw FL
perpendicular to WZ and let FL intersect XY at H. Then EGZ is a right
angle, since the other angles of the quadrilateral WEGZ are right angles.
Similarly angle FHX is a right angle. Thus WEGZ is a rectangle so ZG = c
and similarly WFHX is a rectangle and XH = c. Moreover EG and FH are
perpendicular since EG‖WZ and FH‖WX. Thus the region labeled S1 is a
square with side c and the region labeled S2 is a square with side b.

In figure 2 we have area(R1) = area(R2) = 2area(T ), and hence

area(WXY Z)− 4 · area(T ) = b2 + c2. (4.25)

We have area(ABCD) = area(WXY Z) since ABCD and WXY Z are both
squares with side b + c. Hence from equations (4.23) and (4.25) we see that

a2 = b2 + c2. |||

Although the theorem we just proved is named for Pythagoras (fl. 530–
510 B.C) , it was probably known much earlier. There is evidence that it was
known to the Babylonians circa 1000 BC[27, pp 118-121]. Legend has it that

Emperor Yǔ[circa 21st century B.C.] quells floods, he deepens
rivers and streams, observes the shape of mountains and valleys,
surveys the high and low places, relieves the greatest calamities
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and saves the people from danger. He leads the floods east into
the sea and ensures no flooding or drowning. This is made possible
because of the Gōugǔ theorem . . .[47, page 29].

¶
¶

¶
¶

¶
¶

¶¶

Gōugǔ shape

“Gōugǔ” is the shape shown in the figure, and the Gōugǔ theorem is our
Pythagorean theorem. The prose style here is similar to that of current day
mathematicians trying to get congress to allocate funds for the support of
mathematics.

Katyayana(c. 600 BC or 500BC??) stated the general theorem:

The rope [stretched along the length] of the diagonal of a rectan-
gle makes an [area] which the vertical and horizontal sides make
together.[27, page 229]

4.26 Theorem (Distance formula.) If a and b are points in R2 then the
distance from a to b is

d(a,b) =
√

(a1 − b1)2 + (a2 − b2)2.

Proof: Draw the vertical line through a and the horizontal line through b.
These lines intersect at the point p = (a1, b2). The length of [ap] is |a2 − b2|
and the length of [pb] is |a1 − b1| and [ab] is the hypotenuse of a right angle
with legs [ap] and [pb].

½
½

½
½

½
½

½½

½
½

½
½

½
½

½½

(b1, b2) (a1, b2) (a1, a2)

(a1, a2) (a1, b2) (b1, b2)
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By the Pythagorean theorem,

(length([ab]))2 = (a1 − b1)
2 + (a2 − b2)

2

so length([a,b]) =
√

(a1 − b1)2 + (a2 − b2)2. |||
4.27 Notation (d(a,b), distance(a,b)) If a and b are points in R2, I will

denote the distance from a to b by either distance(a,b) or by d(a,b).

4.28 Definition (Circle.) Let p = (a, b) be a point in R2, and let r ∈ R+.
The circle with center p and radius r is defined to be

C(p, r) = {(x, y) ∈ R2: d((x, y), (a, b)) = r}
= {(x, y) ∈ R2:

√
(x− a)2 + (y − b)2 = r}

= {(x, y) ∈ R2: (x− a)2 + (y − b)2 = r2}.

pC( ,r)

r

p

The equation
(x− a)2 + (y − b)2 = r2

is called the equation of the circle C(p, r). The circle C((0, 0), 1) is called the
unit circle.

We will now review the method for solving quadratic equations.

4.29 Theorem (Quadratic formula.) Let A, B, and C be real numbers
with A 6= 0.

If B2− 4AC < 0, then the equation Ax2 + Bx + C = 0 has no solutions in
R.

If B2−4AC ≥ 0, then the set of solutions of the equation Ax2+Bx+C = 0
is {−B ±√B2 − 4AC

2A

}
. (4.30)

The set (4.30) contains one or two elements, depending on whether B2− 4AC
is zero or positive.)
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Proof: Let A,B,C be real numbers with A 6= 0. Let x ∈ R. Then

Ax2 + Bx + C = 0 ⇐⇒ A
(
x2 +

Bx

A

)
= −C

⇐⇒ A
(
x2 +

Bx

A
+

B2

4A2

)
= −C +

AB2

4A2
= −C +

B2

4A

⇐⇒ A
(
x +

B

2A

)2
=
−4AC + B2

4A

⇐⇒
(
x +

B

2A

)2
=

B2 − 4AC

4A2

Hence Ax2+Bx+C = 0 has no solutions unless B2−4AC ≥ 0. If B2−4AC ≥ 0,
then the solutions are given by

(
x +

B

2A

)
=
±√B2 − 4AC

2A

i.e.,

x =
−B ±√B2 − 4AC

2A
. |||

4.31 Example. Describe the set C((0, 0), 6) ∩ C((4, 4), 2).

C((4,4),2)

The sketch suggests that this set will consist of two points in the first quadrant.
Let (x, y) be a point in the intersection. Then

x2 + y2 = 36 (4.32)

and

(x− 4)2 + (y − 4)2 = 4, i.e. x2 + y2 − 8x− 8y + 28 = 0. (4.33)
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It follows that 36− 8x− 8y + 28 = 0, or 8x + 8y − 64 = 0 or

y = 8− x. (4.34)

(The line whose equation is y = 8−x is shown in the figure. We’ve proved that
the intersection is a subset of this line.) Replace y by 8− x in equation (4.33)
to obtain

x2 + (8− x)2 − 8x− 8(8− x) + 28 = 0

i.e.,
x2 + 64− 16x + x2 − 8x− 64 + 8x + 28 = 0

i.e.,
2x2 − 16x + 28 = 0

i.e.,
x2 − 8x + 14 = 0.

By the quadratic formula, it follows that

x =
8±√64− 56

2
=

8± 2
√

2

2
= 4±

√
2.

By equation (4.34)
y = 8− x = 4∓

√
2.

We have shown that if (x, y) ∈ C((0, 0), 6) ∩ C((4, 4), 2), then
(x, y) ∈ {(4 +

√
2, 4−√2), (4−√2, 4 +

√
2)}. It is easy to verify that each of

the two calculated points satisfies both equations (4.32) and (4.33) so

C((0, 0), 6) ∩ C((4, 4), 2) = {(4 +
√

2, 4−
√

2), (4−
√

2, 4 +
√

2)}.



Chapter 5

Area

In chapter 2 we calculated the area of the set

{(x, y) ∈ R2: 0 ≤ x ≤ a and 0 ≤ y ≤ x2}

where a ≥ 0, and of the set

{(x, y) ∈ R2: 1 ≤ x ≤ b and 0 ≤ y ≤ x−2}

where b > 1.
The technique that was used for making these calculations can be used to

find the areas of many other subsets of R2. The general procedure we will use
for finding the area of a set S will be to find two sequences of polygons {In}
and {On} such that

In ⊂ S ⊂ On for all n ∈ Z+.

We will then have

area(In) ≤ area(S) ≤ area(On) for all n ∈ Z+. (5.1)

We will construct the polygons In and On so that area(On)− area(In) is arbi-
trarily small when n large enough, and we will see that then there is a unique
number A such that

area(In) ≤ A ≤ area(On) for all n ∈ Z+. (5.2)

We will take A to be the area of S.

83
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5.1 Basic Assumptions about Area

5.3 Definition (Bounded Sets.) A subset S of R2 is bounded if
S ⊂ B(a, b: c, d) for some box B(a, b: c, d). A subset of R2 that is not bounded
is said to be unbounded.

It is clear that every subset of a bounded set is bounded. It is not difficult to
show that if B is a bounded set then a + B is bounded for every a ∈ R2, and
S(B) is bounded for every symmetry of the square, S.

5.4 Example. The set

{(n,
1

n
) : n ∈ Z+}

is an unbounded subset of R2. I cannot draw a picture of an unbounded set,
because the sheet of paper on which I make my drawing will represent a box
containing any picture I draw.

5.5 Definition (Bounded Function.) Let S be a set. A function f : S → R
is called a bounded function if there is a number M such that |f(x)| ≤ M for
all x ∈ S. It is clear that if f is a bounded function on an interval [a, b], then
graph(f) is a bounded subset of R2, since graph(f) ⊂ B(a, b : −M, M). If f
is bounded on S, then any number M satisfying

|f(x)| ≤ M for all x ∈ S

is called a bound for f on S.

We are now ready to state our official assumptions about area. At this
point you should officially forget everything you know about area. Unofficially,
however, you remember everything you know so that you can evaluate whether
the theorems we prove are reasonable. Our aim is not simply to calculate areas,
but to see how our calculations are justified by our assumptions.

We will assume that there is a function α from the set of bounded subsets
of R2 to the real numbers that satisfies the conditions of positivity, additiv-
ity, normalization, translation invariance and symmetry invariance described
below. Any function α that satisfies these conditions will be called an area
function.



5.1. BASIC ASSUMPTIONS ABOUT AREA 85

5.6 Assumption (Positivity of area.)

α(S) ≥ 0 for every bounded subset S of R2.

5.7 Definition (Disjoint sets.) We say two sets S, T are disjoint if and
only if S ∩ T = ∅.

5.8 Assumption (Additivity of area.) If S, T are disjoint bounded sub-
sets of R2, then

α(S ∪ T ) = α(S) + α(T ).

5.9 Assumption (Normalization property of area.) For every box
B(a, b: c, d) we have

α
(
B(a, b: c, d)

)
= (b− a)(d− c),

i.e., the area of a box is the product of the length and the width of the box.

5.10 Assumption (Translation invariance of area.) Let S be a bounded
set in R2, and let a ∈ R2, then

α(S) = α(a + S).

5.11 Assumption (Invariance under symmetry.) Let S be a bounded
subset of R2. Then if F is any symmetry of the square

α(F (S)) = α(S).

(See definition 4.12 for the definition of symmetry of the square.)

Remark: I would like to replace the assumptions 5.10 and 5.11 by the single
stronger assumption:

If A and B are bounded subsets of R2, and A is congruent to
B, then α(A) = α(B).

However the problem of defining what congruent means is rather complicated,
and I do not want to consider it at this point.
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5.12 Entertainment (Congruence problem.) Formulate a definition of
what it means for two subsets of R2 to be congruent.

5.13 Example. Let

S = B(0, 1 : 0, 1) ∩ {(x, y) ∈ R2 : x ∈ Q}
T = B(0, 1 : 0, 1) ∩ {(x, y) ∈ R2 : x 6∈ Q}.

I do not know how to make any reasonable drawing of S or T . Any picture
I draw of S would look just like a picture of T , even though the two sets are
disjoint. By additivity and the normalization property for area

α(S) + α(T ) = α(S ∪ T ) = α(B(0, 1 : 0, 1)) = 1.

Since areas are non-negative, it follows that

0 ≤ α(S) ≤ 1 and 0 ≤ α(T ) ≤ 1.

The problem of calculating α(S) exactly cannot be answered on the basis of
the assumptions we have made.

Remarks: The assumptions we have just made are supposed to be intuitively
plausible. When we choose to make a particular set of assumptions, we hope
that the assumptions are consistent, i.e., that no contradictions follow from
them. If we were to add a new assumption:

The area of a circle with radius 1 is 3.14159,

then we would have an inconsistent set of assumptions, because it follows from
the assumptions we have already made that the area of a circle of radius 1 is
greater than 3.141592.

In 1923 Stefan Banach(1892–1945) [5] showed that area functions exist, i.e.,
that the assumptions we have made about area are consistent. Unfortunately
Banach showed that there is more than one area function, and different area
functions assign different values to the set S described in the previous example.

A remarkable result of Felix Hausdorff(1868–1942) [24, pp469–472] shows
that the analogous assumptions for volume in three dimensional space (if we
include the assumption that any two congruent sets in 3 dimensional space R3

have the same volume) are inconsistent. If one wants to discuss volume in R3

then one cannot consider volumes of arbitrary sets. One must considerably
restrict the class of sets that have volumes. A discussion of Hausdorff’s result
can be found in [20].
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5.2 Further Assumptions About Area

In this section we will introduce some more assumptions about area. The
assumptions in this section can actually be proved on the basis of the basic
assumptions we have already made, and in fact the proofs are easy (the proofs
are given in appendix B). The reason I have made assumptions out of them is
that they are as intuitively plausible as the assumptions I have already made,
and I do not have time to do everything I want to do. I am omitting the proofs
with regret because I agree with Aristotle that

It is manifest that it is far better to make the principles finite in
number. Nay, they should be the fewest possible provided they
enable all the same results to be proved. This is what mathemati-
cians insist upon; for they take as principles things finite either in
kind or in number.[25, page 178]

5.14 Assumption (Addition rule for area.)

S

T

S ∩ T

For any bounded sets S and T in R2

α(S ∪ T ) = α(S) + α(T )− α(S ∩ T ). (5.15)

and consequently
α(S ∪ T ) ≤ α(S) + α(T ).

5.16 Assumption (Subadditivity of area.) Let n ∈ Z≥1, and let A1, A2,
· · ·, An be bounded sets in R2. Then

α(
n⋃

i=1

Ai) ≤
n∑

i=1

α(Ai). (5.17)
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5.18 Assumption (Monotonicity of area.) Let S, T be bounded sets
such that S ⊂ T . Then α(S) ≤ α(T ).

5.19 Definition (Zero-area set.) We will call a set with zero area a zero-
area set.

From the normalization property it follows that every horizontal or vertical
segment has area equal to 0. Thus every horizontal or vertical segment is a
zero-area set.

5.20 Corollary (to assumption 5.18.) 1 Every subset of a zero-area set
is a zero-area set. In particular the empty set is a zero-area set.

5.21 Corollary (to assumption 5.16.) The union of a finite number of
zero-area sets is a zero-area set.

5.22 Definition (Almost disjoint.) We will say that two bounded subsets
S, T of R2 are almost disjoint if S ∩ T is a zero-area set.

Almost  disjoint  sets

5.23 Examples. If a, b, c are real numbers with a < b < c, then since

B(a, b: p, q) ∩B(b, c: s, t) ⊂ B(b, b: p, q),

the boxes B(a, b: p, q) and B(b, c: s, t) are almost disjoint.
Any zero-area set is almost disjoint from every set – including itself.

5.24 Assumption (Additivity for almost disjoint sets.) Let {R1, · · · , Rn}
be a finite set of bounded sets such that Ri and Rj are almost disjoint whenever
i 6= j. Then

α(
n⋃

i=1

Ri) =
n∑

i=1

α(Ri). (5.25)

1Usually a corollary is attached to a theorem and not to an assumption. A corollary is a
statement that follows immediately from a theorem without a proof. By etymology, it is a
“small gift”.
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5.26 Notation (Area functions α or area) Any real valued function α,
whose domain is the family of bounded subsets of R2, and which satisfies all of
the assumptions listed in sections 5.1 and 5.2 will be called an area function.
In these notes I will use the names “α” and “area” to denote area function.
Thus

α(B(a, b : c, d)) = area(B(a, b : c, d)) = (b− a)(d− c).

5.3 Monotonic Functions

5.27 Definition (Partition.) Let a, b be real numbers with a ≤ b. A
partition P of the interval [a, b] is a finite sequence of points

P = {x0, x1, · · · , xn}

with a = x0 ≤ x1 ≤ x2 · · · ≤ xn = b. The intervals [x0, x1], [x1, x2], · · ·,
[xn−1, xn] are called the subintervals of the partition P , and [xj−1, xj] is the jth

subinterval of P for 1 ≤ j ≤ n. The largest of the numbers xj − xj−1 is called
the mesh of the partition P , and is denoted by µ(P ). The partition

{a, a +
(b− a)

n
, a +

2(b− a)

n
, · · · , a +

n(b− a)

n
= b}

is called the regular partition of [a, b] into n equal subintervals.

5.28 Example. Let

P = {0, 1

16
,
1

8
,
1

4
,
1

2
, 1}

Then P is a partition of [0, 1] into 5 subintervals and µ(P ) = 1− 1

2
=

1

2
.

The regular partition of [1, 2] into 5 subintervals is {1, 6

5
,
7

5
,
8

5
,
9

5
, 2}.

If Qn is the regular partition of [a, b] into n equal subintervals, then µ(Qn) = b−a
n

.

5.29 Exercise. Find a partition P of [0, 1] into five subintervals, such that
µ(P ) = 4

5
, or explain why no such partition exists.

5.30 Exercise. Find a partition Q of [0, 1] into five subintervals, such that
µ(Q) = 1

10
, or explain why no such partition exists.
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5.31 Definition (Monotonic function.) Let J be an interval in R, and
let f : J → R be a function. We say that f is increasing on J if

for all x, y in J
[
(x ≤ y) =⇒ (f(x) ≤ f(y))

]
(5.32)

and we say that f is decreasing on J if

for all x, y in J
[
(x ≤ y) =⇒ (f(x) ≥ f(y))

]
.

We say that f is strictly increasing on J if

for all x, y in J
[
(x < y) =⇒ (f(x) < f(y))

]

and we say that f is strictly decreasing on J if

for all x, y in J
[
(x < y) =⇒ (f(x) > f(y))

]
.

We say that f is monotonic on J if f is either increasing on J or decreasing on
J , and we say that f is strictly monotonic on J if f is either strictly increasing
or strictly decreasing on J .

function
increasing

function
decreasing

function
non−monotonic

A constant function on J is both increasing and decreasing on J .

5.33 Notation (Sb
af) Let f be a function from the interval [a, b] to the

non-negative numbers. We will write

Sb
af = {(x, y) ∈ R2: a ≤ x ≤ b and 0 ≤ y ≤ f(x)},

i.e., Sb
af is the set of points under the graph of f over the interval [a, b].
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Let f be an increasing function from the interval [a, b] to the non-negative
numbers. Let P = {x0, · · · , xn} be a partition of [a, b] and let

Ib
a(f, P ) =

n⋃

i=1

B(xi−1, xi: 0, f(xi−1))

Ob
a(f, P ) =

n⋃

i=1

B(xi−1, xi: 0, f(xi)).

Then

xa
2

b
1x x ba

2x1
bx 21xa

Sb

a
(f) Ib

a
(f, P ) Ob

a
(f, P )

Ib
a(f, P ) ⊂ Sb

af ⊂ Ob
a(f, P ). (5.34)

To see this, observe that since f is increasing

xi−1 ≤ x ≤ xi =⇒ f(xi−1) ≤ f(x) ≤ f(xi),

so

(x, y) ∈ Ib
a(f, P ) =⇒ (x, y) ∈ B(xi−1, xi : 0, f(xi−1)) for some i

=⇒ xi−1 ≤ x ≤ xi and 0 ≤ y ≤ f(xi−1) ≤ f(x) for some i

=⇒ a ≤ x ≤ b and 0 ≤ y ≤ f(x) =⇒ (x, y) ∈ Sb
af.

and also

(x, y) ∈ Sb
af =⇒ xi−1 ≤ x ≤ xi and 0 ≤ y ≤ f(x) ≤ f(xi) for some i

=⇒ (x, y) ∈ B
(
xi−1, xi: 0, f(xi)

)
for some i

=⇒ (x, y) ∈ Ob
a(f, P ).
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By equation (5.34) and monotonicity of area, we have

α
(
Ib
a(f, P )

)
≤ α(Sb

af) ≤ α
(
Ob

a(f, P )
)
. (5.35)

Now

α
(
Ob

a(f, P )
)
− α

(
Ib
a(f, P )

)

=
n∑

i=1

(xi − xi−1)f(xi)−
n∑

i=1

(xi − xi−1)f(xi−1)

=
n∑

i=1

(xi − xi−1)
(
f(xi)− f(xi−1)

)
. (5.36)

Now let µ(P ) be the mesh of P (cf. definition 5.27) so that

0 ≤ xi − xi−1 ≤ µ(P ) for 1 ≤ i ≤ n.

Since f(xi)− f(xi−1) ≥ 0 for all i, we have

(xi − xi−1)
(
f(xi)− f(xi−1)

)
≤ µ(P )

(
f(xi)− f(xi−1)

)

for all i, and hence

n∑

i=1

(xi − xi−1)
(
f(xi)− f(xi−1)

)
≤

n∑

i=1

µ(P )
(
f(xi)− f(xi−1)

)

= µ(P )
n∑

i=1

(
f(xi)− f(xi−1)

)
. (5.37)

Now

n∑

i=1

(
f(xi)− f(xi−1)

)
=

(
f(xn)− f(xn−1)

)
+

(
f(xn−1)− f(xn−2)

)

+ · · ·+
(
f(x1)− f(x0)

)

= f(xn)− f(x0) = f(b)− f(a).

so by equations (5.37) and (5.36), we have

α
(
Ob

a(f, P )
)
− α

(
Ib
a(f, P )

)
≤ µ(P )

(
f(b)− f(a)

)
.
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Now suppose that A is any real number that satisfies

α(Ib
a(f, P )) ≤ A ≤ α(Ob

a(f, P )) for every partition P of [a, b].

We will show that A = α(Sb
af). We have

−α(Ob
a(f, P )) ≤ −A ≤ −α(Ib

a(f, P )).

It follows from (5.35) that

α(Ib
a(f, P ))− α(Ob

a(f, P )) ≤ α(Sb
af)− A ≤ α(Ob

a(f, P ))− α(Ib
a(f, P )).

Thus

−µ(P )(f(b)− f(a)) ≤ α(Sb
af)− A ≤ µ(P )(f(b)− f(a)) (5.38)

for every partition P of [a, b]. Since we can find partitions P with µ(P ) smaller
than any preassigned number, it follows that

A = α(Sb
af). (5.39)

(After we have discussed the notion of limit, we will come back and recon-
sider how (5.39) follows from (5.38). For the present, I will just say that the
implication is intuitively clear.) We have now proved the following theorem:

5.40 Theorem. Let f be an increasing function from the interval [a, b] to
R≥0, and let P = {x0, x1, · · · , xn} be a partition of [a, b]. Let

Sb
af = {(x, y) ∈ R2: a ≤ x ≤ b and 0 ≤ y ≤ f(x)},

Ib
a(f, P ) =

n⋃

i=1

B
(
xi−1, xi: 0, f(xi−1)

)
, (5.41)

Ob
a(f, P ) =

n⋃

i=1

B
(
xi−1, xi: 0, f(xi)

)
, (5.42)

Ab
af = α(Sb

af).

Then
α

(
Ib
a(f, P )

)
≤ Ab

af ≤ α
(
Ob

a(f, P )
)

(5.43)

and
α

(
Ob

a(f, P )
)
− α

(
Ib
a(f, P )

)
≤ µ(P )

(
f(b)− f(a)

)
. (5.44)
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Also

α
(
Ib
a(f, P )

)
=

n∑

i=1

f(xi−1)(xi − xi−1) (5.45)

α
(
Ob

a(f, P )
)

=
n∑

i=1

f(xi)(xi − xi−1). (5.46)

If A is any real number such that

α(Ib
a(f, P )) ≤ A ≤ α(Ob

a(f, P )) for every partition P of [a, b],

then
A = Ab

a(f).

The following picture illustrates the previous theorem.

(P)µ

(P)µ

f(b)−f(a)

(b,f(b))

(a,f(a))

ba

5.47 Exercise. A version of theorem 5.40 for decreasing functions is also
valid. To get this version you should replace the word “increasing” by “de-
creasing” and change lines (5.41), (5.42), (5.44), (5.45) and (5.46). Write down
the proper versions of the altered lines. As usual, use I to denote areas inside
Sb

af and O to denote sets containing Sb
af . Draw a picture corresponding to

the above figure for a decreasing function.
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5.48 Definition (Right triangle Tc) Let a and b be non-zero real numbers,
and let c = (a, b). We define the triangle Tc = T(a,b) to be the set of points
between the line segment [0c] and the x-axis. By example 4.8, we know that
the equation of the line through 0 and c is y = b

a
x. Hence we have:

If a > 0 and b > 0, then T(a,b) = {(x, y) : 0 ≤ x ≤ a and 0 ≤ y ≤ b
a
x}

-

6

#
#

#
##

T(a,b)

(0, 0)

(a, b)

(a, 0)

If a > 0 and b < 0, then T(a,b) = {(x, y) : 0 ≤ x ≤ a and b
a
x ≤ y ≤ 0}

-6
c

c
c

cc

T(a,b)
(0, 0) (a, 0)

(a, b)

If a < 0 and b < 0, then T(a,b) = {(x, y) : a ≤ x ≤ 0 and b
a
x ≤ y ≤ 0}

-6
#

#
#

##

T(a,b) (0, 0)(a, 0)

(a, b)

If a < 0 and b > 0, then T(a,b) = {(x, y) : a ≤ x ≤ 0 and 0 ≤ y ≤ b
a
x}

-

6

c
c

c
cc

T(a,b)

(0, 0)

(a, b)

(a, 0)

5.49 Remark. We know from Euclidean geometry that

α(T(a,b)) =
1

2
|a||b|. (5.50)

I would like to show that this relation follows from our assumptions about
area. If H, V and Rπ are the reflections and rotation defined in definition 4.9,
then we can show without difficulty that for a > 0 and b > 0

T(−a,b) = H(T (a, b)),

T(a,−b) = V (T(a,b)), and

T(−a,−b) = Rπ(T(a,b))
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so by invariance of area under symmetry,

α(T(a,b)) = α(T(−a,b)) = α(T(a,−b)) = α(T(−a,−b))

when a and b are positive. It follows that if we prove formula (5.50) when a
and b are positive, then the formula holds in all cases. For example if a and b
are positive, and we know that (5.50) holds when a and b are positive, we get

α(T(−a,b)) = α(T(a,b)) =
1

2
|a||b| = 1

2
| − a||b|,

and thus our formula holds when a is negative and b is positive.

5.51 Theorem. Let a and b be non-zero real numbers, and let T(a,b) be the
set defined in definition 5.48. Then

α(T(a,b)) =
1

2
|a||b|.

Proof: By the previous remark, if is sufficient to prove the theorem for the
case when a and b are positive. So suppose that a and b are positive.

-

6

#
#

#
#

#
#

#
#

#
#

#
#

#
##

T(a,b)

(0, 0)

(a, b)

(a, 0)
(−a, 0)

(−a,−b)

(0, b)

E

Rπ(T(a,b))

Let E = (a, b) + Rπ(T(a,b)). It appears from the figure, and is straightforward
to show, that

E = {(x, y) : 0 ≤ x ≤ a and
b

a
x ≤ y ≤ b}.

By translation invariance of area,

α(E) = α(Rπ(T(a,b))) = α(T(a,b)).
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We have
E ∪ T(a,b) = B(0, a : 0, b),

and
E ∩ T(a,b) = [0c] where c = (a, b).

By the addition rule for area (assumption 5.14) we have

ab = α(B(0, a : 0, b))

= α(E ∪ T(a,b))

= α(E) + α(T(a,b))− α(E ∩ T(a,b))

= 2α(T(a,b))− α([0c]),

i.e.,

α(T(a,b)) =
1

2
ab +

1

2
α([0c]).

Thus our theorem will follow if we can show that the segment [0c] is a zero-area
set. We will prove this as the next theorem.

5.52 Theorem. Let c = (a, b) be a point in R2. Then

α([0c]) = 0.

Proof: If a = 0 or b = 0, then [0c] is a box with width equal to zero, or
height equal to zero, so the theorem holds in this case. Hence we only need to
consider the case where a and b are non-zero. Since any segment [0c] can be
rotated or reflected to a segment [0q] where q is in the first quadrant, we may
further assume that a and b are both positive. Let n be a positive integer, and
for 1 ≤ j ≤ n let

Bn
j = B

(
a(j − 1)

n
,
aj

n
:
b(j − 1)

n
,
bj

n

)
.
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Bn
1

Bn
2

Bn
n

(a, b)

( 0
n
, 0

n
) a

n
2a
n

na
n

b
n

2b
n

nb
n

©©©©©©©©©©©©©©©©©©©

Then

[0c] ⊂
n⋃

j=1

Bn
j , (5.53)

since

x ∈ [0c] =⇒ x = (ta, tb) for some t ∈ [0, 1]

=⇒ x = (ta, tb) where
j − 1

n
≤ t ≤,

j

n
for some j with 1 ≤ j ≤ n

=⇒ x = (ta, tb) where
a(j − 1)

n
≤ ta ≤ aj

n

and
b(j − 1)

n
≤ bt ≤ bj

n
for some j with 1 ≤ j ≤ n

=⇒ x ∈ Bn
j for some j with 1 ≤ j ≤ n.

For each j we have

α(Bn
j ) =

a

n
· b

n
=

ab

n2
.

Also the sets Bn
j and Bn

k are almost disjoint whenever 1 ≤ j, k ≤ n and j 6= k.
(If j and k differ by more than 1, then Bn

j and Bn
k are disjoint, and if j and

k differ by 1, then Bn
j ∩ Bn

k consists of a single point.) By additivity for
almost-disjoint sets (assumption 5.25), it follows that

α(
n⋃

j=1

Bn
j ) =

n∑

j=1

α(Bn
j ) =

n∑

j=1

ab

n2
=

nab

n2
=

ab

n
.
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By (5.53) and monotonicity of area we have

α([0c]) ≤ α(
n⋃

j=1

Bn
j ) =

ab

n
for every positive integer n. (5.54)

In order to conclude from this that α([0c]) = 0 We now make use of the
Archimedean property of real numbers (see (C.79) in Appendix C) which says
that for any real number x there is a positive integer n with n > x. We know
α([0c]) ≥ 0, since all areas are non-negative. Suppose (in order to get a con-
tradiction) that α([0c]) is positive. Then by the Archimedean property, there
is a positive integer N such that N > ab

α([0c])
. This implies that α([0c]) > ab

N
,

and this contradicts (5.54). Hence α([0c]) is not positive, and we conclude
that α([0c]) = 0. |||

Archimedes’ statement of the Archimedean property differs from our state-
ment. He assumes that

Further, of unequal lines, unequal surfaces, and unequal solids, the
greater exceeds the less by such a magnitude as, when added to
itself, can be made to exceed any assigned magnitude among those
which are comparable with [it and with] one another.[2, page 4]

5.55 Exercise. Let a and b be points in R2. Show that segment [ab] is a
zero are set. (Use theorem 5.52. Do not reprove theorem 5.52).

5.56 Entertainment (Area of a triangle) Let x1 = (x1, y1), x2 = (x2, y2)
and x3 = (x3, y3) be three points in R2, and let T be the triangle with vertices
x1, x2 and x3. Let

xs = smallest of x1, x2 and x3

xl = largest of x1, x2 and x3

ys = smallest of y1, y2 and y3

yl = largest of y1, y2 and y3.

Then the box B(xs, xl : ys, yl) is an almost-disjoint union of T and three
triangles which are translates of triangles of the form Tc. Since you know how
to find the area of a box and of a triangle Tc, you can find the area of T .
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aaaaaaaaaa

´
´

´
´

´́

(xl, yl)

(xs, ys)

A
A
A
A
A
A
AA

T

Using this remark show that for the triangles pictured below, α(T 1) = 1
2
(a1b2−a2b1),

and α(T 2) = 1
2
(a2b1 − a1b2).

¢
¢
¢
¢
¢
¢
¢¢

ÃÃÃÃÃÃÃÃÃÃ

@
@

@
@

@@

(0, 0)

(a1, a2)

(b1, b2)

0 < b1 < a1 and 0 < b2 < a2

T 1

´
´

´
´

´́

A
A

A
A

A
A

AA
aaaaaaaaaa

(0, 0)

(b1, b2)

(a1, a2)

T 2

a1 < 0 < b1 and 0 < b2 < a2

Then choose another triangle T 3 with vertices 0, a and b, where the coordi-
nates of the points are related in a way different from the ways shown for T 1

and T 2, and calculate the area of T 3. You should find that

α(T 3) =
1

2
|a1b2 − a2b1|

in all cases. Notice that if some coordinate is zero, the formula agrees with
theorem 5.51.

5.4 Logarithms.

5.57 Notation (Ab
af , Ab

a[f(t)].) Let f be a bounded function from the
interval [a, b] to R≥0. We will denote the area of Sb

af by Ab
af . Thus

Ab
af = α

(
{(x, y) ∈ R2: a ≤ x ≤ b and 0 ≤ y ≤ f(x)}

)
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We will sometimes write Ab
a[f(t)] instead of Ab

af . Thus, for example

Ab
a[t

2] = α
(
{(x, y) ∈ R2: a ≤ x ≤ b and 0 ≤ y ≤ x2}

)

We will also write Ib
a([f(t)], P ) and Ob

a([f(t)], P ) for Ib
a(f, P ) and Ob

a(f, P )
respectively.

5.58 Lemma. 2 Let a, b, and c be real numbers such that 0 < a < b and
c > 0. Then

Abc
ac

[1

t

]
= Ab

a

[1

t

]
.

Proof: Let P = {x0, x1, · · · , xn} be a partition of [a, b], and let

cP = {cx0, cx1, · · · , cxn}
be the partition of [ca, cb] obtained by multiplying the points of P by c.

xi−1 xi cxi−1 cxi

(xi−1,
1

xi−1

)

(xi,
1

xi

)
(cxi−1,

1

cxi−1

)
(cxi,

1

cxi

)

Then

α(Ibc
ac(

[1

t

]
, cP )) =

n∑

i=1

1

cxi

(cxi − cxi−1) =
n∑

i=1

1

cxi

· c(xi − xi−1)

=
n∑

i=1

1

xi

(xi − xi−1) = α(Ib
a(

[1

t

]
, P )) (5.59)

and

α(Obc
ac(

[1

t

]
, cP )) =

n∑

i=1

1

cxi−1

(cxi − cxi−1) =
n∑

i=1

1

cxi−1

· c(xi − xi−1)

=
n∑

i=1

1

xi−1

(xi − xi−1) = α(Ob
a(

[1

t

]
, P )) (5.60)

2A lemma is a theorem which is proved in order to help prove some other theorem.
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We know that

α(Ibc
ac(

[1

t

]
, cP )) ≤ Abc

ac

[1

t

]
≤ α(Obc

ac(
[1

t

]
, cP )).

Hence by (5.59) and (5.60) we have

α(Ib
a(

[1

t

]
, P )) ≤ Abc

ac

[1

t

]
≤ α(Ob

a(
[1

t

]
, P ))

for every partition P of [a, b]. It follows from this and the last statement of
theorem 5.40 that

Abc
ac

[1

t

]
= Ab

a

[1

t

]
. |||

5.61 Exercise. From lemma 5.58 we see that

Ab
a

[1

t

]
= Abc

ac

[1

t

]

whenever 0 < a < b, and c > 0. Use this result to show that for a ≥ 1 and
b ≥ 1

Aab
1

[1

t

]
= Aa

1

[1

t

]
+ Ab

1

[1

t

]
. (5.62)

5.63 Definition (L(x).) We will define a function L: [1,∞) → R by

L(a) = Aa
1

[1

t

]
for all a ∈ [1,∞).

L(a)
1 a

1

2

y=1/x

2

shaded  area  =



5.4. LOGARITHMS. 103

By exercise 5.61 we have

L(ab) = L(a) + L(b) for all a ≥ 1, b ≥ 1. (5.64)

In this section we will extend the domain of L to all of R+ in such a way that
(5.64) holds for all a, b ∈ R+.

5.65 Theorem. Let a, b, c be real numbers such that a ≤ b ≤ c, and let f be
a bounded function from [a, b] to R≥0. Then

Ac
af = Ab

af + Ac
bf. (5.66)

Proof: We want to show

α(Sc
af) = α(Sb

af) + α(Sc
bf).

Since Sc
af = Sb

af ∪ Sc
bf and the sets Sb

af and Sc
bf are almost disjoint, this

conclusion follows from our assumption about additivity of area for almost
disjoint sets.

I now want to extend the definition of Ab
af to cases where b may be less

than a. I want equation (5.66) to continue to hold in all cases. If c = a in
(5.66), we get

0 = Aa
af = Ab

af + Aa
bf

i.e.,
Aa

bf = −Ab
af.

Thus we make the following definition:

5.67 Definition. Let a, b be real numbers with a ≤ b and let f be a
bounded function from [a, b] to R≥0. Then we define

Aa
bf = −Ab

af or Aa
b [f(t)] = −Ab

a[f(t)].

5.68 Theorem. Let a, b, c be real numbers and let f be a bounded non-
negative real valued function whose domain contains an interval containing
a, b, and c. Then

Ac
af = Ab

af + Ac
bf.
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Proof: We need to consider the six possible orderings for a, b and c. If
a ≤ b ≤ c we already know the result. Suppose b ≤ c ≤ a. Then Aa

bf = Ac
bf+Aa

cf
and hence −Ab

af = Ac
bf − Ac

af , i.e., Ac
af = Ab

af + Ac
bf . The remaining four

cases are left as an exercise.

5.69 Exercise. Prove the remaining four cases of theorem 5.68.

5.70 Definition (Logarithm.) If a is any positive number, we define the
logarithm of a by

ln(a) = L(a) = Aa
1

[1

t

]
.

5.71 Theorem (Properties of Logarithms.) For all a, b ∈ R+ and all
r ∈ Q we have

L(ab) = L(a) + L(b)

L
(a

b

)
= L(a)− L(b)

L(a−1) = −L(a)

L(ar) = rL(a) (5.72)

L(1) = 0. (5.73)

Proof: Let a, b, c ∈ R+. From lemma 5.58 we know that if a ≤ c then

Ac
a

[1

t

]
= Abc

ba

[1

t

]
(5.74)

If c < a we get

Ac
a

[1

t

]
= −Aa

c

[1

t

]
= −Aba

bc

[1

t

]
= Abc

ba

[1

t

]

so equation (5.74) holds in all cases. Let a, b be arbitrary elements in R+.
Then

L(ab) = Aab
1

[1

t

]
= Aa

1

[1

t

]
+ Aab

a

[1

t

]

= Aa
1

[1

t

]
+ Ab

1

[1

t

]
= L(a) + L(b).
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Also

L(1) = A1
1

[1

t

]
= 0,

so
0 = L(1) = L(a · a−1) = L(a) + L(a−1)

and it follows from this that

L(a−1) = −L(a).

Hence
L

(a

b

)
= L(a · b−1) = L(a) + L(b−1) = L(a)− L(b).

5.75 Lemma. For all n ∈ Z≥0, L(an) = nL(a).

Proof: The proof is by induction on n. For n = 0 the lemma is clear. Suppose
now that the lemma holds for some n ∈ Z≥0, i.e., suppose that L(an) = nL(a).
Then

L(an+1) = L(an · a) = L(an) + L(a) = nL(a) + L(a) = (n + 1)L(a).

The lemma now follows by induction.

If n ∈ Z− then −n ∈ Z+ and

L(an) = L
(
(a−n)−1

)
= −L(a−n) = −(−n)L(a) = nL(a).

Thus equation (5.72) holds whenever r ∈ Z. If p ∈ Z and n ∈ Z \ {0}, then

pL(a) = L(ap) = L
(
(a

p
n )n

)
= nL

(
a

p
n

)

so
L

(
a

p
n

)
=

p

n
L(a).

Thus (5.72) holds for all r ∈ Q. |||

5.76 Theorem. Let a and b be numbers such that 0 < a < b. Then

Ab
a

[1

t

]
= ln(

b

a
) = ln(b)− ln(a).
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Proof: By lemma 5.58

Ab
a

[1

t

]
= Aba−1

aa−1

[1

t

]
= Aba−1

1

[1

t

]
= ln(

b

a
) = ln(b)− ln(a). |||

Logarithms were first introduced by John Napier (1550-1632) in 1614.
Napier made up the word logarithm from Greek roots meaning ratio num-
ber, and he spent about twenty years making tables of them. As far as I
have been able to find out, the earliest use of ln for logarithms was by Irving
Stringham in 1893[15, vol 2, page 107]. The notation log(x) is probably more
common among mathematicians than ln(x), but since calculators almost al-
ways calculate our function with a key called “ln”, and calculate something
else with a key called “log”, I have adopted the “ln” notation. (Napier did
not use any abbreviation for logarithm.) Logarithms were seen as an impor-
tant computational device for reducing multiplications to additions. The first
explicit notice of the fact that logarithms are the same as areas of hyperbolic
segments was made in 1649 by Alfons Anton de Sarasa (1618-1667), and this
observation increased interest in the problem of calculating areas of hyperbolic
segments.

5.77 Entertainment (Calculate ln(2).) Using any computer or calculator,
compute ln(2) accurate to 10 decimal places. You should not make use of any
special functions, e.g., it is not fair to use the “ln” key on your calculator.

There are better polygonal approximations to A2
1

[1

t

]
than the ones we have

discussed.

The graph of the logarithm function is shown below.

e21

lny=     (x)

1
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We know that ln(1) = 0 and it is clear that ln is strictly increasing.

s

(s, 1

s
)

r

(r, 1

r
)

If 0 < r < s, then

ln(s)− ln(r) = As
r

[1

t

]
> (s− r)

1

s
> 0.

From the fact that ln(an) = n ln(a) for all n ∈ Z, it is clear that ln takes on
arbitrarily large positive and negative values, but the function increases very
slowly. Let

P = {1, 4

3
,
5

3
,
6

3
}

be the regular partition of [1, 2] into three subintervals.

2

(2, 1

2
)

5

3

4

3
1

(1, 1)

Then

ln(2) = A2
1

[1

t

]
≥ α(I2

1 (
[1

t

]
, P ))

=
1

3
· 3

4
+

1

3
· 3

5
+

1

3
· 3

6
=

1

4
+

1

5
+

1

6
=

37

60
.

Now

ln(2) = A2
1

[1

t

]
≤ α

(
B(1, 2: 0, 1)

)
= 1,
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and

ln(4) = ln(22) = 2 ln(2) ≥ 2 · 37

60
> 1,

i.e.,
ln(2) ≤ 1 ≤ ln(4). (5.78)

There is a unique number e ∈ [2, 4] such that ln(e) = 1. The uniqueness is
clear because ln is strictly increasing.

The existence of such a number was taken as obvious before the nineteenth
century. Later we will introduce the intermediate value property which will
allow us to prove that such a number e exists. For the time being, we will
behave like eighteenth century mathematicians, and just assert that such a
number e exists.

5.79 Definition (e.) We denote the unique number in R+ whose logarithm
is 1 by e.

5.80 Exercise. Prove that 2 ≤ e ≤ 3. (We already know 2 ≤ e.)

5.81 Entertainment (Calculate e.) Using any computing power you have,
calculate e as accurately as you can, e.g., as a start, find the first digit after
the decimal point.

5.5 ∗Brouncker’s Formula For ln(2)

The following calculation of ln(2) is due to William Brouncker (1620-1684)[22,
page 54].

Let P2n = {x0, x1, · · · , x2n} denote the regular partition of the interval [1, 2]
into 2n equal subintervals. Let

K(2n) = I2
1 (

[1

t

]
, P2n) =

2n⋃

i=1

B(xi−1, xi; 0,
1

xi

).

We can construct K(2n+1) from K(2n) by adjoining a box of width
1

2n+1
to

the top of each box B(xi−1, xi; 0,
1
xi

) that occurs in the definition of K(2n) (see
figures a) and b)).
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2
2

3
2

4
2

( , )2
2

2
2

( , )3
2

2
3 ( , )4

2
2
4

4
4

5
4

6
4

7
4

8
4

( , )4
4

4
4

( , )6
4

4
6

( , )8
4

4
8

( , )5
4

4
5

( , )7
4

4
7

K(1) = lightly shaded region K(2) = lightly shaded region
K(2) = total shaded region K(4) = total shaded region

figure a figure b

We have

α(K(1)) = α(B(1, 2; 0,
1

2
)) = 1 · 1

2
=

1

2
.

From figure a) we see that

α(K(2)) = α(K(1)) + α(B(
2

2
,
3

2
;
2

4
,
2

3
))

=
1

2
+

1

2

(2

3
− 2

4

)

=
1

2
+

(1

3
− 1

4

)

=
1

2
+

1

3 · 4 .

From figure b) we see that

α(K(4)) = α(K(2)) + α(B(
4

4
,
5

4
;
4

6
,
4

5
)) + α(B(

6

4
,
7

4
;
4

8
,
4

7
))

= α(K(2)) +
1

4

(4

5
− 4

6

)
+

1

4

(4

7
− 4

8

)

= α(K(2)) +
(1

5
− 1

6

)
+

(1

7
− 1

8

)

=
1

1 · 2 +
1

3 · 4 +
1

5 · 6 +
1

7 · 8 .
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In general we will find that

α(K(2n)) =
2n∑

j=1

1

(2j − 1)(2j)
.

Now

0 ≤ α(S2
1(

[1

t

]
))− α(K(2n)) ≤ (1− 1

2
)µ(P2n),

i.e.

0 ≤ ln(2)−
2n∑

j=1

1

(2j − 1)(2j)
≤ 1

2n+1
.

Thus

ln(2) =
2n∑

j=1

1

(2j − 1)(2j)
with an error smaller than

1

2n+1
.

We can think of ln(2) as being given by the “infinite sum”

ln(2) =
1

1 · 2 +
1

3 · 4 +
1

5 · 6 +
1

7 · 8 + · · · . (5.82)
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1
1 2.

1
3 4.

1
5 6.

1
7 8.

1
9 10.

1
11 12.

1
13 14.

1
15 16.

ln(2) = 1

1·2
+ 1

3·4
+ 1

5·6
+ · · ·+

Equation (5.82) is sometimes called Mercator’s expansion for ln(2), after
Nicolaus Mercator, who found the result sometime near 1667 by an entirely
different method.

Brouncker’s calculation was published in 1668, but was done about ten
years earlier [22, pages 56-56].

Brouncker’s formula above is an elegant result, but it is not very useful for
calculating: it takes too many terms in the sum to get much accuracy. Today,
when a logarithm can be found by pressing a button on a calculator, we tend to
think of “ln(2)” as being a known number, and of Brouncker’s formula as giving

a “closed form” for the sum of the infinite series
1

1 · 2 +
1

3 · 4 +
1

5 · 6 + · · ·.
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5.6 Computer Calculation of Area

In this section we will discuss a Maple program for calculating approximate
values of Ab

af for monotonic functions f on the interval [a, b]. The programs
will be based on formulas discussed in theorem 5.40.

Let f be a decreasing function from the interval [a, b] to R≥0, and let
P = {x0, x1, · · · , xn} be a partition of [a, b]. We know that

α(Ib
a(f, P )) ≤ Ab

af ≤ α(Ob
a(f, P )),

where

α(Ib
a(f, P )) =

n∑

i=1

(xi − xi−1)f(xi), (5.83)

α(Ob
a(f, P )) =

n∑

i=1

(xi − xi−1)f(xi−1). (5.84)

Let V b
a (f, P ) be the average of α(Ib

a(f, P )) and α(Ob
a(f, P )), so

V b
a (f, P ) =

α(Ib
a(f, P )) + α(Ob

a(f, P ))

2
=

n∑

i=1

(xi − xi−1) · f(xi) + f(xi−1)

2
.

Now (xi − xi−1) · f(xi) + f(xx−1)

2
represents the area of the trapezoid with

vertices (xi−1, 0), (xi−1, f(xi−1)), (xi, f(xi)) and (xi, 0), so V b
a (f, P ) represents

the area under the polygonal line obtained by joining the points (xi−1, f(xi−1))
and (xi, f(xi)) for 1 ≤ i ≤ n.
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HHHHHHHH

(xi−1, 0) (xi, 0)

(xi, f(xi))

(xi−1, f(xi−1))

V b

a
(f, P )

In the programs below, leftsum(f,a,b,n) calculates

n∑

j=1

f

(
a + (j − 1)

(b− a

n

))(b− a

n

)
=

(b− a

n

) n∑

j=1

f

(
a + (j − 1)

(b− a

n

))
,

which corresponds to (5.84) when P is the regular partition of [a, b] into n
equal subintervals, and rightsum(f,a,b,n) calculates

n∑

j=1

f

(
a + j

(b− a

n

))(b− a

n

)
=

(b− a

n

) n∑

j=1

f

(
a + j

(b− a

n

))
.

which similarly corresponds to (5.83). The command average(f,a,b,n) cal-
culates the average of leftsum(f,a,b,n) and rightsum(f,a,b,n).

The equation of the unit circle is x2 + y2 = 1, so the upper unit semicircle
is the graph of f where f(x) =

√
1− x2. The area of the unit circle is 4 times

the area of the portion of the circle in the first quadrant, so

π = 4A1
0[
√

1− t2].

Also

ln(2) = A2
1

[1

t

]
.
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My routines and calculations are given below. Here leftsum, rightsum
and average are all procedures with four arguments, f,a,b, and n.

f is a function.
a and b are the endpoints of an interval.
n is the number of subintervals in a partition of [a,b].
The functions F and G are defined by F(x) = 1/x and G(x) =

√
1− x2. The

command

average(F,1.,2.,10000);

estimates ln(2) by considering the regular partition of [1, 2] into 10000 equal
subintervals. and the command

4*average(G,0.,1.,2000);

estimates π by considering the regular partition of [0, 1] into 2000 equal subin-
tervals.

> leftsum :=

> (f,a,b,n) -> (b-a)/n*sum(f( a +((j-1)*(b-a))/n),j=1..n);

leftsum := ( f, a, b, n ) →
( b− a )




n∑

j=1

f

(
a +

(j − 1) ( b− a )

n

)


n

> rightsum :=

> (f,a,b,n) -> (b-a)/n*sum(f( a +(j*(b-a))/n),j=1..n);

rightsum := ( f, a, b, n ) →
( b− a )




n∑

j=1

f

(
a +

j ( b− a )

n

)


n

> average :=

> (f,a,b,n) -> (leftsum(f,a,b,n) + rightsum(f,a,b,n))/2;

average := ( f, a, b, n ) → 1

2
leftsum( f, a, b, n ) +

1

2
rightsum( f, a, b, n )

> F := t -> 1/t;

F := t → 1

t
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> leftsum(F,1.,2.,10000);

.6931721810

> rightsum(F,1.,2.,10000);

.6931221810

> average(F,1.,2.,10000);

.6931471810

> ln(2.);

.6931471806

> G := t -> sqrt(1-t^2);

G := t → sqrt( 1− t2 )

> 4*leftsum(G,0.,1.,2000);

3.142579520

> 4*rightsum(G,0.,1.,2000);

3.140579522

> 4*average(G,0.,1.,2000);

3.141579521

> evalf(Pi);

3.141592654

Observe that in these examples, average yields much more accurate approxi-
mations than either leftsum or rightsum.



Chapter 6

Limits of Sequences

6.1 Absolute Value

6.1 Definition (Absolute values.) Recall that if x is a real number, then
the absolute value of x, denoted by |x|, is defined by

|x| =




x if x > 0,
0 if x = 0,
−x if x < 0.

We will assume the following properties of absolute value, that follow easily
from the definition:

For all real numbers x, y, z with z 6= 0

|x| = | − x|
|xy| = |x| · |y|
∣∣∣∣
x

z

∣∣∣∣ =
|x|
|z|

−|x| ≤ x ≤ |x|.
For all real numbers x, and all a ∈ R+

(|x| < a) ⇐⇒ (−a < x < a)

and
(|x| ≤ a) ⇐⇒ (−a ≤ x ≤ a). (6.2)

116
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We also have
|x| ∈ R≥0 for all x ∈ R,

and
|x| = 0 ⇐⇒ x = 0.

6.3 Theorem. Let a ∈ R and let p ∈ R+. Then for all x ∈ R we have

|x− a| < p ⇐⇒ (a− p < x < a + p),

and
|x− a| ≤ p ⇐⇒ (a− p ≤ x ≤ a + p).

Equivalently, we can say that

{x ∈ R : |x− a| < p} = (a− p, a + p)

and
{x ∈ R : |x− a| ≤ p} = [a− p, a + p].

Proof: I will prove only the first statement. I have

|x− a| < p ⇐⇒ −p < x− a < p

⇐⇒ a− p < a + (x− a) < a + p

⇐⇒ a− p < x < a + p. |||

6.4 Definition (Distance.) The distance between two real numbers x and
y is defined by

dist(x, y) = |x− y|.

Theorem 6.3 says that the set of numbers whose distance from a is smaller
than p is the interval (a−p, a+p). Geometrically this is clear from the picture.

-¾ -¾p p

a− p a a + p

I remember the theorem by keeping the picture in mind.

6.5 Theorem (Triangle inequality.) For all real numbers x and y

|x + y| ≤ |x|+ |y|, (6.6)
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Proof For all x and y in R we have

−|x| ≤ x ≤ |x|

and
−|y| ≤ y ≤ |y|,

so
−(|x|+ |y|) ≤ x + y ≤ (|x|+ |y|).

Hence (Cf. (6.2))
|x + y| ≤ |x|+ |y|.

6.7 Exercise. Can you prove that for all (x, y) ∈ R2
(
|x− y| ≤ |x| − |y|

)
?

Can you prove that for all (x, y) ∈ R2
(
|x− y| ≤ |x|+ |y|

)
?

Remark: Let a, b, c, d be real numbers with a < c < b and a < d < b.

a c d b

Then
|c− d| < |b− a| = b− a.

This result should be clear from the picture. We can give an analytic proof as
follows.

(a < c < b and a < d < b) =⇒ (a < c < b and − b < −d < −a)

=⇒ a− b < c− d < b− a

=⇒ −(b− a) < c− d < (b− a)

=⇒ −|b− a| < c− d < |b− a|
=⇒ |c− d| < |b− a|.

6.8 Examples. Let

A = {x ∈ R : |x− 2| < 5},
B = {x ∈ R : |x− 2| > 5}.

-¾ -¾5 5

−3 2 7
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Then a number x is in A if and only if the distance from x to 2 is smaller than
5, and x is in B if and only if the distance from x to 2 is greater than 5. I can
see by inspection that

A = (−3, 7),

and
B = (−∞,−3) ∪ (7,∞).

Let

C = {x ∈ R :
∣∣∣∣
x− 1

x + 1

∣∣∣∣ < 1}.

If x ∈ R \ {−1}, then x is in C if and only if |x− 1| < |x + 1|, i.e. if and only
if x is closer to 1 than to −1.

-c C

−1 0 1

I can see by inspection that the point equidistant from −1 and 1 is 0, and
that the numbers that are closer to 1 than to −1 are the positive numbers,
so C = (0,∞). I can also do this analytically, (but in practice I wouldn’t) as
follows. Since the alsolute values are all non-negative

|x− 1| < |x + 1| ⇐⇒ |x− 1|2 < |x + 1|2
⇐⇒ x2 − 2x + 1 < x2 + 2x + 1

⇐⇒ 0 < 4x ⇐⇒ 0 < x.

6.9 Exercise. Express each of the four sets below as an interval or a union
of intervals. (You can do this problem by inspection.)

A1 = {x ∈ R: |x− 1

2
| < 3

2
},

A2 = {x ∈ R: |x +
1

2
| ≤ 3

2
},

A3 = {x ∈ R: |3
2
− x| < 1

2
},

A4 = {x ∈ R: |3
2

+ x| ≥ 3

2
}.
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6.10 Exercise. Sketch the graphs of the functions from R to R defined by
the following equations:

f1(x) = |x|,
f2(x) = |x− 2|,
f3(x) = |x| − |x− 2|,
f4(x) = |x|+ |x− 2|,
f5(x) = x2 − 1,

f6(x) = |x2 − 1|,
f7(x) = |x2 − 1|2.

(No explanations are expected for this problem.)

6.11 Exercise. Let f1, · · · , f7 be the functions described in the previous
exercise. By looking at the graphs, express each of the following six sets in
terms of intervals.

S1 = {x ∈ R: f1(x) < 1}
S2 = {x ∈ R: f2(x) < 1}
S3 = {x ∈ R: f3(x) < 1}
S4 = {x ∈ R: f4(x) < 3}
S5 = {x ∈ R: f5(x) < 3}
S6 = {x ∈ R: f6(x) < 3}.

Let S7 = {x ∈ R: f7(x) < 1
2
}. Represent S7 graphically on a number line.

Remark: The notation |x| for absolute value of x was introduced by Weier-
strass in 1841 [15][Vol 2,page 123]. It was first introduced in connection with
complex numbers. It is surprising that analysis advanced so far without intro-
ducing a special notation for this very important function.

6.2 Approximation

6.12 Definition (b approximates a.) Let ε be a positive number, and let
a and b be arbitrary numbers. I will say that b approximates a with an error
smaller than ε if and only if

|b− a| < ε.
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Remark: If b approximates a with an error smaller than ε, then a approxi-
mates b with an error smaller than ε, since |a− b| = |b− a|.

6.13 Definition (Approximation to n decimals.) Let n ∈ Z+, and let
a, b be real numbers. I will say that b approximates a with n decimal accuracy

if and only if b approximates a with an error smaller than
1

2
· 10−n; i.e., if and

only if

|b− a| < 1

2
10−n.

6.14 Notation. If I write three dots (· · ·) at the end of a number writ-
ten in decimal notation, I assume that all of the digits before the three dots
are correct. Thus since π = 3.141592653589 · · · , I have π = 3.1415 · · ·, and
π = 3.1416 with 4 decimal accuracy.

6.15 Example.
π = 3.141592653589793 · · ·

and
22

7
= 3.142857142857142 · · · .

Hence

3.1415 < π <
22

7
< 3.1429,

and ∣∣∣∣
22

7
− π

∣∣∣∣ < 3.1429− 3.1415 = .0014 < .005 =
1

2
· 10−2.

Hence
22

7
approximates π with an error smaller than .0014, and

22

7
approxi-

mates π with 2 decimal accuracy.

6.16 Example. We see that

.49 approximates .494999 with 2 decimal accuracy,

and
.50 approximates .495001 with 2 decimal accuracy,

but there is no two digit decimal that approximates .495000 with 2 decimal
accuracy.



122 CHAPTER 6. LIMITS OF SEQUENCES

6.17 Example. Since

|.49996− .5| = .00004 < .00005 =
1

2
· 10−4,

we see that .5 approximates .49996 with 4 decimal accuracy, even though the
two numbers have no decimal digits in common. Since

|.49996− .4999| = .00006 >
1

2
· 10−4,

we see that .4999 does not approximate .49996 with 4 decimal accuracy, even
though the two numbers have four decimal digits in common.

6.18 Theorem (Strong approximation theorem.) Let a and b be real
numbers. Suppose that for every positive number ε, b approximates a with an
error smaller than ε. Then b = a.

Proof: Suppose that b approximates a with an error smaller than ε for every
positive number ε. Then

|b− a| < ε for every ε in R+.

Hence
|b− a| 6= ε for every ε in R+,

i.e., |b − a| /∈ R+. But |b − a| ∈ R≥0, so it follows that |b − a| = 0, and
consequently b− a = 0; i.e., b = a. |||

6.3 Convergence of Sequences

6.19 Definition ({an} converges to L.)
Let {an} be a sequence of real numbers, and let L be a real number. We

say that {an} converges to L if for every positive number ε there is a number
N(ε) in Z+ such that all of the numbers an for which n ≥ N(ε) approximate
L with an error smaller than ε. We denote the fact that {an} converges to L
by the notation

{an} → L.

Thus “{an} → L” means:
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For every ε ∈ R+ there is a number N(ε) in Z+ such that

|an − L| < ε for all n in Z+ with n ≥ N(ε).

Since
|an − L| = |(an − L)− 0| =

∣∣∣|an − L| − 0
∣∣∣,

it follows immediately from the definition of convergence that

({an} → L) ⇐⇒ ({an − L} → 0) ⇐⇒ (|an − L| → 0).

We will make frequent use of these equivalences.

6.20 Example. If a ∈ R+ then

{
a3

(
1 +

1

n

) (
1 +

1

2n

)}
→ a3.

Proof: Let ε be a generic element of R+. I must find a number N(ε) such that

∣∣∣a3
(
1 +

1

n

) (
1 +

1

2n

)
− a3

∣∣∣ < ε (6.21)

whenever n ≥ N(ε). Well, for all n in Z+

∣∣∣a3
(
1 +

1

n

) (
1 +

1

2n

)
− a3

∣∣∣ =
∣∣∣a3

(
1 +

3

2n
+

1

2n2

)
− a3

∣∣∣

=
∣∣∣a3

(
3

2n
+

1

2n2

) ∣∣∣ = a3
(

3

2n
+

1

2n2

)

≤ a3
(

3

2n
+

1

2n

)
=

2a3

n
. (6.22)

Now for every n in Z+ we have
(

2a3

n
< ε

)
⇐⇒

(
2a3

ε
< n

)
,

and by the Archimedean property of R there is some integer N(ε) such that
2a3

ε
< N(ε). For all n ≥ N(ε) we have

(n ≥ N(ε)) =⇒
(

2a3

ε
< N(ε) ≤ n

)
=⇒

((
2a3

n

)
< ε

)
,
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so by (6.22)

(n ≥ N(ε)) =⇒
∣∣∣a3

(
1 +

1

n

) (
1 +

1

2n

)
− a3

∣∣∣ ≤ 2a3

n
< ε.

Hence by the definition of convergence we have
{
a3

(
1 +

1

n

) (
1 +

1

2n

)}
→ a3. ||| (6.23)

A very similar argument can be used to show that
{
a3

(
1− 1

n

) (
1− 1

2n

)}
→ a3. (6.24)

6.25 Example. In the eighteenth century the rather complicated argument
just given would have been stated as

If n is infinitely large, then a3
(
1 +

1

n

) (
1 +

1

2n

)
= a3.

The first calculus text book (written by Guillaume François de l’Hôpital and
published in 1696) sets forth the postulate

Grant that two quantities, whose difference is an infinitely small
quantity, may be taken (or used) indifferently for each other: or
(which is the same thing) that a quantity which is increased or
decreased only by an infinitely small quantity, may be considered
as remaining the same[35, page 314].

If n is infinite, then
1

n
is infinitely small, so

(
1 +

1

n

)
= 1, and similarly

(
1 +

1

2n

)
= 1.

Hence

a3
(
1 +

1

n

) (
1 +

1

2n

)
= a3 · 1 · 1 = a3.

There were numerous objections to this sort of reasoning. Even though
(
1 +

1

n

)
= 1,

we do not have
(
1 +

1

n

)
− 1 = 0, since

(
1 + 1

n

)
− 1

1
n

= 1.

It took many mathematicians working over hundreds of years to come up with
our definition of convergence.



6.3. CONVERGENCE OF SEQUENCES 125

6.26 Theorem (Uniqueness theorem for convergence.) Let {an} be a
sequence of real numbers, and let a, b be real numbers. Suppose

{an} → a and {an} → b.

Then a = b.

Proof: Suppose {an} → a and {an} → b. By the triangle inequality

|a− b| = |(a− an)− (b− an)| ≤ |a− an|+ |b− an|. (6.27)

Let ε be a generic element of R+. Then ε
2

is also in R+. Since {an} → a, there
is a number N( ε

2
) in Z+ such that

|a− an| < ε

2
for all n ≥ N( ε

2
). (6.28)

Since {an} → b there is a number M( ε
2
) in Z+ such that

|b− an| < ε

2
for all n ≥ M( ε

2
). (6.29)

Let P (ε) be the larger of N( ε
2
) and M( ε

2
). If n is a positive integer and

n ≥ P (ε) then by (6.27), (6.28), and (6.29), we have

|a− b| ≤ |a− an|+ |b− an| < ε

2
+

ε

2
= ε.

Since this holds for all ε in R+, we have a = b. |||

6.30 Definition (Limit of a sequence.) Let {an} be a sequence of real
numbers. If there is a number a such that {an} → a, we write lim{an} = a.
The uniqueness theorem for convergence shows that this definition makes
sense. If lim{an} = a, we say a is the limit of the sequence {an}.

6.31 Definition (Convergent and divergent sequence.) Let {an} be a
sequence of real numbers. If there is a number a such that {an} → a, we say
that {an} is a convergent sequence. If there is no such number a, we say that
{an} is a divergent sequence.
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6.32 Example. It follows from example 6.20 that

lim
{
a3

(
1 +

1

n

) (
1 +

1

2n

)}
= a3

for all a in R+. Hence
{
a3

(
1 +

1

n

) (
1 +

1

2n

)}
is a convergent sequence for

each a in R+.
The sequence {n} is a divergent sequence. To see this, suppose there were

a number a such that {n} → a.
Then we can find a number N(1

3
) such that

|n− a| < 1

3
for all n ≥ N(1

3
).

In particular ∣∣∣N(1
3
)− a

∣∣∣ <
1

3
and

∣∣∣
(
N(1

3
) + 1

)
− a

∣∣∣ <
1

3

(since N(1
3
) + 1 is an integer greater than N(1

3
)). Hence, by the triangle

inequality

1 = |1| =
∣∣∣
(
N(1

3
) + 1− a

)
−

(
N(1

3
)− a

)∣∣∣

≤
∣∣∣N(1

3
) + 1− a

∣∣∣ +
∣∣∣N(1

3
)− a

∣∣∣ <
1

3
+

1

3
=

2

3

i.e., 1 <
2

3
which is false.

Since the assumption {n} → a has led to a contradiction, it is false that
{n} → a. |||
6.33 Exercise. Let {an} be a sequence of real numbers, and let a be a real

number. Suppose that as n gets larger and larger, an gets nearer and nearer
to a, i.e., suppose that for all m and n in Z+

(n > m) =⇒ (|an − a| < |am − a|).
Does it follow that {an} converges to a?

6.34 Exercise. For each of the sequences below, calculate the first few
terms, and make a guess as to whether or not the sequence converges. In some
cases you will need to use a calculator. Try to explain the basis for your guess.
(If you can prove your guess is correct, do so, but in several cases the proofs
involve more mathematical knowledge than you now have.)
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{an} = {(−1)n}.

{cn} =

{
1− 1

2
+

1

3
− 1

4
+ · · ·+ (−1)n+1

n

}
.

{dn} =
{
1 +

1

22
+

1

32
+ · · ·+ 1

n2

}

This problem was solved by Leonard Euler (1707-1783)[18, pp138-139].

{en} =
{
1 +

1

3
+

1

32
+ · · ·+ 1

3n−1

}
.

{fn} =
{(

1 +
1

n

)n}

This problem was solved by Jacob Bernoulli (1654-1705)[8, pp94-97].

.

6.4 Properties of Limits.

In this section I will state some basic properties of limits. All of the statements
listed here as assumptions are, in fact, theorems that can be proved from
the definition of limits. I am omitting the proofs because of lack of time,
and because the results are so plausible that you will probably believe them
without a proof.

6.35 Definition (Constant sequence.) If r is a real number then the
sequence {r} all of whose terms are equal to r is called a constant sequence

{r} = {r, r, r, · · ·}.

It is an immediate consequence of the definition of convergence that

{r} → r

for every real number r. (If rn = r for all n in Z+ then |rn − r| = 0 < ε for all
ε in R+ so rn approximates r with an error smaller than ε for all n ≥ 1. |||.)

We have just proved
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6.36 Theorem (Constant sequence rule.) If {r} denotes a constant se-
quence of real numbers, then

lim{r} = r.

6.37 Theorem (Null sequence rule.) Let α be a positive rational number.
Then

lim
{

1

nα

}
= 0.

Proof: Let α be a positive rational number, and let ε be a generic positive
number. By the monotonicity of powers (see (C.95) in appendix C), we have

1

nα
< ε ⇐⇒

(
1

nα

) 1
α

< (ε)
1
α ⇐⇒ 1

n
< ε(

1
α)

⇐⇒ n >
1

ε
1
α

= ε−
1
α .

By the Archimedian property for R there is an integer N(ε) in Z+ such that

N(ε) > ε−
1
α .

Then for all n in Z+

n ≥ N(ε) =⇒ n ≥ ε−1/α =⇒ 1

nα
< ε =⇒

∣∣∣∣
1

nα
− 0

∣∣∣∣ < ε.

Thus lim
{

1

nα

}
= 0. |||

6.38 Assumption (Sum rule for sequences.) Let {an} and {bn} be con-
vergent sequences of real numbers. Then

lim{an + bn} = lim{an}+ lim{bn}

and
lim{an − bn} = lim{an} − lim{bn}.
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The sum rule is actually easy to prove, but I will not prove it. (You can
probably supply a proof for it.)

Notice the hypothesis that {an} and {bn} are convergent sequences. It is
not true in general that

lim{an + bn} = lim{an}+ lim{bn}.

For example, the statement

lim{(−1)n + (−1)n+1} = lim{(−1)n}+ lim{(−1)n+1}

is false, since
lim{(−1)n + (−1)n+1} = lim{0} = 0

but neither of the limits lim{(−1)n} or lim{(−1)n+1} exist.

6.39 Assumption (Product rule for sequences.) Let {an} and {bn} be
convergent sequences. Then

lim{an · bn} = lim{an} · lim{bn}.

An important special case of the product rule occurs when one of the se-
quences is constant: If a is a real number, and {bn} is a convergent sequence,
then

lim{abn} = a lim{bn}.

The intuitive content of the product rule is that if an approximates a very
well, and bn approximates b very well, then anbn approximates ab very well. It
is somewhat tricky to prove this for a reason that is illustrated by the following
example.

According to Maple,

√
99999999 = 9999.99994999999987499 · · ·

so 9999.9999 approximates
√

99999999 with 4 decimal accuracy. Let

a = b = 9999.9999,

and let
A = B =

√
99999999.
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Then a approximates A with 4 decimal accuracy and b approximates B with
4 decimal accuracy. But

AB = 99999999

and
ab = 99999998.00000001

so ab does not approximate AB with an accuracy of even one decimal.

6.40 Assumption (Quotient rule for sequences.) Let {an} and {bn}
be convergent real sequences such that bn 6= 0 for all n in Z+ and lim{bn} 6= 0.
Then

lim
{

an

bn

}
=

lim{an}
lim{bn} .

The hypotheses here are to be expected. If some term bn were zero, then{
an

bn

}
would not be a sequence, and if lim{bn} were zero, then

lim{an}
lim{bn} would

not be defined.

6.41 Assumption (Inequality rule for sequences.) Let {an} and {bn}
be convergent sequences. Suppose there is an integer N in Z+ such that

an ≤ bn for all n in Z≥N .

Then
lim{an} ≤ lim{bn}.

The most common use of this rule is in situations where

0 ≤ bn for all n

and we conclude that
0 ≤ lim{bn}.

6.42 Assumption (Squeezing rule for sequences.) Let {an}, {bn}, and
{cn} be three real sequences. Suppose there is an integer N in Z+ such that

an ≤ bn ≤ cn for all n ∈ Z≥N . (6.43)

Suppose further, that {an} and {cn} both converge to the same limit L. Then
{bn} also converges to L.
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If we knew that the middle sequence, {bn} in the squeezing rule was convergent,
then we would be able to prove the squeezing rule from the inequality rule,
since if all three sequences {an}, {bn} and {cn} converge, then it follows from
(6.43) that

lim{an} ≤ lim{bn} ≤ lim{cn},
i.e.

L ≤ lim{bn} ≤ L

and hence lim{bn} = L. The power of the squeezing rule is that it allows us
to conclude that a limit exists.

6.44 Definition (Translate of a sequence.) Let {an} be a real sequence,
and let p ∈ Z+. The sequence {an+p} is called a translate of {an}.
6.45 Example. If

{an} =
{

1

n2

}
=

{
1,

1

4
,
1

9
,

1

16
,

1

25
, · · ·

}

then

{an+2} =

{
1

(n + 2)2

}
=

{
1

9
,

1

16
,

1

25
, · · ·

}
.

If
{bn} = {(−1)n}

then
{bn+2} = {(−1)n+2} = {(−1)n} = {bn}.

6.46 Theorem (Translation rule for sequences.) Let {an} be a conver-
gent sequence of real numbers, and let p be a positive integer. Then {an+p} is
convergent and

lim{an+p} = lim{an}.

Proof: Suppose lim{an} = a, and let ε be a generic element in R+. Then we
can find an integer N(ε) in Z+ such that

|an − a| < ε for all n in Z+ with n ≥ N(ε).

If n ≥ N(ε) then n + p ≥ N(ε) + p ≥ N(ε) so

|an+p − a| < ε.

This shows that lim{an+p} = a = lim{an}. |||
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6.47 Example. The sequence

{an} =
{

1

n + 4

}
=

{
1

5
,
1

6
,
1

7
, · · ·

}

is a translate of the sequence
{

1

n

}
. Since lim

{
1

n

}
= 0 it follows from the

translation theorem that lim
{

1

n + 4

}
= 0 also.

6.48 Theorem (nth root rule for sequences.) Let a be a positive number
then

lim
{
a

1
n

}
= 1.

Proof: Case 1: Suppose a = 1. Then

lim
{
a

1
n

}
= lim{1} = 1.

Case 2: Suppose a > 1, so that a
1
n > 1 for all n ∈ Z+. Let ε be a generic

positive number, and let n be a generic element of Z+. Since ln is strictly
increasing on R+ we have

(
a

1
n − 1 < ε

)
⇐⇒

(
a

1
n < 1 + ε

)
⇐⇒

(
ln(a

1
n ) < ln(1 + ε)

)

⇐⇒ 1

n
ln(a) < ln(1 + ε)

⇐⇒ ln(a)

ln(1 + ε)
< n. (6.49)

(In the last step I used the fact that ln(1+ε) > 0 if ε > 0.) By the Archimedean
property for R there is an integer N(ε) in Z+ such that

ln(a)

ln(1 + ε)
< N(ε).

For all n ∈ Z+ we have

n ≥ N(ε) =⇒ ln(a)

ln(1 + ε)
< N(ε) ≤ n

=⇒ a
1
n − 1 < ε =⇒

∣∣∣a 1
n − 1

∣∣∣ < ε.
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Hence lim
{
a

1
n

}
= 1.

Case 3: Suppose 0 < a < 1. Then a−1 > 1 so by Case 2, we have

lim
{
a

1
n

}
= lim

{
1

(a−1)
1
n

}

=
lim{1}

lim
{
(a−1)

1
n

} =
1

1
= 1.

Thus, in all cases, we have

lim
{
a

1
n

}
= 1. |||

6.5 Illustrations of the Basic Limit Properties.

6.50 Example. In example 6.20, we used the definition of limit to show
that

lim
{
a3

(
1 +

1

n

) (
1 +

1

2n

)}
= a3

for all a ∈ R+, and claimed that a similar argument shows that

lim
{
a3

(
1− 1

n

) (
1− 1

2n

)}
= a3 (6.51)

We will now use the basic properties of limits to prove (6.51). By the product
rule and the null sequence rule,

lim
{

1

2n

}
= lim

{
1

2
· 1

n

}
=

1

2
lim

{
1

n

}
=

1

2
· 0 = 0.

Hence by the sum rule

lim
{
1− 1

2n

}
= lim{1} − lim

{
1

2n

}
= 1− 0 = 1.

By the sum rule and the null sequence rule

lim
{
1− 1

n

}
= lim{1} − lim

{
1

n

}
= 1− 0 = 1.

Hence by the product rule,

lim
{(

1− 1

n

)
·
(
1− 1

2n

)}
= lim

{(
1− 1

n

)}
· lim

{(
1− 1

2n

)}

= 1 · 1 = 1.



134 CHAPTER 6. LIMITS OF SEQUENCES

Now {a3} is a constant sequence, so by the product rule,

lim
{
a3

(
1− 1

n

) (
1− 1

2n

)}
= a3 · lim

{(
1− 1

n

)
·
(
1− 1

2n

)}

= a3 · 1 = a3.

6.52 Example. In the previous example, I made at least eight applications
of our limit rules. However, the applications are completely mechanical so I
will usually not be so careful, and in a situation like this, I will just write

lim
{
a3

(
1− 1

n

) (
1− 1

2n

)}
= a3 · (1− 0) ·

(
1− 1

2
· 0

)
= a3. (6.53)

The argument given in equation (6.53) looks remarkably similar to the
eighteenth century argument given in example 6.25.

6.54 Example. Let a be a positive number, and let

A(a) = area({(x, y) ∈ R2: 0 ≤ x ≤ a and 0 ≤ y ≤ x2}).
In (2.13), we showed that

a3

3

(
1− 1

n

) (
1− 1

2n

)
≤ A(a) ≤ a3

3

(
1 +

1

n

) (
1 +

1

2n

)
, (6.55)

for all n ∈ Z+, and claimed that these inequalities show that A(a) =
a3

3
. Now

I want to examine the claim more closely.
In example 6.20 we proved that

lim
{
a3

(
1 +

1

n

) (
1 +

1

2n

)}
= a3,

and in example 6.50 we proved that

lim
{
a3

(
1− 1

n

) (
1− 1

2n

)}
= a3

By applying the squeezing rule to equation 6.55, we see that

lim{A(a)} = a3,

i.e.

A(a) =
a3

3
. |||
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6.56 Example. I will now consider the limit

lim

{
n2 − 2n

n2 + 3n

}
.

Here I cannot apply the quotient rule for sequences, because the limits of the
numerator and denominator do not exist. However, I notice that I can simplify
my sequence: {

n2 − 2n

n2 + 3n

}
=

{
n− 2

n + 3

}
.

I will now use a trick. I will factor the highest power of n out of the numerator
and denominator:

{
n− 2

n− 3

}
=





n
(
1− 2

n

)

n
(
1− 3

n

)


 =

{
1− 2

n

1− 3
n

}
.

It is now clear what the limit is.

lim

{
n2 − 2n

n2 + 3n

}
= lim

{
1− 2

n

1− 3
n

}
=

1− 2 · 0
1− 3 · 0 = 1.

6.57 Example. I want to investigate

lim

{
n− 2n2 + 3

4 + 6n + n2
.

}

I’ll apply the factoring trick of the previous example.

{
n− 2n2 + 3

4 + 6n + n2

}
=





n2
(

1
n
− 2 + 3

n2

)

n2
(

4
n2 + 6

n
+ 1

)


 =

{
1
n
− 2 + 3

n2

4
n2 + 6

n
+ 1

}

so

lim

{
n− 2n2 + 3

4 + 6n + n2

}
= lim

{
1
n
− 2 + 3

n2

4
n2 + 6

n
+ 1

}
=

0− 2 + 3 · 0
4 · 0 + 6 · 0 + 1

= −2.

6.58 Example. I want to find

lim
{

1

n + 4

}
.
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I observe that
{

1

n + 4

}
is a translate of

{
1

n

}
so by the translation rule

lim
{

1

n + 4

}
= lim

{
1

n

}
= 0.

I can also try to do this by my factoring trick:

lim
{

1

n + 4

}
= lim





1

n
(
1 + 4

n

)


 = lim

{
1
n

1 + 4
n

}

=
0

1 + 4 · 0 = 0.

6.59 Exercise. Find the following limits, or explain why they don’t exist.

a) lim

{
7 +

6

n
+

8√
n

}

b) lim

{
4 + 1

n

5 + 1
n

}

c) lim

{
3n2 + n + 1

1 + 3n + 4n2

}

d) lim





(
2 + 1

n

)2
+ 4

(
2 + 1

n

)3
+ 8





e) lim





(
2 + 1

n

)2 − 4
(
2 + 1

n

)3 − 8





f) lim

{
8n3 + 13n

17 + 12n3

}

g) lim

{
8(n + 4)3 + 13(n + 4)

17 + 12(n + 4)3

}

h) lim
{

n + 1

n2 + 1

}
.
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6.60 Example. Let a be a real number greater than 1, and let

Sa = {(x, y) ∈ R2: 1 ≤ x ≤ a and 0 ≤ y ≤ 1

x2
}.

In (2.34) we showed that

(1− a−1)

a
1
n

≤ area(Sa) ≤ a
1
n (1− a−1) for all n ∈ Z+. (6.61)

I want to conclude from this that area(Sa) = (1− a−1).
By the nth root rule, and the quotient and product rules, we have

lim

{
(1− a−1)

a
1
n

}
=

lim{1− a−1}
lim{a 1

n} =
(1− a−1)

1
= (1− a−1),

and

lim
{
a

1
n (1− a−1)

}
= lim

{
a

1
n

}
lim{(1− a−1)} = 1 · (1− a−1) = (1− a−1).

By (6.61) and the squeezing rule, we conclude that

lim{area(Sa)} = (1− a−1),

i.e.
area(Sa) = (1− a−1).

6.62 Example. Let the sequence {an} be defined by the rules

a1 = 1,

an+1 =
a2

n + 2

2an

for n ≥ 1. (6.63)

Thus, for example

a2 =
1 + 2

2
=

3

2
and

a3 =
9
4

+ 2

3
=

17

12
.

It is clear that an > 0 for all n in Z+. Let L = lim{an}. Then by the
translation rule, L = lim{an+1} also. From (6.63) we have

2anan+1 = a2
n + 2 for all n ∈ Z≥2.



138 CHAPTER 6. LIMITS OF SEQUENCES

Thus
lim{2anan+1} = lim{a2

n + 2},
i.e.

2 · lim{an} lim{an+1} = lim{an}2 + lim{2}.
Hence

2 · L · L = L2 + 2.

Thus L2 = 2, and it follows that L =
√

2 or L = −√2. But we noticed above
that an > 0 for all n in Z+, and hence by the inequality rule for sequences,
L ≥ 0. Hence we conclude that L =

√
2, i.e.,

lim{an} =
√

2. (6.64)

(Actually there is an error in the reasoning here, which you should try to find,
but the conclusion (6.64) is in fact correct. After you have done exercise 6.68,
the error should become apparent.)

6.65 Exercise. Use a calculator to find the first six terms of the sequence
(6.63). Do all calculations using all the accuracy your calculator allows, and
write down the results to all the accuracy you can get. Compare your answers
with

√
2 (as given by your calculator) and for each term note how many decimal

places accuracy you have.

6.66 Example. Let {bn} be the sequence defined by the rules

b1 = 1,

b2 = 1,

bn =
1 + bn−1

bn−2

for n > 2. (6.67)

Thus, for example

b3 =
1 + 1

1
= 2

and

b4 =
1 + 2

1
= 3.

Notice that bn > 0 for all n. Let

L = lim{bn}.
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By the translation rule

L = lim{bn+1} and L = lim{bn+2}.
By (6.67) (with n replaced by n + 2), we have

bnbn+2 = 1 + bn+1 for all n in Z+.

Hence

L2 = lim{bn} · lim{bn+2}
= lim {bnbn+2}
= lim{1 + bn+1} = 1 + L.

Thus
L2 − L− 1 = 0.

By the quadratic formula

L =
1 +

√
5

2
or L =

1−√5

2
.

Since bn > 0 for all n, we have L ≥ 0, so we have

L =
1 +

√
5

2
.

(This example has the same error as the previous one.)

6.68 Exercise. Repeat exercise 6.65 using the sequence {bn} described in

(6.67) in place of the sequence {an}, and

(
1 +

√
5

2

)
in place of

√
2. After

doing this problem, you should be able to point out the error in examples
(6.62) and (6.66). (This example is rather surprising. I took it from [14, page
55, exercise 20].)

6.69 Exercise. For each of the statements below: if the statement is false,
give a counterexample; if the statement is true, then justify it by means of
limit rules we have discussed.

a) Let {an} be a convergent sequence of real numbers. If an > 0 for all n
in Z+, then lim{an} > 0.
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b) Let {an} and {bn} be real sequences. If lim{an} = 0, then lim{anbn} = 0.

c) Let {an} be a real sequence. If lim{a2
n} = 1 then either lim{an} = 1 or

lim{an} = −1.

d) Let {an} and {bn} be real sequences. If lim{anbn} = 0, then either
lim{an} = 0 or lim{bn} = 0.

6.70 Exercise. Let a and r be positive numbers and let

Sa
0 [tr] = {(x, y) ∈ R2: 0 ≤ x ≤ a and 0 ≤ y ≤ xr}.

In (2.4) we showed that

ar+1

nr+1
(1r + 2r + · · ·+ (n− 1)r) ≤ α(Sa

0 [tr]) ≤ ar+1

nr+1
(1r + 2r + · · ·+ nr).

Use this result, together with Bernoulli’s power sums listed on page 27 to find
the area of Sa

0 [t3].

6.71 Theorem (nth power theorem.) Let r be a real number such that
|r| < 1. Then lim{rn} = 0.

Proof: Let L = lim{rn−1}. Now {rn} is a translate of {rn−1}, so by the
translation theorem

L = lim{rn−1} = lim{rn} = lim{r · rn−1}
= lim{r} lim{rn−1} = rL

so we have L− rL = 0 or
L(1− r) = 0.

We assumed that |r| < 1, so 1− r 6= 0, and hence it follows that L = 0. |||
The proof just given is not valid. In fact, the argument shows that lim{rn} = 0

whenever r 6= 1, and this is certainly wrong when r = 2. The error comes in
the first sentence, “Let L = lim{rn−1}”. The argument works if the sequence
{rn−1} or {rn} converges. We will now give a second (correct) proof of theorem
6.71.
Second Proof: Let r be a real number with |r| < 1. If r = 0, then {rn} = {0}
is a constant sequence, and lim{rn} = lim{0} = 0. Hence the theorem holds
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when r = 0, and we may assume that r 6= 0. Let ε be a generic positive
number, If n ∈ Z+ we have

(|rn − 0| < ε) ⇐⇒ (|r|n < ε) ⇐⇒ (n ln(|r|) < ln(ε)) .

Now since |r| < 1, we know that ln(|r|) < 0 and hence

(n ln(|r|) < ln(ε)) ⇐⇒
(
n >

ln(ε)

ln(|r|)

)
.

By the Archimedean property, there is some positive integer N(ε) such that

N(ε) >
ln(ε)

ln(|r|) . Then for all n in Z+

(n ≥ N(ε)) =⇒
(
n >

ln(ε)

ln(|r|)

)
=⇒ (|rn − 0| < ε).

Hence lim{rn} = 0. |||

6.72 Exercise. Why was it necessary to make r = 0 a special case in the
Second Proof above?

6.6 Geometric Series

6.73 Theorem (Geometric series) Let r be a real number such that |r| < 1.
Then

{
n∑

i=1

ri−1} → 1

1− r
(6.74)

Equation (6.74) is often written in the form

∞∑

i=1

ri−1 =
1

1− r
or

∞∑

i=0

ri =
1

1− r

Proof: Let r be a real number such that |r| < 1, and for all n ∈ Z+ let

f(n) =
n∑

i=1

ri−1.
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Then by theorem 2.22 we have

f(n) =
1− rn

1− r
,

and hence

lim{f(n)} = lim
{

1− rn

1− r

}

=
1

1− r
lim {(1− rn)}

=
1

1− r
(1− lim {rn})

Hence by the nth power theorem

lim{f(n)} =
1

1− r
(1− 0) =

1

1− r
. |||

6.75 Exercise. Find the error in the following argument. Let R be a real
number with R 6= 1, and for n in Z+, let

an = 1 + R + R2 + · · ·+ Rn−1.

Let L = lim{an}. Then, by the translation rule

L = lim{an+1} = lim{1 + R + · · ·+ Rn}
= lim{1 + R(1 + · · ·+ Rn−1)} = lim{1 + Ran}.

Thus by the sum rule and product rule,

L = lim{1}+ lim{Ran}
= 1 + R lim{an} = 1 + RL.

Now

L = 1 + RL =⇒ L(1−R) = 1 =⇒ L =
1

1−R
.

Hence we have shown that

lim{1 + R + R2 + · · ·+ Rn−1} =
1

1−R

for all R ∈ R \ {1}. (This sort of argument, and the conclusion were regarded
as correct in the eighteenth century. At that time the argument perhaps was
correct, because the definitions in use were not the same as ours.)
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“The clearest early account of the summation of geometric series”[6, page
136] was given by Grégoire de Saint-Vincent in 1647. Grégoire’s argument is
roughly as follows:

r

C’
Z

D’

1 r

1

D

A

O

r 2

C
2

r
XB’

B

On the line AZ mark off points B′, C ′, D′ etc. such that

AB′ = 1, B′C ′ = r, C ′D′ = r2, D′E ′ = r3 · · ·
On a different line through A mark off points O, B, C, D etc. such that

OA = 1, OB = r, OC = r2, OD = r3 · · ·
Then

AB′

AB
=

1

1− r
.

B′C ′

BC
=

r

r − r2
=

1

1− r
.

C ′D′

CD
=

r2

r2 − r3
=

1

1− r
.

etc.

Now I use the fact that

a

b
=

c

d
=⇒ a + c

b + d
=

a

b
, (6.76)

(see exercise 6.78), to say that

AC ′

AC
=

AB′ + B′C ′

AB + BC
=

AB′

AB
=

1

1− r
AD′

AD
=

AC ′ + C ′D′

AC + CD
=

AC ′

AC
=

1

1− r
AE ′

AE
=

AD′ + D′E ′

AD + DE
=

AD′

AD
=

1

1− r
etc.
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It follows that the triangles BAB′, CAC ′, DAD′, etc. are all mutually similar,
so the lines BB′, CC ′, DD′ etc. are all parallel. Draw a line through O parallel
to BB′ and intersecting AZ at X. I claim that

AB′ + B′C ′ + C ′D′ + D′E ′ + etc. = AX. (6.77)

It is clear that any finite sum is smaller that AX, and by taking enough terms
in the sequence A,B, · · ·N we can make ON arbitrarily small. Then XN ′ is
arbitrarily small, i.e. the finite sums AN ′ can be made as close to AX as we
please. By similar triangles,

1

1− r
=

AB′

AB
=

AX

AO
=

AX

1

so, equation (6.77) says

1 + r + r2 + r3 + · · · = 1

1− r
.

6.78 Exercise. Prove the assertion (6.76).

6.79 Exercise.

a) Find lim
{
1 +

( 9

10

)
+

( 9

10

)2
+

( 9

10

)3
+ · · ·+

( 9

10

)n−1
}
.

b) Find lim
{
1−

( 9

10

)
+

( 9

10

)2 −
( 9

10

)3
+ · · ·+

(
− 9

10

)n−1
}
.

c) For each n in Z+ let

an =
∞∑

j=0

(
− n

n + 1

)j
,

(in part (b) you calculated a9). Find a formula for an, and then find
lim{an}.

d) Show that

lim





∞∑

j=0

(
− n

n + 1

)j



 6=

∞∑

j=0

lim
{(
− n

n + 1

)j
}

(6.80)

(Thus it is not necessarily true that the limit of an infinite sum is the
infinite sum of the limits. The left side of (6.80) was calculated in part c.

The right side is
∑∞

j=0 bj, where bj = lim
{(
− n

n+1

)j
}

depends on j, but

not on n.)
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6.7 Calculation of e

6.81 Example. We will calculate lim
{
n ln

(
1 +

c

n

)}
, where c is a positive

number. Let f(x) =
1

x
. Then (see the figure)

(1,0) (1+   ,0)c
n

(1,1)

(       ,       )n+c
  n 

  n 
n+c

y=1/x

B(1, 1 +
c

n
: 0,

n

n + c
) ⊂ S

1+ c
n

1 f ⊂ B(1, 1 +
c

n
: 0, 1)

and hence

area(B(1, 1 +
c

n
: 0,

n

n + c
)) ≤ area(S

1+ c
n

1 f) ≤ area(B(1, 1 +
c

n
: 0, 1)).

Thus
c

n
· n

n + c
≤ ln(1 +

c

n
) ≤ c

n
,

i.e.
cn

n + c
≤ n ln(1 +

c

n
) ≤ c. (6.82)

Since

lim
{

cn

n + c

}
= lim

{
c

1 + c
n

}
= c,

it follows from the squeezing rule that

lim
{
n ln

(
1 +

c

n

)}
= c. (6.83)

Notice that in this example the squeezing rule has allowed us to prove the
existence of a limit whose existence was not obvious.
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6.84 Example. We will show that for all c ∈ Q+

lim
{(

1 +
c

n

)n}
= ec. (6.85)

Let c ∈ Q+, and let n ∈ Z+. Let

an =
(
1 +

c

n

)n

.

By (6.82), we have

ln(an) ≤ c = c ln(e) = ln(ec),

so
an ≤ ec for all n ∈ Z+.

It follows from (6.83) that

lim{ln(an)} = c, or lim{c− ln(an)} = 0. (6.86)

(a  ,0) (e  ,0) 

(e ,e  )

(a  ,1/a  )

y=1/x

n
c

c   -c

n         n

From the picture, we see that

0 ≤ B(an, ec : 0, e−c) ≤ Aec

an

[
1

t

]
,

i.e.
0 ≤ e−c(ec − an) ≤ ln(ec)− ln(an) = c− ln(an).

Hence
0 ≤ ec − an ≤ ec(c− ln(an)), for all n ∈ Z+.

By (6.86), we have
lim{ec(c− ln(an))} = 0,
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so by the squeezing rule, lim{ec − an} = 0, i.e.

lim{an} = ec.

This completes the proof of (6.85).

The reason we assumed c to be positive in the previous example was to
guarantee that (1+ c

n
) has a logarithm. We could extend this proof to work for

arbitrary c ∈ Q+, but we suggest an alternate proof for negative c in exercise
6.97.

6.87 Example (Numerical calculation of e) It follows from the last ex-
ample that

lim
{(

1 +
1

n

)n}
= e.

I wrote a Maple procedure to calculate e by using this fact. The procedure
limcalc(n) below calculates

(
1 +

1

100n

)100n

,

and I have printed out the results for n = 1,2,. . . ,6.
> limcalc := n -> (1+ .01^n)^(100^n);

limcalc := n → ( 1 + .01n )( 100n )

> limcalc(1);

2.704813829

> limcalc(2);

2.718145927

> limcalc(3);

2.718280469

> limcalc(4);

2.718281815

> limcalc(5);

1.

> limcalc(6);

1.
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6.88 Exercise. From my computer calculations it appears that

lim
{(

1 +
1

n

)n}
= 1.

Explain what has gone wrong. What can I conclude about the value of e from
my program?

6.89 Example. Actually, Maple is smart enough to find the limit, and
does so with the commands below. The command evalf returns the decimal
approximation of its argument.
> limit( (1+1/n)^n,n=infinity);

e

> evalf(%);

2.718281828

6.90 Entertainment (lim{n 1
n}.) Find the limit of the sequence {n 1

n}, or
else show that the sequence diverges.

6.91 Example (Compound interest.) The previous exercise has the fol-
lowing interpretation.

Suppose that A dollars is invested at r% annual interest, compounded n
times a year. The value of the investment at any time t is calculated as follows:

Let T = (1/n) year, and let Ak
n be the value of the investment at time kT.

Then

A0
n = A

A1
n = A0

n +
r

100n
A0

n = (1 +
r

100n
)A

A2
n = A1

n +
r

100n
A1

n = (1 +
r

100n
)2A (6.92)

and in general

Ak
n = Ak−1

n +
r

100n
Ak−1

n = (1 +
r

100n
)kA. (6.93)

The value of the investment does not change during the time interval kT < t
< (k + 1)T. For example, if Vn denotes the value of one dollar invested for
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one year at r% annual rate of interest with the interest compounded n times
a year, then

Vn = An
n =

(
1 +

r

100n

)n

.

Thus it follows from our calculation that if one dollar is invested for one
year at r% annual rate of interest, with the interest compounded “infinitely
often” or “continuously”, then the value of the investment at the end of the
year will be

lim
{(

1 +
r

100n

)n}
= e

r
100 dollars.

If the rate of interest is 100%, then the value of the investment is e dollars,
and the investor should expect to get $2.71 from the bank.

This example was considered by Jacob Bernoulli in 1685. Bernoulli was able

to show that lim
{(

1 +
1

n

)n
}

< 3.[8, pp94-97]

6.94 Exercise. Calculate the following limits.

a) lim{(1 + 3
n
)
2n}.

b) lim{(1 + 1
3n

)
2n}.
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6.95 Exercise.

a) Use the formula for a finite geometric series,

1 + (1− a) + (1− a)2 + · · ·+ (1− a)n−1 =
1− (1− a)n

1− (1− a)

to show that

(1− a)n ≥ 1− na whenever 0 < a < 1. (6.96)

b) Let c ∈ R+ Use inequality (6.96) to show that

(
1− c

n2

)n

≥ 1− c

n

for all n ∈ Z+ such that n >
√

c.

c) Prove that lim{(1− c
n2 )

n} = 1 for all c ∈ R+.

6.97 Exercise. Let c ∈ Q+. Use exercise 6.95 to show that

lim
{(

1− c

n

)n}
= e−c.

(Hence we have lim{(1 + c
n
)n} = ec for all c ∈ Q.)

Hint: Note that (1− z) = (1−z2

1+z
) for all real numbers z 6= −1.
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Still More Area Calculations

7.1 Area Under a Monotonic Function

7.1 Theorem. Let f be a monotonic function from the interval [a, b] to R≥0.
Let {Pn} be a sequence of partitions of [a, b] such that {µ(Pn)} → 0, and let

Ab
af = α{(x, y) ∈ R2 : a ≤ x ≤ b and 0 ≤ y ≤ f(x)}

Then
{α

(
Ib
a(f, Pn)

)
} → Ab

af

and
{α

(
Ob

a(f, Pn)
)
} → Ab

af.

(The notation here is the same as in theorem 5.40 and exercise 5.47.)

Proof: We noted in theorem 5.40 and exercise 5.47 that

0 ≤ α
(
Ob

a(f, Pn)
)
− α

(
Ib
a(f, Pn)

)
≤ µ(Pn) · |f(b)− f(a)|. (7.2)

Since

lim {µ(Pn) · |f(b)− f(a)|} = |f(b)− f(a)| lim{µ(Pn)}
= |f(b)− f(a)| · 0 = 0,

we conclude from the squeezing rule that

lim
{
α

(
Ob

a(f, Pn)
)
− α

(
Ib
a(f, Pn)

)}
= 0. (7.3)
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We also have by (5.43) that

α
(
Ib
a(f, Pn)

)
≤ Ab

af ≤ α
(
Ob

a(f, Pn)
)
,

so that

0 ≤ Ab
af − α

(
Ib
a(f, Pn)

)
≤ α

(
Ob

a(f, Pn)
)
− α

(
Ib
a(f, Pn)

)
.

By (7.3) and the squeezing rule

lim
{
Ab

af − α
(
Ib
a(f, Pn)

)}
= 0,

and hence
lim

{
α

(
Ib
a(f, Pn)

)}
= Ab

af.

Also,

lim
{
α

(
Ob

a(f, Pn)
)}

= lim
{
α

(
Ib
a(f, Pn)

)
+

(
α(Ob

a(f, Pn))− α(Ib
a(f, Pn))

)}

= lim
{
α

(
Ib
a(f, Pn)

)}

+ lim
{(

α(Ob
a(f, Pn))− α(Ib

a(f, Pn))
)}

= Ab
af + 0 = Ab

af. |||
7.4 Definition (Riemann sum). Let P = {x0, x1, · · · , xn} be a partition

for an interval [a, b]. A sample for P is a finite sequence S = {s1, s2, · · · , sn}
of numbers such that si ∈ [xi−1, xi] for 1 ≤ i ≤ n. If f is a function from [a, b]
to R, and P is a partition for [a, b] and S is a sample for P , we define

∑
(f, P, S) =

n∑

i=1

f(si)(xi − xi−1)

and we call
∑

(f, P, S) a Riemann sum for f, P and S. We will sometimes
write

∑
([f(t)], P, S) instead of

∑
(f, P, S).

7.5 Example. If f is an increasing function from [a, b] to R≥0, and
P = {x0, · · · , xn} is a partition of [a, b], and Sl = {x0, · · · , xn−1}, then

∑
(f, P, Sl) = α(Ib

a(f, P )).

If Sr = {x1, x2, · · · , xn}, then
∑

(f, P, Sr) = α(Ob
a(f, P )).
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If Sm = {x0 + x1

2
, · · · , xn−1 + xn

2
} then

∑
(f, P, Sm) =

n∑

i=1

f
(xi−1 + xi

2

)
(xi − xi−1)

is some number between α(Ib
a(f, P )) and α(Ob

a(f, P )).

7.6 Theorem (Area theorem for monotonic functions.) Let f be a
monotonic function from the interval [a, b] to R≥0. Then for every sequence
{Pn} of partitions of [a, b] such that {µ(Pn)} → 0, and for every sequence {Sn}
where Sn is a sample for Pn, we have

{∑(f, Pn, Sn)} → Ab
af.

Proof: We will consider the case where f is increasing. The case where f is
decreasing is similar.

For each partition Pn = {x0, · · · , xm} and sample Sn = {s1, · · · , sm}, we
have for 1 ≤ i ≤ m

xi−1 ≤ si ≤ xi =⇒ f(xi−1) ≤ f(si) ≤ f(xi)

=⇒ f(xi−1)(xi − xi−1) ≤ f(si)(xi − xi−1) ≤ f(xi)(xi − xi−1).

Hence

m∑

i=1

f(xi−1)(xi − xi−1) ≤
m∑

i=1

f(si)(xi − xi−1) ≤
m∑

i=1

f(xi)(xi − xi−1),

i.e.,
α

(
Ib
a(f, Pn)

)
≤ ∑

(f, Pn, Sn) ≤ α
(
Ob

a(f, Pn)
)
.

By theorem 7.1 we have

{α
(
Ib
a(f, Pn)

)
} → Ab

af,

and
{α

(
Ob

a(f, Pn)
)
} → Ab

af,

so by the squeezing rule,

{∑(f, Pn, Sn)} → Ab
af.
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7.2 Calculation of Area under Power Func-

tions

7.7 Lemma. Let r be a rational number such that r 6= −1. Let a be a real
number with a > 1. Then

Aa
1[t

r] = (ar+1 − 1) lim





a
1
n − 1

a
r+1

n − 1



 .

(For the purposes of this lemma, we will assume that the limit exists. In
theorem 7.10 we will prove that the limit exists.)

Proof: Let n be a generic element of Z+. To simplify the notation, I will write

p = a
1
n , (so p > 1).

Let

Pn = {1, a 1
n , a

2
n , · · · , an

n} = {1, p, p2, · · · , pn} = {x0, x1, x2, · · · , xn}

and let
Sn = {1, p, p2, · · · , pn−1} = {s1, s2, s3 · · · , sn}.

Then for 1 ≤ i ≤ n

xi − xi−1 = pi − pi−1 = pi−1(p− 1),

so
µ(Pn) = pn−1(p− 1) ≤ pn(p− 1) = a

(
a

1
n − 1

)
.

It follows by the nth root rule (theorem 6.48) that {µ(Pn)} → 0. Hence it
follows from theorem 7.6 that

Aa
1[t

r] = lim
( ∑

([tr], Pn, Sn)
)
. (7.8)

Now

∑
([tr], Pn, Sn) =

n∑

i=1

sr
i (xi − xi−1)

=
n∑

i=1

(p(i−1))rpi−1(p− 1)
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= (p− 1)
n∑

i=1

(
pr+1

)(i−1)
(7.9)

= (p− 1)

(
p(r+1)n − 1

pr+1 − 1

)
=

(
(pn)r+1 − 1

) (
p− 1

pr+1 − 1

)

=
(
ar+1 − 1

) (a
1
n − 1)

(a
r+1

n − 1)
.

Here we have used the formula for a finite geometric series. Thus, from (7.8)

Aa
1[t

r] = lim
{
(ar+1 − 1)

(a
1
n − 1)

(a
r+1

n − 1)

}

= (ar+1 − 1) lim





a
1
n − 1

a
r+1

n − 1



 . |||

Now we want to calculate the limit appearing in the previous lemma. In
order to do this it will be convenient to prove a few general limit theorems.

7.10 Theorem. Let {xn} be a sequence of positive numbers such that {xn} → 1
and xn 6= 1 for all n ∈ Z+. Let β be any rational number. Then

{xβ
n − 1

xn − 1

}
→ β.

Proof: Suppose xn 6= 1 for all n, and {xn} → 1.
Case 1: Suppose β = 0. Then the conclusion clearly follows.
Case 2: Suppose β ∈ Z+. Then by the formula for a geometric series

xβ
n − 1

xn − 1
= 1 + xn + · · ·+ xβ−1

n .

By the sum theorem and many applications of the product theorem we con-
clude that

lim
{xβ

n − 1

xn − 1

}
= lim{1}+ lim{xn}+ · · ·+ lim{xβ−1

n }
= 1 + 1 + 1 + · · ·+ 1

= β.
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Case 3: Suppose β ∈ Z−. Let γ = −β. Then γ ∈ Z+, so by Case 2 we get

lim
{xβ

n − 1

xn − 1

}
= lim

{xγ
n(xβ

n − 1)

xγ
n(xn − 1)

}
= lim

{ 1− xγ
n

xγ
n(xn − 1)

}

= lim
{ 1

−xγ
n

(xγ
n − 1

xn − 1

)}

= lim
{ 1

−xγ
n

}
lim

{xγ
n − 1

xn − 1

}

=
1

−1
· γ = −γ = β.

Case 4: Suppose β=
p

q
where q ∈ Z+ and p ∈ Z. Let yn = x

1
q
n . Then

xβ
n − 1

xn − 1
=

x
p
q
n − 1

xn − 1
=

yp
n − 1

yq
n − 1

=

(yp
n − 1

yn − 1

)

(yq
n − 1

yn − 1

) .

Now if we could show that {yn} → 1, it would follow from this formula that

lim
{xβ

n − 1

xn − 1

}
=

lim
{

yp
n−1

yn−1

}

lim
{

yq
n−1

yn−1

} =
p

q
= β.

The next lemma shows that {yn} → 1 and completes the proof of theorem
7.10.

7.11 Lemma. Let {xn} be a sequence of positive numbers such that {xn} → 1,

and {xn} 6= 1 for all n ∈ Z+. Then for each q in Z+, {x
1
q
n} → 1.

Proof: Let {xn} be a sequence of positive numbers such that {xn} → 1. Let

yn = x
1
q
n for each n in Z+. We want to show that {yn} → 1. By the formula

for a finite geometric series

1 + yn + · · ·+ yq−1
n =

(1− yq
n)

1− yn

=
(1− xn)

1− yn

so

(1− yn) =
(1− xn)

1 + yn + · · ·+ yq−1
n

.
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Now

0 ≤ |1− yn| = |1− xn|
|1 + yn + · · ·+ yq−1

n | =
|1− xn|

1 + yn + · · ·+ yq−1
n

≤ |1− xn|.

Since {xn} → 1, we have lim{|1−xn|} = 0, so by the squeezing rule lim{|1−yn|} = 0,
and hence

lim{yn} = 1. |||

7.12 Lemma (Calculation of Ab
1[t

r].) Let b be a real number with b > 1,
and let r ∈ Q \ {−1}. Then

Ab
1[t

r] =
br+1 − 1

r + 1
.

Proof: By lemma 7.7,

Ab
1[t

r] = (br+1 − 1) lim
{ b

1
n − 1

b
r+1

n − 1

}
.

By theorem 7.10,

lim





b
1
n − 1

b
r+1

n − 1



 = lim





1

b
r+1

n −1

b
1
n−1





=
lim{1}

lim
{

b
r+1

n −1

b
1
n−1

} =
1

r + 1
,

and putting these results together, we get

Ab
1[t

r] =
br+1 − 1

r + 1
. |||

7.13 Lemma. Let r ∈ Q, and let a, c ∈ R+, with 1 < c. Then

Aca
a [tr] = ar+1Ac

1[t
r].
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Proof: If
P = {x0, x1, . . . , xn}

is a partition of [1, c], let

aP = {ax0, ax1, . . . , axn}

be the partition of [a, ca] obtained by multiplying the points of P by a. Then

µ(aP ) = aµ(P ). (7.14)

If
S = {s1, s2, . . . , sn}

is a sample for P , let
aS = {as1, as2, . . . , asn}

be the corresponding sample for aP . Then

∑
([tr], aP, aS) =

n∑

i=1

(asi)
r(axi − axi−1)

=
n∑

i=1

arsr
i a(xi − xi−1)

= ar+1
n∑

i=1

sr
i (xi − xi−1)

= ar+1
∑

([tr], P, S).

Let {Pn} be a sequence of partitions of [1, c] such that {µ(Pn)} → 0, and
for each n ∈ Z+ let Sn be a sample for Pn. It follows from (7.14) that
{µ(aPn)} → 0. By the area theorem for monotonic functions (theorem 7.6),
we have

{∑
([tr], Pn, Sn)

}
→ Ac

1[t
r] and

{∑
([tr], aPn, aSn)

}
→ Aca

a [tr].

Thus

Aca
a [tr] = lim{∑([tr], aPn, aSn)}

= lim{ar+1
∑

([tr], Pn, Sn)} = ar+1 lim{∑([tr], Pn, Sn)}
= ar+1Ac

1[t
r]. |||
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7.15 Theorem (Calculation of Ab
a[t

r].) Let a, b ∈ R+ with a < b, and let
r ∈ Q. Then

Ab
a[t

r] =





br+1 − ar+1

r+1
if r 6= −1

ln(b)− ln(a) if r = −1.

Proof: The result for the case r = −1 was proved in theorem 5.76. The case
r 6= −1 is done in the following exercise.

7.16 Exercise. Use the two previous lemmas to prove theorem 7.15 for the
case r 6= −1.

Remark: In the proof of lemma 7.7, we did not use the assumption r 6= −1
until line (7.9). For r = −1 equation (7.9) becomes

∑
([t−1], Pn, Sn) = n(a

1
n − 1).

Since in this case {∑([t−1], Pn, Sn)} → Aa
1[

1

t
] = ln(a),we conclude that

lim{n(a
1
n − 1)} = ln(a) for all a > 1. (7.17)

This formula give us method of calculating logarithms by taking square roots.
We know 2n(a

1
2n − 1) will be near to ln(a) when n is large, and a

1
2n can be

calculated by taking n successive square roots. On my calculator, I pressed
the following sequence of keys

2
√√ · · ·√
︸ ︷︷ ︸
15 times

−1 = ×2 × 2 · · · × 2︸ ︷︷ ︸
15 times

=

and got the result 0.693154611. My calculator also says that
ln(2) = 0.69314718. It appears that if I know how to calculate square roots,
then I can calculate logarithms fairly easily.

7.18 Exercise. Let r be a non-negative rational number, and let b ∈ R+.
Show that

Ab
0[t

r] =
br+1

r + 1
.

Where in your proof do you use the fact that r ≥ 0?
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Integrable Functions

8.1 Definition of the Integral

If f is a monotonic function from an interval [a, b] to R≥0, then we have shown
that for every sequence {Pn} of partitions on [a, b] such that {µ(Pn)} → 0,
and every sequence {Sn} such that for all n ∈ Z+ Sn is a sample for Pn, we
have

{∑(f, Pn, Sn)} → Ab
af.

8.1 Definition (Integral.) Let f be a bounded function from an interval
[a, b] to R. We say that f is integrable on [a, b] if there is a number V such
that for every sequence of partitions {Pn} on [a, b] such that {µ(Pn)} → 0,
and every sequence {Sn} where Sn is a sample for Pn

{∑(f, Pn, Sn)} → V.

If f is integrable on [a, b] then the number V just described is denoted by
∫ b

a
f

and is called “the integral from a to b of f .” Notice that by our definition an
integrable function is necessarily bounded.

The definition just given is essentially due to Bernhard Riemann(1826–

1866), and first appeared around 1860[39, pages 239 ff]. The symbol
∫

was

introduced by Leibniz sometime around 1675[15, vol 2, p242]. The symbol is
a form of the letter s, standing for sum (in Latin as well as in English.) The
practice of attaching the limits a and b to the integral sign was introduced by

160
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Joseph Fourier around 1820. Before this time the limits were usually indicated
by words.

We can now restate theorems 7.6 and 7.15 as follows:

8.2 Theorem (Monotonic functions are integrable I.) If f is a mono-
tonic function on an interval [a, b] with non-negative values, then f is integrable
on [a, b] and

∫ b

a
f = Ab

af = α({(x, y): a ≤ x ≤ b and 0 ≤ y ≤ f(x)}).

8.3 Theorem (Integrals of power functions.) Let r ∈ Q, and let a, b be
real numbers such that 0 < a ≤ b. Let fr(x) = xr for a ≤ x ≤ b. Then

∫ b

a
fr =





br+1 − ar+1

r + 1
if r ∈ Q \ {−1}

ln(b)− ln(a) if r = −1.

In general integrable functions may take negative as well as positive values

and in these cases
∫ b

a
f does not represent an area.

The next theorem shows that monotonic functions are integrable even if
they take on negative values.

8.4 Example (Monotonic functions are integrable II.) Let f be a
monotonic function from an interval [a, b] to R. Let B be a non-positive
number such that f(x) ≥ B for all x ∈ [a, b]. Let g(x) = f(x)−B.

g=f−B

f

B
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Then g is a monotonic function from [a, b] to R≥0. Hence by theorem 7.6, g is

integrable on [a, b] and
∫ b

a
g = Ab

a(g). Now let {Pn} be a sequence of partitions

of [a, b] such that {µ(Pn)} → 0, and let {Sn} be a sequence such that for each
n in Z+, Sn is a sample for Pn. Then

{∑(g, Pn, Sn)} → Ab
a(g). (8.5)

If Pn = {x0, · · · , xm} and Sn = {s1, · · · , sm} then

∑
(g, Pn, Sn) =

m∑

i=1

g(si)(xi − xi−1)

=
m∑

i=1

(
f(si)−B

)
(xi − xi−1)

=
m∑

i=1

f(si)(xi − xi−1)−B
m∑

i=1

(xi − xi−1)

=
∑

(f, Pn, Sn)−B(b− a).

Thus by (8.5)
{∑(f, Pn, Sn)−B(b− a)} → Ab

a(g).

If we use the fact that {B(b− a)} → B(b− a), and then use the sum theorem
for limits of sequences, we get

{∑(f, Pn, Sn)} → Ab
a(g) + B(b− a).

It follows from the definition of integrable functions that f is integrable on
[a, b] and

∫ b

a
f = Ab

a(g) + B(b− a) =
∫ b

a
g + B(b− a) =

∫ b

a
g − |B|(b− a).

g

f

B
(a) (b)

b

g

a

−B

(c)

a b

−B −

+
g

B

−
f

(d)

+
a b



8.1. DEFINITION OF THE INTEGRAL 163

Thus in figure b,
∫ b

a
f represents the shaded area with the area of the thick

box subtracted from it, which is the same as the area of the region marked
“+” in figures c and d, with the area of the region marked “−” subtracted
from it.

The figure represents a geometric interpretation for a Riemann sum. In
the figure

s

+

5x51

−−

++

44 xs3xs2xs1xs0 3x 2

f(si) > 0 for i = 1, 2, 3, f(si) < 0 for i = 4, 5.

3∑

i=1

f(si)(xi − xi−1)

is the area of
3⋃

i=1

B
(
xi−1, xi: 0, f(si)

)
and

5∑

i=4

f(si)(xi − xi−1)

is the negative of the area of

5⋃

i=4

B(xi−1, xi : f(si), 0).

In general you should think of
∫ b

a
f as the difference α(S+)− α(S−) where

S+ = {(x, y): a ≤ x ≤ b and 0 ≤ y ≤ f(x)}
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and
S− = {(x, y): a ≤ x ≤ b and f(x) ≤ y ≤ 0}.

8.6 Exercise. The graphs of two functions f, g from [0, 2] to R are sketched
below.

(2,1)

gf

(2,2) 2

1

−1

1 2

2

1

−1

21

Let

F (x) =
(
f(x)

)2
for 0 ≤ x ≤ 2, G(x) =

(
g(x)

)2
for 0 ≤ x ≤ 2.

Which is larger:

a)
∫ 1

0
f or

∫ 1

0
F?

b)
∫ 1

0
g or

∫ 1

0
G?

c)
∫ 1

0
f or

∫ 1

0
g?

d)
∫ 1/2

0
g or

∫ 1/2

0
G?

e)
∫ 2

0
g or

∫ 2

0
G?

Explain how you decided on your answers. Your explanations may be informal,
but they should be convincing.
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8.7 Exercise. Below is the graph of a function g. By looking at the graph
of g estimate the following integrals. (No explanation is necessary.)

–0.5

0.5

1

1 2

Graph of g

a)
∫ 3

4

1
4

g.

b)
∫ 2

1
g.

c)
∫ 3

4

0
g.

8.8 Exercise. Sketch the graph of one function f satisfying all four of the
following conditions.

a)
∫ 1

0
f = 1.

b)
∫ 2

0
f = −1.

c)
∫ 3

0
f = 0.

d)
∫ 4

0
f = 1.
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8.2 Properties of the Integral

8.9 Definition (Operations on functions.) Let f : S → R and g: T → R
be functions where S, T are sets. Let c ∈ R. We define functions f ± g, fg,
cf , f

g
and |f | as follows:

(f + g)(x) = f(x) + g(x) for all x ∈ S ∩ T.
(f − g)(x) = f(x)− g(x) for all x ∈ S ∩ T.
(fg)(x) = f(x)g(x) for all x ∈ S ∩ T.
(cf)(x) = c · f(x) for all x ∈ S.(

f
g

)
(x) = f(x)

g(x)
for all x ∈ S ∩ T such that g(x) 6= 0.

|f |(x) = |f(x)| for all x ∈ S.

Remark: These operations of addition, subtraction, multiplication and divi-
sion for functions satisfy the associative, commutative and distributive laws
that you expect them to. The proofs are straightforward and will be omitted.

8.10 Definition (Partition-sample sequence.) Let [a, b] be an inter-
val. By a partition-sample sequence for [a, b] I will mean a pair of sequences
({Pn}, {Sn}) where {Pn} is a sequence of partitions of [a, b] such that
{µ(Pn)} → 0, and for each n in Z+, Sn is a sample for Pn.

8.11 Theorem (Sum theorem for integrable functions.) Let f, g be
integrable functions on an interval [a, b]. Then f ± g and cf are integrable on
[a, b] and ∫ b

a
(f ± g) =

∫ b

a
f ±

∫ b

a
g,

and ∫ b

a
cf = c

∫ b

a
f.

Proof: Suppose f and g are integrable on [a, b]. Let ({Pn}, {Sn}) be a partition-
sample sequence for [a, b]. If Pn = {x0, · · · , xm} and Sn = {s1, · · · , sm}, then

∑
(f ± g, Pn, Sn) =

m∑

i=1

(f ± g)(si)(xi − xi−1)
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=
m∑

i=1

(
f(si)± g(si)

)
(xi − xi−1)

=
m∑

i=1

f(si)(xi − xi−1)±
m∑

i=1

g(si)(xi − xi−1)

=
∑

(f, Pn, Sn)±∑
(g, Pn, Sn).

Since f and g are integrable, we have

{∑(f, Pn, Sn)} →
∫ b

a
f and {∑(g, Pn, Sn)} →

∫ b

a
g.

By the sum theorem for sequences,

{∑(f ± g), Pn, Sn)} = {∑(f, Pn, Sn)±∑
(g, Pn, Sn)} →

∫ b

a
f ±

∫ b

a
g.

Hence f ± g is integrable and
∫ b

a
(f ± g) =

∫ b

a
f ±

∫ b

a
g. The proof of the

second statement is left as an exercise.

8.12 Notation (
∫ b

a
f(t) dt) If f is integrable on an interval [a, b] we will

sometimes write
∫ b

a
f(x) dx instead of

∫ b

a
f . The “x” in this expression is

a dummy variable, but the “d” is a part of the notation and may not be
replaced by another symbol. This notation will be used mainly in cases where
no particular name is available for f . Thus

∫ 2

1
t3 + 3t dt or

∫ 2

1
x3 + 3x dx or

∫ 2

1
(x3 + 3x)dx

means
∫ 2

1
F where F is the function on [1, 2] defined by F (t) = t3 + 3t for

all t ∈ [1, 2]. The “d” here stands for difference, and dx is a ghost of the
differences xi − xi−1 that appear in the approximations for the integral. The
dx notation is due to Leibniz.

8.13 Example. Let

f(x) = (x− 1)2 − 1

x
+

3√
x

= x2 − 2x + x0 − 1

x
+ 3x−

1
2 .
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This function is integrable over every closed bounded subinterval of (0,∞),
since it is a sum of five functions that are known to be integrable. By several
applications of the sum theorem for integrals we get

∫ 2

1
f =

∫ 2

1
(x2 − 2x + 1− 1

x
+ 3x−

1
2 )dx

=

(
23 − 13

3

)
− 2

(
22 − 12

2

)
+

(
21 − 11

1

)
− ln(2) + 3


2

1
2 − 1

1
2

1
2




=
7

3
− 3 + 1− ln(2) + 6(

√
2− 1) = −17

3
− ln(2) + 6

√
2.

8.14 Exercise. Calculate the following integrals.

a)
∫ a

1
(2− x)2dx. Here a > 1.

b)
∫ 4

1

√
x− 1

x2
dx.

c)
∫ 27

1
x−

1
3 dx.

d)
∫ 27

0
x−

1
3 dx.

e)
∫ 2

1

x + 1

x
dx.

f)
∫ b

a
M dx. Here a ≤ b, and M denotes a constant function.

8.15 Theorem (Inequality theorem for integrals.) Let f and g be in-
tegrable functions on the interval [a, b] such that

f(x) ≤ g(x) for all x ∈ [a, b].

Then ∫ b

a
f ≤

∫ b

a
g.

8.16 Exercise. Prove the inequality theorem for integrals.
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8.17 Corollary. Let f be an integrable function on the interval [a, b]. Sup-
pose |f(x)| ≤ M for all x ∈ [a, b]. Then

∣∣∣∣∣
∫ b

a
f

∣∣∣∣∣ ≤ M(b− a).

Proof: We have
−M ≤ f(x) ≤ M for all x ∈ [a, b].

Hence by the inequality theorem for integrals

∫ b

a
−M ≤

∫ b

a
f ≤

∫ b

a
M.

Hence

−M(b− a) ≤
∫ b

a
f ≤ M(b− a).

It follows that ∣∣∣∣∣
∫ b

a
f

∣∣∣∣∣ ≤ M(b− a). |||

8.18 Theorem. Let a, b, c be real numbers with a < b < c, and let f be a
function from [a, c] to R. Suppose f is integrable on [a, b] and f is integrable

on [b, c]. Then f is integrable on [a, c] and
∫ c

a
f =

∫ b

a
f +

∫ c

b
f .

Proof: Since f is integrable on [a, b] and on [b, c], it follows that f is bounded
on [a, b] and on [b, c], and hence f is bounded on [a, c]. Let ({Pn}, {Sn}) be a
partition-sample sequence for [a, c]. For each n in Z+ we define a partition P ′

n

of [a, b] and a partition P ′′
n of [b, c], and a sample S ′n for P ′

n, and a sample S ′′n
for P ′′

n as follows:

Let Pn = {x0, x1, · · · , xm}, Sn = {s1, s2, · · · , sm}.
Then there is an index j such that xj−1 ≤ b ≤ xj.

¥¥
¥¥
¥¥
¥¥

¥¥
¥¥
¥¥
¥¥x0 x1 x2 x3 xn−2 xn−1 xnxj xj+1xj−2 xj−1

? ? ? ??
s1 s2 s3 snsn−1

? ??
bsj−1 sj+1
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Let

P ′
n = {x0, · · · , xj−1, b}, P ′′

n = {b, xj, · · · , xm} (8.19)

S ′n = {s1, · · · , sj−1, b}, S ′′n = {b, sj+1, · · · , sm} (8.20)

We have

∑
(f, P ′

n, S ′n) +
∑

(f, P ′′
n , S ′′n)

=
j−1∑

i=1

f(si)(xi − xi−1) + f(b)(b− xj−1) + f(b)(xj − b)

+
m∑

i=j+1

f(si)(xi − xi−1)

=
m∑

i=1

f(si)(xi − xi−1) + f(b)(xj − xj−1)− f(sj)(xj − xj−1)

=
∑

(f, Pn, Sn) + ∆n, (8.21)

where
∆n =

(
f(b)− f(sj)

)
(xj − xj−1).

Let M be a bound for f on [a, c]. Then

|f(b)− f(sj)| ≤ |f(b)|+ |f(sj)| ≤ M + M = 2M.

Also,
(xj − xj−1) ≤ µ(Pn).

Now
0 ≤ |∆n| = |f(b)− f(sj)| · |xj − xj−1| ≤ 2Mµ(Pn).

Since
lim{2Mµ(Pn)} = 0,

it follows from the squeezing rule that {|∆n|} → 0 and hence {∆n} → 0.
From equation (8.21) we have

∑
(f, Pn, Sn) =

∑
(f, P ′

n, S ′n) +
∑

(f, P ′′
n , S ′′n)−∆n. (8.22)

Since µ(P ′
n) ≤ µ(Pn) and µ(P ′′

n ) ≤ µ(Pn), we see that ({P ′
n}, {S ′n}) is a

partition-sample sequence on [a, b], and ({P ′′
n}, {S ′′n}) is a partition-sample
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sequence on [b, c]. Since f was given to be integrable on [a, b] and on [b, c], we
know that

{∑(f, P ′
n, S ′n)} →

∫ b

a
f

and
{∑(f, P ′′

n , S ′′n)} →
∫ c

b
f.

Hence it follows from (8.22) that

{∑(f, Pn, Sn)} →
∫ b

a
f +

∫ c

b
f

i.e., f is integrable on [a, c] and

∫ c

a
f =

∫ b

a
f +

∫ c

b
f. |||

8.23 Corollary. Let a1, a2, · · · , an be real numbers with a1 ≤ a2 · · · ≤ an,
and let f be a bounded function on [a1, an]. If the restriction of f to each of
the intervals [a1, a2], [a2, a3], · · · , [an−1, an] is integrable, then f is integrable on
[a1, an] and ∫ an

a1

f =
∫ a2

a1

f +
∫ a3

a2

f + · · ·+
∫ an

an−1

f.

8.24 Definition (Spike function.) Let [a, b] be an interval. A function
f : [a, b] → R is called a spike function, if there exist numbers c and k, with
c ∈ [a, b] such that

f(x) =
{

0 if x ∈ [a, b] \ {c}
k if x = c.

area  under  graph  of  spike  function

b

(c,k)

a
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8.25 Theorem (Spike functions are integrable.) Let a, b, c, k be real
numbers with a < c and a ≤ b ≤ c. Let

f(x) =
{

0 if x ∈ [a, c] \ {b}
k if x = b.

Then f is integrable on [a, c] and
∫ c

a
f = 0.

Proof: Case 1: Suppose k ≥ 0. Observe that f is increasing on the interval
[a, b] and decreasing on the interval [b, c], so f is integrable on each of these
intervals. The set of points under the graph of f is the union of a horizontal
segment and a vertical segment, and thus is a zero-area set. Hence

∫ b

a
f = Ab

af = 0
∫ c

b
f = Ac

bf = 0.

By the previous theorem, f is integrable on [a, c], and
∫ c

a
f =

∫ b

a
f +

∫ c

b
f = 0 + 0 = 0

.
Case 2: Suppose k < 0. Then by case 1 we see that −f is integrable with

integral equal to zero, so by the sum theorem for integrals
∫

f = 0 too. |||

8.26 Corollary. Let a, b, c, k be real numbers with a < c and a ≤ b ≤ c. Let
f : [a, c] → R be an integrable function and let g: [a, c] → R be defined by

g(x) =
{

f(x) if x ∈ [a, c] \ {b}
k if x = b.

Then g is integrable on [a, c] and
∫ c

a
g =

∫ c

a
f .

8.27 Corollary. Let f be an integrable function from an interval [a, b] to R.
Let a1 · · · an be a finite set of distinct points in R, and let k1 · · · kn be a finite
set of numbers. Let

g(x) =

{
f(x) if x ∈ [a, b] \ {a1, · · · , an}
kj if x = aj for some j with 1 ≤ j ≤ n.

Then g is integrable on [a, b] and
∫ b

a
f =

∫ b

a
g. Thus we can alter an integrable

function on any finite set of points without changing its integrability or its
integral.
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8.28 Exercise. Prove corollary 8.26, i.e., explain why it follows from
theorem 8.25.

8.29 Definition (Piecewise monotonic function.) A function f from
an interval [a, b] to R is piecewise monotonic if there are points a1, a2, · · · , an

in [a, b] with a < a1 < a2 · · · < an < b such that f is monotonic on each of the
intervals [a, a1], [a1, a2], · · · , [an−1, an], [an, b].

8.30 Example. The function whose graph is sketched below is piecewise
monotonic.

ba

piecewise  monotonic  function

8.31 Theorem. Every piecewise monotonic function is integrable.

Proof: This follows from corollary 8.23. |||

8.32 Exercise. Let

f(x) =
{

x if 0 ≤ x < 1
x− 1 if 1 ≤ x ≤ 2.

Sketch the graph of f . Carefully explain why f is integrable, and find
∫ 2

0
f .

8.33 Example. Let g(x) = |(x− 1)(x− 2)|. Then

g(x) =





x2 − 3x + 2 for x ∈ [0, 1]
−x2 + 3x− 2 for x ∈ [1, 2]
x2 − 3x + 2 for x ∈ [2, 3].
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g

2

1

321

Hence g is integrable on [0, 3], and
∫ 3

0
g =

∫ 1

0
(x2 − 3x + 2)dx−

∫ 2

1
(x2 − 3x + 2)dx +

∫ 3

2
(x2 − 3x + 2)dx

=
(

1

3
− 3 · 1

2
+ 2

)
−

(
23 − 13

3
− 3 · 22 − 12

2
+ 2

)

+

(
33 − 23

3
− 3 · 32 − 22

2
+ 2

)

=
(

1

3
− 3

2
+ 2

)
−

(
7

3
− 9

2
+ 2

)
+

(
19

3
− 15

2
+ 2

)

=
13

3
+
−9

2
+ 2 =

11

6

8.34 Exercise. Calculate the following integrals. Simplify your answers if
you can.

a)
∫ 2

0
|x3 − 1|dx.

b)
∫ b

a
(x− a)(b− x)dx. Here 0 < a < b.

c)
∫ b

a
|(x− a)(b− x)|dx. Here 0 < a < b.

d)
∫ 1

0
(t2 − 2)3dt.

8.3 A Non-integrable Function

We will now give an example of a function that is not integrable. Let

S = {m

n
: m ∈ Z, n ∈ Z+, m and n are both odd}
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T = {m

n
: m ∈ Z, n ∈ Z+, m is even and n is odd}.

Then S ∩ T = ∅, since if
m

n
=

p

q
where m, n, and q are odd and p is even,

then mq = np which is impossible since mq is odd and np is even.

8.35 Lemma. Every interval (c, d) in R with d− c > 0 contains a point in
S and a point in T .

Proof: Since d − c > 0 we can choose an odd integer n such that n >
3

d− c
,

i.e., nd − nc > 3. Since the interval (nc, nd) has length > 3, it contains at
least two integers p, q, say nc < p < q < nd. If p and q are both odd, then
there is an even integer between them, and if p and q are both even, there is
an odd integer between them, so in all cases we can find a set of integers {r, s}
one of which is even and the other is odd such that nc < r < s < nd, i.e.,

c <
r

n
<

s

n
< d. Then

r

n
and

s

n
are two elements of (c, d) one of which is in

S, and the other of which is in T . |||

8.36 Example (A non-integrable function.) Let D: [0, 1] → R≥0 be
defined by

D(x) =
{

1 if x ∈ S
0 if x /∈ S.

(8.37)

I will find two partition-sample sequences ({Pn}, {Sn}) and ({Pn}, {Tn}) such
that

{∑(D, Pn, Tn)} → 0

and
{∑(D,Pn, Sn)} → 1.

It then follows that D is not integrable. Let Pn be the regular partition of
[0, 1] into n equal subintervals.

Pn =
{
0,

1

n
,
2

n
, · · · , 1

}
.

Let Sn be a sample for Pn such that each point in Sn is in S and let Tn be a
sample for Pn such that each point in Tn is in T . (We can find such samples
by lemma 8.35.) Then for all n ∈ Z+

∑
(D,Pn, Sn) =

n∑

i=1

D(sn)(xi − xi−1) = 1
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and ∑
(D, Pn, Tn) =

n∑

i=1

D(tn)(xi − xi−1) = 0.

So lim{∑(D, Pn, Sn)} = 1 and lim{∑(D, Pn, Tn)} = 0. Both ({Pn}, {Sn}) and
({Pn}, {Tn}) are partition-sample sequences for [0, 1], so it follows that D is
not integrable.

Our example of a non-integrable function is a slightly modified version of
an example given by P. G. Lejeune Dirichlet (1805-1859) in 1837. Dirichlet’s
example was not presented as an example of a non-integrable function (since
the definition of integrability in our sense had not yet been given), but rather as
an example of how badly behaved a function can be. Before Dirichlet, functions
that were this pathological had not been thought of as being functions. It was
examples like this that motivated Riemann to define precisely what class of
functions are well enough behaved so that we can prove things about them.

8.4 ∗The Ruler Function

8.38 Example (Ruler function.) We now present an example of an inte-
grable function that is not monotonic on any interval of positive length. Define
R : [0, 1] → R by

R(x) =





1 if x = 0 or x = 1
1
2n if x = q

2n where q, n ∈ Z+ and q is odd
0 otherwise.

This formula defines R(x) uniquely: If
q

2n
=

p

2m
where p and q are odd, then

m = n. (If m > n, we get 2m−nq = p, which says that an even number is odd.)
The set S1

0R under the graph of R is shown in the figure.
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This set resembles the markings giving fractions of an inch on a ruler, which
motivates the name ruler function for R. It is easy to see that R is not
monotonic on any interval of length > 0. For each p ∈ R let δp:R → R be
defined by

δp(t) =
{

1 if p = t
0 otherwise.

We have seen that δp is integrable on any interval [a, b] and
∫ b

a
δp = 0. Now

define a sequence of functions Fj by

F0 = δ0 + δ1

F1 = F0 + 1
2
δ 1

2

F2 = F1 + 1
4
δ 1

4
+ 1

4
δ 3

4
...

Fn = Fn−1 + 1
2n

2n−1∑

j=1

δ 2j−1
2n

.

Each function Fj is integrable with integral 0 and

|R(x)− Fj(x)| ≤ 1

2j+1
for 0 ≤ x ≤ 1.
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F R-F0 0

F R-F1 1 F R-F2 2

I will now show that R is integrable.
Let ({Pn}, {Sn}) be a partition-sample sequence for [0, 1]. I’ll show that

{∑(R, Pn, Sn)} → 0.
Let ε be a generic element in R+. Observe that if M ∈ Z+ then

(
1

2M
< ε

)
⇐⇒

(
M ln(

1

2
) < ln(ε)

)
⇐⇒

(
M >

ln(ε)

ln(1
2
)

)
.

Hence by the Archimedian property, we can choose M ∈ Z+ so that
1

2M
< ε.

Then
∑

(R, Pn, Sn) =
∑

(R− FM + FM , Pn, Sn) (8.39)

=
∑

(R− FM , Pn, Sn) +
∑

(FM , Pn, Sn). (8.40)

Now since 0 ≤ R(x)− FM(x) ≤ 1

2M+1
<

1

2
ε for all x ∈ [0, 1], we have

∑
(R− FM , Pn, Sn) ≤ 1

2M+1
<

1

2
ε for all n ∈ Z+.

Since FM is integrable and
∫

FM = 0, we have {∑(FM , Pn, Sn)} → 0 so there

is an N ∈ Z+ such that |∑(FM , Pn, Sn)| < ε

2
for all n ∈ Z≥N . By equation

(8.40) we have

0 ≤ ∑
(R, Pn, Sn) =

∑
(R− FM , Pn, Sn) +

∑
(FM , Pn, Sn)

<
1

2
ε +

1

2
ε = ε for all n ∈ Z≥N .
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Hence {∑(R, Pn, Sn)} → 0, and hence R is integrable and
∫ 1

0
R = 0.

8.41 Exercise. Let R be the ruler function. We just gave a complicated

proof that R is integrable and
∫ 1

0
R = 0. Explain why if you assume R is

integrable, then it is easy to show that
∫ 1

0
R = 0.

Also show that if you assume that the non-integrable function D in equation

(8.37) is integrable then it is easy to show that
∫ 1

0
D = 0.

8.5 Change of Scale

8.42 Definition (Stretch of a function.) Let [a, b] be an interval in R,
let r ∈ R+, and let f : [a, b] → R. We define a new function fr: [ra, rb] → R
by

fr(t) = f(
t

r
) for all t ∈ [ra, rb].

If t ∈ [ra, rb], then
t

r
∈ [a, b], so f(

t

r
) is defined.

2 1/2
fff

b/2
a/2

2b
2a

b
a

The graph of fr is obtained by stretching the graph of f by a factor of r in
the horizontal direction, and leaving it unstretched in the vertical direction.
(If r < 1 the stretch is actually a shrink.) I will call fr the stretch of f by r.
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8.43 Theorem (Change of scale for integrals.) Let [a, b] be an interval
in R and let r ∈ R+. Let f : [a, b] → R and let fr be the stretch of f by r. If f

is integrable on [a, b] then fr is integrable on [ra, rb] and
∫ rb

ra
fr = r

∫ b

a
f , i.e.,

∫ rb

ra
f(

x

r
)dx = r

∫ b

a
f(x)dx. (8.44)

Proof: Suppose f is integrable on [a, b]. Let ({Pn}, {Sn}) be an arbitrary
partition-sample sequence for [ra, rb]. If

Pn = {x0, · · · , xm} and Sn = {s1, · · · , sm},

let
1

r
Pn =

{x0

r
, · · · , xm

r

}
and

1

r
Sn =

{s1

r
, · · · , sm

r

}
.

Then
({

1
r
Pn

}
,
{

1
r
Sn

})
is a partition-sample sequence for [a, b], so

{∑(f, 1
r
Pn,

1
r
Sn)} →

∫ b

a
f . Now

∑
(fr, Pn, Sn) =

m∑

i=1

fr(si)(xi − xi−1)

= r
m∑

i=1

f(
si

r
)
(xi

r
− xi−1

r

)
= r

∑ (
f,

1

r
Pn,

1

r
Sn

)

so

lim{∑(fr, Pn, Sn)} = lim
{
r

∑
(f,

1

r
Pn,

1

r
Sn)

}
= r

∫ b

a
f.

This shows that fr is integrable on [ra, rb], and
∫ rb

ra
fr = r

∫ b

a
f . |||

Remark: The notation fr is not a standard notation for the stretch of a
function, and I will not use this notation in the future. I will usually use the
change of scale theorem in the form of equation (8.44), or in the equivalent
form ∫ B

A
g(rx)dx =

1

r

∫ rB

rA
g(x)dx. (8.45)

8.46 Exercise. Explain why formula (8.45) is equivalent to formula (8.44).



8.5. CHANGE OF SCALE 181

8.47 Example. We define π to be the area of the unit circle. Since the
unit circle is carried to itself by reflections about the horizontal and vertical
axes, we have

π = 4 (area (part of unit circle in the first quadrant)).

Since points in the unit circle satisfy x2 + y2 = 1 or y2 = 1− x2, we get

π = 4
∫ 1

0

√
1− x2 dx.

We will use this result to calculate the area of a circle of radius a. The points
on the circle with radius a and center 0 satisfy x2 + y2 = a2, and by the same
symmetry arguments we just gave

area(circle of radius a) = 4
∫ a

0

√
a2 − x2 dx = 4

∫ a

0
a

√
1−

(
x

a

)2

dx

= 4a
∫ a·1

a·0

√
1−

(
x

a

)2

dx.

By the change of scale theorem

area(circle of radius a) = 4aa
∫ 1

0

√
1− x2 dx = a2π.

The formulas
∫ 1

0

√
1− x2 dx =

π

4
and

∫ 1

−1

√
1− x2 dx =

π

2

or more generally

∫ a

0

√
a2 − x2 dx =

πa2

4
and

∫ a

−a

√
a2 − x2 =

πa2

2
,

are worth remembering. Actually, these are cases of a formula you already
know, since they say that the area of a circle of radius a is πa2.

8.48 Exercise. Let a, b be positive numbers and let Eab be the set of points
inside the ellipse whose equation is

x2

a2
+

y2

b2
= 1.

Calculate the area of Eab.
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8.49 Exercise. The figure shows the graph of a function f .

21

fgraph(  )

1

0

−1

Let functions g, h, k, l, and m be defined by

a) g(x) = f(
x

3
).

b) h(x) = f(3x).

c) k(x) = f(
x + 3

3
).

d) l(x) = f(3x + 3).

e) m(x) = 3f(
x

3
).

Sketch the graphs of g,h,k, l, and m on different axes. Use the same scale for
all of the graphs, and use the same scale on the x-axis and the y-axis,

8.50 Exercise. The value of
∫ 1

0

1

1 + x2
dx is .7854(approximately). Use

this fact to calculate approximate values for

∫ a

0

1

a2 + x2
dx and

∫ 1
a

0

1

1 + a2x2
dx

where a ∈ R+. Find numerical values for both of these integrals when a = 1
4
.
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8.6 Integrals and Area

8.51 Theorem. Let f be a piecewise monotonic function from an interval
[a, b] to R≥0. Then ∫ b

a
f = Ab

af = α(Sb
af).

Proof: We already know this result for monotonic functions, and from this the
result follows easily for piecewise monotonic functions. |||
Remark Theorem 8.51 is in fact true for all integrable functions from [a, b]
to R≥0, but the proof is rather technical. Since we will never need the result
for functions that are not piecewise monotonic, I will not bother to make an
assumption out of it.

8.52 Theorem. Let a, b ∈ R and let f : [a, b] → R be a piecewise monotonic
function. Then the graph of f is a zero-area set.

Proof: We will show that the theorem holds when f is monotonic on [a, b]. It
then follows easily that the theorem holds when f is piecewise monotonic on
[a, b].

Suppose f is increasing on [a, b]. Let n ∈ Z+ and let P = {x0, x1, · · · , xn}
be the regular partition of [a, b] into n equal subintervals.

ba

Then

xi − xi−1 =
b− a

n
for 1 ≤ i ≤ n

and

graph(f) ⊂
n⋃

i=1

B
(
xi−1, xi: f(xi−1), f(xi)

)
.
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Hence

0 ≤ α
(
graph(f)

)
≤ α

( n⋃

i=1

B(xi−1, xi: f(xi−1), f(xi))
)

≤
n∑

i=1

α
(
B(xi−1, xi: f(xi−1), f(xi))

)

=
n∑

i=1

(xi − xi−1)
(
f(xi)− f(xi−1)

)

=
n∑

i=1

b− a

n

(
f(xi)− f(xi−1)

)

=
b− a

n

n∑

i=1

(
f(xi)− f(xi−1)

)

=
b− a

n

(
f(b)− f(a)

)
.

Now
{b− a

n

(
f(b)− f(a)

)}
→ 0, so it follows from the squeezing rule that the

constant sequence
{
α

(
graph(f)

)}
converges to 0, and hence

α
(
graph(f)

)
= 0. |||

Remark: Theorem 8.52 is actually valid for all integrable functions on [a, b].

8.53 Theorem (Area between graphs.) Let f, g be piecewise monotonic
functions on an interval [a, b] such that g(x) ≤ f(x) for all x ∈ [a, b]. Let

S = {(x, y): a ≤ x ≤ b and g(x) ≤ y ≤ f(x)}.
Then

area(S) =
∫ b

a
f(x)− g(x) dx.

Proof: Let M be a lower bound for g, so that

0 ≤ g(x)−M ≤ f(x)−M for all x ∈ [a, b].

Let
F (x) = f(x)−M, G(x) = g(x)−M

for all x ∈ [a, b], and let

T = {(x, y): a ≤ x ≤ b and G(x) ≤ y ≤ F (x)}.
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g

b

M

f

S

a

G

F

T

a b

Then

(x, y) ∈ T ⇐⇒ a ≤ x ≤ b and G(x) ≤ y ≤ F (x)

⇐⇒ a ≤ x ≤ b and g(x)−M ≤ y ≤ f(x)−M

⇐⇒ a ≤ x ≤ b and g(x) ≤ y + M ≤ f(x)

⇐⇒ (x, y + M) ∈ S

⇐⇒ (x, y) + (0,M) ∈ S.

It follows from translation invariance of area that

area(S) = area(T ).

Let

R = {(x, y): a ≤ x ≤ b and 0 ≤ y ≤ F (x)} = Sb
aF,

V = {(x, y): a ≤ x ≤ b and 0 ≤ y ≤ G(x)} = Sb
aG.

F

a

R

b

V

T

a b

Then V ∪ T = R, and

V ∩ T = {(x, y): a ≤ x ≤ b and y = G(x)} = graph(G).
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It follows from theorem 8.52 that V and T are almost disjoint, so

area(R) = area(V ∪ T ) = area(V ) + area(T ),

and thus
area(T ) = area(R)− area(V ).

By theorem 8.51 we have

area(R) = area(Sb
aF ) =

∫ b

a
F (x) dx

and

area(V ) = area(Sb
aG) =

∫ b

a
G(x) dx.

Thus

area(S) = area(T ) = area(R)− area(V )

=
∫ b

a
F (x) dx−

∫ b

a
G(x) dx

=
∫ b

a

(
F (x)−G(x)

)
dx

=
∫ b

a

(
f(x)−M −

(
g(x)−M)

))
dx

=
∫ b

a
f(x)− g(x) dx. |||

Remark: Theorem 8.53 is valid for all integrable functions f and g. This
follows from our proof and the fact that theorems 8.51 and 8.52 are both valid
for all integrable functions.

8.54 Example. We will find the area of the set R in the figure, which is
bounded by the graphs of f and g where

f(x) =
1

2
x2

and
g(x) = x3 − 3x2 + 3x.
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R  is  the  shaded  region

p

q

Now

g(x)− f(x) = x3 − 3x2 + 3x− 1

2
x2 = x3 − 7

2
x2 + 3x

= x(x2 − 7

2
x + 3) = x(x− 2)(x− 3

2
).

Hence

(g(x) = f(x)) ⇐⇒ (g(x)− f(x) = 0) ⇐⇒
(
x ∈

{
0,

3

2
, 2

})
.

It follows that the points p and q in the figure are

p = (
3

2
, f(

3

2
)) = (

3

2
,
9

8
) and q = (2, f(2)) = (2, 2).

Also, since x(x− 2) ≤ 0 for all x ∈ [0, 2],

g(x)− f(x) ≥ 0 ⇐⇒ x− 3

2
≤ 0 ⇐⇒ x ≤ 3

2
.

(This is clear from the picture, assuming that the picture is accurate.) Thus

area(R) =
∫ 3

2

0
(g − f) +

∫ 2

3
2

(f − g)

=
∫ 3

2

0
(x3 − 7

2
x2 + 3x)dx−

∫ 2

3
2

(x3 − 7

2
x2 + 3x)dx

=


(3

2
)
4 − 04

4


− 7

2


(3

2
)
3 − 03

3


 + 3


(3

2
)
2 − 02

2




−

24 − (3

2
)
4

4


 +

7

2


23 − (3

2
)
3

3


− 3


22 − (3

2
)
2

2


 .
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We have now found the area, but the answer is not in a very informative form.
It is not clear whether the number we have found is positive. It would be
reasonable to use a calculator to simplify the result, but my experience with
calculators is that I am more likely to make an error entering this into my
calculator than I am to make an error by doing the calculation myself, so I
will continue. I notice that three terms in the answer are repeated twice, so I
have

area(R) = 2
(

81

64
− 63

16
+

27

8

)
− 4 +

28

3
− 6

=
81

32
− 63

8
+

27

4
− 2

3

= (2 +
17

32
)− (8− 1

8
) + (6 +

3

4
)− 2

3

=
17

32
+

1

8
+

3

4
− 2

3
=

21

32
+

1

12
=

63 + 8

96
=

71

96
.

Thus the area is about 0.7 From the sketch I expect the area to be a little bit
smaller than 1, so the answer is plausible.

8.55 Exercise. The curve whose equation is

y2 + 2xy + 2x2 = 4 (8.56)

is shown in the figure. Find the area enclosed by the curve.

(The set whose area we want to find is bounded by the graphs of the two
functions. You can find the functions by considering equation (8.56) as a
quadratic equation in y and solving for y as a function of x.)
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8.57 Exercise. Find the areas of the two sets shaded in the figures below:

y = x(x − 2)

y = −x
3

y = 2

3
x

y = 8

9
x

3
−

2

9
x

2
− x

8.58 Exercise. Find the area of the shaded region.

y=(x−1)(x−2)(x−3)

y=−(x−2)(x−3)



Chapter 9

Trigonometric Functions

9.1 Properties of Sine and Cosine

9.1 Definition (W (t).) We define a function W :R → R2 as follows.
If t ≥ 0, then W (t) is the point on the unit circle such that the length of

the arc joining (1, 0) to W (t) (measured in the counterclockwise direction) is
equal to t. (There is an optical illusion in the figure. The length of segment
[0, t] is equal to the length of arc W (0)W (t).)

t0−t
W(0)

W(−t)

W(t)

Thus to find W (t), you should start at (1, 0) and move along the circle in a
counterclockwise direction until you’ve traveled a distance t. Since the circum-
ference of the circle is 2π, we see that W (2π) = W (4π) = W (0) = (1, 0). (Here
we assume Archimedes’ result that the area of a circle is half the circumference
times the radius.) If t < 0, we define

W (t) = H(W (−t)) for t < 0 (9.2)

where H is the reflection about the horizontal axis. Thus if t < 0, then W (t)
is the point obtained by starting at (1, 0) and moving |t| along the unit circle
in the clockwise direction.

190
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Remark: The definition of W depends on several ideas that we have not
defined or stated assumptions about, e.g., length of an arc and counterclock-
wise direction. I believe that the amount of work it takes to formalize these
ideas at this point is not worth the effort, so I hope your geometrical intuition
will carry you through this chapter. (In this chapter we will assume quite a bit
of Euclidean geometry, and a few properties of area that do not follow from
our assumptions stated in chapter 5.)

A more self contained treatment of the trigonometric functions can be
found in [44, chapter 15], but the treatment given there uses ideas that we
will consider later, (e.g. derivatives, inverse functions, the intermediate value
theorem, and the fundamental theorem of calculus) in order to define the
trigonometric functions.

We have the following values for W :

W (0)W (π)

W (3π

2
)

W (π

2
)

W (0) = (1, 0) (9.3)

W
(π

2

)
= (0, 1) (9.4)

W (π) = (−1, 0) (9.5)

W
(3π

2

)
= (0,−1) (9.6)

W (2π) = (1, 0) = W (0). (9.7)

In general

W (t + 2πk) = W (t) for all t ∈ R and all k ∈ Z. (9.8)

9.9 Definition (Sine and cosine.) In terms of coordinates, we write

W (t) =
(

cos(t), sin(t)
)
.

(We read “cos(t)” as “cosine of t”, and we read “sin(t)” as “sine of t”.)
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Since W (t) is on the unit circle, we have

sin2(t) + cos2(t) = 1 for all t ∈ R,

and
−1 ≤ sin t ≤ 1, −1 ≤ cos t ≤ 1 for all t ∈ R.

The equations (9.3) - (9.8) show that

cos(0) = 1, sin(0) = 0,

cos
(

π
2

)
= 0, sin

(
π
2

)
= 1,

cos(π) = −1, sin(π) = 0,

cos
(

3π
2

)
= 0, sin

(
3π
2

)
= −1,

and

cos(t + 2πk) = cos t for all t ∈ R and all k ∈ Z,

sin(t + 2πk) = sin t for all t ∈ R and all k ∈ Z.

In equation (9.2) we defined

W (t) = H(W (−t)) for t < 0.

Thus for t < 0,

W (−t) = H(H(W (−t))) = H(W (t)) = H(W (−(−t))),

and it follows that

W (t) = H(W (−t)) for all t ∈ R.

W (x) = (cos(x), sin(x))

W (−x) = (cos(x),− sin(x))
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In terms of components
(

cos(−t), sin(−t)
)

= W (−t) = H(W (t)) = H(cos(t), sin(t))

=
(

cos(t),− sin(t)
)

and consequently

cos(−t) = cos(t) and sin(−t) = − sin(t) for all t ∈ R.

Let s, t be arbitrary real numbers. Then there exist integers k and l such that
s + 2πk ∈ [0, 2π) and t + 2πl ∈ [0, 2π). Let

s′ = s + 2πk and t′ = t + 2πl.

W (0)

W (s′)

W (t′)

W (s′ − t
′)

Then s′ − t′ = (s− t) + 2π(k − l), so

W (s) = W (s′), W (t) = W (t′), W (s− t) = W (s′ − t′).

Suppose t′ ≤ s′ (see figure). Then the length of the arc joining W (s′) to W (t′)
is s′− t′ which is the same as the length of the arc joining (1, 0) to W (s′− t′).
Since equal arcs in a circle subtend equal chords, we have

dist
(
W (s′),W (t′)

)
= dist

(
W (s′ − t′), (1, 0)

)

and hence
dist

(
W (s),W (t)

)
= dist

(
W (s− t), (1, 0)

)
. (9.10)

You can verify that this same relation holds when s′ < t′.

9.11 Theorem (Addition laws for sine and cosine.) For all real num-
bers s and t,

cos(s + t) = cos(s) cos(t)− sin(s) sin(t) (9.12)

cos(s− t) = cos(s) cos(t) + sin(s) sin(t) (9.13)

sin(s + t) = sin(s) cos(t) + cos(s) sin(t) (9.14)

sin(s− t) = sin(s) cos(t)− cos(s) sin(t). (9.15)
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Proof: From (9.10) we know

dist
(
W (s),W (t)

)
= dist

(
W (s− t), (1, 0)

)
,

i.e.,

dist
(
(cos(s), sin(s)), (cos(t), sin(t))

)
= dist

(
(cos(s− t), sin(s− t)), (1, 0)

)
.

Hence
(

cos(s)− cos(t)
)2

+
(

sin(s)− sin(t)
)2

=
(

cos(s− t)− 1
)2

+
(

sin(s− t)
)2

.

By expanding the squares and using the fact that sin2(u) + cos2(u) = 1 for all
u, we conclude that

cos(s) cos(t) + sin(s) sin(t) = cos(s− t). (9.16)

This is equation (9.13). To get equation (9.12) replace t by −t in (9.16). If we

take s =
π

2
in equation (9.16) we get

cos
(π

2

)
cos(t) + sin

(π

2

)
sin(t) = cos

(π

2
− t

)

or
sin(t) = cos

(π

2
− t

)
for all t ∈ R.

If we replace t by
(π

2
− t

)
in this equation we get

sin
(π

2
− t

)
= cos

(π

2
− (

π

2
− t)

)
= cos t for all t ∈ R.

Now in equation (9.16) replace s by
π

2
− s and get

cos
(π

2
− s

)
cos(t) + sin

(π

2
− s

)
sin(t) = cos

(π

2
− s− t

)

or
sin s cos t + cos s sin t = sin(s + t),

which is equation (9.14). Finally replace t by −t in this last equation to get
(9.15). |||

In the process of proving the last theorem we proved the following:
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9.17 Theorem (Reflection law for sin and cos.) For all x ∈ R,

cos(x) = sin(
π

2
− x) and sin(x) = cos(

π

2
− x). (9.18)

9.19 Theorem (Double angle and half angle formulas.) For all t ∈ R
we have

sin(2t) = 2 sin t cos t,
cos(2t) = cos2 t− sin2 t = 2 cos2 t− 1 = 1− 2 sin2 t,

sin2
( t

2

)
=

1− cos t

2
,

cos2
( t

2

)
=

1 + cos t

2
.

9.20 Exercise. Prove the four formulas stated in theorem 9.19.

9.21 Theorem (Products and differences of sin and cos.) For all s, t
in R,

cos(s) cos(t) =
1

2
[cos(s− t) + cos(s + t)], (9.22)

cos(s) sin(t) =
1

2
[sin(s + t)− sin(s− t)], (9.23)

sin(s) sin(t) =
1

2
[cos(s− t)− cos(s + t)], (9.24)

cos(s)− cos(t) = −2 sin
(s + t

2

)
sin

(s− t

2

)
, (9.25)

sin(s)− sin(t) = 2 cos
(s + t

2

)
sin

(s− t

2

)
. (9.26)

Proof: We have

cos(s + t) = cos(s) cos(t)− sin(s) sin(t)

and
cos(s− t) = cos(s) cos(t) + sin(s) sin(t).

By adding these equations, we get (9.22). By subtracting the first from the
second, we get (9.24).
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In equation (9.24) replace s by
s + t

2
and replace t by

t− s

2
to get

sin
(s + t

2

)
sin

(t− s

2

)
=

1

2

[
cos

(s + t

2
− t− s

2

)
− cos

(s + t

2
+

t− s

2

)]

or

− sin
(s + t

2

)
sin

(s− t

2

)
=

1

2
[cos(s)− cos(t)].

This yields equation (9.25).

9.27 Exercise. Prove equations (9.23) and (9.26).

From the geometrical description of sine and cosine, it follows that as t in-

creases for 0 to
π

2
, sin(t) increases from 0 to 1 and cos(t) decreases from 1 to

0. The identities

sin
(π

2
− t

)
= cos(t) and cos

(π

2
− t

)
= sin(t)

indicate that a reflection about the vertical line through x =
π

4
carries the

graph of sin onto the graph of cos, and vice versa.

π

2
0 t π

2
− t

y = sin(x)y = cos(x)

cos(π

2
− t) = sin(t) sin(π

2
− t) = cos(t)
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V (graph(cos)) = graph(cos)
R

π
(graph(sin)) = graph(sin)

V (graph(cos)) = graph(cos)
R

π
(graph(sin)) = graph(sin)

cos(π

2
− x)) = sin(x)

sin(π

2
− x)) = cos(x)

cos(x + 2πk) = cos(x)
sin(x + 2πk) = sin(x)

The condition cos(−x) = cos x indicates that the reflection about the vertical
axis carries the graph of cos to itself.
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The relation sin(−x) = − sin(x) shows that

(x, y) ∈ graph(sin) =⇒ y = sin(x)

=⇒ −y = − sin(x) = sin(−x)

=⇒ (−x,−y) = (−x, sin(−x))

=⇒ (−x,−y) ∈ graph(sin)

=⇒ Rπ(x, y) ∈ graph(sin)

i.e., the graph of sin is carried onto itself by a rotation through π about the
origin.
We have

sin
(π

4

)
= cos

(π

2
− π

4

)
= cos

(π

4

)

and 1 = sin2
(π

4

)
+ cos2

(π

4

)
= 2 cos2

(π

4

)
, so cos2

(π

4

)
=

1

2
and

sin
π

4
= cos

π

4
=

√
2

2
= .707 (approximately).

With this information we can make a reasonable sketch of the graph of sin
and cos (see page 197).

9.28 Exercise. Show that

cos(3x) = 4 cos3(x)− 3 cos(x) for all x ∈ R.

9.29 Exercise. Complete the following table of sines and cosines:

0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π

sin 0
√

2
2

1 0

cos 1
√

2
2

0 −1

π 7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

2π

sin 0 −1 0

cos −1 0 1

√
2

2
= .707
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Include an explanation for how you found sin
π

6
and cos

π

6
(or sin

π

3
and cos

π

3
).

For the remaining values you do not need to include an explanation.

Most of the material from this section was discussed by Claudius Ptolemy
(fl. 127-151 AD). The functions considered by Ptolemy were not the sine and
cosine, but the chord, where the chord of an arc α is the length of the segment
joining its endpoints.

A

B

αC

AB =chord(α) AC = sin(α

2
)

chord (α) = 2 sin(
α

2
). (9.30)

Ptolemy’s chords are functions of arcs (measured in degrees), not of numbers.
Ptolemy’s addition law for sin was (roughly)

D · chord(β − α) = chord(β)chord(180◦ − α)− chord(180◦ − β)chord(α),

where D is the diameter of the circle, and 0◦ < α < β < 180◦. Ptolemy

produced tables equivalent to tables of sin(α) for
(

1

4

)◦
≤ α ≤ 90◦ in intervals

of
(

1

4

)◦
. All calculations were made to 3 sexagesimal (base 60) places.

The etymology of the word sine is rather curious[42, pp 615-616]. The
function we call sine was first given a name by Āryabhat.a near the start of
the sixth century AD. The name meant “half chord” and was later shortened
to jyā meaning “chord”. The Hindu word was translated into Arabic as ĵıba,
which was a meaningless word phonetically derived from jyā, but (because the
vowels in Arabic were not written) was written the same as jaib, which means
bosom. When the Arabic was translated into Latin it became sinus. (Jaib
means bosom, bay, or breast: sinus means bosom, bay or the fold of a toga
around the breast.) The English word sine is derived from sinus phonetically.
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9.31 Entertainment (Calculation of sines.) Design a computer program
that will take as input a number x between 0 and .5, and will calculate sin(πx).
(I choose sin(πx) instead of sin(x) so that you do not need to know the value
of π to do this.)

9.2 Calculation of π

The proof of the next lemma depends on the following assumption, which
is explicitly stated by Archimedes [2, page 3]. This assumption involves the
ideas of curve with given endpoints and length of curve (which I will leave
undiscussed).

9.32 Assumption. Let a and b be points in R2. Then of all curves with
endpoints a and b, the segment [ab] is the shortest.

b

b

acurves  with  endpoints     and

a

9.33 Lemma.
sin(x) < x for all x ∈ R+,

and
| sin(x)| ≤ |x| for all x ∈ R.

Proof:
Case 1: Suppose 0 < x <

π

2
.

W (x) = (cos(x), sin(x))

W (−x) = (cos(x),− sin(x))
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Then (see the figure) the length of the arc joining W (−x) to W (x) in the
first and fourth quadrants is x + x = 2x. (This follows from the definition of
W .) The length of the segment [W (x)W (−x)] is 2 sin(x). By our assumption,
2 sin(x) ≤ 2x, i.e., sin(x) ≤ x. Since both x and sin(x) are positive when
0 < x < π

2
, we also have | sin(x)| ≤ |x|.

Case 2: Suppose x ≥ π

2
. Then

sin(x) ≤ | sin(x)| ≤ 1 <
π

2
≤ x = |x|

so sin(x) ≤ x and | sin(x)| ≤ |x| in this case also. This proves the first assertion
of lemma 9.33. If x < 0, then −x > 0, so

| sin(x)| = | sin(−x)| ≤ | − x| = |x|.
Thus

| sin(x)| ≤ |x| for all x ∈ R \ {0},
and since the relation clearly holds when x = 0 the lemma is proved. |||

9.34 Lemma (Limits of sine and cosine.) Let a ∈ R. Let {an} be a
sequence in R such that {an} → a. Then

{cos(an)} → cos(a) and {sin(an)} → sin(a).

Proof: By (9.25) we have

cos(an)− cos(a) = −2 sin
(an + a

2

)
sin

(an − a

2

)
,

so

0 ≤ | cos(an)− cos(a)| ≤ 2| sin
(an + a

2

)
|| sin

(an − a

2

)
|

≤ 2| sin
(an − a

2

)
| ≤ 2|an − a

2
| = |an − a|.

If {an} → a, then {|an − a|} → 0, so by the squeezing rule,

{| cos(an)− cos(a)|} → 0.

This means that {cos(an)} → cos(a).
The proof that {sin(an)} → sin(a) is similar. |||
The proof of the next lemma involves another new assumption.



202 CHAPTER 9. TRIGONOMETRIC FUNCTIONS

9.35 Assumption. Suppose 0 < x <
π

2
. Let the tangent to the unit circle

at W (x) intersect the x axis at p, and let q = (1, 0).

q p

W(−x)

W(x)

Then the circular arc joining W (x) to W (−x) (and passing through q) is
shorter than the curve made of the two segments [W (x)p] and [pW (−x)] (see
the figure).

Remark: Archimedes makes a general assumption about curves that are con-
cave in the same direction [2, pages 2-4] which allows him to prove our as-
sumption.

9.36 Lemma. If 0 < x <
π

2
, then

x ≤ sin(x)

cos(x)
.

Proof: Suppose 0 < x <
π

2
. Draw the tangents to the unit circle at W (x)

and W (−x) and let the point at which they intersect the x-axis be p. (By
symmetry both tangents intersect the x-axis at the same point.) Let b be the
point where the segment [W (x)W (−x)] intersects the x-axis, and let r = W (x).
Triangles 0br and 0rp are similar since they are right triangles with a common
acute angle.
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b p0

W(−x)

r=W(x)

Hence
distance(r,b)

distance(0,b)
=

distance(p, r)

distance(0, r)

i.e.,
sin(x)

cos(x)
=

distance(p, r)

1
.

Now the length of the arc joining W (x) to W (−x) is 2x, and the length of

the broken line from r to p to W (−x) is 2
(
distance(p, r)

)
= 2

sin(x)

cos(x)
, so by

assumption 9.35,

2x ≤ 2
sin(x)

cos x

i.e.,

x ≤ sin(x)

cos(x)
.

This proves our lemma. |||

9.37 Theorem. Let {xn} be any sequence such that xn 6= 0 for all n, and
{xn} → 0. Then

{sin(xn)

xn

}
→ 1. (9.38)

Hence if sin(xn) 6= 0 for all n ∈ Z+ we also have

{ xn

sin(xn)

}
→ 1.
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Proof: If x ∈ (0, π
2
), then it follows from lemma(9.36) that cos(x) ≤ sin(x)

x
.

Since

cos(−x) = cos(x) and
sin(−x)

−x
=

sin(x)

x
,

it follows that

cos(x) ≤ sin(x)

x
whenever 0 < |x| < π

2
.

Hence by lemma 9.33 we have

cos(x) ≤ sin(x)

x
≤ 1 whenever 0 < |x| < π

2
. (9.39)

Let {xn} be a sequence for which xn 6= 0 for all n ∈ Z+ and {xn} → 0.

Then we can find a number N ∈ Z+ such that for all n ∈ Z≥N(|xn| < π

2
). By

(9.39)

n ∈ Z≥N =⇒ cos(xn) ≤ sin(xn)

xn

≤ 1.

By lemma 9.34, we know that {cos(xn)} → 1, so by the squeezing rule
{sin(xn)

xn

}
→ 1. |||

9.40 Example (Calculation of π.) Since
{π

n

}
→ 0, it follows from (9.38)

that

lim
{sin

(
π
n

)

π
n

}
= 1

and hence that
lim

{
n sin

(π

n

)}
= π.

This result can be used to find a good approximation to π. By the half-angle
formula, we have

sin2
( t

2

)
=

1− cos t

2
=

1

2

(
1−

√
1− sin2 t

)

for 0 ≤ t ≤ π

2
. Here I have used the fact that cos t ≥ 0 for 0 ≤ t ≤ π

2
. Also

sin(
π

2
) = 1 so

sin2(
π

4
) =

1

2

(
1−

√
1− sin2 π

2

)
=

1

2

(
1−

√
0
)

=
1

2
.
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sin2(
π

8
) =

1

2

(
1−

√
1− sin2 π

4

)
=

1

2

(
1−

√
1− 1

2

)
=

1

2

(
1−

√
1

2

)
.

By repeated applications of this process I can find sin2
( π

2n

)
for arbitrary n,

and then find
2n sin

( π

2n

)

which will be a good approximation to π.
I wrote a set of Maple routines to do the calculations above. The pro-

cedure sinsq(n) calculates sin2
( π

2n

)
and the procedure mypi(m) calculates

2m sin
( π

2m

)
. The “fi” (which is “if” spelled backwards) is Maple’s way of end-

ing an “if” statement. “Digits := 20” indicates that all calculations are done
to 20 decimal digits accuracy. The command “evalf(Pi)” requests the decimal
approximation to π to be printed.

> sinsq :=

> n-> if n=1 then 1;

> else .5*(1-sqrt(1 - sinsq(n-1)));

> fi;

sinsq := proc(n) options operator,arrow; if n = 1 then 1
else .5 -.5*sqrt(1-sinsq(n-1)) fi end

> mypi := m -> 2^m*sqrt(sinsq(m));

mypi := m → 2m sqrt( sinsq( m ) )

> Digits := 20;

Digits := 20

> mypi(4);

3.1214451522580522853

> mypi(8);

3.1415138011443010542

> mypi(12);

3.1415923455701030907

> mypi(16);

3.1415926523835057093
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> mypi(20);

3.1415926533473327481

> mypi(24);

3.1415922701132732445

> mypi(28);

3.1414977446171452114

> mypi(32);

3.1267833885746006944

> mypi(36);

0

> mypi(40);

0

> evalf(Pi);

3.1415926535897932385

9.41 Exercise. Examine the output of the program above. It appears that
π = 0. This certainly is not right. What can I conclude about π from my
computer program?

9.42 Exercise. Show that the number n sin
(π

n

)
is the area of a regular 2n-

gon inscribed in the unit circle. Make any reasonable geometric assumptions,
but explain your ideas clearly.

9.3 Integrals of the Trigonometric Functions

9.43 Theorem (Integral of cos) Let [a, b] be an interval in R. Then the
cosine function is integrable on [a, b], and

∫ b

a
cos = sin(b)− sin(a).

Proof: Let [a, b] be any interval in R. Then cos is piecewise monotonic on [a, b]
and hence is integrable. Let Pn = {x0, x1, · · · , xn} be the regular partition of
[a, b] into n equal subintervals, and let

Sn =
{x0 + x1

2
,
x1 + x2

2
, · · · , xn−1 + xn

2

}
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be the sample for Pn consisting of the midpoints of the intervals of Pn.

Let ∆n =
b− a

n
so that xi − xi−1 = ∆n and

xi−1 + xi

2
= xi−1 +

∆n

2
for

1 ≤ i ≤ n. Then

∑
(cos, Pn, Sn) =

n∑

i=1

cos
(
xi−1 +

∆n

2

)
·∆n

= ∆n

n∑

i=1

cos
(
xi−1 +

∆n

2

)
.

Multiply both sides of this equation by sin
(∆n

2

)
and use the identity

sin(t) cos(s) =
1

2
[sin(s + t)− sin(s− t)]

to get

sin
(∆n

2

) ∑
(cos, Pn, Sn) = ∆n

n∑

i=1

sin
(∆n

2

)
cos

(
xi−1 +

∆n

2

)

= ∆n

n∑

i=1

1

2
[sin(xi−1 + ∆n)− sin(xi−1)]

=
∆n

2

n∑

i=1

sin(xi)− sin(xi−1)

=
∆n

2

[(
sin(xn)− sin(xn−1)

)
+

(
sin(xn−1)− sin(xn−2)

)

+ · · ·+
(

sin(x1)− sin(x0)
)]

=
∆n

2
[sin(xn)− sin(x0)]

=
∆n

2

(
sin(b)− sin(a)

)
.

Thus
∑

(cos, Pn, Sn) =

(
∆n

2

)

sin
(

∆n

2

)
(

sin(b)− sin(a)
)
.

(By taking n large enough we can guarantee that
∆n

2
< π, and then sin

(∆n

2

)
6= 0,

so we haven’t divided by 0.) Thus by theorem 9.37
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∫ b

a
cos = lim{∑(cos, Pn, Sn)}

= lim





(
sin(b)− sin(a)

)( ∆n

2

sin
(

∆n

2

)
)


 .

=
(

sin(b)− sin(a)
)
· lim





( ∆n

2

sin
(

∆n

2

)
)




=
(

sin(b)− sin(a)
)
· 1 = sin(b)− sin(a). |||

9.44 Exercise. Let [a, b] be an interval in R. Show that
∫ b

a
sin = cos(a)− cos(b). (9.45)

The proof is similar to the proof of (9.43). The magic factor sin
(∆n

2

)
is the

same as in that proof.

9.46 Notation (
∫ a

b
f .) If f is integrable on the interval [a, b], we define

∫ a

b
f = −

∫ b

a
f or

∫ a

b
f(t)dt = −

∫ b

a
f(t)dt.

This is a natural generalization of the convention for Aa
bf in definition 5.67.

9.47 Theorem (Integrals of sin and cos.) Let a and b be any real numbers.
Then ∫ b

a
cos = sin(b)− sin(a).

and ∫ b

a
sin = cos(a)− cos(b).

Proof: We will prove the first formula. The proof of the second is similar. If
a ≤ b then the conclusion follows from theorem 9.43.

If b < a then
∫ b

a
cos = −

∫ a

b
cos = −[sin(a)− sin(b)] = sin(b)− sin(a),

so the conclusion follows in all cases. |||
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9.48 Exercise. Find the area of the set

Sπ
0 (sin) = {(x, y): 0 ≤ x ≤ π and 0 ≤ y ≤ sin x}.

Draw a picture of Sπ
0 (sin).

9.49 Exercise. Find the area of the shaded figure, which is bounded by
the graphs of the sine and cosine functions.

9.50 Example. By the change of scale theorem we have for a < b and
c > 0.

∫ b

a
sin(cx)dx =

1

c

∫ cb

ca
sin x dx

=
− cos(cb) + cos(ca)

c

∫ b

a
cos(cx)dx =

1

c

∫ cb

ca
cos x dx

=
sin(cb)− sin(ca)

c

9.51 Entertainment (Archimedes sine integral) In On the Sphere and
Cylinder 1., Archimedes states the following proposition: (see figure on next
page)
Statement A:

If a polygon be inscribed in a segment of a circle LAL′ so that
all its sides excluding the base are equal and their number even,
as LK . . . A . . . K ′L′, A being the middle point of segment, and if
the lines BB′, CC ′,. . . parallel to the base LL′ and joining pairs of
angular points be drawn, then

(BB′ + CC ′ + . . . + LM) : AM = A′B : BA,

where M is the middle point of LL′ and AA′ is the diameter
through M .[2, page 29]
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H M
A’

L’

L

K’

K

D’

D

C’

C

B

B’

A
RQP GF

We will now show that this result can be reformulated in modern notation as
follows.
Statement B: Let φ be a number in [0, π], and let n be a positive integer.
Then there exists a partitition-sample sequence ({Pn}, {Sn}) for [0, φ], such
that

∑
(sin, Pn, Sn) = (1− cos(φ))

φ

2n + 1

cos( φ
2n

)

sin( φ
2n

)
. (9.52)

In exercise (9.56) you are asked to show that (9.52) implies that
∫ φ

0
sin = 1− cos(φ).

Proof that statement A implies statement B: Assume that statement A is true.
Take the circle to have radius equal to 1, and let

φ = length of arc(AL)

φ

n
= length of arc(AB).

Then

BB′+CC ′+ . . .+LM = 2 sin(
φ

n
)+ 2 sin(

2φ

n
)+ · · ·+2 sin(

(n− 1)φ

n
)+ sin(φ),
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and
AM = 1− cos(φ).

Let

Pn = {0, 2φ

2n + 1
,

4φ

2n + 1
, · · · , 2nφ

2n + 1
, φ},

and

Sn = {0, φ

n
,
2φ

n
, · · · , nφ

n
}.

Then Pn is a partition of [0, φ] with mesh equal to 2φ
2n+1

, and Sn is a sample
for Pn, so ({Pn}, {Sn}) is a partition-sample sequence for [0, φ], and we have

∑
(sin, Pn, Sn) =

2φ

2n + 1

(
sin(

φ

n
) + sin(

2φ

n
) + · · ·+ sin(

(n− 1)φ

n
) +

1

2
sin(φ)

)
.

By Archimedes’ formula, we conclude that

∑
(sin, Pn, Sn) = (1− cos(φ))

φ

2n + 1
· A′B

BA
. (9.53)

We have

length arc(BA) =
φ

n
,

length arc(BA′) = π − φ

n
.

By the formula for the length of a chord (9.30) we have

A′B
BA

=
chord(AB′)
chord(BA)

=
2 sin(arc(AB′)

2
)

2 sin(arc(BA)
2

)
=

sin(
(π−φ

n

2
))

sin(
( φ

n
)

2
)

=
cos( φ

2n
)

sin( φ
2n

)
(9.54)

Equation (9.52) follows from (9.53) and (9.54).
Prove statement A above. Note that (see the figure from statement A)

AM = AF + FP + PG + GQ + · · ·+ HR + RM, (9.55)

and each summand on the right side of (9.55) is a side of a right triangle similar
to triangle A′BA.

9.56 Exercise. Assuming equation (9.52), show that

∫ φ

0
sin = 1− cos(φ).
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9.4 Indefinite Integrals

9.57 Theorem. Let a, b, c be real numbers. If f is a function that is inte-
grable on each interval with endpoints in {a, b, c} then

∫ c

a
f =

∫ b

a
f +

∫ c

b
f.

Proof: The case where a ≤ b ≤ c is proved in theorem 8.18. The rest of the
proof is exactly like the proof of exercise 5.69. |||

9.58 Exercise. Prove theorem 9.57.

We have proved the following formulas:

∫ b

a
xrdx =

br+1 − ar+1

r + 1
for 0 < a < b r ∈ Q \ {−1}, (9.59)

∫ b

a

1

t
dt = ln(b)− ln(a) for 0 < a < b,

∫ b

a
sin(ct)dt =

− cos(cb) + cos(ca)

c
for a < b, and c > 0,

∫ b

a
cos(ct)dt =

sin(cb)− sin(ca)

c
for a < b, and c > 0. (9.60)

In each case we have a formula of the form

∫ b

a
f(t)dt = F (b)− F (a).

This is a general sort of situation, as is shown by the following theorem.

9.61 Theorem (Existence of indefinite integrals.) Let J be an interval
in R, and let f : J → R be a function such that f is integrable on every
subinterval [p, q] of J . Then there is a function F : J → R such that for all
a, b ∈ J ∫ b

a
f(t)dt = F (b)− F (a).

Proof: Choose a point c ∈ J and define

F (x) =
∫ x

c
f(t)dt for all x ∈ J.
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Then for any points a, b in J we have

F (b)− F (a) =
∫ b

c
f(t)dt−

∫ a

c
f(t)dt =

∫ b

a
f(t)dt.

We’ve used the fact that
∫ b

c
f(t)dt =

∫ a

c
f(t)dt +

∫ b

a
f(t)dt for all a, b, c ∈ J. |||

9.62 Definition (Indefinite integral.) Let f be a function that is inte-
grable on every subinterval of an interval J . An indefinite integral for f on J

is any function F : J → R such that
∫ b

a
f(t)dt = F (b)− F (a) for all a, b ∈ J .

A function that has an indefinite integral always has infinitely many indef-
inite integrals, since if F is an indefinite integral for f then so is F + c for any
number c:

(F + c)(b)− (F + c)(a) = (F (b) + c)− (F (a) + c) = F (b)− F (a).

The following notation is used for indefinite integrals. One writes
∫

f(t)dt
to denote an indefinite integral for f . The t here is a dummy variable and can
be replaced by any available symbol. Thus, based on formulas (9.59) - (9.60),
we write

∫
xrdx =

xr+1

r + 1
if r ∈ Q \ {−1}

∫ 1

t
dt = ln(t)

∫
sin(ct)dt = −cos(ct)

c
if c > 0

∫
cos(ct)dt =

sin(ct)

c
if c > 0.

We might also write ∫
xrdr =

xr+1

r + 1
+ 3.

Some books always include an arbitrary constant with indefinite integrals, e.g.,

∫
xrdr =

xr+1

r + 1
+ C if r ∈ Q \ {−1}.
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The notation for indefinite integrals is treacherous. If you see the two
equations

∫
x3dx =

1

4
x4

and ∫
x3dx =

1

4
(x4 + 1),

then you want to conclude

1

4
x4 =

1

4
(x4 + 1), (9.63)

which is wrong. It would be more logical to let the symbol
∫

f(x)dx denote
the set of all indefinite integrals for f . If you see the statements

1

4
x4 ∈

∫
x3dx

and
1

4
(x4 + 1) ∈

∫
x3dx,

you are not tempted to make the conclusion in (9.63).

9.64 Theorem (Sum theorem for indefinite integrals) Let f and g be
functions each of which is integrable on every subinterval of an interval J , and
let c, k ∈ R. Then

∫ (
cf(x) + kg(x)

)
dx = c

∫
f(x)dx + k

∫
g(x)dx. (9.65)

Proof: The statement (9.65) means that if F is an indefinite integral for f
and G is an indefinite integral for G, then cF + kG is an indefinite integral for
cf + kg.

Let F be an indefinite integral for f and let G be an indefinite integral for
g. Then for all a, b ∈ J

∫ b

a

(
cf(x) + kg(x)

)
dx =

∫ b

a
cf(x)dx +

∫ b

a
kg(x)dx

= c
∫ b

a
f(x)dx + k

∫ b

a
g(x)dx

= c
(
F (b)− F (a)

)
+ k

(
G(b)−G(a)

)

=
(
cF (b) + kG(b)

)
−

(
cF (a) + kG(a)

)

= (cF + kG)(b)− (cF + kG)(a).
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It follows that cF + kG is an indefinite integral for cf + kg. |||
9.66 Notation (F (t) |ba.) If F is a function defined on an interval J , and if

a, b are points in J we write F (t) |ba for F (b) − F (a). The t here is a dummy
variable, and sometimes the notation is ambiguous, e.g. x2 − t2 |10. In such
cases we may write F (t) |t=b

t=a. Thus

(x2 − t2) |x=1
x=0= (1− t2)− (0− t2) = 1

while
(x2 − t2) |t=1

t=0= (x2 − 1)− (x2 − 0) = −1.

Sometimes we write F |ba instead of F (t) |ba.
9.67 Example. It follows from our notation that if F is an indefinite

integral for f on an interval J then

∫ b

a
f(t)dt = F (t) |ba

and this notation is used as follows:
∫ b

a
3x2dx = x3

∣∣∣
b

a
= b3 − a3.

∫ π

0
cos(x)dx = sin(x)

∣∣∣
π

0
= 0− 0 = 0.

∫ π

0
sin(3x)dx =

− cos 3x

3

∣∣∣∣
π

0
=
− cos(3π)

3
+

cos(0)

3
=

2

3
.

∫ 2

0
(4x2 + 3x + 1)dx = 4

(x3

3

)
+ 3

(x2

2

)
+ x

∣∣∣∣∣
2

0

= 4 · 8

3
+ 3 · 4

2
+ 2 =

56

3
.

In the last example I have implicitly used
∫

(4x2 + 3x + 1)dx = 4
∫

x2dx + 3
∫

x dx +
∫

1 dx.

9.68 Example. By using the trigonometric identities from theorem 9.21
we can calculate integrals of the form

∫ b
a sinn(cx) cosm(kx)dx where m,n are

non-negative integers and c, k ∈ R. We will find

∫ π
2

0
sin3(x) · cos(3x)dx.
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We have

sin2(x) =
1− cos(2x)

2
,

so

sin3(x) = sin2(x) sin(x) =
1

2
sin(x)− 1

2
cos(2x) sin(x)

=
1

2
sin(x)− 1

2
· 1

2

(
sin(3x)− sin(x)

)

=
3

4
sin(x)− 1

4
sin(3x).

Thus

sin3(x) · cos(3x) =
3

4
cos(3x) sin(x)− 1

4
cos(3x) sin(3x)

=
3

8
[sin(4x)− sin(2x)]− 1

8
sin(6x).

Hence∫ π/2

0
sin3(x) · cos(3x) dx

=
3

8

(− cos(4x))

4

∣∣∣∣∣

π
2

0

− 3

8

(− cos(2x))

2

∣∣∣∣∣

π
2

0

− 1

8

(− cos(6x))

6

∣∣∣∣∣

π
2

0

=
3

32

(
− cos(2π) + cos(0)

)
+

3

16

(
cos(π)− cos(0)

)
+

1

48

(
cos(3π)− cos(0)

)

=
3

16
(−1− 1) +

1

48
(−1− 1) = −3

8
− 1

24
=
−10

24
= − 5

12
.

The method here is clear, but a lot of writing is involved, and there are many
opportunities to make errors. In practice I wouldn’t do a calculation of this
sort by hand. The Maple command

> int((sin(x))^3*cos(3*x),x=0..Pi/2);

responds with the value

- 5/12
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9.69 Exercise. Calculate the integrals

∫ π
2

0
sin x dx,

∫ π
2

0
sin2 x dx and

∫ π
2

0
sin4 x dx.

Then determine the values of
∫ π

2

0
cos x dx,

∫ π
2

0
cos2 x dx and

∫ π
2

0
cos4 x dx

without doing any calculations. (But include an explanation of where your
answer comes from.)

9.70 Exercise. Find the values of the following integrals. If the answer is
geometrically clear then don’t do any calculations, but explain why the answer
is geometrically clear.

a)
∫ 2

1

1

x3
dx

b)
∫ 1

−1
x11(1 + x2)3 dx

c)
∫ 2

0

√
4− x2 dx

d)
∫ π

0
(x + sin(2x))dx

e)
∫ 1

−1

1

x2
dx

f)
∫ 4

1

4 + x

x
dx

g)
∫ 1

0

√
xdx

h)
∫ 2

1

4

x
dx

i)
∫ 1

0
(1− 2x)2dx

j)
∫ 1

0
(1− 2x)dx
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k)
∫ π

0
sin(7x) dx

l)
∫ π

0
sin(8x) dx

9.71 Exercise.

Let A =
∫ π/2

0
(sin(4x))5dx

B =
∫ π/2

0
(sin(3x))5dx

C =
∫ π

2

0
(cos(3x))5dx.

Arrange the numbers A,B,C in increasing order. Try to do the problem
without making any explicit calculations. By making rough sketches of the
graphs you should be able to come up with the answers. Sketch the graphs,
and explain how you arrived at your conclusion. No “proof” is needed.



Chapter 10

Definition of the Derivative

10.1 Velocity and Tangents

10.1 Notation. If E1(x, y) and E2(x, y) denote equations or inequalities
in x and y, we will use the notation

{E1(x, y)} = {(x, y) :∈ R2: E1(x, y)}
{E1(x, y); E2(x, y)} = {(x, y) ∈ R2: E1(x, y) and E2(x, y)}.

{y = x
2} {y = x

2; x ≥ 1}

In this section we will discuss the idea of tangent to a curve and the related
idea of velocity of a moving point.

You probably have a pretty good intuitive idea of what is meant by the
tangent to a curve, and you can see that the straight lines in figure a below
represent tangent lines to curves.

219
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figure  a

It may not be quite so clear what you would mean by the tangents to the
curves in figure b at the point (0, 0).

{y2 = x
3 + x

2}{y = x}{y3 = x
2}{y = x

3}{y = |x|}
figure b

Euclid (fl. c. 300 B.C.) defined a tangent to a circle to be a line which
touches the circle in exactly one point. This is a satisfactory definition of
tangent to a circle, but it does not generalize to more complicated curves.

{y = x
2}

For example, every vertical line intersects the parabola {y = x2} in just one
point, but no such line should be considered to be a tangent.

Apollonius (c 260-170 B.C.) defined a tangent to a conic section (i.e., an
ellipse or hyperbola or parabola) to be a line that touches the section, but lies
outside of the section. Apollonius considered these sections to be obtained by
intersecting a cone with a plane, and points inside of the section were points
in the cone.
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parabolaellipsehyperbola

This definition works well for conic sections, but for general curves, we have
no notion of what points lie inside or outside a curve.

{x
2

3 + y
2

3 = 1}

(−1, 0)

(0, 1)

(0,−1)

(1, 0)

p

q

sr

a b
c

In the figure, the line ab ought to be tangent to the curve at c, but there is
no reasonable sense in which the line lies outside the curve. On the other hand,
it may not be clear whether pq (which lies outside the curve {x2/3 + y2/3 = 1}
is more of a tangent than the line rs which does not lie outside of it. Leibniz
[33, page 276] said that

to find a tangent means to draw a line that connects two points of
the curve at an infinitely small distance, or the continued side of a
polygon with an infinite number of angles, which for us takes the
place of the curve.

From a modern point of view it is hard to make any sense out of this.

Here is a seventeenth century sort of argument for finding a tangent to the
parabola whose equation is y = x2.
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(0,−y)

(0, y) (x, y)
x

2y
q = (x, 0)

p = (x, y)
r = (0, y)

Imagine a point p that is moving along the parabola y = x2, so that at time t,
p is at (x, y). (Here x and y are functions of t, but in the seventeenth century
they were just flowing quantities.) Imagine a point q that moves along the
x-axis so that q always lies under p and a point r moving along the y-axis
so that r is always at the same height as p. Let ẋ denote the velocity of q
when p is at (x, y) and let ẏ denote the velocity of r when p is at (x, y). Let
o be a very small moment of time. At time o after p is at (x, y), p will be at
(x + oẋ, y + oẏ) (i.e., x will have increased by an amount equal to the product
of the time interval o and its velocity ẋ). Since p stays on the curve, we have

y + oẏ = (x + oẋ)2

or
y + oẏ = x2 + 2xoẋ + o2ẋ2.

Since y = x2, we get
oẏ = 2xoẋ + o2ẋ2 (10.2)

or
ẏ = 2xẋ + oẋ2 (10.3)

Since we are interested in the velocities at the instant that p is at (x, y), we
take o = 0, so

ẏ = 2xẋ.

Hence when p is at (x, y), the vertical part of its velocity (i.e., ẏ) is 2x times
the horizontal component of its velocity. Now the velocity should point in the
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direction of the curve; i.e., in the direction of the tangent, so the direction of
the tangent at (x, y) should be in the direction of the diagonal of a box with

vertical side = 2x× horizontal side.

The tangent to the parabola at (x, y) = (x, x2) is the line joining (x, y) to
(0,−y), since in the figure the vertical component of the box is

2y = 2x2 = (2x)x;

i.e., the vertical component is 2x times the horizontal component.
In The Analyst: A Discourse Addressed to an Infidel Mathematician[7,

page 73], George Berkeley (1685-1753) criticizes the argument above, pointing
out that when we divide by o in line (10.3) we must assume o is not zero, and
then at the end we set o equal to 0.

All which seems a most inconsistent way of arguing, and such as
would not be allowed of in Divinity.

The technical concept of velocity is not a simple one. The idea of uniform
velocity causes no problems: to quote Galileo (1564-1642):

By steady or uniform motion, I mean one in which the distances
traversed by the moving particle during any equal intervals of time,
are themselves equal[21, page 154].

This definition applies to points moving in a straight line, or points moving
on a circle, and it goes back to the Greek scientists. The problem of what is
meant by velocity for a non-uniform motion, however, is not at all clear. The
Greeks certainly realized that a freely falling body moves faster as it falls, but
they had no language to describe the way in which velocity changes. Aristotle
(384-322 B.C.) says

there cannot be motion of motion or becoming of becoming or in
general change of change[11, page 168].

It may not be clear what this means, but S. Bochner interprets this as saying
that the notion of a second derivative (this is a technical term for the math-
ematical concept used to describe acceleration which we will discuss later) is
a meaningless idea[11, page 167]. Even though we are in constant contact
with non-uniformly moving bodies, our intuition about the way they move
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is not very good. In the Dialogues Concerning Two New Sciences, Salviati
(representing Galileo) proposes the hypothesis that if a stone falls from rest,
then it falls in such a way that “in any equal intervals of time whatever, equal
increments of speed are given to it”[21, page 161].

In our language, the hypothesis is that the velocity v(t) at time t satisfies

v(t) = kt for some constant k.

Sagredo objects to this on the grounds that this would mean that the object
begins to fall with zero speed “while our senses show us that a heavy falling
body suddenly acquires great speed.” (I believe Sagredo is right. Try dropping
some bodies and observe how they begin to fall.) Salviati replies that this is
what he thought at first, and explains how he came to change his mind.

Earlier, in 1604, Galileo had supposed that

v(x) = kx for some constant k;

i.e., that in equal increments of distance the object gains equal increments of
speed (which is false), and Descartes made the same error in 1618 [13, page
165]. Casual observation doesn’t tell you much about falling stones.

10.4 Entertainment (Falling bodies.) Try to devise an experiment to
support (or refute) Galileo’s hypothesis that v(t) = kt, using materials avail-
able to Galileo; e.g., no stop watch. Galileo describes his experiments in [21,
pages 160-180], and it makes very good reading.

10.2 Limits of Functions

Our definition of tangent to a curve is going to be based on the idea of limit.
The word limit was used in mathematics long before the definition we will
give was thought of. One finds statements like “The limit of a regular polygon
when the number of sides becomes infinite, is a circle.” Early definitions of
limit often involved the ideas of time or motion. Our definition will be purely
mathematical.

10.5 Definition (Interior points and approachable points.) Let S be
a subset of R. A point x ∈ S is an interior point of S if there is some positive
number ε such that the interval (x− ε, x + ε) is a subset of S. A point x ∈ R
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is an approachable point from S if there is some positive number ε such that
either (x − ε, x) ⊂ S or (x, x + ε) ⊂ S. (Without loss of generality we could

replace “ε” in this definition by
1

N
for some N ∈ Z+.)

Note that interior points of S must belong to S. Approachable points of S
need not belong to S. Any interior point of S is approachable from S.

10.6 Example. If S is the open interval (0, 1) then every point of S is an
interior point of S. The points that are approachable from S are the points in
the closed interval [0, 1].

If T is the closed interval [0, 1] then the points that are approachable from
T are exactly the points in T , and the interior points of T are the points in
the open interval (0, 1).

10.7 Definition (Limit of a function.) Let f be a real valued function
such that dom(f) ⊂ R. Let a ∈ R and let L ∈ R. We say

lim
x→a

f(x) = L (10.8)

if

1) a is approachable from dom(f), and

2) For every sequence {xn} in dom(f) \ {a}

{xn} → a =⇒ {f(xn)} → L.

Note that the value of f(a) (if it exists) has no influence on the meaning of
lim
x→a

f(x) = L. Also the “x” in (10.8) is a dummy variable, and can be replaced

by any other symbol that has no assigned meaning.

10.9 Example. For all a ∈ R we have

lim
x→a

x = a.

Also
lim
x→a

cos(x) = cos(a)

and
lim
x→a

sin(x) = sin(a),
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by lemma 9.34. Also

lim
x→0

sin x

x
= 1

by theorem 9.37.

10.10 Example. lim
x→0

x

|x| is not defined. Let xn =
(−1)n

n
. Then {xn} is a

sequence in R\{0}, and {xn} → 0 and
xn

|xn| =
(−1)n

n

( 1
n
)

= (−1)n. We know there

is no number L such that {(−1)n} → L.

10.11 Example. Let f be the spike function

f(x) =

{
0 if x ∈ R \ {1

2
}

1 if x = 1
2
.

1

1

Then lim
x→ 1

2

f(x) = 0, since if {xn} is a generic sequence in dom(f) \ {1
2
}, then

{f(xn)} is the constant sequence {0}.
10.12 Example. The limit

lim
x→0

(
√

x +
√−x)

does not exist. If f(x) =
√

x +
√−x, then the domain of f consists of the

single point 0, and 0 is not approachable from dom(f). If we did not have
condition 1) in our definition, we would have

lim
x→0

√
x +

√−x = 0 and lim
x→0

√
x +

√−x = π,
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which would not be a good thing. (If there are no sequences in dom(f) \ {a},
then

for every sequence {xn} in dom(f) \ {a}[statement about {xn}]

is true, no matter what [statement about {xn}] is.)
In this course we will not care much about functions like

√
x +

√−x.

10.13 Example. I will show that

lim
x→a

√
x =

√
a (10.14)

for all a ∈ R≥0.
Case 1: Suppose a ∈ R+. Let {xn} be a generic sequence in R+ \ {a} such
that {xn} → a. Then

0 ≤ |√xn −
√

a| =
∣∣∣
√

xn −
√

a

1
·
√

xn +
√

a√
xn +

√
a

∣∣∣ =
|xn − a|√
xn +

√
a

<
|xn − a|√

a
.

Now, since {xn} → a, we have

lim

{ |xn − a|√
a

}
=

1√
a

lim{|xn − a|} = 0,

so by the squeezing rule lim{√xn −
√

a} = 0 which is equivalent to

lim{√xn} =
√

a.

This proves (10.14) when a > 0.
Case 2: Suppose a = 0. The domain of the square root function is [0,∞), and
0 is approachable from this set.

Let {xn} be a sequence in R+ such that {xn} → 0. To show that {√xn} → 0,
I’ll use the definition of limit. Let ε ∈ R+. Then ε2 ∈ R+, so by the definition
of convergence, there is an N(ε2) ∈ Z+ such that for all n ∈ Z≥N(ε2) we have
(xn = |xn − 0| < ε2). Then for all n ∈ Z≥N(ε2) we have (

√
xn = |√xn − 0| < ε)

and hence {√xn} → 0. |||

Many of our rules for limits of sequences have immediate corollaries as rules
for limits of functions. For example, suppose f, g are real valued functions with
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dom(f) ⊂ R and dom(g) ⊂ R. Suppose lim
x→a

f(x) = L and lim
x→a

g(x) = M . Let

{xn} be a generic sequence in
(
dom(f) ∩ dom(g)

)
\ {a} such that {xn} → a.

Then {xn} is a sequence in dom(f) \ {a} and {xn} → a, so

{f(xn)} → L.

Also {xn} is a sequence in dom(g) \ {a} and {xn} → a so

{g(xn)} → M.

By the sum and product rules for sequences, for any c ∈ R

{(f ± g)(xn)} = {f(xn)± g(xn)} → L±M,

{(fg)(xn)} = {f(xn)g(xn)} → LM,

and
{(cf)(xn)} = {c · f(xn)} → cL,

and thus we’ve proved that

lim
x→a

(f ± g)(x) = L±M = lim
x→a

f(x)± lim
x→a

g(x)

lim
x→a

(fg)(x) = LM = lim
x→a

f(x) · lim
x→a

g(x)

and
lim
x→a

(cf)(x) = cL = c lim
x→a

f(x).

Moreover if a ∈ dom(
f

g
) (so that g(a) 6= 0), and if xn ∈ dom(

f

g
) for all xn (so

that g(xn) 6= 0 for all n), it follows from the quotient rule for sequences that

{
(
f

g
)(xn)

}
=

{f(xn)

g(xn)

}
→ L

M
,

so that

lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
if lim

x→a
g(x) 6= 0.

Actually all of the results just claimed are not quite true as stated. For we
have

lim
x→0

√
x = 0
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and
lim
x→0

√−x = 0

but
lim
x→0

√
x +

√−x does not exist!

The correct theorem is:

10.15 Theorem (Sum, product, quotient rules for limits.) Let f, g
be real valued functions with dom(f) ⊂ R and dom(g) ⊂ R, and let c ∈ R.
Suppose lim

x→a
f(x), and lim

x→a
g(x) both exist. Then if a is approachable from

dom(f) ∩ dom(g) we have

lim
x→a

(f ± g)(x) = lim
x→a

f(x)± lim
x→a

g(x)

lim
x→a

(fg)(x) = lim
x→a

f(x) · lim
x→a

g(x)

lim
x→a

(cf)(x) = c · lim
x→a

f(x).

If in addition lim
x→a

g(x) 6= 0 then

lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
.

Proof: Most of the theorem follows from the remarks made above. We will
assume the remaining parts.

10.16 Theorem (Inequality rule for limits of functions.) Let f and g
be real functions with dom(f) ⊂ R and dom(g) ⊂ R. Suppose that

i lim
x→a

f(x) and lim
x→a

g(x) both exist.

ii a is approachable from dom(f) ∩ dom(g).

iii There is a positive number ε such that

f(x) ≤ g(x) for all x in dom(f) ∩ dom(g) ∩ (a− ε, a + ε).

Then lim
x→a

f(x) ≤ lim
x→a

g(x).
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Proof: Let {xn} be a sequence in
(
dom(f)∩dom(g)∩ (a− ε, a+ ε)

)
\{a} such

that {xn} → a. Then {xn} is a sequence in dom(f) \ {a} that converges to a,
so by the definition of limit of a function,

lim{f(xn)} = lim
x→a

f(x).

Similiarly
lim{g(xn)} = lim

x→a
g(x).

Also f(xn) ≤ g(xn) for all n, so it follows from the inequality rule for limits of
sequences that lim{f(xn)} ≤ lim{g(xn)}, i.e. lim

x→a
f(x) ≤ lim

x→a
g(x). |||.

10.17 Theorem (Squeezing rule for limits of functions.) Let f , g and
h be real functions with dom(f) ⊂ R, dom(g) ⊂ R, and dom(h) ⊂ R. Suppose
that

i lim
x→a

f(x) and lim
x→a

h(x) both exist and are equal.

ii a is approachable from dom(f) ∩ dom(g) ∩ dom(h).

iii There is a positive number ε such that f(x) ≤ g(x) ≤ h(x) for all x in
dom(f) ∩ dom(g) ∩ dom(h) ∩ (a− ε, a + ε).

Then lim
x→a

f(x) = lim
x→a

g(x) = lim
x→a

h(x).

Proof: The proof is almost identical to the proof of theorem 10.16.

10.3 Definition of the Derivative.

Our definition of tangent to a curve will be based on the following definition:

10.18 Definition (Derivative.) Let f be a real valued function such that
dom(f) ⊂ R. Let a ∈ dom(f). We say that f is differentiable at a if a is an
interior point of dom(f) and the limit

lim
x→a

f(x)− f(a)

x− a
(10.19)

exists. In this case we denote the limit in (10.19) by f ′(a), and we call f ′(a)
the derivative of f at a.
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x2 x1x3a
{y = f(x)}

(a, f(a))

(x, f(x))

The quantity
f(x)− f(a)

x− a
represents the slope of the line joining the points

(
a, f(a)

)
and

(
x, f(x)

)
on the graph of f . If x and a are different points in

dom(f) then this quotient will be defined. If we choose a sequence of points

{xn} converging to a, and if the slopes
{f(xn)− f(a)

xn − a

}
converge to a number

m which is independent of the sequence {xn}, then it is reasonable to call m

(i.e., f ′(a)) the slope of the tangent line to the graph of f at
(
a, f(a)

)
.

10.20 Definition (Tangent to the graph of a function.) Let f be a
real valued function with dom(f) ⊂ R, and let a ∈ dom(f). If f is differen-
tiable at a then we define the slope of the tangent to graph(f) at the point(
a, f(a)

)
to be the number f ′(a), and we define the tangent to graph(f) at(

a, f(a)
)

to be the line that passes through
(
a, f(a)

)
with slope f ′(a).

Remark: This definition will need to be generalized later to apply to curves
that are not graphs of functions. Also this definition does not allow vertical
lines to be tangents, whereas on geometrical grounds, vertical tangents are
quite reasonable.

10.21 Example. We will calculate the tangent to {y = x3} at a generic
point (a, a3).

Let f(x) = x3. Then for all a ∈ R,

lim
x→a

f(x)− f(a)

x− a
= lim

x→a

x3 − a3

x− a
= lim

x→a

(x− a)(x2 + ax + a2)

(x− a)

= lim
x→a

(x2 + ax + a2) = a2 + a2 + a2 = 3a2.
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Hence the tangent line to graph(f) at (a, a3) is the line through (a, a3) with
slope 3a2, and the equation of the tangent line is

y − a3 = 3a2(x− a)

or
y = a3 + 3a2x− 3a3 = 3a2x− 2a3

or
y = a2(3x− 2a).

10.22 Example. We will now consider some of the examples on page 220.

{y = (x2)
1

3}{y = x
3}{y = |x|}

no tangent at (0, 0) tangent crosses no tangent at (0, 0)
curve at (0, 0)

If f(x) = |x| then
f(x)− f(0)

x− 0
=
|x|
x

.

We saw in example 10.10 that lim
x→0

|x|
x

does not exist. Hence, the graph of

f at (0, 0) has no tangent.

If g(x) = x3, then in the previous example we saw that the equation of
the tangent to graph(g) at (0, 0) is y = 0; i.e., the x-axis is tangent to the
curve. Note that in this case the tangent line crosses the curve at the point of
tangency.

If h(x) = x then for all a ∈ R,

lim
x→a

h(x)− h(a)

x− a
= lim

x→a

x− a

x− a
= lim

x→a
1 = 1.
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The equation of the tangent line to graph(h) at (a, a) is

y = a + 1(x− a)

or y = x.
Thus at each point on the curve the tangent line coincides with the curve.

Let k(x) = (x2)1/3. This is not the same as the function l(x) = x2/3 since
the domain of l is R≥0 while the domain of k is R. (For all x ∈ R we have
x2 ∈ R≥0 = dom(g) where g(x) = x1/3.)

I want to investigate lim
x→0

k(x)− k(0)

x− 0
= lim

x→0

k(x)

x
. From the picture, I ex-

pect this graph to have an infinite slope at (0, 0), which means according to

our definition that there is no tangent line at (0, 0). Let {xn} =
{ 1

n3

}
. Then

{xn} → 0, but

k(xn)

xn

=

(
1
n6

)1/3

(
1
n3

) =
1
n2

1
n3

= n

so lim
{k(xn)

xn

}
does not exist and hence lim

x→0

k(x)

x
does not exist.

10.23 Example. Let f(x) =
√

x for x ∈ R≥0. Let a ∈ R+ and let
x ∈ dom(f) \ {a}. Then

f(x)− f(a)

x− a
=

√
x−√a

x− a
=

√
x−√a

(
√

x)2 − (
√

a)2

=

√
x−√a

(
√

x−√a)(
√

x +
√

a)
=

1√
x +

√
a
.

Hence

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a

1√
x +

√
a

=
1√

a +
√

a
=

1

2
√

a
; (10.24)

i.e.,

f ′(a) =
1

2
√

a
for all a ∈ R+.

In line (10.24) I used the fact that lim
x→a

√
x =

√
a, together with the sum and

quotient rules for limits.
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10.25 Exercise. Let f(x) =
1

x
. Sketch the graph of f . For what values of

x do you expect f ′(x) to be −1? For what values of x do you expect f ′(x) to
be positive? What do you expect to happen to f ′(x) when x is a small positive
number? What do you expect to happen to f ′(x) when x is a small negative
number?

Calculate f ′(a) for arbitrary a ∈ dom(f). Does your answer agree with
your prediction?

10.26 Exercise. Let f(x) = sin(x) for −π < x < 4π. Sketch the graph of
f . Use the same scale on the x-axis and the y-axis.

On what intervals do you expect f ′(x) to be positive? On what intervals
do you expect f ′(x) to be negative? Calculate f ′(0).

On the basis of symmetry, what do you expect to be the values of f ′(π),
f ′(2π) and f ′(3π)? For what x do you expect f ′(x) to be zero? On the basis
of your guesses and your calculated value of f ′(0), draw a graph of f ′, where
f ′ is the function that assigns f ′(x) to a generic number x in (−π, 4π). On
the basis of your graph, guess a formula for f ′(x).
(Optional) Prove that your guess is correct. (Some trigonometric identities
will be needed.)

10.27 Exercise. Calculate f ′(x) if f(x) =
x

x + 1
.

10.28 Exercise.

a) Find f ′(x) if f(x) = x2 − 2x.

b) Find the equations for all the tangent lines to graph(f) that pass through
the point (0,−4). Make a sketch of graph(f) and the tangent lines.

10.29 Exercise. Consider the function f : (0, 8) → R whose graph is shown
below.

76

−1

54321 8

1

{y = f(x)}
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For what x in (0, 8) does f ′(x) exist? Sketch the graphs of f and f ′ on the
same set of axes.

The following definition which involves time and motion and particles is
not a part of our official development and will not be used for proving any
theorems.

10.30 Definition (Velocity.) Let a particle p move on a number line in
such a way that its coordinate at time t is x(t), for all t in some interval J .
(Here time is thought of as being specified by a number.) If t0, t1 are points
in J with t0 < t1, then the average velocity of p for the time interval [t0, t1] is
defined to be

x(t1)− x(t0)

t1 − t0
=

change in position

change in time
.

Note that x(t1)−x(t0) is not necessarily the same as the distance moved in the
time interval [t0, t1]. For example, if x(t) = t(1− t) then x(1)− x(0) = 0, but

the distance moved by p in the time interval [0, 1] is
1

2
. (The particle moves

from 0 to
1

4
at time t =

1

2
, and then back to 0.)

The instantaneous velocity of p at a time t0 ∈ J is defined to be

lim
t→t0

x(t)− x(t0)

t− t0
= x′(t0)

provided this limit exists. (If the limit does not exist, then the instantaneous
velocity of p at t0 is not defined.) If we draw the graph of the function x; i.e.,

{
(
t, x(t)

)
: t ∈ J}, then the velocity of p at time t0 is by definition x′(t0) =

slope of tangent to graph(x) at
(
t0, x(t0)

)
.

In applications we will usually express velocity in units like
miles

hour
. We will

wait until we have developed some techniques for differentiation before we do
any velocity problems.

The definition of velocity just given would have made no sense to Euclid
or Aristotle. The Greek theory of proportion does not allow one to divide
a length by a time, and Aristotle would no more divide a length by a time
than he would add them. Question: Why is it that today in physics you are
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allowed to divide a length by a time, but you are not allowed to add a length
to a time?

In Newton’s calculus, the notion of instantaneous velocity or fluxion was
taken as an undefined, intuitively understood concept, and the fluxions were
calculated using methods similar to that used in the example on page 222.

The first “rigorous” definitions of limit of a function were given around
1820 by Bernard Bolzano (1781-1848) and Augustin Cauchy (1789-1857)[23,
chapter 1]. The definition of limit of a function in terms of limits of sequences
was given by Eduard Heine in 1872.



Chapter 11

Calculation of Derivatives

11.1 Derivatives of Some Special Functions

11.1 Theorem (Derivative of power functions.) Let r ∈ Q and let
f(x) = xr. Here

domain(f) =





R if r ∈ Z≥0

R \ {0} if r ∈ Z−

R≥0 if r ∈ Q+ \ Z
R+ if r ∈ Q− \ Z.

Let a be an interior point of domain(f). Then f is differentiable at a, and

f ′(a) = rar−1.

If r = 0 and a = 0 we interpret rar−1 to be 0.

Proof: First consider the case a 6= 0. For all x in domain(f) \ {a} we have

f(x)− f(a)

x− a
=

xr − ar

x− a
=

ar
(
(x

a
)r − 1

)

a
(
(x

a
)− 1

) = ar−1

(
(x

a
)r − 1

)

(x
a
− 1)

.

Let {xn} be a generic sequence in domain(f) \ {a} such that {xn} → a. Let

yn =
xn

a
. Then {yn} → 1 and hence by theorem 7.10 we have

{yr
n − 1

yn − 1

}
→ r

and hence {
f(xn)− f(a)

xn − a

}
=

{
yr

n − 1

yn − 1

}
· ar−1 → rar−1.

237
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This proves the theorem in the case a 6= 0. If a = 0 then r ∈ Z≥0 (since for
other values of r, 0 is not an interior point of domain(f)). In this case

f(x)− f(0)

x− 0
=

xr − 0r

x
=

{
0 if r = 0 (remember 00 = 1).
xr−1 if r 6= 0.

Hence

f ′(0) = lim
x→0

f(x)− f(0)

x
=





0 if r = 0,
1 if r = 1,
0 if r > 1.

Thus in all cases the formula f ′(x) = rxr−1 holds. |||
11.2 Corollary (Of the proof of theorem 11.1) For all r ∈ Q,

lim
x→1

xr − 1

x− 1
= r.

11.3 Theorem (Derivatives of sin and cos.) Let r ∈ R and let
f(x) = sin(rx), g(x) = cos(rx) for all x ∈ R. Then f and g are differentiable
on R, and for all x ∈ R

f ′(x) = r cos(rx), (11.4)

g′(x) = −r sin(rx). (11.5)

Proof: If r = 0 the result is clear, so we assume r 6= 0. For all x ∈ R and all
t ∈ R \ {x}, we have

sin(rt)− sin(rx)

t− x
=

2 cos
(

r(t+x)
2

)
sin

(
r(t−x)

2

)

t− x

= r cos
(r(t + x)

2

)
·
sin

(
r(t−x)

2

)
(

r(t−x)
2

) .

(Here I’ve used an identity from theorem 9.21.) Let {xn} be a generic sequence

in R \ {x} such that {xn} → x. Let yn =
r(xn + x)

2
and let zn =

r(xn − x)

2
.

Then {yn} → rx so by lemma 9.34 we have {cos(yn)} → cos(rx). Also

{zn} → 0, and zn ∈ R \ {0} for all n ∈ Z+, so by (9.38),
{sin(zn)

zn

}
→ 1.

Hence

{sin(rxn)− sin(rx)

xn − x

}
=

{
r cos(yn) · sin(zn)

zn

}
→ r cos(rx),
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and this proves formula (11.4). |||
The proof of (11.5) is similar.

11.6 Exercise. Prove that if g(x) = cos(rx), then g′(x) = −r sin(rx).

11.7 Theorem (Derivative of the logarithm.) The logarithm function
is differentiable on R+, and

ln′(x) =
1

x
for all x ∈ R+.

Proof: Let x ∈ R+, and let s ∈ R+ \ {x}. Then

ln(s)− ln(x)

s− x
=

1

s− x

∫ s

x

1

t
dt =

1

s− x
As

x

[1

t

]
.

Case 1: If s > x then As
x

[1

t

]
represents the area of the shaded region S in the

figure.

S
x

(x,
1

x
)

s

(s, 1

s
)

We have

B(x, s: 0,
1

s
) ⊂ S ⊂ B(x, s: 0,

1

x
)

so by monotonicity of area

s− x

s
≤ As

x

[1

t

]
≤ s− x

x
.

Thus
1

s
≤ 1

s− x

∫ s

x

1

t
dt ≤ 1

x
. (11.8)

Case 2. If s < x we can reverse the roles of s and x in equation (11.8) to get

1

x
≤ 1

x− s

∫ x

s

1

t
dt ≤ 1

s
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or
1

x
≤ 1

s− x

∫ s

x

1

t
dt ≤ 1

s
.

In both cases it follows that

0 ≤
∣∣∣ 1

s− x

∫ s

x

1

t
dt− 1

x

∣∣∣ ≤
∣∣∣1
s
− 1

x

∣∣∣.

Let {xn} be a generic sequence in R+ \ {x} such that {xn} → x. Then{ 1

xn

− 1

x

}
→ 0 , so by the squeezing rule

{
1

xn − x

∫ xn

x

1

t
dt− 1

x

}
→ 0,

i.e. {
ln(xn)− ln(x)

xn − x
− 1

x

}
→ 0.

Hence { ln(xn)− ln(x)

xn − x

}
→ 1

x
.

We have proved that ln′(x) =
1

x
. |||

11.9 Assumption (Localization rule for derivatives.) Let f, g be two
real valued functions. Suppose there is some ε ∈ R+ and a ∈ R such that

(a− ε, a + ε) ⊂ domain(f) ∩ domain(g)

and such that
f(x) = g(x) for all x ∈ (a− ε, a + ε).

If f is differentiable at a, then g is differentiable at a and g′(a) = f ′(a).

This is another assumption that is really a theorem, i.e. it can be proved.
Intuitively this assumption is very plausible. It says that if two functions
agree on an entire interval centered at a, then their graphs have the same
tangents at a.

11.10 Theorem (Derivative of absolute value.) Let f(x) = |x| for all

x ∈ R. Then f ′(x) =
x

|x| for all x ∈ R \ {0} and f ′(0) is not defined.
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Proof: Since

f(x) =
{

x if x > 0,
−x if x < 0,

it follows from the localization theorem that

f ′(x) =

{
1 = x

|x| if x > 0,
−1 = x

|x| if x < 0.

To see that f is not differentable at 0, we want to show that

lim
t→0

f(t)− f(0)

t− 0
= lim

t→0

|t|
t

does not exist. Let xn =
(−1)n

n
. Then {xn} → 0, but

|xn|
xn

=

∣∣∣ (−1)n

n

∣∣∣
(−1)n

n

= (−1)n

and we know that lim{(−1)n} does not exist. Hence lim
f(t)− f(0)

t− 0
does not

exist, i.e., f is not differentiable at 0.

11.11 Definition (
d

dx
notation for derivatives.) An alternate notation

for representing derivatives is:

d

dx
f(x) = f ′(x)

or
df

dx
= f ′(x).

This notation is used in the following way

d

dx

(
sin(6x)

)
= 6 cos(6x),

d

dt

(
cos(

t

3
)
)

= −1

3
sin(

t

3
).

Or:

Let f = x1/2. Then
df

dx
=

1

2
x−1/2.

Let g(x) =
1

x
. Then

dg

dx
=

d

dx

(
g(x)

)
=

d

dx

(1

x

)
= − 1

x2
.

The
d

dx
notation is due to Leibnitz, and is older than our concept of func-

tion.
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Leibnitz wrote the differentiation formulas as “dxa = axa−1dx,” or if
y = xa, then “dy = axa−1dx.” The notation f ′(x) for derivatives is due to
Joseph Louis Lagrange (1736-1813). Lagrange called f ′(x) the derived func-
tion of f(x) and it is from this that we get our word derivative. Leibnitz called
derivatives, differentials and Newton called them fluxions.

Many of the early users of the calculus thought of the derivative as the
quotient of two numbers

df

dx
=

difference in f

difference in x
=

f(x)− f(t)

x− t

when dx = x− t was “infinitely small”. Today “infinitely small” real numbers
are out of fashion, but some attempts are being made to bring them back. Cf
Surreal Numbers : How two ex-students turned on to pure mathematics and
found total happiness : a mathematical novelette, by D. E. Knuth.[30]. or The
Hyperreal Line by H. Jerome Keisler[28, pp 207-237].

11.2 Some General Differentiation Theorems.

11.12 Theorem (Sum rule for derivatives.) Let f, g be real valued func-
tions with domain(f) ⊂ R and domain(g) ⊂ R, and let c ∈ R. Suppose f and
g are differentiable at a. Then f + g, f − g and cf are differentiable at a, and

(f + g)′(a) = f ′(a) + g′(a)

(f − g)′(a) = f ′(a)− g′(a)

(cf)′(a) = c · f ′(a).

Proof: We will prove only the first statement. The proofs of the other state-
ments are similar. For all x ∈ dom(f) we have

(f + g)(x)− (f + g)(a)

x− a
=

f(x) + g(x)− (f(a) + g(a))

x− a

=
f(x)− f(a)

x− a
+

g(x)− g(a)

x− a

By the sum rule for limits of functions, it follows that

lim
x→a

(
(f + g)(x)− (f + g)(a)

x− a

)
= lim

x→a

(
f(x)− f(a)

x− a

)
+ lim

x→a

(
g(x)− g(a)

x− a

)
,
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i.e.
(f + g)′(a) = f ′(a) + g′(a). |||

11.13 Examples. If

f(x) = 27x3 +
1

3x
+
√

8x,

then

f(x) = 27x3 +
1

3
x−1 +

√
8 · x1/2,

so

f ′(x) = 27 · (3x2) +
1

3
(−1 · x−2) +

√
8 · (1

2
x−1/2)

= 81x2 − 1

3x2
+

√
2

x
.

If g(x) = (3x2 + 7)2, then g(x) = 9x4 + 42x2 + 49, so

g′(x) = 9 · 4x3 + 42 · 2x = 36x3 + 84x.

If h(x) = sin(4x) + sin2(4x), then h(x) = sin(4x) +
1

2

(
1− cos(8x)

)
, so

h′(x) = 4 cos(4x) +
1

2
(−1)

(
− 8 · sin(8x)

)

= 4 cos(4x) + 4 sin(8x).

d

ds

(
8 sin(4s) + s2 + 4

)
= 32 cos(4s) + 2s.

11.14 Exercise. Calculate the derivatives of the following functions:

a) f(x) = (x2 + 4x)2

b) g(x) =
√

3x3 +
4

x4
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c) h(t) = ln(t) + ln(t2) + ln(t3)

d) k(x) = ln(10 · x5/2)

e) l(x) = 3 cos(x) + cos(3x)

f) m(x) = cos(x) cos(3x)

g) n(x) =
(

sin2(x) + cos2(x)
)4

11.15 Exercise. Calculate

a)
d

dt

(
1 + t +

t2

2!
+

t3

3!
+

t4

4!

)

b)
d

dt

(
h0 + v0(t− t0)− 1

2
g(t− t0)

2
)
. Here h0, v0, t0 and g are all constants.

c)
d

dt
(| − 100t|)

11.16 Theorem (The product rule for derivatives.) Let f and g be real
valued functions with dom(f) ⊂ R and dom(g) ⊂ R. Suppose f and g are
both differentiable at a. Then fg is differentiable at a and

(fg)′(a) = f(a) · g′(a) + f ′(a) · g(a).

In particular, if f = c is a constant function, we have

(cf)′(a) = c · f ′(a).

Proof: Let x be a generic point of dom(f) ∩ dom(g) \ {a}. Then

(fg)(x)− (fg)(a)

x− a
=

f(x)
(
g(x)− g(a)

)
+

(
f(x)− f(a)

)
g(a)

x− a

= f(x)

(
g(x)− g(a)

x− a

)
+

(
f(x)− f(a)

x− a

)
g(a).

We know that lim
x→a

(g(x)− g(a)

x− a

)
= g′(a) and lim

x→a

(f(x)− f(a)

x− a

)
= f ′(a). If

we also knew that lim
x→a

f(x) = f(a), then by basic properties of limits we could

say that

(fg)′(a) = lim
x→a

(fg)(x)− (fg)(a)

x− a
= f(a)g′(a) + f ′(a)g(a)
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which is what we claimed.
This missing result will be needed in some other theorems, so I’ve isolated

it in the following lemma.

11.17 Lemma (Differentiable functions are continuous.) Let f be a
real valued function such that dom(f) ⊂ R+. Suppose f is differentiable at
a point a ∈ dom(f). Then lim

x→a
f(x) = f(a). (We will define “continuous”

later. Note that neither the statement nor the proof of this lemma use the
word “continuous” in spite of the name of the lemma.)

Proof:

lim
x→a

f(x) = lim
x→a

(
f(x)− f(a)

x− a
· (x− a) + f(a)

)
.

Hence by the product and sum rules for limits,

lim
x→a

f(x) = f ′(a) · (a− a) + f(a) = f(a). |||

11.18 Example (Leibniz’s proof of the product rule.) Leibniz stated
the product rule as

dxy = xdy + ydx[34, page143]1

His proof is as follows:

dxy is the difference between two successive xy’s; let one of these
be xy and the other x + dx into y + dy; then we have

dxy = x + dx · y + dy − xy = xdy + ydx + dxdy;

the omission of the quantity dxdy which is infinitely small in com-
parison with the rest, for it is supposed that dx and dy are infinitely
small (because the lines are understood to be continuously increas-
ing or decreasing by very small increments throughout the series
of terms), will leave xdy + ydx.[34, page 143]

Notice that for Leibniz, the important thing is not the derivative,
dxy

dt
, but

the infinitely small differential, dxy.

1The actual statement is dxy = xdx + ydy, but this is a typographical error, since the
proof gives the correct formula.
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11.19 Theorem (Derivative of a reciprocal.) Let f be a real valued
function such that dom(f) ⊂ R. Suppose f is differentiable at some point a,

and f(a) 6= 0. Then
1

f
is differentiable at a, and

( 1

f

)′
(a) =

−f ′(a)
(
f(a)

)2 .

Proof: For all x ∈ dom
( 1

f

)
\ {a}

1
f(x)

− 1
f(a)

x− a
=

f(a)− f(x)

(x− a)f(x)f(a)
= −

(
f(x)− f(a)

)

(x− a)
· 1

f(x)f(a)
.

It follows from the standard limit rules that

lim
x→a

1
f(x)

− 1
f(a)

x− a
= −f ′(a) · 1

(
f(a)

)2 .

11.20 Theorem (Quotient rule for derivatives.) Let f, g be real valued
functions with dom(f) ⊂ R and dom(g) ⊂ R. Suppose f and g are both

differentiable at a, and that g(a) 6= 0. Then
f

g
is differentiable at a, and

(f

g

)′
(a) =

g(a)f ′(a)− f(a)g′(a)
(
g(a)

)2 .

11.21 Exercise. Prove the quotient rule.

11.22 Examples. Let

f(x) =
sin(x)

x
for x ∈ R \ {0}.

Then by the quotient rule

f ′(x) =
x(cos(x))− sin(x)

x2
.
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Let h(x) = x2 · |x|. Then by the product rule

h′(x) = x2
( x

|x|
)

+ 2x|x| = x|x|+ 2x|x| = 3x|x|

(since
x2

|x| =
|x|2
|x| = |x|).

The calculation is not valid at x = 0 (since |x| is not differentiable at 0,
and we divided by |x| in the calculation. However h is differentiable at 0 since

lim
t→0

h(t)− h(0)

t− 0
= lim

t→0

t2|t|
t

= lim
t→0

t|t| = 0, i.e., h′(0) = 0 = 3 · 0 · |0|. Hence the

formula
d

dx
(x2|x|) = 3x|x|

is valid for all x ∈ R.

Let g(x) = ln(x) · sin(10x) · √x. Consider g to be a product g = hk where
h(x) = ln(x) · sin(10x) and k(x) =

√
x. Then we can apply the product rule

twice to get

g′(x) =
(

ln(x) · sin(10x)
)
· 1

2
√

x

+

(
ln(x) ·

(
10 cos(10x)

)
+

1

x
sin(10x)

)√
x.

11.23 Exercise (Derivatives of tangent, cotangent, secant, cosecant.)
We define functions tan, cot, sec, and csc by

tan(x) =
sin(x)

cos(x)
, cot(x) =

cos(x)

sin(x)
,

sec(x) =
1

cos(x)
, csc(x) =

1

sin(x)
.

The domains of these functions are determined by the definition of the domain
of a quotient, e.g. dom(sec) = {x ∈ R: cos x 6= 0}. Prove that

d
dx

tan(x) = sec2(x), d
dx

cot(x) = − csc2 x,

d
dx

sec(x) = tan(x) sec(x), d
dx

csc(x) = − cot(x) csc(x).
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(You should memorize these formulas. Although they are easy to derive, later
we will want to use them backwards; i.e., we will want to find a function whose
derivative is sec2(x). It is not easy to derive the formulas backwards.)

11.24 Exercise. Calculate the derivatives of the following functions. Sim-
plify your answers if you can.

a) f(x) = x · ln(x)− x.

b) g(x) =
ax + b

cx + d
(here a, b, c, d are constants).

c) k(x) = (x2 + 3x + 10)(x2 + 3x + 12).

d) m(x) =
cos(6x)

cos(7x)
.

11.25 Exercise. Let f , g, h, and k be differentiable functions defined on
R.
a) Express (fgh)′ in terms of f , f ′, g, g′, h and h′.
b) On the basis of your answer for part a), try to guess a formula for (fghk)′.
Then calculate (fghk)′, and see whether your guess was right.

11.3 Composition of Functions

11.26 Definition (f◦g.) Let A,B,C, D be sets and let f : A → B, g: C → D
be functions. The composition of f and g is the function f ◦ g defined by:

codomain(f ◦ g) = B = codomain(f).

dom(f ◦ g) = {x ∈ C: g(x) ∈ A}
= {x ∈ dom(g): g(x) ∈ dom(f)};

i.e., dom(f ◦ g) is the set of all points x such that f
(
g(x)

)
is defined. The rule

for f ◦ g is
(f ◦ g)(x) = f

(
g(x)

)
for all x ∈ dom(f ◦ g).

11.27 Example. If f(x) = sin(x) and g(x) = x2 − 2, then

(f ◦ g)(x) = sin(x2 − 2)
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and
(g ◦ f)(x) = sin2(x)− 2.

Thus
(f ◦ g)(0) = sin(−2) and (g ◦ f)(0) = −2 6= (f ◦ g)(0).

So in this case f ◦g 6= g◦f . Thus composition is not a commutative operation.

If h(x) = ln(x) and k(x) = |x|, then

(h ◦ k)(x) = ln(|x|)
and

(k ◦ h)(x) = | ln(x)|.

11.28 Exercise. For each of the functions F below, find functions f and g
such that F = f ◦ g. Then find a formula for g ◦ f .

a) F (x) = ln(tan(x)).

b) F (x) = sin(4(x2 + 3)).

c) F (x) = | sin(x)|.

11.29 Exercise. Let

f(x) =
√

1− x2,

g(x) =
1

1− x
.

Calculate formulas for f ◦ f , f ◦ (f ◦ f), (f ◦ f) ◦ f , g ◦ g, (g ◦ g) ◦ g, and
g ◦ (g ◦ g).

11.30 Entertainment (Composition problem.) From the previous ex-
ercise you should be able to find a subset A of R, and a function f : A → R
such that (f ◦ f)(x) = x for all x ∈ A. You should also be able to find a
subset B of R and a function g : B → R such that (g ◦ (g ◦ g))(x) = x for all
x ∈ B. Can you find a subset C of R, and a function h : C → R such that
(h ◦ (h ◦ (h ◦ h)))(x) = x for all x ∈ C? One obvious example is the function
f from the previous example. To make the problem more interesting, also add
the condition that (h ◦ h)(x) 6= x for some x in C.
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11.31 Theorem (Chain rule.) Let f, g be real valued functions such that
dom(f) ⊂ R and dom(g) ⊂ R. Suppose a ∈ dom(g) and g(a) ∈ domf , and g
is differentiable at a and f is differentiable at g(a). Then f ◦g is differentiable
at a, and

(f ◦ g)′(a) = f ′
(
g(a)

)
· g′(a).

Before we prove the theorem we will give a few examples of how it is used:

11.32 Example. Let H(x) =
√

10 + sin x. Then H = f ◦ g where

f(x) =
√

x, g(x) = 10 + sin(x),

f ′(x) =
1

2
√

x
, g′(x) = cos(x).

Hence

H ′(x) = f ′
(
g(x)

)
· g′(x)

=
1

2
√

10 + sin(x)
· cos(x).

Let K(x) = ln(5x2 + 1). Then K = f ◦ g where

f(x) = ln(x), g(x) = 5x2 + 1,

f ′(x) =
1

x
, g′(x) = 10x.

Hence

K ′(x) = f ′
(
g(x)

)
· g′(x)

=
1

5x2 + 1
· 10x =

10x

5x2 + 1
.

Usually I will not write out all of the details of a calculation like this. I will
just write:

Let f(x) = tan(2x + 4). Then f ′(x) = sec2(2x + 4) · 2.
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Proof of chain rule: Suppose g is differentiable at a and f is differentiable at
g(a). Then

f
(
g(x)

)
− f

(
g(a)

)

x− a
=

f
(
g(x)

)
− f

(
g(a)

)

g(x)− g(a)
· g(x)− g(a)

x− a
. (11.33)

Since g is differentiable at a, we know that

lim
x→a

g(x)− g(a)

x− a
= g′(a).

Hence the theorem will follow from (11.33), the definition of derivative, and
the product rule for limits of functions, if we can show that

lim
x→a

f(g(x))− f(g(a))

g(x)− g(a)
= f ′(g(a)).

Since g is differentiable at a, it follows from lemma 11.17 that

lim
x→a

g(x) = g(a). (11.34)

Let {xn} be a generic sequence in dom(f ◦ g)\{a}, such that {xn} → a. Then
by (11.34), we have

lim{g(xn)} = g(a). (11.35)

Since f is differentiable at g(a), we have

lim
t→g(a)

f(t)− f(g(a))

t− g(a)
= f ′(g(a)).

From this and (11.35) it follows that

lim

{
f(g(xn))− f(g(a))

g(xn)− g(a)

}
= f ′(g(a)).

Since this holds for a generic sequence {xn} in dom(f ◦ g) \ {a}, we have

lim
x→a

f(g(x))− f(g(a))

x− a
= f ′(g(a)),

which is what we wanted to prove. To complete the proof, I should show that
a is an interior point of dom(f ◦ g). This turns out to be rather tricky, so I
will omit the proof.



252 CHAPTER 11. CALCULATION OF DERIVATIVES

Remark: Our proof of the chain rule is not valid in all cases, but it is valid
in all cases where you are likely to use it. The proof fails in the case where
every interval

(
g(a)−ε, g(a)+ε

)
contains a point b 6= a for which g(b) = g(a).

(You should check the proof to see where this assumption was made.) Constant
functions g satisfy this condition, but if g is constant then f ◦g is also constant
so the chain rule holds trivially in this case. Since the proof in the general
case is more technical than illuminating, I am going to omit it. Can you find
a non-constant function g for which the proof fails?

11.36 Example. If f is differentiable at x, and f(x) 6= 0, then

d

dx

(
|f(x)|

)
=

f(x)

|f(x)|f
′(x).

Also

d

dx

(
ln

(
|f(x)|

))
=

1

|f(x)|
d

dx

(
|f(x)|

)

=
1

|f(x)|
f(x)

|f(x)|f
′(x) =

f(x)f ′(x)

f(x)2
=

f ′(x)

f(x)
;

i.e.,
d

dx

(
ln |f(x)|

)
=

f ′(x)

f(x)
(11.37)

I will use this relation frequently.

11.38 Example (Logarithmic differentiation.) Let

h(x) =

√
(x2 + 1)(x2 − 4)10

(x3 + x + 1)3
. (11.39)

The derivative of h can be found by using the quotient rule and the product
rule and the chain rule. I will use a trick here which is frequently useful. I
have

ln
(
|h(x)|

)
=

1

2
ln(x2 + 1) + 10 ln(|x2 − 4|)− 3 ln(|x3 + x + 1|).

Now differentiate both sides of this equation using (11.37) to get

h′(x)

h(x)
=

1

2

2x

x2 + 1
+ 10

2x

x2 − 4
− 3

3x2 + 1

x3 + x + 1
.
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Multiply both sides of the equation by h(x) to get

h′(x) =

√
x2 + 1(x2 − 4)10

(x3 + x + 1)3

[ x

x2 + 1
+

20x

x2 − 4
− 3(3x2 + 1)

x3 + x + 1

]
.

This formula is not valid at points where h(x) = 0, because we took logarithms
in the calculation. Thus h is differentiable at x = 2, but our formula for h′(x)
is not defined when x = 2.

The process of calculating f ′ by first taking the logarithm of the absolute
value of f and then differentiating the result, is called logarithmic differentia-
tion.

11.40 Exercise. Let h be the function defined in (11.39) Show that h is
differentiable at 2, and calculate h′(2).

11.41 Exercise. Find derivatives for the functions below. (Assume here
that f is a function that is differentiable at all points being considered.)

a) F (x) = sin(f(x)).

b) G(x) = cos(f(x)).

c) H(x) = (f(x))r, where r is a rational number.

d) K(x) = ln((f(x)).

e) L(x) = |f(x)|.
f) M(x) = tan(f(x)).

g) N(x) = cot(f(x)).

h) P (x) = sec(f(x)).

i) Q(x) = csc(f(x)).

j) R(x) = ln(|f(x)|).

11.42 Exercise. Find derivatives for the functions below. (Assume here
that f is a function that is differentiable at all points being considered.)

a) F (x) = f(sin(x)).
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b) G(x) = f(cos(x)).

c) H(x) = f(xr), where r is a rational number.

d) K(x) = f(ln(x)).

e) L(x) = f(|x|).
f) M(x) = f(tan(x)).

g) N(x) = f(cot(x)).

h) P (x) = f(sec(x)).

i) Q(x) = f(csc(x)).

j) R(x) = f(ln(|x|).

11.43 Exercise. Calculate the derivatives of the following functions. Sim-
plify your answers.

a) a(x) = sin3(x) = (sin(x))3.

b) b(x) = sin(x3).

c) c(x) = (x2 + 4)10.

d) f(x) = sin(4x2 + 3x).

e) g(x) = ln
(
| cos(x)|

)
.

f) h(x) = ln
(
| sec(x)|

)
.

g) k(x) = ln
(
| sec(x) + tan(x)|

)
.

h) l(x) = ln
(
| csc(x) + cot(x)|

)
.

i) m(x) = 3x3 ln(5x)− x3.

j) n(x) =
√

x2 + 1 + ln
(√x2 + 1− 1

x

)
.

k) p(x) =
1

2
(x + 4)2 − 8x + 16 ln(x + 4).
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l) q(x) =
x

2

[
sin

(
ln(|6x|)

)
− cos

(
ln(|6x|)

)]
.



Chapter 12

Extreme Values of Functions

12.1 Continuity

12.1 Definition (Continuity at a point.) Let f be a real valued function
such that dom(f) ⊂ R. Let a ∈ dom(f). We say that f is continuous at a if
and only if

lim
x→a

f(x) = f(a).

Remark: According to this definition, in order for f to be continuous at a we
must have

a ∈ dom(f)

and
a is approachable from dom(f).

The second condition is often not included in the definition of continuity, so
this definition does not quite correspond to the usual definition.
Remark: The method we will usually use to show that a function f is not
continuous at a point a, is to find a sequence {xn} in dom(f) \ {a} such that
{xn} → a, but {f(xn} either diverges or converges to a value different from
f(a).

12.2 Definition (Continuity on a set.) Let f be a real valued function
such that domain(f) ⊂ R, and let S be a subset of domain(f). We say that
f is continuous on S if f is continuous at every point in S. We say that f is
continuous if f is continuous at every point of domain(f).

256
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12.3 Example (sin, cos, ln and power functions are continuous.) We
proved in lemma 11.17 that a function is continuous at every point at which
it is differentiable. (You should now check the proof of that lemma to see that
we did prove this.) Hence sin, cos, ln, and xn (for n ∈ Z) are all continuous
on their domains, and if r ∈ Q \ Z, then xr is continuous on R+.

12.4 Example. Let

f(x) =
{

0 if x ≤ 0
1 if x > 0.

−1 1

1

−1

Then f is not continuous at 0. For the sequence { 1

n
} converges to 0, but

{f(
1

n
)} = {1} → 1 6= f(0).

Our limit rules all give rise to theorems about continuous functions.

12.5 Theorem (Properties of continuous functions.) Let f, g be real
valued functions with dom(f) ⊂ R, dom(g) ⊂ R, and let c, a ∈ R. If f and
g are continuous at a and if a is approachable from dom(f) ∩ dom(g), then

f + g, f − g, fg, and cf are continuous at a. If in addition, g(a) 6= 0 then
f

g
is also continuous at a.

Proof: Suppose f and g are continuous at a, and a is approachable from
dom(f) ∩ dom(g). Then

lim
x→a

f(x) = f(a) and lim
x→a

g(x) = g(a).

By the sum rule for limits (theorem 10.15) it follows that

lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x)

= f(a) + g(a) = (f + g)(a).
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Thus f + g is continuous at a. The proofs of the other parts of the theorem
are similar.

12.6 Example (An everywhere discontinuous function.) Let D be the
example of a non-integrable function defined in equation (8.37). Then D is
not continuous at any point of [0, 1]. Recall

D(x) =
{

1 if x ∈ S
0 if x 6= S

where S is a subset of [0, 1] such that every subinterval of [0, 1] of positive
length contains a point in S and a point not in S. Let x ∈ [0, 1].

Case 1. If x ∈ S we can find a sequence of points {tn} in [0, 1] \ S such that
{tn} → x. Then

{D(tn)} = {0} → 0 6= D(x)

so D is not continuous at x.

Case 2. If x 6∈ S we can find a sequence of points {sn} in S such that {sn} → x.
Then

{D(sn)} = {1} → 1 6= D(x)

so D is not continuous at x.

12.7 Example. Let

h(x) =
√

x for x ∈ R≥0.

I claim that h is continuous. We know that h is differentiable on R+, so
H is continuous at each point of R+. In example 10.13 we showed that
lim
x→0

h(x) = 0 = h(0) so h is also continuous at 0.

12.8 Example. Let

f(x) = −x2,

g(x) =
√

x.

Then f and g are both continuous functions. Now

(g ◦ f)(x) =
√
−x2

and hence g ◦f is not continuous. The domain of g ◦f contains just one point,
and that point is not approachable from dom(g ◦ f).
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12.9 Theorem (Continuity of compositions.) Let f, g be functions with
domains contained in R and let a ∈ R. Suppose that f is continuous at a
and g is continuous at f(a). Then g ◦ f is continuous at a, provided that a is
approachable from dom(g ◦ f).

Proof: Suppose f is continuous at a and g is continuous at f(a), and a is
approachable from dom(g ◦ f). Let {xn} be a sequence in dom(g ◦ f) \ {a}
such that {xn} → a. Then {f(xn)} → f(a) since f is continuous at a. Hence

{g
(
f(xn)

)
} → g

(
f(a)

)
since g is continuous at f(a); i.e.,

{(g ◦ f)(xn)} → (g ◦ f)(a).

Hence g ◦ f is continuous at a.

12.2 ∗A Nowhere Differentiable Continuous Func-

tion.

We will now give an example of a function f that is continuous at every point of
[0, 1] and differentiable at no point of [0, 1]. The first published example of such
a function appeared in 1874 and was due to Karl Weierstrass(1815-1897) [29,
page 976]. The example described below is due to Helga von Koch (1870-1924),
and is a slightly modified version of Koch’s snowflake. From the discussion in
section 2.6, it is not really clear what we would mean by the perimeter of a
snowflake, but it is pretty clear that whatever the perimeter might be, it is not
the graph of a function. However, a slight modification of Koch’s construction
yields an everywhere continuous but nowhere differentiable function.

We will construct a sequence {fn} of functions on [0, 1]. The graph of fn

will be a polygonal line with 4n−1 segments. We set

f1(x) = 0 for 0 ≤ x ≤ 1

so that the graph of f1 is the line segment from (0, 0) to (0, 1).
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Approximations to a nowhere differentiable function

f1

f2

f3

f7
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In general the graph of fn+1 is obtained from the graph of fn by replacing
each segment [ae] in the graph of fn by four segments [ab], [bc], [cd], and [de]
constructed according to the following three rules:

e

d

b

a

m

c

i) The points b and d trisect the segment [ae].

ii) The point c lies above the midpoint m of [ae].

iii) distance(m, c) =

√
3

2
distance(b,d).

The graphs of f2, f3, f4 and f7 are shown on page 260. It can be shown that
for each x ∈ [0, 1] the sequence {fn(x)} converges. Define f on [0, 1] by

f(x) = lim{fn(x)} for all x ∈ [0, 1].

It turns out that f is continuous on [0, 1] and differentiable nowhere on [0, 1].
A proof of this can be found in [31, page 168].

The function f provides us with an example of a continuous function that
is not piecewise monotonic over any interval.

12.3 Maxima and Minima

12.10 Definition (Maximum, minimum, extreme points.) Let A be
a set, let f : A → R and let a ∈ A. We say that f has a maximum at a if

f(a) ≥ f(x) for all x ∈ A,

and we say that f has a minimum at a if

f(a) ≤ f(x) for all x ∈ A.

Points a where f has a maximum or a minimum are called extreme points of f .
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b

a

f has a maximum at a and a minimum at b

12.11 Example. Let f : [0, 1] → R be defined by

f(x) =
{

x if 0 ≤ x < 1
0 if x = 1.

(12.12)

1

1

{y = f(x)}

Then f has a minimum at 0 and at 1, but f has no maximum. To see that f

has no maximum, observe that if a ∈ [0, 1) then
1 + a

2
∈ [0, 1) and

f(
1 + a

2
) =

1 + a

2
>

a + a

2
= a = f(a).

If g is the function whose graph is shown, then g has a maximum at a, and g
has minimums at b and c.

cb
a

{y = g(x)} g(b) = g(c)
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12.13 Assumption (Extreme value property.) If f is a continuous func-
tion on the interval [a, b], then f has a maximum and a minimum on [a, b].

The extreme value property is another assumption that is really a theorem,
(although the proof requires yet another assumption, namely completeness of
the real numbers.)

The following exercise shows that all of the hypotheses of the extreme value
property are necessary.

12.14 Exercise.

a) Give an example of a continuous function f on (0, 1) such that f has no
maximum on (0, 1).

b) Give an example of a bounded continuous function g on the closed in-
terval [0,∞), such that g has no maximum on [0,∞)

c) Give an example of a function h on [0, 1] such that h has no maximum
on [0, 1].

d) Give an example of a continuous function k on [0,∞) that has neither a
maximum nor a minimum on [0,∞), or else explain why no such function
exists.

12.15 Exercise.

a) Show that every continuous function from an interval [a, b] to R is
bounded. (Hint: Use the extreme value property,)

b) Is it true that every continuous function from an open interval (a, b) to
R is bounded?

c) Give an example of a function from [0, 1] to R that is not bounded.

12.16 Definition (Critical point, critical set.) Let f be a real valued
function such that dom(f) ⊂ R. A point a ∈ dom(f) is called a critical point
for f if f ′(a) = 0. The set of critical points for f is the critical set for f .

The points x in the critical set for f correspond to points
(
x, f(x)

)
where the

graph of f has a horizontal tangent.
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12.17 Theorem (Critical point theorem I.) Let f be a real valued func-
tion with dom(f) ⊂ R. Let a ∈ R. If f has a maximum (or a minimum) at
a, and f is differentiable at a, then f ′(a) = 0.

Proof: We will consider only the case where f has a maximum. Suppose f
has a maximum at a and f is differentiable at a. Then a is an interior point
of dom(f) so we can find sequences {pn} and {qn} in dom(f) \ {a} such that
{pn} → a, {qn} → a, pn > a for all n ∈ Z+, and qn < a for all n ∈ Z+.

nq a np

Since f has a maximum at a, we have f(pn)− f(a) ≤ 0 and f(qn)− f(a) ≤ 0
for all n. Hence

f(pn)− f(a)

pn − a
≤ 0 and

f(qn)− f(a)

qn − a
≥ 0 for all n.

Hence by the inequality theorem for limits,

f ′(a) = lim
{f(pn)− f(a)

pn − a

}
≤ 0 and f ′(a) = lim

{f(qn)− f(a)

qn − a

}
≥ 0.

It follows that f ′(a) = 0. |||

12.18 Definition (Local maximum and minimum.) Let f be a real
valued function whose domain is a subset of R. Let a ∈ dom(f). We say that
f has a local maximum at a if there is a positive number δ such that

f(a) ≥ f(x) for all x ∈ dom(f) ∩ (a− δ, a + δ),

and we say that f has a local minimum at a if there is a positive number δ
such that

f(a) ≤ f(x) for all x ∈ dom(f) ∩ (a− δ, a + δ).
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Sometimes we say that f has a global maximum at a to mean that f has
a maximum at a, when we want to emphasize that we do not mean local
maximum. If f has a local maximum or a local minimum at a we say f has a
local extreme point at a.

12.19 Theorem (Critical point theorem II.) Let f be a real valued func-
tion with dom(f) ⊂ R. Let a ∈ R. If f has a local maximum or minimum at
a, and f is differentiable at a, then f ′(a) = 0.

Proof: The proof is the same as the proof of theorem 12.17.

12.20 Examples. If f has a maximum at a, then f has a local maximum
at a.

The function g whose graph is shown in the figure has local maxima at
A, B, C, D, E, F and local minima at a, b, c, and d. It has a global maximum
at E, and it has no global minimum.

A Dc d ECBaF b

From the critical point theorem, it follows that to investigate the extreme
points of f , we should look at critical points, or at points where f is not
differentiable (including endpoints of domain f).

12.21 Example. Let f(x) = x3 − 3x for −2 ≤ x ≤ 2. Then f is differen-
tiable everywhere on dom(f) except at 2 and −2. Hence, any local extreme
points are critical points of f or are in {2,−2}. Now

f ′(x) = 3x2 − 3 = 3(x2 − 1) = 3(x− 1)(x + 1).



266 CHAPTER 12. EXTREME VALUES OF FUNCTIONS

From this we see that the critical set for f is {−1, 1}. Since f is a continuous
function on a closed interval [−2, 2] we know that f has a maximum and a
minimum on [−2, 2]. Now

f(−2) = −2, f(−1) = 2, f(1) = −2, f(2) = 2.

Hence f has global maxima at −1 and 2, and f has global minima at −2 and
1. The graph of f is shown.

−2

2

−1

1

−2 2−1 1

{y = x
3 − 3x)}

12.22 Example. Let

f(x) =
1

1 + x2
.

Here dom(f) = R and clearly f(x) > 0 for all x. I can see by inspection that
f has a maximum at 0; i.e.,

f(x) =
1

1 + x2
≤ 1

1 + 0
= 1 = f(0) for all x ∈ R

I also see that f(−x) = f(x), and that f is strictly decreasing on R+

0 < x < t =⇒ x2 < t2 =⇒ 1 + x2 < 1 + t2 =⇒ 1

1 + x2
>

1

1 + t2

thus f has no local extreme points other than 0. Also f(x) is very small when
x is large. There is no point in calculating the critical points here because all
the information about the extreme points is apparent without the calculation.



12.4. THE MEAN VALUE THEOREM 267

−2 2−1 1

1

{y =
1

1+x
2}

12.23 Exercise. Find and discuss all of the global and local extreme points
for the following functions. Say whether the extreme points are maxima or
minima, and whether they are global or local.

a) f(x) = x4 − x2 for −2 ≤ x ≤ 2.

b) g(x) = 4x3 − 3x4 for −2 ≤ x ≤ 2.

12.4 The Mean Value Theorem

12.24 Lemma (Rolle’s Theorem) Let a, b be real numbers with a < b and
let f : [a, b] → R be a function that is continuous on [a, b] and differentiable on
(a, b). Suppose that f(a) = f(b). Then there is a point c ∈ (a, b) such that
f ′(c) = 0.

Proof: By the extreme value property, f has a maximum at some point
A ∈ [a, b]. If A ∈ (a, b), then f ′(A) = 0 by the critical point theorem. Suppose
A ∈ {a, b}. By the extreme value property, f has a minimum at some point
B ∈ [a, b]. If B ∈ (a, b) then f ′(B) = 0 by the critical point theorem. If
B ∈ {a, b}, then we have {A,B} ⊂ {a, b} so f(A) = f(B) = f(a) = f(b).
Hence in this case the maximum value and the minimum value taken by f are
equal, so f(x) = f(a) for x ∈ [a, b] so f ′(x) = 0 for all x ∈ (a, b). |||

Rolle’s theorem is named after Michel Rolle (1652-1719). An English trans-
lation of Rolle’s original statement and proof of the theorem can be found in
[43, pages 253-260]. It takes a considerable effort to see any relation between
what Rolle says and what our form of Rolle’s theorem says.
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12.25 Theorem (Mean value theorem.) Let a, b be real numbers and
let f : [a, b] → R be a function that is continuous on [a, b] and differentiable

on (a, b). Then there is a point c ∈ (a, b) such that f ′(c) =
f(b)− f(a)

b− a
; i.e.,

there is a point c where the slope of the tangent line is equal to the slope of the
line joining

(
a, f(a)

)
to

(
b, f(b)

)
.

Proof: The equation of the line joining
(
a, f(a)

)
to

(
b, f(a)

)
is

y = l(x) = f(a) +
f(b)− f(a)

b− a
(x− a).

(a,f(a))

y=f(x)

a c

(b,f(b))

y=l(x)

y=F(x)

b

Let

F (x) = f(x)− l(x)

= f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

Then F is continuous on [a, b] and differentiable on (a, b) and F (a) = F (b) = 0.
By Rolle’s theorem there is a point c ∈ (a, b) where F ′(c) = 0.

Now

F ′(x) = f ′(x)− f(b)− f(a)

b− a
,
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so

F ′(c) = 0 =⇒ f ′(c)− f(b)− f(a)

b− a
= 0

=⇒ f ′(c) =
f(b)− f(a)

b− a
. |||

12.26 Corollary. Let J be an interval in R and let f : J → R be a function
that is continuous on J and differentiable at the interior points of J . Then

f ′(x) = 0 for all x ∈ interior (J) =⇒ f is constant on J.

f ′(x) ≤ 0 for all x ∈ interior (J) =⇒ f is decreasing on J.

f ′(x) ≥ 0 for all x ∈ interior (J) =⇒ f is increasing on J.

f ′(x) < 0 for all x ∈ interior (J) =⇒ f is strictly decreasing on J.

f ′(x) > 0 for all x ∈ interior (J) =⇒ f is strictly increasing on J.

Proof: I will prove the second assertion. Suppose f ′(x) ≤ 0 for all x ∈ interior(J).
Let s, t be points in J with s < t. Then by the mean value theorem

f(t)− f(s) = f ′(c)(t− s) for some c ∈ (s, t).

Since f ′(c) ≤ 0 and (t − s) > 0, we have f(t) − f(s) = f ′(c)(t − s) ≤ 0; i.e.,
f(t) ≤ f(s). Thus f is decreasing on J. |||
12.27 Exercise. Prove the first assertion of the previous corollary; i.e.,

prove that if f is continuous on an interval J , and f ′(x) = 0 for all x ∈ interior(J),
then f is constant on J .

12.28 Definition (Antiderivative) Let f be a real valued function with
dom(f) ⊂ R. Let J be an interval such that J ⊂ dom(f). A function F is an
antiderivative for f on J if F is continuous on J and F ′(x) = f(x) for all x in
the interior of J .

12.29 Examples. Since
d

dx
(x3 + 4) = 3x2, we see that x3 + 4 is an an-

tiderivative for 3x2. Since

d

dx
(cos2(x)) = 2 cos(x)(− sin(x)) = −2 sin(x) cos(x),

and
d

dx
(− sin2(x)) = −2 · sin(x) cos(x)

we see that cos2 and − sin2 are both antiderivatives for −2 sin · cos.
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We will consider the problem of finding antiderivatives in chapter 17. Now
I just want to make the following observation:

12.30 Theorem (Antiderivative theorem.) Let f be a real valued func-
tion with dom(f) ⊂ R and let J be an interval with J ⊂ dom(f). If F and G
are two antiderivatives for f on J , then there is a number c ∈ R such that

F (x) = G(x) + c for all x ∈ J.

12.31 Exercise. Prove the antiderivative theorem.

12.32 Definition (Even and odd functions.) A subset S of R is called
symmetric if (x ∈ S =⇒ − x ∈ S). A function f is said to be even if dom(f)
is a symmetric subset of R and

f(x) = f(−x) for all x ∈ dom(f),

and f is said to be odd if dom(f) is a symmetric subset of R and

f(x) = −f(−x) for all x ∈ dom(f)

.

−x
xx−x

odd  functioneven  function

12.33 Example. If n ∈ Z+ and f(x) = xn, then f is even if n is even, and
f is odd if n is odd. Also cos is an even function and sin is an odd function,
while ln is neither even or odd.
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12.34 Example. If f is even, then V
(
graph(f)

)
= graph(f) where V is the

reflection about the vertical axis. If f is odd, then Rπ

(
graph(f)

)
= graph(f)

where Rπ is a rotation by π about the origin.

12.35 Exercise. Are there any functions that are both even and odd?

12.36 Exercise.

a) If f is an arbitrary even differentiable function, show that the derivative
of f is odd.

b) If g is an arbitrary odd differentiable function, show that the derivative
of g is even.



Chapter 13

Applications

13.1 Curve Sketching

13.1 Example. Let f(x) =
x3

1− x2
. Here dom(f) = R \ {±1} and f is an

odd function. We have

f ′(x) =
(1− x2)3x2 − x3(−2x)

(1− x2)2
=

3x2 − x4

(1− x2)2
=

x2(3− x2)

(1− x2)2
.

From this we see that the critical set for f is {0,√3,−√3}. We can determine
the sign of f ′(x) by looking at the signs of its factors: Since f is odd, I will
consider only points where x > 0.

0 < x < 1 1 < x <
√

3
√

3 < x

x2

(1−x2)2
+ + +

3− x2 + + −
f ′(x) + + −

Thus f is strictly increasing on (0, 1) and on (1,
√

3), and f is strictly decreasing
on (

√
3,∞). Also

f(
√

3) =
3
√

3

1− 3
= −3

2

√
3 and f(0) = 0.

272
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We see that |f(x)| is unbounded on any interval (1 − δ, 1) or (1, 1 + δ), since
the numerator of the fraction is near to 1, and the denominator is near to 0
on these intervals. Also

f(x) =
x3

1− x2
= x

( x2

1− x2

)
= x

( 1

−1 + 1
x2

)
,

so |f(x)| is large when x is large. (f(x) is the product of x and a number near
to −1.) Using this information we can make a reasonable sketch of the graph
of f .

−3

3

−2

−1

2

1

−2 −1−3 321

(
√

3,−3

2

√

3)

(−
√

3, 3

2

√

3)

Here f has a local maximum at
√

3 and a local minimum at −√3. It has
no global extreme points.

13.2 Definition (Infinite limits.) Let {xn} be a real sequence. We say

lim{xn} = +∞ or {xn} → +∞

if for every B ∈ R there is an N ∈ Z+ such that for all n ∈ Z≥N

(
xn > B

)
.

We say
lim{xn} = −∞ or {xn} → −∞
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if for every B ∈ R there is an N ∈ Z+ such that for all n ∈ Z≥N

(
xn < B

)
.

Let f be a real valued function such that dom(f) ⊂ R, and let a ∈ R. We say

lim
x→a+

f(x) = +∞
if dom(f) contains an interval (a, a+ε) and for every sequence {xn} in dom(f)∩(a,∞)

({xn} → a) =⇒
(
{f(xn)} → +∞

)
.

We say
lim

x→a−
f(x) = +∞

if dom(f) contains an interval (a−ε, a) and for every sequence {xn} in dom(f)∩(−∞, a)

({xn} → a) =⇒
(
{f(xn)} → +∞

)
.

Similar definitions can be made for

lim
x→a+

f(x) = −∞, lim
x→a−

f(x) = −∞.

We say lim
x→+∞ f(x) = +∞ if dom(f) contains some interval (a,∞) and for every

sequence {xn} in dom(f)

{xn} → +∞ =⇒ {f(xn)} → +∞.

Similarly if c ∈ R we can define

lim
x→+∞ f(x) = −∞, lim

x→+∞ f(x) = c, lim
x→−∞ f(x) = +∞, etc.

13.3 Example. If f is the function in the previous example (i.e. f(x) =
x3

1− x2
)

then

lim
x→1+

f(x) = −∞,

lim
x→1−

f(x) = +∞,

lim
x→+∞f(x) = −∞,

and

lim
x→−∞f(x) = +∞.
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Also,

lim
x→∞

1

x
= 0,

lim
x→0+

x

|x| = 1,

lim
x→0−

x

|x| = −1,

and

lim
x→+∞

x2 + 1

x2 + 3x
= lim

x→+∞
1 + 1

x2

1 + 3
x

= 1.

The situation here is very similar to the situation in the case of ordinary
limits, and we will proceed without writing out detailed justifications.

13.4 Exercise. Write out definitions for
(

lim
x→+∞ f(x) = −∞

)
and for

(
lim

x→a−
f(x) = −∞

)
.

13.5 Exercise. Find one function f satisfying all of the following condi-
tions:

lim
x→+∞f(x) = 3,

lim
x→3+

f(x) = +∞,

lim
x→3−

f(x) = +∞.

13.6 Example. Let f(x) = sin(2x) + 2 sin(x). Then f(x + 2π) = f(x) for
all x ∈ R, so I will restrict my attention to the interval [−π, π]. Also f is an
odd function, so I will further restrict my attention to the interval [0, π]. Now

f ′(x) = 2 cos 2x + 2 cos x = 2(2 cos2 x− 1) + 2 cos x

= 2(2 cos2 x + cos x− 1) = 2(2 cos x− 1)(cos x + 1)

= 4
(

cos x− 1

2

)
(cos x + 1).

Hence x is a critical point for f if and only if cos x ∈
{1

2
,−1

}
. The critical

points of f in [0, π] are thus π and
π

3
, and the critical points in [−π, π] are
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{
− π, π,

π

3
,−π

3

}
. Now f(π) = f(0) = 0 and

f
(π

3

)
= sin

(2π

3

)
+ 2 sin

(π

3

)
=

√
3

2
+

2
√

3

2
=

3
√

3

2
= 2.6(approximately),

and f
(
− π

3

)
= −f

(π

3

)
. Also note f ′(0) = 4. Since f is continuous on [−π, π],

we know that f has a maximum and a minimum on this interval, and since
f(x + 2π) = f(x) for all x ∈ R, the maximum (or minimum) of f on [−π, π]
will be a global maximum (or minimum) for f . Since f is differentiable every-
where, the extreme points are critical points and from our calculations f has

a maximum at
π

3
and a minimum at −π

3
. I will now determine the sign of f ′

on [0, π]:
0 < x < π

3
π
3

< x < π

cos x + 1 + +

cos x− 1
2

+ −
f ′(x) + −

Thus f is strictly increasing on
(
0,

π

3

)
and f is strictly decreasing on

(π

3
, π

)
.

We can now make a reasonable sketch for the graph of f .

−2

−1

2

1

−2π 2π−π π

13.7 Exercise. Sketch and discuss the graphs of the following functions.
Mention all critical points and determine whether each critical point is a local
or global maximum or minimum.

a) f(x) = (1− x2)2.
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b) g(x) =
x

1 + x2
.

c) h(x) = x + sin(x).

d) k(x) = x ln(x).

(The following remark may be helpful for determining lim
x→0

k(x). If 0 < t < 1,

then
1

t
<

1

t
3
2

. Hence if 0 < x < 1, then

| ln(x)| =
∣∣∣∣
∫ x

1

1

t
dt

∣∣∣∣ =
∫ 1

x

1

t
dt ≤

∫ 1

x

1

t
3
2

dt

= − 2

t
1
2

∣∣∣∣
1

x

= 2

(
1√
x
− 1

)
≤ 2√

x
.

Thus,
|x ln(x)| ≤ 2

√
x for 0 < x < 1).

13.2 Optimization Problems.

13.8 Example. A stick of length l is to be broken into four pieces of
length s, s, t and t and the pieces are to be assembled to make a rectangle.
How should s and t be chosen if the area of the rectangle is to be as large as
possible? What is the area of this largest rectangle? Before doing the problem
you should guess the answer. Your guess will probably be correct.

Let s be the length of one side of the rectangle. Then 2s + 2t = l so

t =
l

2
− s; i.e., t is a function of s. Let A(s) be the area of a rectangle with

side s. Then

A(s) = st = s
( l

2
− s

)
=

l

2
s− s2 for 0 ≤ s ≤ l

2
.

I include the endpoints for convenience; i.e., I consider rectangles with zero
area to be admissible candidates for my answer. These clearly correspond to
minimum area. Now

A′(s) =
l

2
− 2s
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so A has only one critical point, namely
l

4
, and

A
( l

4

)
=

l

2

l

4
−

( l

4

)2
=

l2

16
=

( l

4

)2
.

Since A is continuous on
[
0,

l

2

]
we know that A has a maximum and a mini-

mum, and since A is differentiable on
(
0,

l

2

)
the extreme points are a subset of

{
0,

l

2
,
l

4

}
. Since A(0) = A

( l

2

)
= 0 the maximal area is

( l

4

)2
; i.e., the maximal

rectangle is a square. (As you probably guessed.)
This problem is solved by Euclid in completely geometrical terms [17, vol 1

page 382].
Euclid’s proof when transformed from geometry to algebra becomes the

following. Suppose in our problem s 6= t, say s < t. Since s + t =
l

2
, it follows

that s ≤ l

4
≤ t (if s and t were both less than

l

4
, we’d get a contradiction, and

if they were both greater than
l

4
, we’d get a contradiction). Let r be defined

by

s =
l

4
− r so r ≥ 0.

Then t =
l

2
− s =

l

2
−

( l

4
− r

)
=

l

4
+ r so

A(s) = st =
( l

4
− r

)( l

4
+ r

)
=

( l

4

)2 − r2 = A
( l

4

)
− r2.

Hence, if r > 0, A(s) < A
( l

4

)
and to get a maximum we must have r = 0

and s =
l

4
. This proof requires knowing the answer ahead of time (but you

probably were able to guess it). In any case, Euclid’s argument is special,
whereas our calculus proof applies in many situations.

Quadratic polynomials can be minimized (or maximized) without calculus
by completing the square. For example, we have

A(s) = −s2 +
l

2
s
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= −
(
s2 − l

2
s +

( l

4

)2
)

+
( l

4

)2

=
( l

4

)2 −
(
s− l

4

)2
.

From this we can easily see that A(s) ≤
( l

4

)2
for all s and equality holds only

if s =
l

4
. This technique applies only to quadratic polynomials.

13.9 Example. Suppose I have 100 ft. of fence, and I want to fence off 3
sides of a rectangular garden, the fourth side of which lies against a wall and
requires no fence (see the figure). What should the sides of the garden be if
the area is to be as large as possible?

This is a straightforward problem, and in the next exercise you will do it
by using calculus. Here I want to indicate how to do the problem without
calculation. Imagine that the wall is a mirror, and that my fence is reflected
in the wall.

y

x

x x

4x+2y=2002x+y=100

y y

x

x
x

When I maximize the area of a garden with a rectangle of sides x and y, then
I have maximized the area of a rectangle bounded by 200 feet of fence (on
four sides) with sides y and 2x. From the previous problem the answer to
this problem is a square with y = 2x = 50. Hence, the answer to my original
question is y = 50, x = 25. Often optimization problems have solutions that
can be guessed on the basis of symmetry. You should try to guess answers to
these problems before doing the calculations.

13.10 Exercise. Verify my solution in the previous example by using
calculus and by completing the square.
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13.11 Example. I want to design a cylindrical can of radius r and height
h with a volume of V0 cubic feet (V0 is a constant). How should I choose r and
h if the amount of tin in the can is to be minimum?

r

h

Here I don’t see any obvious guess to make for the answer.
I have

V0 = volume of can = πr2h,

so h =
V0

πr2
. Let A(r) be the surface area of the can of radius r. Then

A(r) = area of sides + 2 (area of top)

= 2πr · h + 2(πr2)

= 2πr
V0

πr2
+ 2πr2

=
2V0

r
+ 2πr2.

The domain of A is R+. It is clear that lim
r→0+

A(r) = +∞, and lim
r→+∞A(r) = +∞.

Now A′(r) = −2V0

r2
+ 4πr =

4π

r2

(
r3 − V0

2π

)
. The only critical point for A is

r =
3

√
V0

2π
(call this number r0). Then A′(r) =

4π

r2
(r3 − r3

0). We see that

A′(r) < 0 for r ∈ (0, r0) and A′(r) > 0 for r ∈ (r0,∞) so A is decreasing
on (0, r0] and A is increasing on [r0,∞) and thus A has a minimum at r0. The
value of h corresponding to r0 is

h =
V0

πr2
0

=
V0

π
(

V0

2π

)2/3
=

22/3

π1/3
V

1/3
0 = 2

( V
1/3
0

21/3π1/3

)
= 2r0.

Thus the height of my can is equal to its diameter; i.e., the can will exactly
fit into a cubical box.



13.2. OPTIMIZATION PROBLEMS. 281

In the following four exercises see if you can make a reasonable guess to
the solutions before you use calculus to find them.

13.12 Exercise. A box (without a lid) is to be made by cutting 4 squares
of side s from the corners of a 12′′ × 12′′ square, and folding up the corners as
indicated in the figure.

s
s

s
s

s
s

s
s

s

How should s be chosen to make the volume of the box as large as possible?

13.13 Exercise. A rectangular box with a square bottom and no lid is to
be built having a volume of 256 cubic inches. What should the dimensions be,
if the total surface area of the box is to be as small as possible?

13.14 Exercise. Find the point(s) on the parabola whose equation is

y = x2 that are nearest to the point
(
0,

9

2

)
.

13.15 Exercise. Let p = (0, 3) and let q = (12, 6). Find the point(s) r on
the x-axis so that path from p to r to q is as short as possible; i.e., such that
length([pr]) + length([rq]) is as short as possible.

q

r
2 8

=(0,3)

64

=(12,6)

p

12
  =(x,0)

10

You don’t need to prove that the critical point(s) you find are actually mini-
mum points.
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13.3 Rates of Change

6

12

3

a

d

cb p

βαx y

m

l

Suppose in the given figure, I want to find the shortest path from a to a
point p on the segment [b c] and back to d. Any such path will be uniquely
defined by giving any one of the six numbers:

x = dist(b,p), 0 ≤ x ≤ 12.
y = dist(p, c), 0 ≤ y ≤ 12

l = dist(a,p), 3 ≤ l ≤ √
32 + 122.

m = dist(d,p), 6 ≤ m ≤ √
62 + 122.

α = 6 apb, A ≤ α ≤ π
2
.

β = 6 dpc, B ≤ β ≤ π
2
.

Here A,B are as shown in the figure below:

3
B

6

12
A

3

12
=

sin(A)

cos(A)
= tan(A) and

6

12
=

sin(B)

cos(B)
= tan(B).

For a given point p, any of the six numbers is a function of any of the others.
For example, we have l is a function of x

l =
√

x2 + 9,
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and l is a function of m, since for x ∈ [0, 12] and y ∈ [0, 12] we have

m2 = (12− x)2 + 36 =⇒ 12− x =
√

m2 − 36

=⇒ 12−
√

m2 − 36 = x

=⇒ l =

√(
12−

√
m2 − 36

)2
+ 9.

Also l is a function of α, since by similar triangles
sin(α)

1
=

3

l
and hence

l =
3

sin(α)
= 3 csc(α).

We have
dl

dx
=

1

2

2x√
x2 + 9

=
x√

x2 + 9

and
dl

dα
= −3 csc(α) cot(α).

I refer to
dl

dx
as the rate of change of l with respect to x and to

dl

dα
as the rate of

change of l with respect to α. Note that the “l”’s in “
dl

dx
”and “

dl

dα
”represent

different functions. In the first case l(x) =
√

x2 + 9 and in the second case

l(α) = 3 csc α. Here
dl

dx
is positive, indicating that l increases when x increases,

and
dl

dα
is negative, indicating that l decreases when α increases.

I want to find the path for which l + m is shortest; i.e., I want to find the
minimum value of l + m. I can think of l and m as being functions of x, and

then the minimum value will occur when
d

dx
(l + m) = 0; i.e.,

dl

dx
+

dm

dx
= 0. (13.16)

Now l2 = x2 + 9, so 2l · dl

dx
= 2 · x; i.e.,

dl

dx
=

x

l
= cos α,
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and m2 = (12− x)2 + 62, so 2m
dm

dx
= 2(12− x)(−1), i.e.,

dm

dx
= −(12− x)

m
= − y

m
= − cos β.

Equation (13.16) thus says that for the minimum path cos α − cos β = 0;
i.e., cos α = cos β, and hence α = β. Thus the minimizing path satisfies the
reflection condition, angle of incidence equals angle of reflection. Hence the
minimizing triangle will make 4bpa and 4cpd similar, and will satisfy

6

y
=

3

x
and x + y = 12,

so
6x = 3y = 3(12− x) = 36− 3x

or
9x = 36 so x = 4 and y = 8.

This example was done pretty much as Leibniz would have done it. You should
compare the solution given here to your solution of exercise 13.15.

The problem in the last example was solved by Heron (date uncertain,
sometime between 250 BC and 150 AD) as follows[26, page 353]. Imagine the
line [bc] to be a mirror. Let a′ and d′ denote the images of a and d in the
mirror,

d′d′

cc

dd

bb p
α β

β
α

β

aa

a′a′

i.e. [aa′] and [dd′] are perpendicular to [bc] and dist(a,b) = dist(a′,b),
dist(d, c) = dist(d′, c). Consider any path apd going from a to a point p
on the mirror, and then to d. Then triangle(pcd) and triangle(pcd′) are
congruent, and hence

dist(p,d) = dist(p,d′).
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and hence the paths apd and apd′ have equal lengths. Now the shortest path
apd′ is a straight line, which makes the angles α and β are vertical angles,
which are equal. Hence the shortest path makes the angle of incidence equal
to the angle of reflection, as we found above by calculus.

Remark: We can think of velocity as being rate of change of position with
respect to time.

13.17 Exercise. Consider a conical tank in the shape of a right circular
cone with altitude 10′ and diameter 10′ as shown in the figure.

10

h

10

Water flows into the tank at a constant rate of 10 cubic ft./minute. Let h
denote the height of the water in the tank at a given time t. Find the rate of
change of h with respect to t. What is this rate when the height of the water

is 5′? What can you say about
dh

dt
when h is nearly zero?

13.18 Exercise. A particle p moves on the rim of a wheel of radius 1 that
rotates about the origin at constant angular speed ω, so that at time t it is at
the point

(
cos(ωt), sin(ωt)

)
. A light at the origin causes p to cast a shadow

at the point (2, y) on a wall two feet from the center of the wheel.

(2,y)

p
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Find the rate of change of y with respect to time. You should ignore the speed
of light, i.e. ignore the time it takes light to travel from the origin to the wall.



Chapter 14

The Inverse Function Theorem

14.1 The Intermediate Value Property

14.1 Assumption (Intermediate value property 1.) Let a, b be real
numbers with a < b, and let f be a continuous function from [a, b] to R such
that f(a) < 0 and f(b) > 0. Then there is some number c ∈ (a, b) such that
f(c) = 0.

(c,f(c))

(b,f(b))

(a,f(a))

The intermediate value theorem was first proved in 1817 by Bernard Bolzano
(1781–1848). However Bolzano published his proof in a rather obscure Bo-
hemian journal, and his work did not become well known until much later.
Before the nineteenth century the theorem was often assumed implicitly, i.e.
it was used without stating that it was an assumption.

287
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14.2 Definition (c is between a and b.) Let a, b and c be real numbers
with a 6= b. We say that c is between a and b if either a < c < b or b < c < a.

14.3 Corollary (Intermediate value property 2.) Let f be a continuous
function from some interval [a, b] to R, such that f(a) and f(b) have opposite
signs. Then there is some number c between a and b such that f(c) = 0.

Proof: If f(a) < 0 < f(b) the result follows from assumption 14.1. Suppose
that f(b) < 0 < f(a). Let g(x) = −f(x) for all x ∈ [a, b]. then g is a
continuous function on [a, b] and g(a) < 0 < g(b). It follows that there is a
number c ∈ (a, b) such that g(c) = 0, and then f(c) = −g(c) = 0. |||
14.4 Corollary (Intermediate value property 3.) Let a, b be real num-

bers with a < b, and let f : [a, b] → R be a continuous function such that
f(a) 6= f(b). Let p be any number between f(a) and f(b). Then there is a
number c ∈ (a, b) such that f(c) = p.

14.5 Exercise. Prove Corollary 14.4. You may assume that f(a) < f(b).

14.2 Applications

14.6 Example. We know that ln is continuous on R+, and that ln(2) ≤ 1
≤ ln(4).(Cf equation (5.78).) It follows that there is a number e in [2, 4] such
that ln(e) = 1.

14.7 Example. Two points P,Q on a sphere are called antipodal points
if P and Q are opposite ends of the same diameter of the sphere. We will
consider the surface of the earth to be a sphere of radius R. At any fixed time,
let T (p) denote the temperature of the earth at the point p on the surface of
the earth. (More precisely, let T (p) be the number such that the temperature
at p is T (p)◦C). We will show that there are two antipodal points P, Q on the
surface of the earth such that T (P ) = T (Q). In fact, we will show that there
are two antipodal points on the equator with the same temperature. We first
introduce a coordinate system so that the center of the earth is at the origin,
and the plane of the equator is the x-y plane, and the point on the equator
passing through the Greenwich meridian is the point (R, 0). Then the points
on the equator are the points

(R cos(θ), R sin(θ)) where θ ∈ R.
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Define a function f : [0, π] → R by

f(θ) = T (R cos(θ), R sin(θ))− T (−R cos(θ),−R sin(θ)).

Thus
f(0) = T (R, 0)− T (−R, 0).

We suppose that f is a continuous function on [0, π]. If f(0) = 0 then
T (R, 0) = T (−R, 0), so (R, 0) and (−R, 0) are a pair of antipodal points
with the same temperature. Now

f(π) = T (−R, 0)− T (R, 0) = −f(0),

so if f(0) 6= 0 then f(0) and f(π) have opposite signs. Hence by the in-
termediate value property, there is a number c ∈ (0, π) such that f(c) = 0,
i.e.

T (R cos(c), R sin(c)) = T (−R cos(c),−R sin(c)).

Then (R cos(c), R(sin(c)) and (−R cos(c),−R(sin(c)) are a pair of antipodal
points with the same temperature. |||
14.8 Example. Let

P = a0 + a1X + a2X
2 + a3X

3

where a0, a1, a2, and a3 are real numbers, and a3 6= 0. Then there exists some
number r ∈ R such that P (r) = 0.
Proof: I will suppose that P (t) 6= 0 for all t ∈ R and derive a contradiction.
Let

Q(x) =
P (x)

P (−x)
for all x ∈ R.

Since P (x) 6= 0 for all x ∈ R, Q is continuous on R. We know that

lim{Q(n)} = lim{a0 + a1n + a2n
2 + a3n

3

a0 − a1n + a2n2 − a3n3
}

= lim

{
a0

n3 + a1

n2 + a2

n
+ a3

a0

n3 − a1

n2 + a2

n
− a3

}
= −1.

Hence Q(N) < 0 for some N ∈ Z+. Then P (N) and P (−N) have opposite
signs, so by the intermediate value property there is a number r ∈ [−N,N ]
such that P (r) = 0. This contradicts our assumption that P (t) 6= 0 for all
t ∈ R. |||
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14.9 Exercise. Let p(x) = x3 − 3x + 1. Show that there are at least three
different numbers a, b, c such that p(a) = p(b) = p(c) = 0.

14.10 Exercise. Three wires AC,BC, DC are joined at a common point
C.

A

C

B

D

Let S be the Y-shaped figure formed by the three wires. Prove that at any
time there are two points in S with the same temperature.

14.11 Exercise. Six wires are joined to form the figure F shown in the
diagram.

C

A

D
B

Show that at any time there are three points in F that have the same tem-
perature. To simplify the problem, you may assume that the temperatures at
A,B, C, and D are all distinct.

14.3 Inverse Functions

14.12 Definition (Injective.) Let A and B be sets. A function f : A → B
is called injective or one-to-one if and only if for all points a, b in A

(a 6= b) =⇒ (f(a) 6= f(b)),
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or equivalently if and only if

(f(a) = f(b)) =⇒ (a = b).

If f is a function whose domain and codomain are subsets of R then f is
injective if and only if each horizontal line intersects the graph of f at most
once.

ba

a 6= b, f(a) = f(b), f is not injective

14.13 Examples. Let f : [0,∞) → R and g : R → R be defined by

f(x) = x2 for all x ∈ [0,∞)

g(x) = x2 for all x ∈ (−∞,∞).

Then f is injective, since for all x, y ∈ [0,∞) we have x + y > 0, and hence

(
x2 = y2

)
=⇒

(
x2 − y2 = 0

)
=⇒

(
(x− y)(x + y) = 0

)
=⇒

(
x = y

)
.

However g is not injective, since g(−1) = g(1).

14.14 Remark (Strictly monotonic functions are injective.) If h is
strictly increasing on an interval J , then h is injective on J , since for all
x, y ∈ J

x 6= y =⇒ ((x < y) or (y < x))

=⇒ ((h(x) < h(y)) or ((h(y) < h(x))

=⇒ h(x) 6= h(y).

Similarly, any strictly decreasing function on J is injective.
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14.15 Definition (Surjective.) Let A, B be sets and let f : A → B. We
say that f is surjective if and only if B = image(f), i.e. if and only if for every
b ∈ B there is at least one element a of A such that f(a) = b.

14.16 Examples. Let f : R → R and g : R → [0,∞) be defined by

f(x) = x2 for all x ∈ (−∞,∞)

g(x) = x2 for all x ∈ [0,∞).

Then g is surjective, since if x ∈ [0,∞), then x = g(
√

x), but f is not surjective,
since −1 is not in the image of f .

14.17 Exercise. Give examples of functions with the following properties,
or else show that no such functions exist.

f : R → R, f is injective and surjective.
g : R → R, g is injective but not surjective.
h : R → R, h is surjective but not injective.
k : R → R, k is neither injective nor surjective.

14.18 Definition (Bijective.) Let A,B be sets. A function f : A → B is
called bijective if and only if f is both injective and surjective.

14.19 Examples. If f : [0,∞) → [0,∞) is defined by

f(x) = x2 for all x ∈ [0,∞),

then f is bijective.

The function ln is a bijective function from R+ to R. We know that ln is
strictly increasing, and hence is injective. If y is any real number we know that
ln takes on values greater than y, and values less that y, so by the intermediate
value property (here we use the fact that ln is continuous) it also takes on the
value y, i.e. ln is surjective.

14.20 Remark. Let A and B be sets, and let f : A → B be a bijective
function. Let b be a generic element of B. Since f is surjective, there is an
element a in A such that f(a) = b. Since f is injective this element a is unique,
i.e. if a and c are elements of A then

(
f(a) = b and f(c) = b

)
=⇒

(
f(a) = f(c)

)
=⇒

(
a = c

)
.
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Hence we can define a function g : B → A by the rule

g(b) = the unique element a ∈ A such that f(a) = b.

Then by definition
f(g(b)) = b for all b ∈ B.

Now let a ∈ A, so that f(a) ∈ B. It is clear that the unique element s in A
such that f(s) = f(a) is s = a, and hence

g(f(a)) = a for all a ∈ A.

14.21 Definition (Inverse function.) Let A,B be sets, and let f : A → B.
An inverse function for f is a function g : B → A such that

(
f(g(b)) = b for all b ∈ B

)
and

(
g(f(a)) = a for all a ∈ A

)
.

14.22 Remark (Bijective functions have inverses.) Notice that in the
definition of inverse functions, both the domain and the codomain of f enter
in a crucial way. It is clear that if g is an inverse function for f , then f is
an inverse function for g. Remark 14.20 shows that every bijective function
f : A → B has an inverse.

14.23 Example. Let f : [0,∞) be defined by

f(x) = x2 for all x ∈ [0,∞).

We saw above that f is bijective, and hence has an inverse. If

g(x) =
√

x for all x ∈ [0,∞)

Then it is clear that g is an inverse function for f .
We also saw that ln : R+ → R is bijective, and so it has an inverse. This

inverse is not expressible in terms of any functions we have discussed. We will
give it a name.

14.24 Definition (E(x).) Let E denote the inverse of the logarithm func-
tion. Thus E is a function from R to R+, and it satisfies the conditions

ln(E(x)) = x for all x ∈ R,

E(ln(x)) = x for all x ∈ R+.

We will investigate the properties of E after we have proved a few general
properties of inverse functions.
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In order to speak of the inverse of a function, as we did in the last definition,
we should note that inverses are unique.

14.25 Theorem (Uniqueness of inverses.) Let A,B be sets and let
f : A → B. If g and h are inverse functions for f , then g = h.

Proof: If g and h are inverse functions for f then

dom(g) = dom(h) = codomain(f) = B,

and
codomain(g) = codomain(h) = dom(f) = A.

Also for all x ∈ B
h(x) = g(f(h(x))) = g(x).

(I have used the facts that y = g(f(y)) for all y ∈ A, and f(h(x)) = x for all
x ∈ B).

14.26 Theorem (Reflection theorem.) Let f : A → B be a function
which has an inverse function g : B → A. Then for all (a, b) ∈ A×B

(a, b) ∈ graph(f) ⇐⇒ (b, a) ∈ graph(g).

Proof: Let f : A → B be a function that has an inverse function g : B → A.
Then for all (a, b) ∈ A×B

(
b = f(a)

)
=⇒

(
g(b) = g(f(a)) = a

)
=⇒

(
g(b) = a

)

and (
g(b) = a

)
=⇒

(
b = (f(g(b)) = f(a)

)
=⇒

(
b = f(a)

)
.

Thus (
b = f(a)

)
⇐⇒

(
a = g(b)

)
.

Now (
b = f(a)

)
⇐⇒

(
(a, b) ∈ graph(f)

)
,

and (
a = g(b)

)
⇐⇒

(
(b, a) ∈ graph(g)

)
,

and the theorem now follows. |||
Remark: If f is a bijective function with dom(f) ⊂ R and codomain(f) ⊂ R
Then the reflection theorem says that if g is the inverse function for f , then
graph(g) = D+(graph(f)) where D+ is the reflection about the line y = x.
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graph

graph
(b,a)

(g)

(f)

(a,b)

Since we know what the graph of ln looks like, we can make a reasonable
sketch of graph(E).

(1,e)

(e,1)E

ln

graph(  )

graph(   )

It is a standard notation to denote the inverse of a function f by f−1.

However since this is also a standard notation for the function
1

f
which is an

entirely different object, I will not use this notation.

We have shown that if f : A → B is bijective, then f has an inverse
function. The converse is also true.

14.27 Theorem. Let A, B be sets and let f : A → B. If f has an inverse
function, then f is both injective and surjective.

Proof: Suppose f has an inverse function g : B → A. Then for all s, t in A
we have

(
f(s) = f(t)

)
=⇒

(
g(f(s)) = g(f(t))

)
=⇒

(
s = t

)
(14.28)
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and hence f is injective. Also, for each b ∈ B

b = f(g(b)),

so b ∈ image(f), and f is surjective. |||

14.4 The Exponential Function

14.29 Example. We will now derive some properties of the inverse function
E of the logarithm.

We have

ln(1) = 0 =⇒ E(0) = 1,

ln(e) = 1 =⇒ E(1) = e.

For all a and b in R,

a + b = ln(E(a)) + ln(E(b)) = ln(E(a)E(b)).

If we apply E to both sides of this equality we get

E(a + b) = E(a)E(b) for all a, b ∈ R.

For all a ∈ R we have

1 = E(0) = E(a + (−a)) = E(a)E(−a),

from which it follows that

E(−a) = (E(a))−1 for all a ∈ R.

If a ∈ R and q ∈ Q we have

ln((E(a))q) = q ln(E(a)) = qa.

If we apply E to both sides of this identity we get

(E(a))q = E(qa) for all a ∈ R+, q ∈ Q.

In particular,
eq = (E(1))q = E(q) for all q ∈ Q. (14.30)
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Now we have defined E(x) for all x ∈ R, but we have only defined xq when

x ∈ R+ and q ∈ Q. (We know what 2
1
2 is, but we have not defined 2

√
2.)

Because of relation (14.30) we often write ex in place of E(x). E is called the
exponential function, and is written

E(x) = ex = exp(x) for all x ∈ R.

We can summarize the results of this example in the following theorem:

14.31 Theorem (Properties of the exponential function.) The expo-
nential function is a function from R onto R+. We have

ea+b = eaeb for all a, b ∈ R.

ea−b =
ea

eb
for all a, b ∈ R. (14.32)

(ea)q = eaq for all a ∈ R, and for all q ∈ Q.

(ea)−1 = e−a for all a ∈ R.

eln(x) = x for all x ∈ R+.

ln(ea) = a for all a ∈ R.

e0 = 1.

e1 = e. (14.33)

Proof: We have proved all of these properties except for relation (14.32). The
proof of (14.32) is the next exercise.

14.34 Exercise. Show that ea−b =
ea

eb
for all a, b ∈ R.

14.35 Exercise. Show that if a ∈ R+ and q ∈ Q, then

aq = eq ln(a).

14.36 Definition (ax.) The result of the last exercise motivates us to make
the definition

ax = ex ln(a) for all x ∈ R and for all a ∈ R+.

14.37 Exercise. Prove the following results:

axay = ax+y for all a ∈ R+ and for all x, y ∈ R.

(ax)y = axy for all a ∈ R+ and for all x, y ∈ R.

(ab)x = axbx for all a, b ∈ R+ and for all x ∈ R.

ln(ax) = x ln(a) for all a ∈ R+ and for all x ∈ R.
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14.5 Inverse Function Theorems

14.38 Lemma. Let f be a strictly increasing continuous function whose
domain is an interval [a, b]. Then the image of f is the interval [f(a), f(b)],
and the function f : [a, b] → [f(a), f(b)] has an inverse.

Proof: It is clear that f(a) and f(b) are in image(f). Since f is continu-
ous we can apply the intermediate value property to conclude that for ev-
ery number z between f(a) and f(b) there is a number c ∈ [a, b] such that
z = f(c), i.e. [f(a), f(b)] ⊂ image(f). Since f is increasing on [a, b] we have
f(a) ≤ f(t) ≤ f(b) whenever a ≤ t ≤ b, and thus image(f) ⊂ [f(a), f(b)]. It
follows that f : [a, b] → [f(a), f(b)] is surjective, and since strictly increasing
functions are injective, f is bijective. By remark (14.22) f has an inverse.

14.39 Exercise. State and prove the analogue of lemma 14.38 for strictly
decreasing functions.

14.40 Exercise. Let f be a function whose domain is an interval [a, b],
and whose image is an interval. Does it follow that f is continuous?

14.41 Exercise. Let f be a continuous function on a closed bounded
interval [a, b]. Show that the image of f is a closed bounded interval [A, B].

14.42 Exercise. Let J and I be non-empty intervals and let f : J → I be
a continuous function such that I = image(f).

a) Show that if f is strictly increasing, then the inverse function for f is
also strictly increasing.

b) Show that if f is strictly decreasing, then the inverse function for f is
also strictly decreasing.

14.43 Theorem (Inverse function theorem.) Let f be a continuous
strictly increasing function on an interval J = [a, b] of positive length, such

that f ′(x) > 0 for all x ∈ interior(J). Let I be the image of J and let

g : I → J

be the inverse function for f . Then g is differentiable on the interior of I and

g′(s) =
1

f ′(g(s))
for all s ∈ interior(I) (14.44)
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Remark: If l is a nonvertical line joining two points (p, q) and (r, s) then
the slope of l is

m =
s− q

r − p
.

The reflection of l about the line whose equation is y = x passes through the
points (q, p) and (s, r), so the slope of the reflected line is

r − p

s− q
=

1

m
.

(p,q)

(s,r)

(r,s)

(q,p)

f

(s,g(s))

graph(  )g

graph(  )

(g(s),s))

g
′(s) = 1

f ′(g(s))

Thus theorem 14.43 says that the tangent to graph(g) at the point (s, g(s))
is obtained by reflecting the tangent to graph(f) at (g(s), s) about the line
whose equation is y = x. This is what you should expect from the geometry
of the situation.
Proof of theorem 14.43: The first thing that should be done, is to prove that
g is continuous. I am going to omit that proof and just assume the continuity
of g, and then show that g is differentiable, and that g′ is given by formula
(14.44).

Let s be a point in the interior of dom(g). then

lim
t→s

g(t)− g(s)

t− s
= lim

t→s

g(t)− g(s)

f(g(t))− f(g(s))

= lim
t→s

1
f(g(t))−f(g(s))

g(t)−g(s)

. (14.45)
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(Observe that we have not divided by zero). Let {tn} be a sequence in
dom(g) \ {s} such that {tn} → s. Then {g(tn)} → g(s) (since g is assumed to
be continuous), and g(tn) 6= g(s) for all n ∈ Z+ (since g is injective). Since f
is differentiable at g(s), it follows that

{
f(g(tn))− f(g(s))

g(tn)− g(s)

}
→ f ′(g(s)).

Since f ′(g(s)) 6= 0 it follows that




1
f(g(tn))−f(g(s))

g(tn)−g(s)



 → 1

f ′(g(s)
.

It follows that

lim
t→s

g(t)− g(s)

t− s
=

1

f ′(g(s))

and the theorem is proved. |||
Remark: The inverse function theorem also applies to continuous functions
f on J such that f ′(s) < 0 for all s ∈ interior (a, b). Formula (14.44) is valid
in this case also.

Remark: Although we have stated the inverse function theorem for functions
on intervals of the form [a, b], it holds for functions defined on any interval.
Let J be an interval, and let f be a continuous strictly increasing function
from J to R such that f ′(x) > 0 for all x in the interior of J . Let p be a point
in the interior of image(J). Then we can find points r and s in image(J) such
that r < p < s. Now f maps the interval [g(r), g(s)] bijectively onto [r, s],
and since p ∈ (r, s) we can apply the inverse function theorem on the interval

[g(r), g(s)] to conclude that g′(p) =
1

f ′(g(p))
. It is not necessary to remember

the formula for g′(p). Once we know that g is differentiable, we can calculate
g′ by using the chain rule, as illustrated by the examples in the next section.

14.6 Some Derivative Calculations

14.46 Example (Derivative of exp.) We know that

ln(E(t)) = t for all t ∈ R.



14.6. SOME DERIVATIVE CALCULATIONS 301

If we differentiate both sides of this equation, we get

1

E(t)
E ′(t) = 1,

i.e.
E ′(t) = E(t) for all t ∈ R.

14.47 Example (Derivative of xr.) Let r be any real number and let
f(x) = xr for all x ∈ R+. Then

f(x) = xr = E(r ln(x)),

so by the chain rule

f ′(x) = E ′(r ln(x)) · r

x
= E(r ln(x)) · rx−1 = xrrx−1 = rxr−1.

(Here I have used the result of exercise 14.37.) Thus the formula

d

dx
(xr) = rxr−1

which we have known for quite a while for rational exponents, is actually valid
for all real exponents.

14.48 Exercise (Derivative of ax.) Let a ∈ R+. Show that

d

dx
(ax) = ax ln(a)

for all x ∈ R.

14.49 Example (Derivative of xx.)

d

dx
xx =

d

dx
ex ln(x) = ex ln(x) d

dx
(x ln(x))

= xx(x · 1

x
+ ln(x)) = xx(1 + ln(x)).

Hence
d

dx
xx = xx(1 + ln(x)) for all x ∈ R+.
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14.50 Example (Derivative of arccos.) Let C : [0, π] → [−1, 1] be defined
by

C(x) = cos(x) for all x ∈ [0, π].

C

(−1,π)

graph(arccos)

graph(  )
(π,−1)

We have
C ′(x) = − sin(x) < 0 for all x ∈ (0, π),

so C has an inverse function which is denoted by arccos. By the inverse
function theorem arccos is differentiable on (−1, 1). and we have

cos(arccos(t)) = C(arccos(t)) = t for all t ∈ [−1, 1].

By the chain rule

− sin(arccos(t)) arccos′(t) = 1 for all t ∈ (−1, 1).

Now since the sine function is positive on (0, π) we get

sin(s) =
√

1− cos2(s)

for all s ∈ (0, π), so

sin(arccos(t)) =
√

1− (cos(arccos(t)))2 =
√

1− t2 for all t ∈ (−1, 1).

Thus

arccos′(t) =
−1

sin(arccos(t))
=

−1√
1− t2

for all t ∈ (−1, 1).
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14.51 Exercise (Derivative of arcsin.) Let

S(t) = sin(t) for all t ∈ [−π

2
,
π

2
].

Show that S has an inverse function that is differentiable on the interior of
its domain. This inverse functions is called arcsin. Describe the domain of
arcsin, sketch the graphs of S and of arcsin, and show that

d

dx
arcsin(x) =

1√
1− x2

.

14.52 Example (Derivative of arctan.) Let

T (x) = tan(x) for all x ∈ (−π

2
,
π

2
).

Then T is continuous, and the image of T is unbounded both above and below,
so image(T ) = R. Also

T ′(x) = sec2(x) > 0 for all x ∈ (−π

2
,
π

2
)

so T has an inverse function, which we denote by arctan.

y = −π

2

y = π

2

x = π

2
x = −π

2

graph(arctan)

graph(T )
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For all x ∈ R
tan(arctan(x)) = T (arctan(x)) = x,

so by the chain rule

sec2(arctan(x)) arctan′(x) = 1 for all x ∈ R.

Now
sec2(t) = 1 + tan2(t) for all t ∈ dom(sec),

so
sec2(arctan(x)) = 1 + tan2(arctan(x)) = 1 + x2 for all x ∈ R.

Thus

arctan′(x) =
1

sec2(arctan(x))
=

1

1 + x2
for all x ∈ R.

14.53 Exercise (Derivative of arccot.) Let

V (x) = cot(x) for all x ∈ (0, π).

Show that V has an inverse function arccot, and that

d

dx
arccot(x) = − 1

1 + x2
.

What is dom(arccot)? Sketch the graphs of V and of arccot.

Remark The first person to give a name to the inverse trigonometric functions
was Daniel Bernoulli (1700-1792) who used AS for arcsin in 1729. Other early
notations included arc(cos. = x) and ang(cos. = x)[15, page 175]. Many
calculators and some calculus books use cos−1 to denote arccos. (If you use
your calculator to find inverse trigonometric functions, make sure that you set
the degree-radian-grad mode to radians.)

14.54 Exercise. Calculate the derivatives of the following functions, and
simplify your answers (Here a is a constant.)

a) f(x) = x
√

a2 − x2 + a2 arcsin(
x

a
).

b) g(x) = arcsin(x) +
x

1− x2
.
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c) h(x) = x arccos(ax)− 1

a

√
1− a2x2.

d) k(x) = arctan(ex + e−x).

e) m(x) = x
√

1− x2 + arcsin(x)(2x2 − 1).

f) n(x) = eax(a sin(bx)− b cos(bx)). Here a and b are constants.

g) p(x) = eax(a2x2 − 2ax + 2). Here a is a constant..

14.55 Exercise. Let

l(x) = arctan(tan(x)).

Calculate the derivative of l. What is the domain of this function? Sketch the
graph of l.

14.56 Exercise (Hyperbolic functions.) We define functions sinh and
cosh on R by

cosh(x) =
ex + e−x

2
for all x ∈ R.

sinh(x) =
ex − e−x

2
for all x ∈ R.

These functions are called the hyperbolic sine and the hyperbolic cosine respec-
tively. Show that

d

dx
cosh(x) = sinh(x),

and
d

dx
sinh(x) = cosh(x).

Calculate
d

dx

(
cosh2(x)− sinh2(x)

)
,

and simplify your answer as much as you can. What conclusion can you draw
from your answer? Sketch the graphs of cosh and sinh on one set of coordinate
axes.



Chapter 15

The Second Derivative

15.1 Higher Order Derivatives

15.1 Definition (Higher order derivatives.) Let f be a function whose
domain is a subset of R. We define a function f ′ (called the derivative of f)
by

domain(f ′) = {x ∈ dom(f) : f ′(x) exists}.
and for all x ∈ dom(f), the value of f ′ at x is the derivative f ′(x). We may also
write f (1) for f ′. Since f ′ is itself a function, we can calculate its derivative:
this derivative is denoted by f ′′ or f (2), and is called the second derivative of
f . For integers n ≥ 2 we define

f (n+1) = (f (n))′. (15.2)

and we call f (n) the nth derivative of f . We also define

f (0) = f.

In Leibniz’s notation we write

dnf

dxn
= f (n), or

dn

dxn
f = f (n), or

(
d

dx

)(n)

f(x) = f (n)(x) or
dnf

dxn
= f (n)(x),

so that equation (15.2) becomes

dn+1f

dxn+1
=

d

dx

(
dnf

dxn

)
.

306
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If a and b are real numbers, and f and g are functions then from known
properties of the derivative we can show that

(af + bg)(n) = af (n) + bg(n) on dom(f (n)) ∩ dom(g(n)).

or
dn

dxn
(af + bg) = a

dnf

dxn
+ b

dnf

dxn
.

15.3 Examples. If h(x) = sin(ωx), where ω ∈ R, then

h′(x) = ω cos(ωx),

h′′(x) = −ω2 sin(ωx),

h(3)(x) = −ω3 cos(ωx),

h(4)(x) = ω4 sin(ωx) = ω4h(x).

It should now be apparent that

h(4n+k)(x) = ω4nh(k)(x) for k = 0, 1, 2, 3.

so that
h(98)(x) = h(4·24+2)(x) = ω96h(2)(x) = −ω98 sin(ωx).

If

g(x) = 1 + x +
x2

2!
+

x3

3!

then

g′(x) = 1 + x +
x2

2!
,

g′′(x) = 1 + x,

g(3)(x) = 1,

g(n)(x) = 0 for n ∈ Z≥4.
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If y = ln(x) then

dy

dx
=

1

x
,

d2y

dx2
= − 1

x2
,

d3y

dx3
=

2

x3
.

15.4 Exercise. Calculate g(5)(t) if g(t) = t4 ln(t).

15.5 Exercise. Let g(t) = tf(t). Calculate g′(t), g′′(t), g(3)(t) and g(4)(t)
in terms of f(t), f ′(t), f ′′(t), f (3)(t) and f (4)(t). What do you think is the
formula for g(n)(t)?

15.6 Exercise. Find
d2y

dx2
if y = 1/(x2 − 1).

15.7 Exercise. Find f ′′(x) if f(x) = e
1

x2 = exp
(

1

x2

)
.

15.8 Exercise. Suppose f ′′(x) = 0 for all x ∈ R. What can you say about
f?

15.9 Exercise. Let f and g be functions such that f (2) and g(2) are defined
on all of R. Show that

(fg)(2) = fg(2) + 2f (1)g(1) + f (2)g.

Find a similar function for (fg)(3) (assuming that f (3) and g(3) are defined.)

In Leibniz’s calculus, d2f or ddf was actually an infinitely small quantity

that was so much smaller than dx that the quotient
d2f

dx
was zero, and

d2f

dx2

was obtained by multiplying dx by itself and then dividing the result into d2f .

Leibniz also used notations like
ddy

ddx
and

dxds

ddy
for which our modern notation

has no counterparts. Leibniz considered the problem of defining a meaning
for d

1
2 f , but he did not make much progress on this problem. Today there is

considerable literature on fractional derivatives. A brief history of the subject
can be found in [36, ch I and ch VIII].
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15.10 Exercise. Let a be a real number. Show that for k = 0, 1, 2, 3

dk

dxk
eax = akeax. (15.11)

After doing this it should be clear that equation (15.11), in fact holds for all
n ∈ Z≥0 (this can be proved by induction). Now suppose that a > 0 and we
will define

dr

dxr
eax = areax for all r ∈ R. (15.12)

Show that then for all p and q in R,

(
d

dx

)p ((
d

dx

)q

(eax)

)
=

(
d

dx

)p+q

(eax).

Find

(
d

dx

) 1
2

e3x and

(
d

dx

) 1
2

e5x. What do you think

(
d

dx

) 1
2 (

3e3x + 4e5x
)

should be?
Equation (15.12) was the starting point from which Joseph Liouville (1809–
1882) developed a theory of fractional calculus[36, pp 4-6].

15.13 Exercise. Let a and b be real numbers. Show that for k = 0, 1, 2, 3

(
d

dx

)k

cos(ax + b) = ak cos(ax + b +
kπ

2
). (15.14)

After doing this exercise it should be clear that in fact equation (15.14) holds
for all k ∈ Z≥0 (this can be proved by induction). Now suppose that a > 0,
and we will define

(
d

dx

)r

cos(ax + b) = ar cos(ax + b +
rπ

2
) for all r ∈ R. (15.15)

Show that for all p and q in R

(
d

dx

)p ((
d

dx

)q

cos(ax + b)

)
=

(
d

dx

)p+q

cos(ax + b).

Equation (15.15) was used as the starting point for a definition of fractional
derivatives for general functions, by Joseph Fourier (1768–1830)[36, page 3].



310 CHAPTER 15. THE SECOND DERIVATIVE

15.2 Acceleration

15.16 Definition (Acceleration.) If a particle p moves in a straight line
so that its position at time t is h(t), we have defined its velocity at time t to be
h′(t). We now define its acceleration at time t to be h′′(t), so that acceleration is
the derivative of velocity. Thus if a particle moves with a constant acceleration

of 1
ft./sec.

sec. , then every second its velocity increases by one ft./sec.

15.17 Example. A mass on the end of a spring moves so that its height
at time t is −A cos(ωt), where A and ω are positive numbers. If we denote its
velocity at time t by v(t), and its acceleration at time t by a(t) then

h(t) = −A cos(ωt)

v(t) = h′(t) = Aω sin(ωt)

a(t) = v′(t) = Aω2 cos(ωt)

From this we see that the acceleration is always of opposite sign from the
position: when the mass is above the zero position it is being accelerated
downward, and when it is below its equilibrium position it is being accelerated
upward. Also we see that the magnitude of the acceleration is largest when
the velocity is 0.

15.18 Definition (Acceleration due to gravity.) If a particle p moves
near the surface of the earth, acted on by no forces except the force due to
gravity, then p will move with a constant acceleration −g which is independent
of the mass of p. The value of g is

g =
32ft./sec.

sec.
(approx.) or g =

9.8meter/sec.

sec.
(approx.).

We call g the acceleration due to gravity. Actually, the value of g varies slightly
over the surface of the earth, so there is no exact value for g. The law just
described applies in situations when air resistance and buoyancy can be ne-
glected. It describes the motion of a falling rock well, but it does not describe
a falling balloon.

Remark: When I solve applied problems, I will usually omit all units (e.g.
feet or seconds) in my calculations, and will put them in only in the final
answers.
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15.19 Example. A juggler J tosses a ball vertically upward from a height
of 4 feet above the ground with a speed of 16 ft./sec. Let h(t) denote the
height of the ball above the ground at time t. We will set our clock so that
t = 0 corresponds to the time of the toss:

h(0) = 4; h′(0) = 16.

We will suppose that while the ball is in the air, its motion is described by a
differentiable function of t. We assume that

h′′(t) = −g = −32.

We know one function whose derivative is −g:

if s(t) = −gt, then s′(t) = −g.

By the antiderivative theorem it follows that there is a constant v0 such that

h′(t) = s(t) + v0 = −gt + v0.

Moreover we can calculate v0 as follows:

(16 = h′(0) = −g · 0 + v0)=⇒(v0 = 16).

Thus
h′(t) = −gt + 16.

We know a function whose derivative is −gt + 16:

if w(t) = −gt2

2
+ 16t, then w′(t) = −gt + 16.

Thus there is a constant h0 such that

h(t) = w(t) + h0 = −gt2

2
+ 16t + h0.

To find h0 we set t = 0:

(4 = h(0) = −g · 02

2
+ 16 · 0 + h0)=⇒(h0 = 4).

Thus

h(t) = −gt2

2
+ 16t + 4.
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The ball will reach its maximum height when h′(t) = 0, i.e. when

t =
16

g
=

16

32
=

1

2
.

The maximum height reached by the ball is

h(
1

2
) = −1

2
· 32 · (1

2
)2 +

16

2
+ 4 = 8,

so the ball rises to a maximum height of 8 feet above the ground.

15.20 Example (Conservation of energy.) Suppose that a particle p
moves near the surface of the earth acted upon by no forces except the force
of gravity. Let v(t) and h(t) denote respectively its height above the earth and
its velocity at time t. Then

dv

dt
= h′′(t) = −g,

so

v
dv

dt
= −gv = −g

dh

dt
.

Now

v
dv

dt
=

d

dt
(
1

2
v2),

so we have
d

dt
(
1

2
v2) =

d

dt
(−gh).

It follows that there is a constant K such that

1

2
v2 = −gh + K,

or
1

2
v2 + gh = K.

If m is the mass of the particle p then

1

2
mv2 + mgh = Km. (15.21)

The quantity 1
2
mv2 is called the kinetic energy of p, and the quantity mgh is

called the potential energy of p. Equation (15.21) states that as p moves, the
sum of its potential energy end its kinetic energy remains constant.



15.3. CONVEXITY 313

15.22 Exercise. A particle moves in a vertical line near the surface of the
earth, acted upon by no forces except the force of gravity. At time 0 it is at
height h0, and has velocity v0. Derive the formula for the height of the particle
at time t > 0.

15.23 Exercise. The acceleration due to gravity on the moon is approxi-
mately

gm = .17g

where g denotes the acceleration due to gravity on the earth. A juggler J on
the moon wants to toss a ball vertically upward so that it rises 4 feet above
its starting height. With what velocity should the ball leave J ’s hand?

15.3 Convexity

15.24 Definition (Convexity) Let f be a differentiable function on an
interval (a, b). We say that f is convex upward over (a, b) or that f holds
water over (a, b) if and only if for each point t in (a, b), the tangent line to
graph(f) at (t, f(t)) lies below the graph of f .

convex  upward  curve  (holds  water)

Since the equation of the tangent line to graph(f) at (t, f(t)) is

y = f(t) + f ′(t)(x− t),

the condition for f to be convex upward over (a, b) is that for all x and t in
(a, b)

f(t) + f ′(t)(x− t) ≤ f(x). (15.25)
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Condition (15.25) is equivalent to the two conditions:

f ′(t) ≤ f(x)− f(t)

x− t
whenever t < x,

and
f(t)− f(x)

t− x
≤ f ′(t) whenever x < t.

These last two conditions can be written as the single condition

f ′(p) ≤ f(q)− f(p)

q − p
≤ f ′(q) whenever p < q. (15.26)

We say that f is convex downward over (a, b), or that f spills water over
(a, b) if and only if for each point t in (a, b), the tangent line to graph(f) at
(t, f(t)) lies above the graph of f .

convex  downward  curve  (spills  water)

This condition is equivalent to the condition that for all points p, q ∈ (a, b)

f ′(p) ≥ f(q)− f(p)

q − p
≥ f ′(q) whenever p < q.

15.27 Theorem. Let f be a differentiable function over the interval (a, b).
Then f is convex upward over (a, b) if and only if f ′ is increasing over (a, b).
(and similarly f is convex downward over (a, b) if and only if f ′ is decreasing
over (a, b).)

Proof: If f is convex upward over (a, b), then it follows from (15.26) that f ′

is increasing over (a, b).
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Now suppose that f ′ is increasing over (a, b). Let p, q be distinct points in
(a, b). By the mean value theorem there is a point c between p and q such that

f ′(c) =
f(p)− f(q)

p− q
.

If p < q then p < c < q so since f ′ is increasing over (a, b)

f ′(p) ≤ f ′(c) ≤ f ′(q),

i.e.

f ′(p) ≤ f(p)− f(q)

p− q
≤ f ′(q).

Thus condition (15.26) is satisfied, and f is convex upward over (a, b).

15.28 Corollary. Let f be a function such that f ′′(x) exists for all x in the
interval (a, b). If f ′′(x) ≥ 0 for all x ∈ (a, b) then f is convex upward over
(a, b). If f ′′(x) ≤ 0 for all x ∈ (a, b) then f is convex downward over (a, b).

15.29 Exercise. Prove one of the two statements in corollary 15.28.

15.30 Lemma (Converse of corollary 12.26) Let f be a real function such
that f is continuous on [a, b] and differentiable on (a, b). If f is increasing on
[a, b], then f ′(x) ≥ 0 for all x ∈ (a, b).

Proof: let p ∈ (a, b). Choose δ > 0 such that (p − δ, p + δ) ⊂ (a, b). Then
{p + δ

2n
} is a sequence such that

{p +
δ

2n
} → p,

and hence

{f(p + δ
2n

)− f(p)

(p + δ
2n

)− p
} → f ′(p).

Since f is increasing on (a, b), we have

f(p + δ
2n

)− f(p)

(p + δ
2n

)− p
≥ 0

for all n ∈ Z+, and it follows that

f ′(p) ≥ 0 for all p ∈ (a, b). |||
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15.31 Definition (Inflection point) Let f be a real function, and let
a ∈ domf . We say that a is a point of inflection for f if there is some ε > 0
such that (a−ε, a+ε) ⊂ domf , and f is convex upward on one of the intervals
(a− ε, a), (a, a + ε), and is convex downward on the other.

inflection  points

15.32 Theorem (Second derivative test for inflection points) Let f
be a real function, and let a be a point of inflection for f . If f ′′ is defined and
continuous in some interval (a− δ, a + δ) then f ′′(a) = 0.

Proof: We will suppose that f is convex upward on the interval (a−δ, a) and
is convex downward on (a, a+δ). (The proof in the case where these conditions
are reversed is essentially the same). Then f ′ is increasing on (a − δ, a), and
f ′ is decreasing on (a, a + δ). By (15.30), f ′′(x) ≥ 0 for all x ∈ (a− δ, a), and
f ′′(x) ≤ 0 for all x ∈ (a, a + δ). We have

f ′′(a) = lim{f ′′(a +
δ

2n
)} ≤ 0,

and

f ′′(a) = lim{f ′′(a− δ

2n
)} ≥ 0.

It follows that f ′′(a) = 0. |||

15.33 Example. When you look at the graph of a function, you can
usually “see” the points where the second derivative changes sign. However,
most people cannot “see” points where the second derivative is undefined.
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graph(  )gfgraph(  )

p q

By inspecting graph(f), you can see that f has a discontinuity at p.
By inspecting graph(g), you can see that g is continuous everywhere, but

g′ is not defined at q.
By inspecting graph(h) in figure a below, you can see that h′ is continuous,

but you may have a hard time seeing the point where h′′ is not defined.

figure a  graph(h) figure b

The function h is defined by

h(x) =

{
x2 − 5

2
x + 2 if 0 ≤ x ≤ 3

2
.

1
2
x2 − x + 7

8
if 3

2
< x ≤ 2.

(15.34)

so h′′(x) = 2 for 0 < x < 3
2
, and h′′(x) = 1 for 3

2
< x < 2, and h′′(3

2
) is not

defined. We constructed h by pasting together two parabolas. Figure b shows
the two parabolas, one having a second derivative equal to 1, and the other
having second derivative equal to 2.
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15.35 Exercise. Let h be the function described in formula (15.34). Draw
graphs of h′ and h′′.

15.36 Entertainment (Discontinuous derivative problem.) There ex-
ists a function f such that f is differentiable everywhere on R, but f ′ is
discontinuous somewhere. Find such a function.

15.37 Exercise. Let f(x) = x4. Show that f ′′(0) = 0, but 0 is not a point
of inflection for f . Explain why this result does not contradict theorem 15.32

15.38 Example. Let

f(x) =
1

1 + x2
.

Then

f ′(x) =
−2x

(1 + x2)2
,

and

f ′′(x) =
(1 + x2)2(−2)− (−2x)(2(1 + x2)(2x))

(1 + x2)4
=

2(3x2 − 1)

(1 + x2)3
.

Thus the only critical point for f is 0. Also,

(f ′(x) > 0 ⇐⇒ x < 0) and (f ′(x) < 0 ⇐⇒ x > 0),

so f is increasing on (−∞, 0) and is decreasing on (0,∞). Thus f has a
maximum at 0, and f has no minima.

We see that f ′′(x) = 0 ⇐⇒ x2 = 1
3
, and moreover

(f ′′(x) < 0) ⇐⇒ x ∈

−

√
1

3
,

√
1

3


 ,

so f spills water over the interval
(
−

√
1
3
,
√

1
3

)
, and f holds water over each

of the intervals
(
−∞,−

√
1
3

)
and

(√
1
3
,∞

)
. Thus f has points of inflection at

±
√

1
3
. We can use all of this information to make a reasonable sketch of the

graph of f . Note that f(x) > 0 for all x, f(0) = 1, and f
(
±

√
1
3

)
= 3

4
, and√

1
3

is approximately 0.58.
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−2 −1 21

point  of  inflection point  of  inflection

{

y =
1

1 + x2

}

15.39 Exercise. Discuss the graphs of the following functions. Make use
of all the information that you can get by looking at the functions and their
first two derivatives.

a) f(x) = 5x4 − 4x5.
b) G(x) = 5x3 − 3x5.

c) H(x) = e−
1

x2 .



Chapter 16

Fundamental Theorem of
Calculus

16.1 Definition (Nice functions.) I will say that a real valued function
f defined on an interval [a, b] is a nice function on [a, b], if f is continuous on
[a, b] and integrable on every subinterval of [a, b].

Remark: We know that piecewise monotonic continuous functions on [a, b]
are nice. It turns out that every continuous function on [a, b] is nice, but
we are not going to prove this. The theorems stated in this chapter for nice
functions are usually stated for continuous functions. You can find a proof
that every continuous function on an interval [a, b] is integrable on [a, b] (and
hence that every continuous function on [a, b] is nice on [a, b]) in [44, page
246] or in [1, page 153]. However both of these sources use a slightly different
definition of continuity and of integral than we do, so you will need to do some
work to translate the proofs in these references into proofs in our terms. You
might try to prove the result yourself, but the proof is rather tricky. For all
the applications we will make in this course, the functions examined will be
continuous and piecewise monotonic so the theorems as we prove them are
good enough.

16.2 Exercise. Can you give an example of a continuous function on
a closed interval that is not piecewise monotonic? You may describe your
example rather loosely, and you do not need to prove that it is continuous.

16.3 Theorem (Fundamental theorem of calculus I.) Let g be a nice
function on [a, b]. Suppose G is an antiderivative for g on [a, b]. Then G is

320
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an indefinite integral for g on [a, b]; i.e.,

∫ q

p
g = G(q)−G(p) for all p, q ∈ [a, b]. (16.4)

Proof: By the definition of antiderivative, G is continuous on [a, b] and G′ = g
on (a, b). Let p, q be arbitrary points in [a, b]. I will suppose p < q. (Note
that if (16.4) holds when p < q, then it holds when q < p, since both sides of
the equation change sign when p and q are interchanged. Also note that the
theorem clearly holds for p = q.)

Let P = {x0, · · · , xm} be any partition of [p, q], and let i be an integer
with 1 ≤ i ≤ m. If xi−1 < xi we can apply the mean value theorem to G on
[xi−1, xi] to find a number si ∈ (xi−1, xi) such that

g(si)(xi − xi−1) = G′(si)(xi − xi−1) = G(xi)−G(xi−1).

If xi = xi−1, let si = xi. Then S = {si, · · · , sm} is a sample for P such that

∑
(g, P, S) =

m∑

i=1

g(si)(xi − xi−1)

=
m∑

i=1

G(xi)−G(xi−1)

= G(xm)−G(x0) = G(q)−G(p).

We have shown that for every partition P of [p, q] there is a sample S for P
such that ∑

(g, P, S) = G(q)−G(p).

Let {Pn} be a sequence of partitions for [p, q] such that {µ(Pn)} → 0, and for
each n ∈ Z+ let Sn be a sample for Pn such that

∑
(g, Pn, Sn) = G(q)−G(p).

Then, since g is integrable on [q, p],

∫ q

p
g = lim{∑(g, Pn, Sn)}

= lim{G(q)−G(p)} = G(q)−G(p). |||
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16.5 Example. The fundamental theorem will allow us to evaluate many

integrals easily. For example, we know that
d

dx

(
arctan(x)

)
=

1

1 + x2
. Hence,

by the fundamental theorem,

∫ 1

0

1

1 + x2
dx = arctan(x) |10= arctan(1)− arctan(0)

=
π

4
− 0 =

π

4
.

y =
1

1+x
2y =

√

1 − x2

11

11

Two sets with the same area

This says that the two sets

{(x, y): 0 ≤ x ≤ 1 and 0 ≤ y ≤
√

1− x2}

and

{(x, y): 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1

1 + x2
}

have the same area – a rather remarkable result.

16.6 Theorem (Mean value theorem for integrals.) Let f be a nice
function on an interval [p, q], where p < q. Then there is a number c ∈ (p, q)
such that ∫ q

p
f = f(c)(q − p) i.e., f(c) =

1

q − p

∫ q

p
f.

Proof: Since f is continuous on [p, q] we can find numbers r, s ∈ [p, q] such
that

f(r) ≤ f(x) ≤ f(s) for all x ∈ [p, q].
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By the inequality theorem for integrals
∫ q

p
f(r) ≤

∫ q

p
f ≤

∫ q

p
f(s);

(here f(r) and f(s) denote constant functions) i.e.,

f(r)(q − p) ≤
∫ q

p
f ≤ f(s)(q − p),

i.e.,

f(r) ≤ 1

q − p

∫ q

p
f ≤ f(s).

We can now apply the intermediate value property to f on the interval whose
endpoints are r and s to get a number c between r and s such that

f(c) =
1

q − p

∫ q

p
f.

The number c is in the interval (p, q), so we are done. |||

16.7 Corollary. Let f be a nice function on a closed interval whose end-
points are p and q where p 6= q. Then there is a number c between p and q
such that

f(c) =
1

q − p

∫ q

p
f.

16.8 Exercise. Explain how corollary 16.7 follows from theorem 16.6.
(There is nothing to show unless q < p)

16.9 Lemma. Let f be a function such that f is integrable on every subin-
terval of [a, b]. Let c ∈ [a, b] and let

F (x) =
∫ x

c
f for all x ∈ [a, b].

Then F is continuous on [a, b].

Proof: Let t ∈ [a, b]. I will show that F is continuous at t. Since f is integrable
on [a, b] there is a number M such that

−M ≤ f(x) ≤ M for all x ∈ [a, b].
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By the corollary to the inequality theorem for integrals (8.17), it follows that

∣∣∣
∫ t

s
f

∣∣∣ ≤ M |s− t|

for all s, t ∈ [a, b]. Thus, for all s, t ∈ [a, b],

0 ≤ |F (s)− F (t)| =
∣∣∣
∫ s

c
f −

∫ t

c
f

∣∣∣ =
∣∣∣
∫ s

t
f

∣∣∣ ≤ M |s− t|.

Now lim
s→t

M |s− t| = 0, so by the squeezing rule for limits of functions,

lim
s→t

|F (s)− F (t)| = 0. It follows that lims→t F (s) = F (t). |||.

16.10 Theorem (Fundamental theorem of calculus II.) Let f be a nice
function on [a, b], and let c ∈ [a, b]. Let

G(x) =
∫ x

c
f for all x ∈ [a, b].

Then G is an antiderivative for f , i.e.

d

dx

∫ x

c
f =

d

dx

∫ x

c
f(t) dt = f(x). (16.11)

In particular, every nice function on [a, b] has an antiderivative on [a, b].

Proof: Let
G(x) =

∫ x

c
f for all x ∈ [a, b]

and let t be a point in (a, b). Let {xn} be any sequence in [a, b] \ {t} such that
{xn} → t. Then

G(xn)−G(t)

xn − t
=

1

xn − t

[ ∫ xn

c
f −

∫ t

c
f

]

=
1

xn − t

∫ xn

t
f.

By the mean value theorem for integrals, there is a number sn between xn and
t such that

G(xn)−G(t)

xn − t
= f(sn).
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Now
0 ≤ |sn − t| ≤ |xn − t| for all n

and since {|xn − t|} → 0, we have {|sn − t|} → 0, by the squeezing rule for
sequences. Since f is continuous, we conclude that {f(sn)} → f(t); i.e.,

{G(xn)−G(t)

xn − t

}
→ f(t);

i.e.,

lim
x→t

G(x)−G(t)

x− t
= f(t).

This proves that G′(t) = f(t) for t ∈ (a, b). In addition G is continuous on
[a, b] by lemma 16.9. Hence G is an antiderivative for f on [a, b]. |||
Remark Leibnitz’s statement of the fundamental principle of the calculus was
the following:

Differences and sums are the inverses of one another, that is to
say, the sum of the differences of a series is a term of the series,
and the difference of the sums of a series is a term of the series;
and I enunciate the former thus,

∫
dx = x, and the latter thus,

d
∫

x = x[34, page 142].

To see the relation between Leibnitz’s formulas and ours, in the equation

d
∫

x = x, write x = ydt to get d
∫

ydt = ydt, or
d

dt

∫
ydt = y. This corre-

sponds to equation (16.11). Equation (16.4) can be written as

∫ q

p

dG

dx
dx = G(q)−G(p).

If we cancel the dx’s (in the next chapter we will show that this is actually
justified!) we get

∫ q
p dG = G(q)−G(p). This is not quite the same as

∫
dx = x.

However if you choose the origin of coordinates to be (p,G(p)), then the two
formulas coincide.

To emphasize the inverse-like relation between differentiation and integra-
tion, I will restate our formulas for both parts of the the fundamental theorem,
ignoring all hypotheses:

d

dx

∫ x

c
f(t)dt = f(x) and

∫ x

c

d

dt
f(t)dt = f(x)− f(c).
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By exploiting the ambiguous notation for indefinite integrals, we can get a
form almost identical with Leibniz’s:

d

dx

∫
f(x)dx = f(x) and

∫ d

dx
f(x)dx = f(x).

16.12 Example. Let

F (x) =
∫ x

1
et2dt,

G(x) =
∫ x3

1
et2dt,

H(x) = e−x2
∫ x

1
et2dt.

We will calculate the derivatives of F, G, and H. By the fundamental theorem,

F ′(x) = ex2

.

Now G(x) = F (x3), so by the chain rule,

G′(x) = F ′(x3) · 3x2

= e(x3)
2 · 3x2 = 3x2ex6

.

We have H(x) = e−x2
F (x), so by the product rule,

H ′(x) = e−x2

F ′(x) + e−x2

(−2x)F (x)

= e−x2

ex2

+ e−x2

(−2x)
∫ x

0
et2dt

= 1− 2xe−x2
∫ x

0
et2dt.

16.13 Exercise. Calculate the derivatives of the following functions. Sim-
plify your answers as much as you can.

a) F (x) =
∫ x

0

1√
1 + t2

dt

b) G(x) =
∫ x

0

1√
t2 − 1

dt

c) H(x) =
∫ x

2

1√
t2 − 1

dt
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d) K(x) =
∫ sinh(x)

1

1√
1 + t2

dt

e) L(x) =
∫ cosh(x)

2

1√
t2 − 1

dt.

(We defined cosh and sinh in exercise 14.56.) Find simple formulas (not in-
volving any integrals) for K and for L.

16.14 Exercise. Use the fundamental theorem of calculus to find

a)
∫ π

4

0
sec2 x dx.

b)
∫ 1√

2

0

1√
1− x2

dx.

c)
∫ 1

0
ex dx.

16.15 Exercise. Let F1 and F2 be the functions whose graphs are shown
below:

5

53 71

731

1

1

{y = F2(x)}

{y = F1(x)}

Let Gi(x) =
∫ x

0
Fi(t) dt for 0 ≤ t ≤ 8. Sketch the graphs of G1 and G2.

Include some discussion about why your answer is correct.



Chapter 17

Antidifferentiation Techniques

17.1 The Antidifferentiation Problem

17.1 Definition (
∫

f or
∫

f(x)dx.) I am going to use the notation
∫

f
or

∫
f(x)dx to denote some arbitrary antiderivative for f on an interval that

often will not be specified. This is the same notation that I used previously
to denote an indefinite integral for f . Although the fundamental theorem of
the calculus shows that for nice functions the concepts of “antiderivative” and
“indefinite integral” are essentially the same, for arbitrary functions the two
concepts do not coincide. For example, let

f(x) =
{

1 if x > 0
−1 if x ≤ 0.

Then f has an indefinite integral F where

F (x) =
{ ∫ x

0 1 dx = x if x > 0.
− ∫ x

0 1 dx = −x if x ≤ 0.

Thus F (x) = |x|. Then F is not an antiderivative for f , since we know that
F is not differentiable at 0.

I will always try to make it clear whether
∫

f represents an antiderivative
or an indefinite integral in cases where it makes a difference.

The problem of calculating derivatives is straightforward. By using known
formulas and rules, you can easily find the derivative of almost any function
you can write down. The problem of calculating antiderivatives is much more

328
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complicated. In fact, none of the five functions

ex2

, ln
(

ln(x)
)
,

1

ln(x)
,

sin(x)

x
,

(1− x)
3
5

x
12
5

(17.2)

have antiderivatives that can be expressed in terms of functions we have stud-
ied. (To find a proof of this assertion, see [40, page 37 ff] and [41].) The
first two functions in this list are compositions of functions that have simple
antiderivatives, the third function is the reciprocal of a function with a simple
antiderivative, and each of the last two functions is a product of two func-
tions with simple antiderivatives. (An antiderivative for ln will be calculated
in (17.25).) It follows that there is no chain rule or reciprocal rule or prod-
uct rule for calculating antiderivatives. We will see, however, that the chain
rule and the product rule for differentiation do give rise to antidifferentiation
formulas.

The five functions

e
√

x, sin
(

ln(x)
)
,

1

sin x
,

ln(x)

x
,

(1− x)
2
5

x
12
5

, (17.3)

which look somewhat similar to the functions in (17.2), turn out to have simple
antiderivatives, as you will see in (17.42c), (17.22), (17.7), (17.31f) and (17.41).
It is often not easy to tell the difference between a function that has a simple
antiderivative and a function that does not.

Many simple functions that arise in applied problems do not have simple
antiderivatives. The exercises in this chapter have been carefully designed to
be non-typical functions whose antiderivatives can be found.

The Maple instructions for finding antiderivatives and integrals are

int(f(x) , x); =
∫

f(x)dx,

and

int(f(x) , x = a..b); =
∫ b

a
f(x)dx.

I gave the five functions in (17.2) to Maple to antidifferentiate.



330 CHAPTER 17. ANTIDIFFERENTIATION TECHNIQUES

The results were:
> int( exp(x^2),x);

− 1

2
I
√

π erf( I x )

> int( ln(ln(x)),x);

x ln( ln( x ) ) + Ei( 1,−ln( x ) )

> int(1/ln(x),x);

−Ei( 1,−ln( x ) )

> int(sin(x)/x,x);

Si( x )

> int( ((1-x)^(3/5))/ (x^(12/5)),x);

− 5

14

2− 5 x + 3 x2

x 5
√

(−1 + x)2 x2
−

∫
−3/14

1
5
√

(−1 + x)2 x2
dx

In the first four cases, an answer has been given involving names of func-
tions we have not seen before, (and which we will not see again in this course).
The definitions of these functions are:

Si(x) =
∫ x

0

sin(t)

t
dt, (17.4)

Ei(n, x) = lim
N→∞

∫ N

1

e−xt

tn
dt, (n ∈ Z+) (17.5)

erf(x) =
2√
π

∫ x

0
e−t2 dt. (17.6)

In equation (17.4), we assume that
sin(t)

t
= 1 when t = 0. The function Si is

called the sine integral. In equation (17.5), Ei(n, x) makes sense only when
x is positive. The definition of Ei(n, x) for x < 0 involves ideas we have not
discussed. The function Ei is called the exponential integral.

The function erf is called the error function. The answer given by Maple
for

∫
ex2

dx involves the symbol I. This is Maple’s notation for
√−1. The

definition of erf(Ix) makes no sense in terms of concepts we have studied.
However you can use Maple to calculate integrals even if you do not know

what the symbols mean. The following instructions find
∫ 1

0
exp(x2)dx:
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> int( exp(x^2),x= 0..1);

− 1

2
I erf( I )

√
π

> evalf(%);

1.462651746

17.2 Basic Formulas

Every differentiation formula gives rise to an antidifferentiation formula. We
review here a list of formulas that you should know. In each case you should
verify the formula by differentiating the right side. You should know these
formulas backward and forward.

∫
(f(x))rf ′(x)dx =

(f(x))r+1

r + 1
(r 6= −1).

∫ f ′(x)

f(x)
dx = ln(|f(x)|).

∫
cos(f(x))f ′(x)dx = sin(f(x)).

∫
sin(f(x))f ′(x)dx = − cos(f(x)).

∫
ef(x)f ′(x)dx = ef(x).

∫
sec2(f(x))f ′(x)dx = tan(f(x)).

∫
csc2(f(x))f ′(x)dx = − cot(f(x)).

∫
sec(f(x)) tan(f(x))f ′(x)dx = sec(f(x)).

∫
csc(f(x)) cot(f(x))f ′(x)dx = − csc(f(x)).

∫ f ′(x)

1 + f 2(x)
dx = arctan(f(x)).

∫ f ′(x)√
1− f 2(x)

dx = arcsin(f(x)).

17.7 Exercise. Verify that

d

dx

(
ln(| sec(f(x)) + tan(f(x))|)

)
= sec(f(x))f ′(x)
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and
d

dx

(
ln(| csc(f(x)) + cot(f(x))|)

)
= − csc(f(x))f ′(x).

It follows from the previous exercise that
∫

sec(f(x))f ′(x)dx = ln(| sec(f(x)) + tan(f(x))|)

and ∫
csc(f(x))f ′(x)dx = − ln(| csc(f(x)) + cot(f(x))|).

You should add these two formulas to the list of antiderivatives to be memo-
rized.

17.8 Theorem (Sum rule for antiderivatives) If f and g are functions
that have antiderivatives on some interval [a, b], and if c ∈ R then f +g, f −g
and cf have antiderivatives on [a, b] and

∫
(f ± g) =

∫
f ±

∫
g,

and ∫
cf = c

∫
f. (17.9)

Proof: The meaning of this statement is that if F is an antiderivative for f
and G is an antiderivative for G, then F ±G is an antiderivative for f±g, and
cF is an antiderivative for cf . The warning about the ambiguous notation for
indefinite integrals given on page 214 applies also to antiderivatives.

Let F,G be antiderivatives for f and g respectively on [a, b]. Then F and
G are continuous on [a, b], and

F ′ = f and G′ = g

on (a, b). Hence F ±G are continuous on [a, b], and

(F ±G)′ = F ′ ±G′ = f ± g

on (a, b), and hence

∫
(f ± g) = F ±G =

∫
f ±

∫
g.
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Also cF is continuous on [a, b], and

(cF )′ = cF ′ = cf

on (a, b), so that ∫
cf = cF = c

∫
f. |||

17.10 Example. We will calculate
∫

x2(x3 + 1)3dx.

I will try to bring this integral into the form
∫

(f(x))rf ′(x)dx.

It appears reasonable to take f(x) = (x3 + 1), and then f ′(x) = 3x2. The
3x2 doesn’t quite appear in the integral, but I can get it where I need it by
multiplying by a constant, and using (17.9):

∫
x2(x3 + 1)3dx =

1

3

∫
(3x2)(x3 + 1)3dx =

1

3

(x3 + 1)4

4
=

(x3 + 1)4

12
.

17.11 Example. We will calculate
∫

x(x3 + 1)3dx.

This problem is more complicated than the last one. Here I still want to take
f(x) = (x3 + 1), but I cannot get the “f ′(x)” that I need. I will multiply out
(x3 + 1)3

∫
x(x3 + 1)3dx =

∫
x((x3)3 + 3(x3)2 + 3(x3) + 1)dx

=
∫

(x10 + 3x7 + 3x4 + x)dx

=
x11

11
+ 3

x8

8
+ 3

x5

5
+

x2

2
.

17.12 Example. We will calculate
∫

tet2dt.

∫
tet2dt =

1

2

∫
(2t)et2dt.

Since
d

dt
(t2) = 2t we get

∫
tet2dt =

1

2
et2 .
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17.13 Example. We will consider
∫

et2dt.

Although this problem looks similar to the one we just did, it can be shown
that no function built up from the functions we have studied by algebraic
operations is an antiderivative for exp(t2). So we will not find the desired
antiderivative. (But by the fundamental theorem of the calculus we know that
et2 has an antiderivative.)

17.14 Example. We will calculate
∫

tan.

∫
tan =

∫ sin

cos
= −

∫ cos′

cos
= − ln(| cos |).

17.15 Example. We will calculate
∫ a

0

1

a2 + x2
dx.

The integrand
1

a2 + x2
looks enough like

1

1 + x2
that I will try to get an arctan

from this integral.

∫ 1

a2 + x2
=

1

a2

∫ 1

1 +
(

x
a

)2 dx

Now
d

dx

(
x

a

)
=

1

a
, so

∫ 1

a2 + x2
=

1

a

∫ 1

1 +
(

x
a

)2

d

dx

(
x

a

)
dx =

1

a
arctan

(
x

a

)
.

Thus we have found an antiderivative for
1

a2 + x2
. Hence

∫ a

0

1

a2 + x2
dx =

1

a
arctan(

x

a
)
∣∣∣∣
a

0
=

1

a
arctan(1) =

π

4a
.

17.16 Exercise. Find the following antiderivatives:

a)
∫

ex sin(ex)dx.

b)
∫ ex

sin(ex)
dx.
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c)
∫

(3w4 + w)2(12w3 + 1)dw.

d)
∫

cos(4x)dx.

e)
∫ 2x

1 + x2
dx.

f)
∫

cot(2x)dx.

g)
∫ 2

1 + w2
dw.

h)
∫ 2w

1 + w2
dw.

i)
∫

sin3(x)dx.

j)
∫

sin4(x)dx.

17.3 Integration by Parts

17.17 Theorem (Integration by parts.) Let f, g be functions that are
continuous on an interval [a, b] and differentiable on (a, b). If f ′g has an
antiderivative on [a, b], then g′f also has an antiderivative on [a, b] and

∫
g′f = fg −

∫
f ′g. (17.18)

We call formula (17.18) the formula for integration by parts.

Proof: This theorem is just a restatement of the product rule for differ-
entiation. If f and g are differentiable on (a, b) then the product rule says
that

(fg)′ = f ′g + g′f

so that
g′f = (fg)′ − f ′g
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on (a, b). If
∫

f ′g is an antiderivative for f ′g on [a, b], then fg − ∫
f ′g is

continuous on [a, b], and

(fg −
∫

f ′g)′ = (fg)′ − f ′g = g′f

on (a, b). We have shown that fg− ∫
f ′g is an antiderivative for g′f on [a, b]. |||

17.19 Example. We will calculate
∫ π

0
x sin(3x)dx. We begin by searching

for an antiderivative for x sin(3x). Let

f(x) = x,

g′(x) = sin(3x),

f ′(x) = 1,

g(x) = −1

3
cos(3x).

Then by the formula for integration by parts
∫

x sin(3x)dx =
∫

f(x)g′(x)dx

= f(x)g(x)−
∫

f ′(x)g(x)dx

= −x

3
cos(3x) +

1

3

∫
cos(3x)dx

= −x

3
cos(3x) +

1

9
sin(3x).

(17.20)

Hence
∫ π

0
x sin(3x)dx = (−x

3
cos(3x) +

1

9
sin(3x))

∣∣∣∣
π

0

= −π

3
cos(3π) =

π

3
.

Suppose I had tried to find
∫

x sin(3x) in the following way: Let

f(x) = sin(3x),

g′(x) = x,

f ′(x) = 3 cos(3x),

g(x) =
1

2
x2.
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Then by the formula for integration by parts
∫

x sin(3x)dx =
∫

f(x)g′(x)dx

= f(x)g(x)−
∫

f ′(x)g(x)dx

=
1

2
x2 sin(3x)− 3

2

∫
x2 cos(3x)dx. (17.21)

In this case the antiderivative
∫

x2 cos(3x)dx looks more complicated than the
one I started out with. When you use integration by parts, it is not always
clear what you should take for f and for g′. If you find things are starting
to look more complicated rather than less complicated, you might try another
choice for f and g′.

Integration by parts is used to evaluate antiderivatives of the forms∫
xn sin(ax)dx,

∫
xn cos(ax)dx, and

∫
xnexdx when n is a positive integer.

These can be reduced to antiderivatives of the forms
∫

xn−1 sin(ax)dx,
∫

xn−1 cos(ax)dx, and
∫

xn−1exdx, so by applying the process n times we get

the power of x down to x0, which gives us antiderivatives we can easily find.

17.22 Example. We will calculate
∫

sin(ln(x)).
Let

f(x) = sin(ln(x)),

g′(x) = 1,

g(x) = x,

f ′(x) =
cos(ln(x))

x
.

Then
∫

sin(ln(x))dx =
∫

f(x)g′(x)dx = f(x)g(x)−
∫

f ′(x)g(x)dx

= x sin(ln(x))−
∫

cos(ln(x))dx (17.23)

We will now use integration by parts to find an antiderivative for cos(ln(x)).
Let

F (x) = cos(ln(x)),
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G′(x) = 1,

G(x) = x,

F ′(x) = −sin(ln(x))

x
.

Then
∫

cos(ln(x))dx =
∫

F (x)G′(x) = F (x)G(x)−
∫

F ′(x)G(x)dx

= x cos(ln(x)) +
∫

sin(ln(x))dx (17.24)

From equations (17.23) and (17.24) we see that

∫
sin(ln(x))dx = x sin(ln(x))−

(
x cos(ln(x)) +

∫
sin(ln(x))

)
.

Thus
2

∫
sin(ln(x))dx = x sin(ln(x))− x cos(ln(x)),

and ∫
sin(ln(x))dx =

x

2
(sin(ln(x))− cos(ln(x))).

17.25 Example. We will calculate
∫

ln(t)dt. Let

f(t) = ln(t),

g′(t) = 1,

g(t) = t,

f ′(t) =
1

t
.

Then
∫

ln(t)dt =
∫

f(t)g′(t)dt = f(t)g(t)−
∫

f ′(t)g(t)dt

= t ln(t)−
∫

1dt

= t ln(t)− t.

17.26 Theorem (Antiderivative of inverse functions.) Let I and J be
intervals in R, and let f : I → J be a continuous function such that f ′(x) is
defined and non-zero for all x in the interior of I. Suppose that g: J → I is
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the inverse function for f , and that F is an antiderivative for f . Then an
antiderivative for g on J is given by

∫
g(x) dx = xg(x)− (F ◦ g)(x). (17.27)

Proof: Let h(x) = x. Then h′(x) = 1, and
∫

g(x) dx =
∫

g(x)h′(x)dx = g(x)h(x)−
∫

g′(x)h(x)dx

= xg(x)−
∫

xg′(x)dx (17.28)

Now F ′ = f and f ◦ g(x) = x for all x in J , so

(F ◦ g)′(x) = F ′(g(x)
)
· g′(x) = f

(
g(x)

)
· g′(x) = xg′(x)

and it follows from (17.28) that
∫

g(x) dx = xg(x)−
∫

(F ◦ g)′(x) dx

= xg(x)− (F ◦ g)(x). |||
Remark: It follows from the proof of the previous theorem that if you know
an antiderivative for a function f , then you can find an antiderivative for the
inverse function g by integration by parts. This is what you should remember
about the theorem. The formula (17.27) is not very memorable.

17.29 Example. In the previous theorem, if we take

f(x) = ex, F (x) = ex, g(x) = ln(x),

then we get ∫
ln(x) dx = x ln(x)− eln(x) = x ln(x)− x.

This agrees with the result obtained in example 17.25.

17.30 Exercise. What is wrong with the following argument? Let

f(x) =
1

x
,

g′(x) = 1,

f ′(x) = − 1

x2
,

g(x) = x.
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Then
∫ 1

x
dx =

∫
f(x)g′(x)dx = f(x)g(x)−

∫
f ′(x)g(x)dx

= 1 +
∫ 1

x
dx.

If we subtract
∫ 1

x
dx from both sides we obtain

0 = 1.

17.31 Exercise. Calculate the following antiderivatives:

a)
∫

xexdx.

b)
∫

ex sin(x)dx. (Integrate by parts more than once.)

c)
∫

arctan(u)du.

d)
∫ x√

4− x2
dx.

e)
∫

x
√

4− x2dx.

f)
∫

xr ln(|x|)dx, where r ∈ R. Have you considered the case where

r = −1?

g)
∫

x2 cos(2x)dx.

17.4 Integration by Substitution

We will now use the chain rule to find some antiderivatives. Let g be a real val-
ued function that is continuous on some interval J and differentiable on the in-
terior of J , and let f be a function such that f has an antiderivative F on some
interval K. We will suppose that g(J) ⊂ K and g

(
interior(J)

)
⊂ interior(K).

It then follows that F ◦ g is continuous on J and differentiable on interior(J),
and

(F ◦ g)′(t) = (F ′ ◦ g)(t)g′(t) = (f ◦ g)(t)g′(t) (17.32)
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for all t in the interior of J ; i.e., F ◦ g is an antiderivative for (f ◦ g)g′ on J .
Thus

∫
f

(
g(t)

)
g′(t)dt = F

(
g(t)

)
where F (u) =

∫
f(u)du. (17.33)

There is a standard ritual for using (17.33) to find
∫

f
(
g(t)

)
g′(t)dt when

an antiderivative F can be found for f . We write:

Let u = g(t). Then du = g′(t)dt (or du =
du

dt
dt), so

∫
f

(
g(t)

)
g′(t)dt =

∫
f(u)du = F (u) = F

(
g(t)

)
. (17.34)

In the first equality of (17.34) we replace g(t) by u and g′(t)dt by du, and in
the last step we replace u by g(t). Since we have never assigned any meaning
to “du” or “dt”, we should think of (17.34) just as a mnemonic device for
remembering (17.33).

17.35 Example. Find
∫ sin(

√
x)√

x
dx.

Let u =
√

x. Then du =
1

2
√

x
dx, so

∫ sin(
√

x)√
x

dx = 2
∫

sin(
√

x)
1

2
√

x
dx

= 2
∫

sin(u)du = −2 cos(u)

= −2 cos(
√

x). |||

Suppose we want to find
∫

sin(
√

x)dx. If we had a
√

x in the denominator, this
would be a simple problem. (In fact we just considered this problem in the
previous example.) We will now discuss a method of introducing the missing√

x.
Suppose g is a function on an interval J such that g′(t) is never zero on

the interior of J , and suppose that h is an inverse function for g. Then

(
h

(
g(x)

)
= x

)
=⇒

(
h′

(
g(x)

)
· g′(x) = 1

)
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for all x in the interior of J , so

∫
f

(
g(x)

)
dx =

∫
f

(
g(x)

)
· h′

(
g(x)

)
· g′(x)dx.

We now apply the ritual (17.34): Let u = g(x). Then du = g′(x)dx, so

∫
f

(
g(x)

)
dx =

∫
f

(
g(x)

)
h′

(
g(x)

)
· g′(x)dx

=
∫

f(u)h′(u)du.

If we can find an antiderivative H for fh′, then

∫
f(u)h′(u)du = H(u) = H

(
g(x)

)
.

We have shown that if h is an inverse function for g, then

∫
f

(
g(x)

)
dx = H

(
g(x)

)
where H(u) =

∫
f(u)h′(u)du (17.36)

There is a ritual associated with this result also. To find
∫

f
(
g(x)

)
dx:

Let u = g(x). Then x = h(u) so dx = h′(u)du.
Hence

∫
f

(
g(x)

)
dx =

∫
f(u)h′(u)du = H(u) = H

(
g(x)

)
. (17.37)

17.38 Example. To find
∫

sin(
√

x)dx.
Let u =

√
x. Then x = u2 so dx = 2u du.

Thus ∫
sin(

√
x)dx =

∫
sin(u) · 2u du = 2

∫
u sin(u)du.

We can now use integration by parts to find
∫

u sin(u)du. Let

f(u) = u, g′(u) = sin(u),

f ′(u) = 1, g(u) = − cos(u).
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Then
∫

u sin(u)du =
∫

f(u)g′(u)du

= f(u)g(u)−
∫

f ′(u)g(u)du

= −u cos(u) +
∫

cos(u)du

= −u cos(u) + sin(u).

Hence
∫

sin(
√

x)dx = 2
∫

u sin u du

= −2u cos(u) + 2 sin(u)

= −2
√

x cos(
√

x) + 2 sin(
√

x).

17.39 Example. To find
∫ 1

ex + e−x
dx.

Let u = ex. Then x = ln(u) so dx =
1

u
du.

∫ 1

ex + e−x
dx =

∫ 1

(u + 1
u
)
· 1

u
du =

∫ 1

u2 + 1
du

= arctan(u) = arctan(ex).

17.40 Example. To find
∫

t
√

t + 1 dt.
Let u = t + 1. Then t = u− 1 so dt = du.
Hence

∫
t
√

t + 1 dt =
∫

(u− 1)
√

u du =
∫

u3/2 − u1/2du

=
2

5
u5/2 − 2

3
u3/2 =

2

5
(t + 1)5/2 − 2

3
(t + 1)3/2.
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17.41 Example. To find
∫ (1− x)

2
5

x
12
5

dx.

∫ (1− x)
2
5

x
12
5

dx =
∫ (

1− x

x

) 2
5 · 1

x2
dx.

Let u =
1− x

x
=

1

x
− 1. Then du = − 1

x2
dx, and

∫ (1− x)
2
5

x
12
5

dx = −
∫

u
2
5 du = −5

7
u

7
5 = −5

7

(
1− x

x

) 7
5

.

Thus ∫ (1− x)
2
5

x
12
5

dx = −5

7

(
1− x

x

) 7
5

.

17.42 Exercise. Find the following antiderivatives:

a)
∫

x2 sin(x3)dx.

b)
∫ ex

1 + ex
dx.

c)
∫

e
√

xdx.

d)
∫ ln(3x)

x
dx.

e)
∫

2x dx.

f)
∫ e2x + e3x

e4x
dx.

g)
∫

x(1 + 3
√

x)dx.
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17.5 Trigonometric Substitution

Integrals of the form
∫

F (
√

a2 + x2)dx and
∫

F (
√

a2 − x2)dx often arise in

applications. There is a special trick for dealing with such integrals. Since

x = a tan(arctan(
x

a
)) for all x ∈ R,

we can write

∫
F (
√

a2 + x2)dx =
∫

F (

√
a2 +

(
a tan(arctan(

x

a
))

)2
)dx.

If we now make the substitution

u = arctan(
x

a
) or x = a tan(u),

(
u ∈ (−π

2
,
π

2
)
)

then we find dx = a sec2(u)du, or

∫
F (
√

a2 + x2)dx =
∫

F (

√
a2 +

(
a tan(u)

)2
)a sec2 u du.

Now
a2 +

(
a tan(u)

)2
= a2

(
1 + tan2(u)

)
= a2 sec2(u)

so √
a2 +

(
a tan(u)

)2
= a sec(u).

(Since u ∈
(
− π

2
,
π

2

)
we have sec(u) > 0 and the square root is positive.) Thus

∫
F (
√

a2 + x2)dx = a
∫

F
(
a sec(u)

)
· sec2(u)du.

Often this last antiderivative can be found. If

a
∫

F
(
a sec(u)

)
· sec2(u)du = H(u),

then by the ritual (17.37)

∫
F (
√

a2 + x2)dx = a
∫

F
(
a sec(u)

)
· sec2(u)du = H(u) = H(arctan(

x

a
)).
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The ritual to apply when using this method for finding
∫

F (
√

a2 + x2)dx

is:
Let x = a tan(u). Then dx = a sec2(u)du, and

√
a2 + x2 =

√
a2 + a2 tan2(u) =

√
a2 sec2(u) = a sec(u),

so
∫

F (
√

a2 + x2)dx = a
∫

F
(
a sec(u)

)
sec2(u)du = H(u) = H(arctan(

x

a
)).

There is a similar ritual for integrals of the form
∫

F (
√

a2 − x2)dx (Here we

will just describe the ritual).
Let x = a sin(u). Then dx = a cos(u)du and

√
a2 − x2 =

√
a2 − a2 sin(u) =

√
a2 cos2(u) = a cos(u) (17.43)

so
∫

F (
√

a2 − x2)dx = a
∫

F
(
a cos(u)

)
· cos(u)du = H(u) = H(arcsin(

x

a
)).

Observe that in equation (17.43) we are assuming that u = arcsin (
x

a
), so

u ∈ (−π

2
,
π

2
), so cos(u) ≥ 0, and the sign of the square root is correct.

17.44 Example. Find
∫ √

4 + x2dx.
Let x = 2 tan θ. Then dx = 2 sec2 θ dθ, and

√
4 + x2 =

√
4(1 + tan2 θ) = 2

√
sec2(θ) = 2 sec(θ). (17.45)

Thus ∫ √
4 + x2 dx = 22

∫
sec θ · sec2 θ dθ = 4

∫
sec3(θ) dθ.

To find
∫

sec3(θ)dθ, I will integrate by parts. Let

f(θ) = sec(θ), g′(θ) = sec2(θ),
f ′(θ) = sec(θ) tan(θ), g(θ) = tan(θ).
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Hence,

∫
sec3(θ)dθ =

∫
f(θ)g′(θ)dθ

= f(θ)g(θ)−
∫

f ′(θ)g(θ)dθ

= sec(θ) tan(θ)−
∫

sec(θ) tan2(θ)dθ

= sec(θ) tan(θ)−
∫

sec(θ)(sec2(θ)− 1)dθ

= sec(θ) tan(θ)−
∫

sec3(θ)dθ +
∫

sec(θ)dθ.

Hence

2
∫

sec3(θ)dθ = sec(θ) tan(θ) +
∫

sec(θ)dθ

= sec(θ) tan(θ) + ln(| sec(θ) + tan(θ)|);

i.e.,

∫
sec3(θ)dθ =

1

2

(
sec(θ) tan(θ) + ln

(
| sec(θ) + tan(θ)|

))
. (17.46)

Hence
∫ √

4 + x2dx = 4
∫

sec3(θ)dθ

= 2

(
sec(θ) tan(θ) + ln

(
| sec(θ) + tan(θ)|

))
.

By (17.45) we have tan(θ) =
x

2
and sec(θ) =

1

2

√
4 + x2. Thus

∫ √
4 + x2dx = 2

(
1

2

√
4 + x2 · x

2
+ ln

(∣∣∣
√

4 + x2

2
+

x

2

∣∣∣
))

=
x
√

4 + x2

2
+ 2 ln

(∣∣∣
√

4 + x2 + x

2

∣∣∣
)
.
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17.47 Example. In the process of working out the last example we found∫
sec3(θ)dθ using integration by parts. Here is a different tricky way of finding

the same integral [32].

∫
sec3(θ)dθ =

1

2

∫
(sec3(θ) + sec3(θ))dθ

=
1

2

∫
(sec(θ)(1 + tan2(θ)) + sec3(θ))dθ

=
1

2

∫
(sec(θ) +

(
(sec(θ) tan(θ)) · tan(θ) + sec(θ) · sec2(θ)

)
)dθ

=
1

2

∫
(sec(θ) +

d

dθ
(sec(θ) tan(θ)))dθ

=
1

2
(ln(| sec(θ) + tan(θ)|) + sec(θ) tan(θ)).

17.48 Example. Find
∫ 1√

a2 − x2
dx.

Let x = a sin(θ). Then dx = a cos(θ)dθ and

√
a2 − x2 =

√
a2 − a2 sin2 θ = a

√
cos2 θ = a cos θ.

Thus

∫ 1√
a2 − x2

dx =
∫ a cos(θ)

a cos(θ)
dθ =

∫
1 dθ

= θ = arcsin(
x

a
).

17.49 Exercise. Find the following antiderivatives:

a)
∫ √

a2 − x2 dx

b)
∫ 1√

a2 + x2
dx

c)
∫ x√

a2 − x2
dx

d)
∫

x
√

a2 + x2 dx
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17.50 Example (Area of a circular sector) Let a be a positive number,
and let θ0 be a number in [0, π

2
). Let o = (0, 0), and let p = (a cos(θ0), a sin(θ0).

Let T (a, θ0) be the circular sector bounded by the positive x-axis, the segment
[op], and the circle {x2 + y2 = a2}.

(a, 0)

p = (a cos(θ0), a sin(θ0))

o

T (a, θ0) is shaded region

The equation for [op] is

y =
a sin(θ0)

a cos(θ0)
x = x tan(θ0),

and the equation for the upper semicircle is

y =
√

a2 − x2.

Hence
area(T (a, θ0)) = Aa

0(f),

where

f(x) =
{

x tan(θ0) if 0 ≤ x ≤ a cos(θ0),√
a2 − x2 if a cos(θ0) ≤ x ≤ a.

i.e.

area(T (a, θ0)) =
∫ a cos(θ0)

0
x tan(θ0)dx +

∫ a

a cos(θ0)

√
a2 − x2 dx.

In exercise 17.49.a you showed that

∫ √
a2 − x2 =

1

2
a2 arcsin

(
x

a

)
+

1

2
x
√

a2 − x2,
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so

area(T (a, θ0)) = tan(θ0)
x2

2

∣∣∣∣∣
a cos(θ0)

0

+
(

1

2
a2 arcsin(

x

a
) +

1

2
x
√

a2 − x2

)∣∣∣∣
a

a cos(θ0)

=
1

2
tan(θ0)a

2 cos2(θ0) +
1

2
a2 arcsin(1)

−1

2
a2 arcsin(cos(θ0))− 1

2
a cos(θ0)

√
a2 − a2 cos2(θ0)

=
a2

2
sin(θ0) cos(θ0) +

πa2

4

−a2

2
arcsin(sin(

π

2
− θ0))− a2

2
cos(θ0)

√
1− cos2(θ0)

=
a2

2
sin(θ0) cos(θ0) +

πa2

4
− a2

2
(
π

2
− θ0)− a2

2
sin(θ0) cos(θ0)

=
1

2
a2θ0.

By using symmetry arguments, you can show that this formula actually holds
for 0 ≤ θ0 ≤ 2π.

17.6 Substitution in Integrals

Let f be a nice function on an interval [a, b]. Then if F is any antiderivative
for f , we have ∫ b

a
f = F |ba= F (b)− F (a),

by the fundamental theorem of calculus. We saw in (17.32) that under suitable
hypotheses on g, F ◦ g is an antiderivative for (f ◦ g)g′. Hence

∫ b

a
f

(
g(t)

)
g′(t)dt = F ◦ g |ba= F

∣∣∣
g(b)

g(a)
=

∫ g(b)

g(a)
f(u)du.

Hence we can find
∫ b

a
f

(
g(t)

)
g′(t)dt by the following ritual:

Let u = g(t). When t = a then u = g(a) and when t = b then u = g(b).
Also du = g′(t)dt. Hence

∫ b

a
f

(
g(t)

)
g′(t)dt =

∫ g(b)

g(a)
f(u)du = F (u)

∣∣∣
g(b)

g(a)
.
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17.51 Example. To find
∫ 4π2

π2

sin(
√

x)√
x

dx.

Let u =
√

x. When x = π2, then u = π, and when x = 4π2, then u = 2π.

Also du =
1

2
√

x
dx, so

∫ 4π2

π2

sin(
√

x)√
x

dx = 2
∫ 2π

π
sin(u)du = −2 cos u

∣∣∣
2π

π

= −2
(

cos(2π)− cos(π)
)

= −2(1 + 1) = −4.

We saw in (17.36) that if h is an inverse function for g, then an antideriva-
tive for f ◦ g is H ◦ g, where H is an antiderivative for f · h′. Thus

∫ b

a
f

(
g(t)

)
dt = H ◦ g |ba= H

∣∣∣
g(b)

g(a)
.

The ritual for finding
∫ b

a
f

(
g(t)

)
dt in this case is:

Let u = g(t). Then t = h(u) and dt = h′(u)du. When t = a then u = g(a),
and when t = b then u = g(b). Thus

∫ b

a
f

(
g(t)

)
dt =

∫ g(b)

g(a)
f(u)h′(u)du = H(u)

∣∣∣
g(b)

g(a)

where H is an antiderivative for fh′.

17.52 Example. To find
∫ ln(

√
3)

0

1

ex + e−x
dx.

Let u = ex. When x = 0 then u = 1, and when x = ln(
√

3) then u =
√

3.

Also x = ln(u), so dx =
1

u
du.

∫ ln(
√

3)

0

1

ex + e−x
dx =

∫ √
3

1

1

(u + 1
u
)
· 1

u
du

=
∫ √

3

1

1

u2 + 1
du = arctan(u) |

√
3

1

= arctan(
√

3)− arctan(1)

=
π

3
− π

4
=

π

12
.
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17.53 Exercise. Find the following integrals:

a)
∫ 1

0
x2(x3 + 1)3dx.

b)
∫ 3/2

0

1√
9− x2

dx.

c)
∫ 1

0
x
√

1− x dx.

17.54 Exercise. Find the area of the shaded region, bounded by the ellipse
x2

4
+ y2 = 1 and the lines x = ±1.

1

−2 2

−1

17.55 Example. In practice I would find many of the antiderivatives and
integrals discussed in this chapter by computer. For example, using Maple, I
would find
> int(sqrt(a^2+x^2),x);

1

2
x
√

a2 + x2 +
1

2
a2 ln

(
x +

√
a2 + x2

)

> int(sin(sqrt(x)),x=0..Pi^2);

2 π

> int(sqrt(4 - x^2),x=-1..1);

√
3 +

2

3
π

> int( (sec(x))^3,x);

1

2

sin( x )

cos( x )2
+

1

2
ln( sec( x ) + tan( x ) )
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> int(exp(a*x)*cos(b*x),x);

a e( a x ) cos( b x )

a2 + b2
+

b e( a x ) sin( b x )

a2 + b2

17.7 Rational Functions

In this section we present a few rules for finding antiderivatives of simple
rational functions.

To antidifferentiate
P (x)

(x− c)n
where P is a polynomial, make the substitu-

tion u = x− c.

17.56 Example. To find
∫ x2 + 1

(x− 2)2
dx.

Let u = x− 2. Then x = 2 + u so dx = du, and

∫ (x2 + 1)

(x− 2)2
dx =

∫ (2 + u)2 + 1

u2
du

=
∫ u2 + 4u + 5

u2
du

=
∫

1 +
4

u
+

5

u2
du

= u + 4 ln |u| − 5

u

= (x− 2) + 4 ln(|x− 2|)− 5

(x− 2)
.

To find
∫ R(x)

(x− a)(x− b)
dx where a 6= b and R is a polynomial of degree

less than 2.
We will find numbers A and B such that

R(x)

(x− a)(x− b)
=

A

(x− a)
+

B

(x− b)
. (17.57)

Suppose (17.57) were valid. If we multiply both sides by (x− a) we get

R(x)

(x− b)
= A +

B(x− a)

x− b
.
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Now take the limit as x goes to a to get

R(a)

a− b
= A.

The reason I took a limit here, instead of saying “now for x = a we get · · ·” is
that a is not in the domain of the function we are considering. Similarly

R(x)

x− a
=

A(x− b)

x− a
+ B,

and if we take the limit as x goes to b, we get

R(b)

b− a
= B.

Thus,
R(x)

(x− a)(x− b)
=

1

a− b

[
R(a)

x− a
− R(b)

x− b

]
. (17.58)

I have now shown that if there are numbers A and B such that (17.57) holds,
then (17.58) holds. Since I have not shown that such numbers exist, I will
verify directly that (17.58) is valid. Write R(x) = px + q. Then

1

a− b

[
R(a)

x− a
− R(b)

x− b

]
=

1

a− b

[
pa + q

x− a
− pb + q

x− b

]

=
1

(a− b)

[
(pa + q)(x− b)− (pb + q)(x− a)

(x− a)(x− b)

]

=
1

(a− b)

[
x(pa− pb)− q(b− a)

(x− a)(x− b)

]

=
1

(a− b)

(a− b)(px + q)

(x− a)(x− b)

=
px + q

(x− a)(x− b)
=

R(x)

(x− a)(x− b)
. |||

17.59 Example. To find
∫ x + 1

(x + 2)(x + 3)
dx.

Let
x + 1

(x + 2)(x + 3)
=

A

x + 2
+

B

x + 3
.
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Then
x + 1

x + 3
= A +

x + 2

x + 3
B,

so

A =
−2 + 1

−2 + 3
= −1,

and
x + 1

x + 2
= A

(x + 3)

x + 2
+ B,

so

B =
−3 + 1

−3 + 2
= 2.

Hence
∫ x + 1

(x + 2)(x + 3)
dx =

∫ −1

x + 2
+

2

x + 3
dx

= − ln(|x + 2|) + 2 ln(|x + 3|).

In this example I did not use formula (17.58), because I find it easier to re-
member the procedure than the general formula. I do not need to check my
answer, because my proof of (17.58) shows that the procedure always works.
(In practice, I usually do check the result because I am likely to make an
arithmetic error.)

To find
∫ R(x)

x2 + ax + b
dx where R is a polynomial of degree < 2, and

x2 + ax + b does not factor as a product of two first degree polynomials.
Complete the square to write

x2 + ax + b = (x−m)2 + k.

Then k > 0, since if k = 0 then we have factored x2 + ax + b, and if k < 0 we
can write k = −n2, and then

(x−m)2 + k = (x−m)2 − n2 =
(
(x−m)− n

)(
(x−m) + n

)

and again we get a factorization of x2 + ax + b. Since k > 0, we can write
k = q2 for some q ∈ R, and

x2 + ax + b = (x−m)2 + q2.
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Now ∫ R(x)

x2 + ax + b
dx =

∫ R(x)

(x−m)2 + q2
dx.

Make the substitution u = x−m to get an antiderivative of the form

∫ Au + B

u2 + q2
du =

A

2

∫ 2u

u2 + q2
du + B

∫ 1

u2 + q2
du

=
A

2
ln(u2 + q2) + B

∫ 1

u2 + q2
du.

The last antiderivative can be found by a trigonometric substitution.

17.60 Example. To find
∫ u

4u2 + 8u + 7
du:

Let

I =
∫ u

4u2 + 8u + 7
du =

1

4

∫ u

u2 + 2u + 7
4

du

=
1

4

∫ u

u2 + 2u + 1 + 3
4

du

=
1

4

∫ u

(u + 1)2 + 3
4

du.

Let t = u + 1, so u = t− 1 and du = dt. Then

I =
1

4

∫ t− 1

t2 + 3
4

dt =
1

8

∫ 2t

t2 + 3
4

dt− 1

4

∫ 1

t2 + 3
4

dt

=
1

8
ln(t2 +

3

4
)− 1

4

∫ 1

t2 + 3
4

dt

=
1

8
ln

(
(u + 1)2 +

3

4

)
− 1

4

∫ 1

t2 + 3
4

dt

=
1

8
ln(u2 + 2u +

7

4
)− 1

4

∫ 1

t2 + 3
4

dt.

Now let t =

√
3

2
tan θ, so dt =

√
3

2
sec2 θ dθ, and t2 +

3

4
=

3

4
sec2 θ. Then

∫ 1

t2 + 3
4

dt =
∫ √

3
2

sec2 θ
3
4
sec2 θ

dθ =
2√
3

∫
dθ
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=
2√
3
θ =

2√
3

arctan
( 2t√

3

)

=
2√
3

arctan
(2u + 2√

3

)
.

Hence,

I =
1

8
ln

(
u2 + 2u +

7

4

)
− 1

2
√

3
arctan

(2u + 2√
3

)
.

To find
∫ R(x)

x2 + ax + b
dx where R is a polynomial of degree > 1.

First use long division to write

R(x)

x2 + ax + b
= Q(x) +

P (x)

x2 + ax + b

where Q is a polynomial, and P is a polynomial of degree ≤ 1. Then use one
of the methods already discussed.

17.61 Example. To find
∫ x3 + 1

x2 + 1
dx. By using long division, we get

x

x
2 + 1

)

x
3 +1

x
3 +x

−x +1

x3 + 1

x2 + 1
= x +

−x + 1

x2 + 1
.

Hence

∫ x3 + 1

x2 + 1
dx =

∫
x− x

x2 + 1
+

1

x2 + 1
dx

=
1

2
x2 − 1

2
ln(x2 + 1) + arctan(x).
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17.62 Example. In exercise 17.7, you showed that ln
(
| sec(x)+tan(x)|

)
is

an antiderivative for sec(x). The function ln
(
| sec(x)+tan(x)|

)
in that exercise

appeared magically with no motivation. I will now derive the formula, using
standard methods:

∫
sec(x) dx =

∫ 1

cos(x)
dx =

∫ cos(x)

cos2(x)
dx =

∫ cos(x)

1− sin2(x)
dx.

Now let u = sin(x). Then du = cos(x) dx, and

∫
sec(x) dx =

∫ du

1− u2
.

Suppose
1

1− u2
=

A

1− u
+

B

1 + u
. Then

1

1 + u
= A +

B(1− u)

(1 + u)
,

and if we take the limit of both sides as u → 1 we get A =
1

2
. Also

1

1− u
=

A(1 + u)

1− u
+ B,

and if we take the limit as u → −1, we get B =
1

2
. Thus

∫
sec(x) dx =

∫ 1

1− u2
du

=
1

2

∫ (
1

1− u
+

1

1 + u

)
du

=
1

2
[− ln (|1− u|) + ln (|1 + u|)]

=
1

2
ln

(∣∣∣∣
1 + u

1− u

∣∣∣∣
)

=
1

2
ln

(∣∣∣∣∣
1 + sin(x)

1− sin(x)

∣∣∣∣∣

)
.

Now

1 + sin(x)

1− sin(x)
=

1 + sin(x)

1− sin(x)
· 1 + sin(x)

1 + sin(x)
=

(
1 + sin(x)

)2

1− sin2(x)
=

(
1 + sin(x)

)2

cos2(x)
,
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so

1

2
ln

(∣∣∣∣∣
1 + sin(x)

1− sin(x)

∣∣∣∣∣

)
=

1

2
ln




∣∣∣∣∣
1 + sin(x)

cos(x)

∣∣∣∣∣
2

 = ln

(∣∣∣∣∣
1 + sin(x)

cos(x)

∣∣∣∣∣

)

= ln
(
| sec(x) + tan(x)|

)
,

and thus ∫
sec(x) dx = ln

(
| sec(x) + tan(x)|

)
.

17.63 Exercise. Criticize the following argument:

I want to find
∫ x2

x2 − 1
dx =

∫ x2

(x− 1)(x + 1)
dx. Suppose

x2

(x− 1)(x + 1)
=

A

x− 1
+

B

x + 1
.

Then
x2

x + 1
= A +

(x− 1)B

x + 1
.

If we take the limit of both sides as x → 1, we get
1

2
= A. Also

x2

x− 1
=

A(x + 1)

x− 1
+ B,

and if we take the limit of both sides as x → −1, we get −1

2
= B. Thus

x2

x2 − 1
=

1

2

1

x− 1
− 1

2

1

x + 1
.

Hence, ∫ x2

x2 − 1
dx =

1

2
ln(|x− 1|)− 1

2
ln(|x + 1|).

17.64 Exercise. Find the following antiderivatives:

a)
∫ 1

4x2 − 1
dx

b)
∫ 1

4x2 + 1
dx
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c)
∫ x + 1

x2 − 6x + 8
dx

d)
∫ x + 1

x2 − 6x + 9
dx

e)
∫ 1

9x2 + 6x + 2
dx

f)
∫ x3

x2 + 1
dx

g)
∫ 1√

x2 + 2x + 2
dx

17.65 Exercise. Find the following antiderivatives:

a)
∫ cos(ax)

sin3(ax)
dx.

b)
∫ sin(t) cos(t)

cos2(t) + 1
dt.

c)
∫ 1

(1− t)3
dt.

d)
∫ 1

5 + 4x + x2
dx.

e)
∫

x3
√

x2 + 1dx.

f)
∫ 1√−3− 4x− x2

.

g)
∫ sin(2θ)

cos2(θ)− sin2(θ)
dθ.

h)
∫

(1 + tan(u))2du.

i) Choose a number p, and find
∫

xp(x10 − 2)10dx.

j) Choose a number q, and find
∫

xqe−
1
x dx.
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k)
∫

xe−x2

dx.

l)
∫ u3

1 + u2
du.

m)
∫

x2 arctan(x)dx.

n)
∫

x3(1 + x)
1
4 dx.

o)
∫

xe2xdx.

p)
∫

arcsin(x)dx.
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Appendix A

Hints and Answers

Exercise 3: The Rhind value is 256/81 = 3.1604 . . .

Exercise 1.7: Look at the boundary.

Exercise 1.10: If a set has no endpoints, then it contains all of its endpoints
and none of its endpoints.

Exercise 2.10: 13 + 23 + · · ·n3 = n2(n+1)2

4
.

Exercise 2.18: areaT (a) =
2

3
a

3
2 .

Exercise 2.27: .027027027 . . . = 1
37

.

Exercise 2.36: I let Oj = B(a
j
N , a

j−1
N ; 0, a−

2j
N ) and Ij = B(a

j
N , a

j−1
N ; 0, a−

2(j−1)
N ).

Exercise 3.20: Recall (R=⇒S)⇐⇒(S or not R).

Exercise 5.61: Sab
1 [1

t
] = Sa

1 [1
t
] ∪ Sab

a [1
t
]. (Draw a picture.)

Exercise 5.80: Consider a partition with a fairly large number of points.

Exercise 6.33: The assertion is false.

Exercise 6.59: (part e) The limit is 1
3
. It simplifies matters if you factor

both the numerator and the denominator. The sequence in part g) is a
translate of the sequence in part f).

Exercise 6.69: All four statements are false.

367
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Exercise 6.94: a) (1 + 3
n
)2n = ((1 + 3/n)n)2.

Exercise 6.97: (1− c
n
)n =

(1− c2

n2 )n

(1+ c
n

)n .

Exercise 7.16: Take c = b
a

in lemma 7.13.

Exercise 7.18: Aa
0f = A

1
n
0 f + Aa

1
n

f . Show that A
1
n
0 f is small when n is large.

Exercise 8.14: e)x+1
x

= 1 + 1
x
. Not all of these integrals exist.

Exercise 8.16: Show that
∑

(f, P, S) ≤ ∑
(g, P, S) for every partition P of

[a, b] and every sample S for P .

Exercise 8.28: g is the sum of an integrable function and a spike function.

Exercise 8.32: f is not piecewise monotonic. It is easy to see that f is
integrable on [1, 2]. If you can show it is integrable on [0, 1]then you are
essentially done.

Exercise 8.34: b) (b− a)3/6.

Exercise 8.41: For any partition P of [0.1] you can find a sample S such that∑
(R, P, S) = 0.

Exercise 8.46: In equation 8.44, replace r by 1
R
, , and replace a and b by RA

and RB.

Exercise 8.48: α(Eab) = πab.

Exercise 8.50: If a = 1/4 then both areas are approximately 3.1416

Exercise 8.55: area = 4π.

Exercise 8.57: The areas are 5/12 and 1.

Exercise 8.58: The area is 37
12

. Some fractions with large numerators may
appear along the way.

Exercise 9.20: The last two formulas are obtained from the second by re-
placing t by t/2.
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Exercise 9.29: I used exercise 9.28 with x = π
6

to find cos(π
6
). You can also

give a more geometric proof.

Exercise 9.44: You will need to use (9.24).

Exercise 9.48: α(Sπ
0 (sin)) = 2.

Exercise 9.49: area =
√

2.

Exercise 9.69:
∫ π/2
0 sin(x)dx = 1;

∫ π/2
0 sin2(x)dx = π/4;

∫ π/2
0 sin4(x)dx = 3π/16.

Exercise 10.25: f ′(a) = − 1
a2 .

Exercise 10.26: See example 10.9 and 9.26.

Exercise 10.27: f ′(a) = 1
(a+1)2

.

Exercise 10.28: y = 2x− 4; y = −6x− 4.

Exercise 11.6: I used formula 9.25

Exercise 11.15: d
dt

(| − 100t|) = 100t
|t| .

Exercise 11.21: You can use the definition of derivative, or you can use the
product rule and the reciprocal rule.

Exercise 11.24: f ′(x) = ln(x), g′(x) = ad−bc
(cx+d)2

, k′(x) = 2(2x+3)(x2+3x+11)

Exercise 11.29: (g ◦ (g ◦ g))(x) = ((g ◦ g) ◦ g)(x) = x for x ∈ R \ 0, 1. If you
said (f ◦ f)(x) = x, calculate both sides when x = −1.

Exercise 11.40: Use the definition of derivative. h′(2) = 0.

Exercise 11.43: g′(x) = − tan(x), h′(x) = tan(x), k′(x) = sec(x), l′(x) = − csc(x),

m′(x) = 9x2 ln(5x), n′(x) =
√

x2+1
x

(It requires a lot of calculation to sim-

plify n′), p′(x) = x2

x+4
, q′(x) = sin(ln(|6x|)).

Exercise 12.14: d) Such a function k does exist.

Exercise 12.15: a) Use extreme value property.

Exercise 12.27: Proof is like given proof of corollary 12.26.

Exercise 12.31: Apply corollary 12.26 to F −G.
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Exercise 12.35: Yes.

Exercise 12.36: You can apply the chain rule to the identity f(−x) = f(x).

Exercise 13.14: The function to minimize is f(x) =distance((0, 9
2
), (x, x2)).

Exercise 13.15: You may get a complicated equation of the form
√

f(x) =
√

g(x)
to solve. Square both sides and the equation should simplify.

Exercise 14.5: Apply the intermediate value property to f − fp.

Exercise 14.9: One of the zeros is in [1, 2].

Exercise 14.10: I showed that if temp(A) < temp(B) < temp(D), then there
is a point Q in DC ∪ CA such that temp(Q) = temp(B).

Exercise 14.11: if temp(A) < temp(B) < temp(C) < temp(D), find two
points different from B that have the same temperature as B.

Exercise 14.17: You may want to define some of these functions using more
than one formula.

Exercise 14.41: Use the extreme value property to get A and B.

Exercise 14.54: f ′(x) = 2
√

a2 − x2; h′(x) = arccos(ax); n′(x) = (a2+b2)eax sin(bx);
p′(x) = a3x2eax.

Exercise 14.55: It is not true that l(x) = x for all x. Note that the image
of l is [−π

2
, π

2
].

Exercise 15.5: g(k)(t) = tf (k)(t) + kf (k−1)(t).

Exercise 15.8: Use the antiderivative theorem twice.

Exercise 15.9: (fg)(3) = fg(3) + 3f (1)g(2) + 3f (2)g(1) + f (3)g.

Exercise 15.13: You will need to use a few trigonometric identities, including
the reflection law (9.18).

Exercise 15.22: h(t) = h0 + v0t− 1
2
gt2.

Exercise 15.29: Use theorem 15.27 and corollary 12.26
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Exercise 16.2: You probably will not be able to find a “single formula” for
this. My function has a local maximum at 1

2n+1
for all n ∈ Z+.

Exercise 16.8: The result is known if p < q. To get the result when q < p,
apply 16.6 to f on [q, p].

Exercise 16.13: Not all of these integrals make sense. K ′(x) = 1 for all
x ∈ R. L′(x) = 1 for x ∈ R+. L′(x) = −1 for x ∈ R−. L(0) is not
defined.

Exercise 17.16: b) − ln(| csc(ex)+cot(ex)|); f) 1
2
ln(| sin(2x)|). i) Cf example

9.68i.j) You did this in exercise 9.69.

Exercise 17.31: b) 1
2
ex(sin(x)−cos(x)). When you do the second integration

by parts, be careful not to undo the first. c) x arctan(x)− 1
2
ln(1 + x2).

Let g′(x) = 1. d) and e) can be done easily without using integration by
parts. f) If r = −1 the answer is 1

2
(ln(|x|))2.

Exercise 17.42: c) Let u =
√

x. You will need an integration by parts. d)
Let u = ln(3x). e) Remember the definition of 2x.

Exercise 17.49: a) 1
2
a2 arcsin(x

a
) + 1

2
x
√

a2 − x2. If you forget how to find∫
cos2(θ)dθ, review example 9.53. Also recall that sin(2x) = 2 sin(x) cos(x).

b) ln(x+
√

a2+x2

a
). c) and d) do not require a trigonometric substitution.

Exercise 17.53: a) 5
4
. b) π

6
. c) 4

15
.

Exercise 17.54: 2π
3

+
√

3.

Exercise 17.64: (g) ln(
√

x2 + 2x + 2+x+1). First complete the square, and
then reduce the problem to

∫ 1√
u2+1

du.
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Proofs of Some Area Theorems

B.1 Theorem (Addition Theorem.) For any bounded sets S and T in
R2

α(S ∪ T ) = α(S) + α(T )− α(S ∩ T ). (B.2)

and consequently
α(S ∪ T ) ≤ α(S) + α(T ).

Proof: We have

S ∪ T = S ∪ (T \ S) where S ∩ (T \ S) = ∅
and

T = (T \ S) ∪ (T ∩ S) where (T \ S) ∩ (T ∩ S) = ∅.
Hence by the additivity of area

α(S ∪ T ) = α(S) + α(T \ S) (B.3)

and
α(T ) = α(T \ S) + α(T ∩ S) (B.4)

If we solve equation (B.4) for α(T \ S) and use this result in equation (B.3)
we get the desired result. |||
B.5 Corollary (Subadditivity of area.) Let n ∈ Z≥1, and let A1, A2, · · ·

An be bounded sets in R2. Then

α(
n⋃

i=1

Ai) ≤
n∑

i=1

α(Ai). (B.6)
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Proof: The proof is by induction. If n = 1, then (B.6) says α(A1) ≤ α(A1),
which is true. Suppose now that k is a generic element of Z≥1, and that (B.6)
is true when n = k. Let A1, · · · , Ak+1 be bounded sets in R2. Then

α(
k+1⋃

i=1

Ai) = α

(
k⋃

i=1

Ai ∪ Ak+1

)

≤ α

(
k⋃

i=1

Ai

)
+ α(Ak+1)

≤
k∑

i=1

α(Ai) + α(Ak+1) =
k+1∑

i=1

α(Ai).

Hence (B.6) is true when n = k + 1, and by induction the formula holds for
all n ∈ Zn≥k. |||

B.7 Theorem (Monotonicity of Area.) Let S, T be bounded sets such
that S ⊂ T . Then α(S) ≤ α(T ).

Proof: If S ⊂ T then S ∩ T = S, and in this case equation (B.4) becomes

α(T ) = α(T \ S) + α(S).

Since α(T \ S) ≥ 0, it follows that α(T ) ≥ α(S). |||

B.8 Theorem (Additivity for almost disjoint sets.) Let {R1, · · · , Rn}
be a finite set of bounded sets such that Ri and Rj are almost disjoint whenever
i 6= j. Then

α(
n⋃

i=1

Ri) =
n∑

i=1

α(Ri). (B.9)

Proof: The proof is by induction on n. For n = 1, equation (B.9) says that
α(R1) = α(R1), and this is true. Now suppose {R1 · · ·Rn+1} is a family of
mutually almost-disjoint sets. Then

(R1 ∪ · · · ∪Rn) ∩Rn+1 = (R1 ∩Rn+1) ∪ (R2 ∩Rn+1) ∪ · · · ∪ (Rn ∩Rn+1)

and this is a finite union of zero-area sets, and hence is a zero-area set. Hence,
by the addition theorem,

α((R1 ∪ · · · ∪Rn) ∪Rn+1) = α(R1 ∪ · · · ∪Rn) + α(Rn+1)
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i.e.,

α(
n+1⋃

i=1

Ri) =
n∑

i=1

α(Ri) + α(Rn+1) =
n+1∑

i=1

α(Ri).

The theorem now follows from the induction principle. |||



Appendix C

Prerequisites

C.1 Properties of Real Numbers

Algebraic Laws

Commutative laws for addition and multiplication: If a and b are ar-
bitrary real numbers then

a + b = b + a, (C.1)

ab = ba. (C.2)

Associative laws for addition and multiplication: If a, b, and c are ar-
bitrary real numbers then

(a + b) + c = a + (b + c), (C.3)

(ab)c = a(bc). (C.4)

As a consequence of equations C.3 and C.4 we usually omit the parentheses
in triple sums or products, and write a + b + c or abc. We know that all
meaningful ways of inserting parentheses yield the same result.

Distributive laws: If a, b and c are arbitrary real numbers, and d is an
arbitrary non-zero real number then

c(a + b) = ca + cb, (C.5)

c(a− b) = ca− cb, (C.6)

(a + b)c = ac + bc, (C.7)

375
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(a− b)c = ac− bc, (C.8)

(a + b)/d = a/d + b/d, (C.9)

(a− b)/d = a/d− b/d. (C.10)

Properties of zero and one: The rational numbers 0 and 1, have the prop-
erty that for all real numbers a

a + 0 = a, (C.11)

0 + a = a, (C.12)

a · 1 = a, (C.13)

1 · a = a, (C.14)

0 · a = 0, (C.15)

a · 0 = 0. (C.16)

Moreover
0 6= 1, (C.17)

and
if ab = 0 then a = 0 or b = 0 (or both). (C.18)

Additive and multiplicative inverses: For each real number a there is a
real number −a (called the additive inverse of a ) and for each non-zero real
number b there is a real number b−1 (called the multiplicative inverse of b)
such that

a + (−a) = 0, (C.19)

(−a) + a = 0, (C.20)

b · b−1 = 1, (C.21)

b−1 · b = 1, (C.22)

−0 = 0, (C.23)

1−1 = 1. (C.24)

Moreover for all real numbers a, c and all non-zero real numbers b

−(−a) = a, (C.25)

a− c = a + (−c), (C.26)

a/b = a · b−1, (C.27)
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b−1 = 1/b, (C.28)

(ab)−1 = a−1b−1 (C.29)

−a = (−1) · a, (C.30)

(b−1)−1 = b, (C.31)

(−a)(−c) = ac, (C.32)

(−a)c = a(−c) = −(ac), (C.33)

−(
a

b
) =

−a

b
=

a

−b
. (C.34)

Note that by equation C.33, the expression −xy without parentheses is
unambiguous, i.e. no matter how parentheses are put in the result remains
the same.
Cancellation laws: Let a, b, c be real numbers. Then

if a + b = a + c, then b = c. (C.35)

if b + a = c + a, then b = c. (C.36)

if ab = ac and a 6= 0 then b = c. (C.37)

if ba = ca and a 6= 0 then b = c. (C.38)

Some miscellaneous identities: For all real numbers a, b, c, d, x

a2 − b2 = (a− b)(a + b), (C.39)

(a + b)2 = a2 + 2ab + b2, (C.40)

(a− b)2 = a2 − 2ab + b2, (C.41)

(x + a)(x + b) = x2 + (a + b)x + ab, (C.42)

(a + b)(c + d) = ac + ad + bc + db. (C.43)

Moreover, if b 6= 0 and d 6= 0 then

a

b
· c

d
=

ac

bd
. (C.44)

a

b
+

c

d
=

ad + bc

bd
. (C.45)

a

b
− c

d
=

ad− bc

bd
. (C.46)

If w, x, y, z are real numbers, then

w − x− y + z + y means w + ((−x) + ((−y) + (z + y))) (C.47)
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i.e. the terms of the sum are associated from right to left. It is in fact true
that all meaningful ways of introducing parentheses into a long sum yield the
same result, and we will assume this. I will often make statements like

w − x− y + z + y = w + z − x (C.48)

without explanation. Equation C.48 can be proved from our assumptions, as
is shown below, but we will usually take such results for granted.

Proof of equation C.48. Let w, x, y, z be real numbers. Then

w − x− y + z + y = w + ((−x) + ((−y) + (z + y))) by C.47

= w + ((−x) + ((−y) + (y + z))) by C.1

= w + ((−x) + (((−y) + y) + z)) by C.3

= w + ((−x) + (0 + z)) by C.20

= w + ((−x) + z) by C.12

= w + (z + (−x)) by C.1

= w + z − x by C.47.

Order Laws

There is a relation < (less than) defined on the real numbers such that for
each pair a, b of real numbers, the statement “a < b” is either true or false,
and such that the following conditions are satisfied:

Trichotomy law: For each pair a, b of real numbers exactly one of the fol-
lowing statements is true:

a < b, a = b, b < a. (C.49)

We say that a real number p is positive if and only if p > 0, and we say
that a real number n is negative if and only if n < 0. Thus as a special case of
the trichotomy law we have:

If a is a real number, then exactly one of the following statements is true:

a is positive, a = 0, a is negative. (C.50)

Sign laws: Let a, b be real numbers. Then

if a > 0 and b > 0 then ab > 0 and a/b > 0, (C.51)
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if a < 0 and b > 0 then ab < 0 and a/b < 0, (C.52)

if a > 0 and b < 0 then ab < 0 and a/b < 0, (C.53)

if a < 0 and b < 0 then ab > 0 and a/b > 0, (C.54)

if a > 0 and b > 0 then a + b > 0, (C.55)

if a < 0 and b < 0 then a + b < 0. (C.56)

Also,
a is positive if and only if −a is negative, (C.57)

and
a is positive if and only if a−1 is positive. (C.58)

if ab > 0 then either (a > 0 and b > 0) or (a < 0 and b < 0). (C.59)

if ab < 0 then either (a > 0 and b < 0) or (a < 0 and b > 0). (C.60)

if a/b > 0 then either (a > 0 and b > 0) or (a < 0 and b < 0). (C.61)

if a/b < 0 then either (a > 0 and b < 0) or (a < 0 and b > 0). (C.62)

It follows immediately from the sign laws that for all real
numbers a

a2 ≥ 0 and if a 6= 0 then a2 > 0. (C.63)

Here, as usual a2 means a · a.

Transitivity of <: Let a, b, c be real numbers. Then

if a < b and b < c then a < c. (C.64)

We write a ≤ b as an abbreviation for “either a < b or a = b”, and we
write b > a to mean a < b. We also nest inequalities in the following way:

a < b ≤ c = d < e

means
a < b and b ≤ c and c = d and d < e.
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Addition of Inequalities: Let a, b, c, d be real numbers. Then

if a < b and c < d then a + c < b + d, (C.65)

if a ≤ b and c ≤ d then a + c ≤ b + d, (C.66)

if a < b and c ≤ d then a + c < b + d, (C.67)

if a < b then a− c < b− c, (C.68)

if c < d then −c > −d, (C.69)

if c < d then a− c > a− d. (C.70)

Multiplication of Inequalities: Let a, b, c, d be real numbers.

if a < b and c > 0 then ac < bc, (C.71)

if a < b and c > 0 then a/c < b/c, (C.72)

if 0 < a < b and 0 < c < d then 0 < ac < bd, (C.73)

if a < b and c < 0 then ac > bc, (C.74)

if a < b and c < 0 then a/c > b/c, (C.75)

if 0 < a and a < b then a−1 > b−1. (C.76)

Discreteness of Integers: If n is an integer, then there are no integers
between n and n + 1, i.e. there are no integers k satisfying n < k < n + 1. A
consequence of this is that

If k, n are integers, and k < n + 1, then k ≤ n. (C.77)

If x and y are real numbers such that y−x > 1 then there is an integer n such
that

x < n < y. (C.78)

Archimedean Property: Let x be an arbitrary real number. Then

there exists an integer n such that n > x. (C.79)

Miscellaneous Properties

Names for Rational Numbers: Every rational number r can be written as
a quotient of integers:

r =
m

n
where m,n are integers and n 6= 0,
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and without loss of generality we may take n > 0. In general, a rational number
has many different names, e.g. 2

3
, −10
−15

, and 34
51

are different names for the same

rational number. If I say “let x = 2
3
”, I mean let x denote the rational number

which has “2
3
” as one of its names. You should think of each rational number

as a specific point on the line of real numbers. Let m,n, p, q be integers with
n 6= 0 and q 6= 0. Then

m

n
=

p

q
if and only if mq = np. (C.80)

If n and q are positive, then

m

n
<

p

q
if and only if mq < np. (C.81)

Equations C.80 and C.81 hold for arbitrary real numbers m,n, p, q. It will
be assumed that if you are given two rational numbers, you can decide whether
or not the first is less that the second. You also know that the sum, difference,
and product of two integers is an integer, and the additive inverse of an integer
is an integer.

Absolute value: If x is a real number, then the absolute value of x, denoted
by |x|, is defined by

|x| =




x if x > 0,
0 if x = 0,
−x if x < 0.

(C.82)

For all real numbers x and all positive numbers a we have

(|x| < a) if and only if (−a < x < a), (C.83)

(|x| ≤ a) if and only if (−a ≤ x ≤ a). (C.84)

For all real numbers x, y, z with z 6= 0,

|x| = | − x| (C.85)

−|x| ≤ x ≤ |x| (C.86)

|xy| = |x| · |y| (C.87)
∣∣∣∣
x

z

∣∣∣∣ =
|x|
|z| . (C.88)
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Powers: If a is a real number, and n is a non-negative integer, then the power
an is defined by the rules

a0 = 1 (C.89)

an+1 = an · a for n ≥ 0. (C.90)

If a is a non-zero number and n is a negative integer, then an is defined by

an = (a−n)−1 =
1

a−n
. (C.91)

If a is a non-negative number and n is a positive integer, then a
1
n is defined

by

a
1
n is the unique non-negative number b such that bn = a. (C.92)

If a is a non-negative number and m is an arbitrary integer and n is a
positive integer, then a

m
n is defined by

a
m
n =





(a
1
n )m if a > 0.

0 if a = 0 and m > 0
undefined if a = 0 and m < 0.

(C.93)

If m,n, p, q are integers such that n 6= 0 and q 6= 0 and m
n

= p
q
, then

(a
1
n )m = (am)

1
n = (ap)

1
q = (a

1
q )p. (C.94)

Monotonicity of Powers: If r is a positive rational number, and x and y
are non-negative real numbers, then

x < y if and only if xr < yr. (C.95)

If r is a negative rational number, and x and y are positive real numbers, then

x < y if and only if xr > yr. (C.96)

If a is a positive real number greater than 1, and p and q are rational numbers,
then

p < q if and only if ap < aq. (C.97)

If a is a positive real number less than 1, and p and q are rational numbers,
then

p < q if and only if ap > aq. (C.98)
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Laws of exponents: Let a and b be real numbers, and let r and s be rational
numbers. Then the following relations hold whenever all of the powers involved
are defined:

aras = ar+s, (C.99)

(ar)s = a(rs), (C.100)

(ab)r = arbr. (C.101)

a−r =
1

ar
(C.102)

Remarks on equality: If x, y and z are names for mathematical objects,
then we write x = y to mean that x and y are different names for the same
object. Thus

if x = y then y = x, (C.103)

and it is always the case that
x = x. (C.104)

It also follows that

if x = y and y = z then x = z, (C.105)

and more generally,

if x = y = z = t = w then x = w. (C.106)

If x = y, then the name x can be substituted for the name y in any statement
containing the name x. For example, if x, y are numbers and we know that

x = y, (C.107)

then we can conclude that
x + 1 = y + 1, (C.108)

and that
x + x = x + y. (C.109)

When giving a proof, one ordinarily goes from an equation such as C.107 to
equations such as C.108 or C.109 without mentioning the reason, and the
properties C.103–C.106 are usually used without mentioning them explicitly.
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C.2 Geometrical Prerequisites

Area Formulas

It will be assumed that you are familiar with the results from Euclidean and
coordinate geometry listed below.

Area of a parallelogram:

Area = base · height = bh h

b
(C.110)

Area of a triangle:

Area =1

2
base · height = 1

2
bh h

b
(C.111)

Area of a trapezoid:

Area = (average of bases) · height

= 1

2
(b1 + b2)h

b1

b

h

2 (C.112)
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We will always assume that angles are measured in radians unless otherwise
specified. If an angle θ is inscribed in a circle of radius r and s is the length
of the subtended arc, then

s = rθ.

θ

s

r

(C.113)

A right angle is π/2 and the sum of the angles of a triangle is π. When θ
is four right angles in (C.113) we get

circumference(circle) = 2πr. (C.114)

Area of a circular sector:

Area =
1

2
· radius · subtended arc

=
1

2
rs

=
1

2
· central angle · radius2

=
1

2
θr2. (C.115)

In particular when θ is four right angles

Area(circle) = πr2. (C.116)

Miscellaneous Properties

You should be familiar with the properties of parallel lines, and with the rules
for deciding when triangles are congruent or similar. In the accompanying
figure if ABC is a triangle and DE is parallel to BC, and the lengths of the
sides are as labeled, you should be able to calculate DE.



386 APPENDIX C. PREREQUISITES

E

B

D
3

A
5

7 C

The Pythagorean Theorem: If ABC is a right triangle with the right angle
at B, then

B

A

C

(AB)2 + (BC)2 = (AC)2. (C.117)

In a given circle, equal arcs subtend equal chords.

A regular hexagon inscribed in a circle has each of its sides equal to the
radius of the circle. The radii joining the vertices of this hexagon to the center
of the circle decompose the hexagon into six equilateral triangles.

It is assumed that you are familiar with the process of representing points
in the plane by pairs of numbers. If P1 = (x1, y1) and P2 = (x2, y2) are points
with x1 6= x2, then the slope of the segment joining P1 to P2 is defined to be

slope(P1P2) =
y2 − y1

x2 − x1

=
y1 − y2

x1 − x2

= slope(P2P1). (C.118)
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1 11

222P = (x ,y  )

P  =  (x ,y  )

If x1 = x2 we say that P1P2 has undefined slope, or that P1P2 is a vertical
segment. If slope(P1P2) is zero we say that P1P2 is a horizontal segment.

Let P = (p1, p2) and Q = (q1, q2) be two distinct points in the plane. If
p1 = q1, then the line passing through P and Q is defined to be the set of all
points of the form (p1, y), where y can be an arbitrary real number. If p1 6= q1,
then the line joining P to Q is defined to be the set consisting of P together
with all points X = (x, y) such that slope(PX) = slope(PQ). Thus if p1 6= q1

then (x, y) is on the line joining P to Q if and only if

(x, y) = (p1, p2) or
y − p2

x− p1

=
q2 − p2

q1 − p1

. (C.119)

X

Q

P

If m = slope(PQ) then equations C.119 can be rewritten as

y = p2 + m(x− p1). (C.120)

If p1 6= q1 then (C.120) is called an equation for the line joining P and Q. If
p1 = q1 then

x = p1 (C.121)
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is called an equation for the line joining P and Q. Thus a point X is on the
line joining P to Q if and only if the coordinates of X satisfy an equation for
the line.

Two lines are parallel, (i.e. they do not intersect or they are identical,) if
and only if they both have the same slope or they both have undefined slopes.



Appendix D

Some Maple Commands

In this appendix we will indicate the syntax for Maple commands correspond-
ing to some of the ideas discussed in the notes.

Detailed descriptions and examples of any of these commands can be
found by entering Maple or Xmaple and typing help(command-name); , e.g.
help(sum); or help(limit); . If this produces a syntax error, try putting
the command name in back-quotes (‘), e.g. help(‘@‘); .

π Pi;

∞ infinity;

xy x^y;
b∑

j=a

f(j) sum(f(j),j=a..b);

∫
f(x)dx int(f(x),x);

∫ b

a
f(x)dx int(f(x),x=a..b);

f ′(x) diff(f(x),x);

f (n)(x) diff(f(x),x\$n);

f ′ D(f);

f (n) (D@@n)(f)

389
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lim
x→a

f(x) limit(f(x),x=a);

lim
x→a+

f(x) limit(f(x),x=a,right);

lim
x→a−

f(x) limit(f(x),x=a,left);

f ◦ g f@g;

Some useful Maple commands are

% A name for the last line calculated by Maple.
simplify(expression); simplify expression.
factor(expression); factor expression.
evalf(expression); express expression as a number in decimal notation.

(Here expression should represent a number.)
quit; Exit from Maple.

EXAMPLES
> sum(j^2,j=1..n);

1

3
( n + 1 )3 − 1

2
( n + 1 )2 +

1

6
n +

1

6

> simplify(%);
1

3
n3 +

1

2
n2 +

1

6
n

> factor(%);
1

6
n ( n + 1 ) ( 2 n + 1 )

> limit( (n^2 + 2*n + 3)/(4*n^2 + 5*n - 1), n=infinity);

1

4

> 4*int( 1/(1+x^2),x=0..1);

π

> evalf(%);

3.141592654

> D(f@g);

D( f )@g D( g )
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> limit( exp(1/x),x=0,left);

0

> limit( exp(1/x),x=0);

undefined

To solve the system of equations x2 + y2 = 25, x + y = 1 for the unknowns x
and y.
> solve({x^2 + y^2 = 25, x+y=1},{x,y});

{ y = −3, x = 4 }, { y = 4, x = −3 }
To introduce a simple name for a complicated expression.
> f1 := 3*x^4 + 5*x^2 + 3;

f1 := 3 x4 + 5 x2 + 3

> diff(f1,x);

12 x3 + 10 x

> diff(f1,x$2);

36 x2 + 10

To introduce a simple name for a function.
> g1 := (x -> (x+1)/(x-1));

g1 := x → 1 + x

x− 1

> g1(2);

3

> (g1@g1)(t);

1 +
1 + t

−1 + t
1 + t

−1 + t
− 1

> simplify(%);

t

In Xmaple you can draw graphs of functions by using the plot command. If
f is a function, and a, b, c, d are numbers with a < b and c < d, then the
command
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plot(f(x),x=a..b,c..d)

will cause the part of the graph of f in the box B(a,b:c,d) to be drawn. The
command
> plot( x^3/(1-x^2), x=-4..4, -4..4 );

makes the plot in figure a.

-4

-2

0

2

4

-4 -2 0 2 4
x

-4

-2

0

2

4

-4 -2 0 2 4
x

Figure a. Figure b.

The two vertical lines appearing in the plot are not part of the graph, but are
due to the fact that the points ±1 are not in the the domain of the function
being plotted. We can get a better plot of the graph by adding the statement
discont=true to the plot command, to warn Maple that the function being
plotted is discontinuous. (Actually, according to our definitions, this function
is not discontinuous, because it is continuous at every point of its domain.)
The command
> plot( x^3/(1-x^2), x=-4..4, -4..4, discont=true);

makes the plot in figure b.
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List of Symbols

{1, 2, 3, 4} set notation, 11
N natural numbers, 11
Z integers, 11
Z+ positive integers, 11
Z− negative integers, 11
R real numbers, 11
R+ positive real numbers, 11
R− negative real numbers, 11
R2 Euclidean Plane, 11
Q rational numbers, 11
Q+ positive rational numbers, 11
Q− negative rational numbers, 11
∅ empty set, 11
∈ element of, 12
6∈ not element of 12
⊂ subset 13
S = T set equality, 13
B(a, b : c, d) box, 13
area(B(a, b, : c, d)) area of a box, 14
S1 ∪ S2 ∪ · · · ∪ Sn set union, 14⋃n

i=1 Si set union, 14

393
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S1 ∩ S2 ∩ · · · ∩ Sn set intersection, 14⋂n
i=1 Si set intersection, 14

A \B set difference, 16
[a, b), (−∞, a] etc. intervals, 17
Sr

a Area under graph of power function, 19
cir(Sr

a) circumscribed box, 22
||| end of proof, 33
KI inner snowflake, 40
KO outer snowflake, 40
KI , KO snowflakes, 48
∞⋃

n=1

In infinite union, 48

∞⋂

n=1

On infinite intersection, 48

⇐⇒ if and only if, 52
=⇒ implies, 53
{x ∈ T : P (x)} set notation, 56
{x : P (x)} set notation, 56
Z≥n integers ≥ n, 57
R≥a real numbers ≥ a, 57
(a, b) ordered pair, 57
(a, b, c) ordered triple, 57
A×B Cartesian product, 57
f(x) function notation, 58
f : A−→B f is a function from A to B, 58
max(x, y) maximum of x and y, 58
min(x, y) minimum of x and y, 58
|x| absolute value of x, 59, 116
{f(n)} sequence, 59
f(A) f image of A, 61∑n

i=k xi xk + xk+1 + · · ·+ xn, 63
a,b, · · · points in R2, 68
ab, [ab] line (segment), 70
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I identity function, 73
H reflection about horizontal axis, 73
V reflection about vertical axis, 73
D+ reflection about y = x, 73
D− reflection about y = −x, 73
Rπ/2 rotation, 73
R−π/2 rotation, 73
Rπ rotation, 73
a + S translate of set, 75
d(a,b) distance from a to b, 79
distance(a,b) distance from a to b, 80
C(P, r) circle, 80
α(S) area of S, 84, 89
area(S) area of S, 89
µ(P ) mesh of P , 89
Sb

af set of points under graph(f), 90
Tc = T(a,b) right triangle 95
Ab

af area under graph of f , 100, 103
Ab

a[f(t)] area under graph of f , 100
L(x) logarithm, 104
ln(x) logarithm, 104
e antilog(1), 108
|x| absolute value, 59, 116
dist(x, y) distance from x to y, 117
{an} → L {an} converges to L, 122
lim{an} = L {an} converges to L, 125∑

(f, P, S) Riemann sum, 152∫ b

a
f ,

∫ b

a
f(t) dt integral, 160, 167, 208

W a function for R to the unit circle, 190
sin sine, 191
cos cosine, 191
fi end of if (in Maple), 205∫

f(t)dt indefinite integral, 213∫
f(t)dt antiderivative, 328

F (t) |ba,F |ba F (b)− F (a), 213
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{E1(x, y)} {(x, y) ∈ R2 : E(x, y)}, 219
lim
x→a

f(x) = L limit of a function, 225

f ′(a) derivative of f at a, 230
d

dx
notation for derivatives, 241

tan, cot, sec, csc trigonometric functions 247
f ◦ g composition of functions, 248
E exponential function, 293
exp exponential function, 297
ax general power function, 297
arccos inverse cosine, 302
arcsin inverse sin, 303
arctan inverse tangent, 303
arccot inverse cotangent, 304
sinh hyperbolic sine, 305
cosh hyperbolic cosine, 305
f ′, f (n) notation for derivatives, 306
f ′(x), f ′′(x), f (1)(x), f (n)(x) notation for derivatives, 306
dnf

dxn
notation for derivatives, 306

g acceleration due to gravity, 310∫
f ,

∫
f(x)dx antiderivative, 328∫

f(x)dx indefinite integral, 213
Si sine integral, 330
Ei exponential integral, 330
erf error function, 330

(D@@n)(f) f (n), Maple command, 389
f@g f ◦ g, Maple command, 390
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absolute value, 59, 116, 381
derivative of, 240

acceleration, 310
due to gravity, 310

addition law, 193, 199
addition of points, 68
addition rule for area, 87
addition theorem for area, 372
additivity of area, 85
almost disjoint sets, 88
Analyst 223
and (logical operator), 51
antiderivative, 269, 328

theorem 270
antidifferentiation

formulas for, 331
Maple commands for, 330

Apollonius (c 260-170 B.C.), 220
approachable point, 224
approximation, 120

to n decimals, 121
strong approximation theorem, 122

arc length, 191
arccos, 302
arccot, 304
Archimedean property 380
Archimedes (287–212 B.C.), 4, 8, 9,

27, 29, 30, 35, 190, 200, 202,
209

arcsin, 303

arctan, 303
area

as a number, 14
assumptions about, 84, 85
between graphs, 184
area function, 84, 89
as an integral, 183
of box, 14
of circle, 181
of circular sector, 349
of ellipse, 181
of parabola, 19, 20
of parabolic segment 30
of snowflake, 49
of triangle, 99
under power function, 154

Aristotle(384-322 B.C.), 14, 223, 235
Āryabhat.a (circa 510), 199
associative law

for numbers, 375
for points, 69

assumptions about area, 84, 85
average velocity, 235

Babylonians, 8, 24, 27, 35, 78
Banach, Stefan(1892–1945), 86
Berkeley, George (1685-1753), 223
Bernoulli, Daniel(1700-1782), 304
Bernoulli,Jacob (1654-1705) 26, 127,

149
between, 288

397
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bijective, 292
Bolzano, Bernard(1781-1848), 236, 287
bound for a function, 84
bounded

function, 84
set, 84

box, 13
circumscribed, 22

Brouncker, William(1620-1684), 108

cancellation laws 377
Cantor, 13
Cartesian product, 57
Cauuchy, Augustin(1789-1857), 65, 236
Cavalieri,Bonaventura (1598-1647), 39
chain rule, 250
change of scale for integrals, 180
chord of an arc, 199
circle

area of, 181, 385
circumference of, 385
defined, 80
unit, 80

circular sector (area of), 349, 385
circumscribed

box, 22
hexagon for snowflake, 49

clockwise, 191
closed interval, 17
codomain, 58
commutative law

for numbers, 375
for points, 69

composition of functions, 248, 259
composition problem, 249
compound interest, 148
computer calculation of integrals, 113
congruence problem, 86

conic section, 220
conservation of energy, 312
constant sequence, 127
constructivists, 54
continuity, 256

on a set 256
contrapositive 54
convergent sequence 122, 125
convex downward (spills water), 314
convex upward (holds water), 313
cosh 305
cosine

defined, 191
integral of 206, 208

cot, 247
counterclockwise, 191
critical point, 263

critical point theorem I, 264
critical point theorem II, 265

critical set, 263
csc, 247

decreasing function, 90
derivative 5, 6, 230

fractional, 308
higher order, 306
of order 0, 306
of absolute value, 240
of arccos, 302
of arcsin, 303
of arctan, 303
of arccot, 304
of ax, 301
of cos, 238
of cosh, 305
of exponential, 300
of logarithm, 239
of powers, 237
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of reciprocal, 246
of sin, 238
of sinh, 305
of trigonometric functions, 247
of xr 301
second 306

derived function 5
Descartes, Rene (1596-1660), 224
difference of sets, 16
differential, 5, 242
differentiation, 5

logarithmic, 252
Dirichlet, P. G. Lejenue(1805-1859), 176
discontinuous function, 258
discreteness of Z, 380
disjoint sets, 85

almost disjoint sets, 88
distance

between numbers, 117
between points, 79

distributive law
for numbers, 375
for points, 69

Diver, Colin (1944-??), 399
divergent sequence, 125
domain, 58
double angle formulas, 195
dummy

index, 15
variable 63, 167, 225

e, 108
numerical calculation of, 147

ellipse, area of, 181
Emperor Yǔ(c. 21st century B.C.), 78
entertainments

Archimedes sine integral, 211
Area of a triangle, 99

Calculate ln(2), 106
Composition problem, 249
lim{n 1

n}, 148
Calculation of sines, 200
Discontinuous derivative problem,

318
Falling bodies problem, 224
Bernoulli’s problem, 27
Calculate e, 108
Calculation of π, 8
Congruence problem, 86
Pine Tree proble, 34
Square root problem, 9
Snowflake prioblem, 49

end points of interval, 17
equal functions 60
equality 383

in Q, 381
of sets, 13
of propositions, 54

equation for line, 387
equivalent propositions, 52
error function, 330
etymology

of corollary, 88
of sine, 199

Euclid (fl. c. 300 B.C.), 14, 35, 220,
235

Euler, Leonard (1707-1783), 62, 64, 127
evalf, Maple command, 390
even function, 270
exponential function, 293, 297

derivative of 300
exponents, laws of, 383
exterme point, 261

local, 264
extreme value property, 263
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fluxion, 5, 242
Fourier, Joseph (1768–1830), 161, 309
fractional derivatives, 308
function, 6, 58

bounded, 84
Euler’s definition of, 62
increasing, 90

functions
equality of, 60
operations on, 166

fundamental theorem of calculus, 6,
320, 324

Leibniz statement of, 325

Galileo (1564-1642) 223, 224
geometric series, 141

finite, 33
Gōugǔ, 79
graphs, 61

area between, 184
gravity, acceleration due to, 310

half angle formulas, 195
Hausdorff, Felix (1868–1942), 86
height of box, 14
Heine, Heinrich Eduard (1821-1881),

236
Heron (between 250 BC and 150 AD),

284
higher order derivatives, 306
horizontal, 387
hyperbolic functions, 305

Ibn-al-Haitham(circa 1000 A.D.), 27
image of f , 61
image of x under f , 58
implies, 53
increasing function, 90
indefinite integral, 213

induction, 65
inequalities, 380
inequality rule

for limits of functions, 229
for sequences, 130
for integrals, 168

inflection point, 316
injective, 290
inner snowflake, 40
instantaneous velocity, 235
integrable function, 160
integral, 160

and area, 183
change of scale for, 180
Ei, 330
indefinite, 213
of cos, 206, 208
integral of sin, 208
computer computation, 113
Si, 330

integration, 3
by parts, 335
by substitution, 340
of rational functions, 353

interior point, 224
intermediate value property, 287, 288
intersection, 14, 48
interval, 17
inverse,

additive, 376
multiplicative, 376

inverse function, 293
inverse function theorem, 298

Katyayana (c. 600 BC or 500BC??),
79

kinetic energy, 312
Koch, Helga von(1870-1924) 49, 259
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Lagrange, Joseph Louis (1736–1813)
5, 242

Leibniz, Gottfried(1646–1716) 5, 6, 62,
160, 167, 221, 241 284, 308,
325

notation for sums, 65
proof of product rule, 245

length of arc 191
l’Hôpital,Guillaume François (1661-1701),

124
limit, 225

of a sequence, 125
infinite, 273
one-sided, 274

line 70, 387
equation for, 387

Liouville, Joseph (1809–1882), 309
ln(2) calculation, 113
ln(a), 2
localization rule, 240
local maximum, 264
local minimum, 264
logarithm 104, 106, 159

derivative of, 239
logarithmic differentiation 252

Maple 112, 329, 352
approximate integration, 113
calculation of e, 147
integration, 216
mypi, 205
routine, 205
short list of commands, 389
sinsq, 205
symbolic antidifferentiation, 330
average, 113
leftsum, 113
rightsum, 113

maximum, 58
local, 264
of a function, 261

mean value theorem, 268
for integrals, 322

Mercator, Nicolaus(1620-1687), 111
mesh of partition, 89
minimum, 58

local, 264
of a function, 261

monotonic function, 90
piecewise, 173

monotonicity
of area, 88, 373
of powers, 382

names for rational numbers, 380
Napier, John (1550-1632), 106
negative number, 378
Newton, Isaac(1642–1727) 5, 6, 236,

242
Newton’s law, 6
nice function, 320
non-integrable function, 174
normalization property of area, 85
not (logical operator), 51
nowhere differentiable function, 259
nth power theorem, 140
nth root rule for sequences, 132
null sequence rule, 128
number as area, 14

objects in a set, 12
odd function, 270
open interval, 17
operations on functions, 166
optical illusion, 190
optimization problems, 277
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ordered pair, 57
order laws, 378
or (logical operator), 51
outer snowflake, 40

pair, ordered, 57
parabola, area of 19, 29
parabolic segment, area of, 30
parallel lines, 388
parallelogram, 70

area of, 384
partition, 89

regular, 89
partition-sample sequence, 166
Pascal, Blaise (1623-1662), 24
π (pi), 2, 8, 181, 113

ancient values of, 9
computer calculation of, 113

piecewise monotonic function, 173
non-piecewise monotonic function,

261
point

in plane, 12, 68
in a set, 12
of inflection, 316
addition of points, 68

positive number, 378
potential energy, 312
power function, 297
powers, 382

monotonicity of, 382
nth power theorem, 140

power-sums, (table of), 27
prerequisites, 7, 375
product, Cartesian, 57
product rule

for derivatives, 244
for limits, 229

for limits of functions, 229
for sequences, 129

proofs without words, 24
propositions, 51

equal, 54
equivalent, 52
sets defined by, 56

proposition form, 52
Ptolemy, Claudius (fl 127-151), 199
Pythagoras, (f. 530–510 B.C.), 78
Pythagoreans, 24
Pythagorean theorem, 386

quadratic formula, 80
quotient rule

for derivatives, 246
for limits, 229
for limits of functions, 229
for sequences ,130

radian, 385
Ramanujan, Srinivasa (1887–1920), 10
rate of change, 282
rational functions, 353
rational numbers, 12

names for, 380
real number, 6
reciprocal (derivative of), 246
reflection 30, 73
reflection law for sin and cos, 195
reflection theorem, 294
regular partition, 89
Rhind Papyrus, 8
Riemann, Bernhard (1826–1866) 160
Riemann sum, 152
right triangle, 95
rituals for integration 341, 342, 346,

350, 351
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Rolle, Michel, (1652-1719), 267
Rolle’s theorem, 267

rotation, 73
ruler function, 176

Saint-Vincent, Grégoire de(1584-1667),
143

sample, 152
Sarasa, Alfons Anton de(1618-1667),

106
schizophrenia, 54
sector, area of circluar 349, 385
sec, 247
segment, 70, 76
sequences, 59

constant, 127
constant sequence rule, 128
convergent, 122, 125
divergent, 125
inequality rule for, 130
limit of, 125
nth root rule, 132
null sequence rule, 128
product rule for, 129
quotient rule for, 130
sum rule for, 128
translate of, 131
translation rule for, 131

set, 11
bounded, 84
defined by a proposition, 56

sign laws, 378
sine

defined, 191
etymology of word, 199
integral of, 208

sine integral (Si), 330
sinh, 305

slope, 386
snowflake, 48, 259

area of 49
spike function 171, 172, 226
square root problem, 9
squeezing rule

for limits of functions, 230
for sequences, 130

stretch 179
Stringham, Irving, 106
subadditivity of area, 87
subinterval of a partition, 89
subset, 13
substitution in integrals, 350
substitution, trigonometric, 345
summation formula 23, 24, 25, 26, 27
summation notation, 63
sum rule

for derivatives, 242
for limits, 229
for limits of functions, 229
for sequences, 128

sum theorem
for derivatives, 332
for indefinite integrals, 214
for integrals, 166

surjective, 292
symmetric set, 270
symmetry invariance, 85
symmetry of square, 74

tangent, 219, 221, 231
tan, 247
transitivity of <, 379
translate

of a sequence, 131
of a set, 75

translation invariance, 85
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translation rule for sequences, 131
trapezoid, area of, 384
triangle

area of, 99, 384
right, 95

triangle inequality, 117
trichotomy law, 378
trick, 135
trigonometric functions, 191

derivative of, 238, 247
trigonometric identities, 192, 193, 195,

199
trigonometric substitution, 345

union of sets 14, 48
uniqueness of inverses, 294
uniqueness theorem for convergence,

125
unit circle, 80

velocity 5, 219, 223
average, 235
instantaneous, 235

vertical, 387
Voltaire, François Marie Arouet de (1694-

1778), i

Weierstrass, Karl (1815-1897), 120, 259
width of box, 14
work, 4

zero-area set, 88, 183
zeroth order derivative, 306
Zǔ Chōngzh̄ı (429-500 A.D.), 9


