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The web of relations linking technological innovation can be fairly described in terms of patent citations.
The resulting patent citation network provides a picture of the large-scale organization of innovations and its
time evolution. Here we study the patterns of change of patents registered by the U.S. Patent and Trademark
Office. We show that the scaling behavior exhibited by this network is consistent with a preferential attachment
mechanism together with a Weibull-shaped aging term. Such an attachment kernel is shared by scientific
citation networks, thus indicating a universal type of mechanism linking ideas and designs and their evolution.
The implications for evolutionary theory of innovation are discussed.
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I. INTRODUCTION

Innovation takes place both in nature and technology [1].
Either through symbiosis [2], tinkering [3,4], or design [5]
new functional structures and artifacts are obtained. Such
new entities often result from the combination of predefined
designs or building blocks, although a completely new solu-
tion can also emerge. This is the case, for example, in the
replacement of vacuum tube technology by semiconductors.
However, the majority of technological (and evolutionary)
changes take place gradually [6]. Such steady transformation
of designs is largely based on an extensive combination and
refinement of existing inventions.

A surrogate of the ways in which innovations take place
in time is provided by patent files. Patents are well-defined
objects introducing a novel design, method, or solution for a
given problem or set of problems and they can be analyzed
in full detail [7]. Additionally, they indicate what previous
novelties have been required to build the new one. In order
to gain insight into the global organization of the patterns of
innovation and their evolution in technology, here we study a
very large database including all U.S. Patent and Trademark
Office (USPTO) patents from 1975 to 2005.

As it occurs with the fossil record for biological evolu-
tion, the record of patents through time provides us with the
opportunity of seeing how new inventions emerge and how
they relate to previous ones. A given patent will typically
require new solutions and also previously achieved results.
Looking at how patents link to each other is the simplest way
of having a large scale picture of the patterns and processes
associated with the collective dynamics of innovation as it
unfolds [8,9]. In this way patents are related to each other
through a network of patent-patent associations. Such a net-
work can be treated from a statistical physics perspective,
looking for statistical patterns and their origins [10].

Many interesting questions can be formulated in relation
to this large-scale picture of invention: What is the global
organization of interactions among innovations? Is this a re-
peatable pattern? How are similar classes of innovations re-
lated among them? Do these patterns respond to history-
dependent rules or are they instead describable by means of
simple models? These questions are addressed here and it is
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shown that a standard statistical physics approach provides a
good picture of how these webs emerge.

The paper is organized as follows. In Sec. II the data set
analyzed is presented. In addition, we discuss the modular
pattern exhibited by a small subgraph describing the patents
in computed tomography. In Sec. III the topological trends
exhibited by the full patent citation network are discussed
under the light of a model of graph growth with aging (Sec.
IV). In Sec. V our basic results are summarized and their
evolutionary implications outlined.

II. PATENT CITATION NETWORKS

Previous studies have measured the value of an innova-
tion by means of the analysis of patent citations, i.e., the rate
of receiving new citations. However, innovation is an elusive
notion that is difficult to measure properly and existing mea-
sures provide limited insight [8]. It is a difficult task to find
useful indicators for the value of innovations. In this context,
we introduce patent citation networks as an appropriate ap-
proach to the global analysis of the process of technological
innovation. Recent work in complex networks provides sev-
eral models that describe or reproduce structural features of
natural and artificial evolving systems. Here, we will show
how innovation can be described as a process of network
growth following some specific rules. In particular, our
model provides a rigorous statistical test to assess the bal-
ance between patent importance and patent age, i.e., Price’s
“immediacy factor” [8].

The set of patents and their citations describes a (so-
called) patent citation network G=(V,L). The patent network
belongs to the general class of citation networks, which also
includes scientific citation networks. Here, nodes v; € G rep-
resent individual patents and the directed link (v;,v;) indi-
cates that patent v; is a descendent of patent v;. In order to
illustrate the power of the network approach, we have reana-
lyzed the evolution of patents in computed tomography (CT)
[11]. G. N. Hounsfield, a senior research scientist at EMI
Limited in England, developed CT in 1972. This technology,
commonly referred to as CAT scan, uses x rays to produce
high-resolution sectional images of the human body. Figure 1
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FIG. 1. From (a) to (f), evolution of the computed tomography
(CT) patent network. This is a subgraph from the full USPTO
patent network. The hub in the center corresponds to the precursor
invention by Hounsfield [12]. We have detected m=5 different
modules in the final CT network (f) using a specific algorithm of
community detection (see [13]). Modules are indicated with differ-
ent shades of gray (see Table I for a functional description). We can
trace the evolution of modules by shading nodes according to the
partition found in (f).

shows the time evolution for the computed tomography (CT)
patent network. This data set comprises all the patents related
to CT from 1973 to 2004. The CT network in2004 has N
=141 nodes (patents) and L=344 directed links (citations).

This example illustrates some common features displayed
by patent networks. Figure 1 indicates that some patents re-
ceive many more citations than others. In particular, the hub
at the center corresponds to the very first CT patent. Inter-
estingly, the network level analysis reveals some patterns
that cannot be easily recovered by just looking at individual
patents. Some groups of patents are more densely connected
among them than with other patents. This pattern of modular
structure seems to be a general trend in patent networks, thus
indicating a nontrivial organization of relations between in-
ventions.

For instance, in Fig. 1 we can appreciate the modular
organization of the CT patents. The CT network is directed,
but we will consider it as undirected when assessing its
modularity. Here we have used Clauset er al.’s algorithm
[13] to detect community structure in networks. The method
considers a decomposition of the graph () into a set of u
subgraphs {C,=(V,,E,)} with r=1, ..., u. This defines a par-
tition C such that E=UR, and E,NE,, =9 for all pairs of
subsets. Using the adjacency matrix A=(a;;), the fraction of
edges (for a given partition) that fall within subsets of C will
be

flo)=—

—_—s (1)
2a
L]

where &a,b)=1 if a=b and zero otherwise. Using m
=2;ja;;/2 we can also write
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TABLE I. Modular organization of the network shown in Fig.
1(f). The topological structure of the modular graph is well mapped
with functionally meaningful classes of inventions. Here we list the
five observed modules (as detected with the community detection
algorithm), their size, and the characteristic keywords that appear in
the patent description.

Module Size Common keywords

1 N1=20 Transmission, 2D/3D image, tomography
applications
2 N,=77 Slice, CT scanner, radiography, compensating
detector motion
3 N3=3 Signal processing, radiation, radiology,
reconstruction
4 Ny=11 Radiation, body, image, x-ray scanning
5 N5=30  Tomographic, imaging system, diagnostic,
examining
1
f0)= EE aij5(ci’ Cj)- ()

ij

In order to define an appropriate modularity index, the pre-
vious measure needs to be compared with the expectation
from a randomly wired graph with an identical number of
nodes and links. Let us indicate as k; the degree of v;, which
is obtained from the adjacency matrix as k;=Xa;;.

The expected probability of having a link connecting two
arbitrary nodes v; and v; will be simply k;;/2m and thus we
can define modularity Q in terms of the average difference
between the observed and the expected value of f, namely

1 kik;
= _2 |: ij ;L:| 5(C19C])9 (3)
2m7; 2m '

which is properly normalized between zero (random net-
work) and one (a single module is present).

The modularity of a network will be defined as the maxi-
mum Q=max{Q} as evaluated by the search algorithm [13].
The size of the best partition u defines the (potential) num-
ber of modules. For the CT patent network, we have found
m=35 modules corresponding to the maximum modularity
0=0.4136 (see Fig. 1 where patents belonging to the same
module have the same shade of gray). Although we have not
explored this problem in detail, close inspection of the net-
works shown in Fig. 1 reveals that the modular structure
seems to correlate well with shared functional traits (see
Table I). In this context, this particular example seems to
overcome the limitations of community detection methods
that can jeopardize the relevance of modular partitions [14]
but further analysis will be required to check the robustness
of our finding.

Beyond specific patterns of patent evolution, here we aim
to detect universal trends in the global evolution of the whole
U.S. patent system. To this goal we have studied the full
database of patent citations created by Hall, Jaffe, and Traj-
tenberg [8] (notice this database includes the CT network
analyzed above). This database contains the citations made
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FIG. 2. Time evolution of the number of patents N(z) in the
USPTO data set from 1973 to 2004. Inset: Cumulative number of
patents on a log-log scale, showing a scaling law N(t) ~ t? with 6
~1.45.

by patents granted after January 1, 1975. The patent citation
network (PCN) analyzed here has N=2 801 167 nodes and
L=18 053 661 links. Its time evolution from 1976 to 2005 is
shown in Fig. 2. The number of patents at a given time ¢
scales as a power law:

N(t) ~ 1° (4)

with an exponent 6=1.45+0.06.

Some recent papers have explored the patent citation data
sets at different levels, including a graph theoretical ap-
proach on a large scale [15] or involving a more specific case
study, such as fuel cell research [16]. Here we will show that
the statistical features of this network can be explained by
using an appropriate attachment kernel describing how suc-
cessful patents become more linked and how this preferential
attachment decays with age. A related study [15] found that
citation probability can be approximated by the ratio of an
“attractiveness function” A(k,I) that depends on both the in-
degree k and patent age / but no specific functional form of
A(k,l) was provided. Here we estimate this functional form,
which suggests there is a deep link between patent citation
networks and scientific citation networks (see below).

III. GLOBAL TOPOLOGY OF THE USPTO
PATENT NETWORK

Citations are often interpreted as indicators of innovation
size or economic value [8]. The distribution of innovation
size (defined as the number of citations to a patent) is skewed
[9,17,18]. However, there is an ongoing discussion about the
particular nature of this distribution. In particular, there is no
general agreement on whether it follows a log-normal or
Pareto distribution [18,19]. However, several indicators are
clearly consistent with a power-law tail. Here we report simi-
lar features in the in-degree distribution studied here (see
below).

The in-degree distribution P;(k) is equivalent to the so-
called distribution of the number of patent citations. Figure
3(a) shows the in-degree distribution for the USPTO patent
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FIG. 3. (a) In-degree distribution for the patent citation network
follows an extended power-law shape, P;(k) ~ (k+kq)~". Three dis-
tributions are displayed for three different time windows, namely
1984 (leftmost), 1992 (center), and 2002 (rightmost). (b) The in-
degree distribution (filled circles) for the subset of patents displayed
in Fig. 1(g) associated to patents on microchip technology. The
corresponding extended scaling fit is also shown (continuous line)
using kp=6.80+£0.16 and y=4.73.

citation network in 2004. Notice that P;(k) is neither ex-
ponential nor a simple power law. Instead, we have found
that an extended power-law form, described by a Zipf-
Mandelbrot function, best describes the in-degree distribu-
tion:

Pi(k) ~ (k+ ko)™, (5)

where k(y=19.46+0.22 and y=4.55+0.04. This extended
power law typically deviates from a straight line in a log-log
plot when k, is comparable with the largest degree. It re-
duces to a power law when k> k( and it fits an exponential
form for k<<k,. The extended power-law distribution has
been related to a mixed attachment mechanism [20,21].
However, here we will show that this explanation does not
apply for the patent citation network. Instead, we propose
that the extended power-law form for the in-degree distribu-
tion stems from a combination of both preferential attach-
ment and aging [22].

A different measure can be made on patent networks that
allows detecting correlations and hierarchical organization
[23,24]. Since patent networks display both heterogeneity
and modular organization, they can be an example of a hier-
archical modular system. The measure is based on the use of
the clustering coefficient and how it depends on degree. The
clustering coefficient is defined as follows. Let us consider
the set of links a;; (i,j=1,...,N), where a;;=1 if a link exists
and zero otherwise and that the average number of links per
node is (k). Let us indicate by I';={v;|a;;=1} the set of near-
est neighbors of a node v;. The clustering coefficient for this
node is defined as the number of connections between the
components v;EI';. By defining

L= % aij[ D

j=1 KET;j<k

ajk], (6)

the clustering coefficient of v; is C,(i)=L,/ (‘in‘) and the av-
erage clustering coefficient is simply
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FIG. 4. Hierarchical organization of patent citation networks.
Here two networks have been analyzed, corresponding to the 1984
and 1992 data sets. We can clearly appreciate that clustering decays
roughly following a power-law behavior (a logarithmic binning has
been used). The continuous lines correspond to the theoretical law
C(k) ~ k=% The estimated exponents are indicated.

N
C= 1%}% C,(i) (7)

and measures the average fraction of pairs of neighbors of a
node that are also neighbors of each other. As it happens with
many other complex networks, our network displays a high
clustering. More interestingly, we can look at the relationship
between clustering and degree. This function, C(k), provides
a measure of correlation between local structure and degree
and has been shown to exhibit a scaling behavior

Ck) ~ k! (8)

in some real networks (both natural and artificial, including
language networks and social webs) and also in model
graphs showing fractal rules of growth. Nonhierarchical
graphs (such as the power grid) typically display a constant
clustering (see [23,24] and references therein).

The analysis of patent networks shows that they also fol-
low this scaling behavior. In Fig. 4 we plot C(k) against
degree for two citation networks. The estimated best fit
power law gives in both cases a scaling exponent close to
one. Specifically, we found 6=-1.01£0.06 and 6=
—0.91+0.08 for the 1984 and 1992 data sets, respectively.
This result supports the view that patent networks are hier-
archical. Such a type of graph can emerge under different
types of mechanisms [25-27], all of them dealing with mul-
tiplicative processes of some kind. In the next section we
show that, using an appropriate attachment kernel (to be es-
timated from the USPTO data set), we can properly describe
the underlying rules generating the observed topological pat-
terns.

IV. NETWORK EVOLUTION

Let us assume that every patent has a unique identifier 0
<i<t. Our model starts at time =0 when there is only one
patent in the network. From this initial network, we add a
new patent i at every time step that references m previous
patents. Two main forces drive the evolution of the patent
citation network. First, it is natural to assume that the num-
ber of patent citations (i.e., incoming links) is a surrogate of
its relevance [8]. Useful patents are more likely to receive
further citations than marginal inventions. Thus the probabil-
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ity of receiving new citations should be proportional to the
current number of citations. This rule parallels the preferen-
tial attachment mechanism of network growth [28]. Under
this rule new elements entering the system connect with
other nodes with a probability I1(k) that is proportional to its
degree, i.e.,

(k) ~ k. )

However, old patents tend to be less relevant in the context
of recent innovations: Attachment rates decay as the patent
loses value. In particular, patents are released to the public
domain after some finite period of exploitation.

The evolution of complex networks involving both pref-
erential attachment and aging has been extensively studied.
In particular, Dorogovtsev and Mendes (DM) determined
analytically the scaling properties of the resulting networks
[22]. In the DM model, the rule of attachment scales now as

Ik, 7) ~ k7, (10)

where 7=7—i indicates the age of the ith node and the expo-
nent « (which is positive) weighs how fast the aging is af-
fecting the likelihood of attachment. Extensions of this at-
tachment probability kernel include accelerated growth with
[I(k,7)~kPr7* and exponential aging kernel II(k,7)
~k exp(=7*) [21].

Finally, some models of scientific citation networks take
into account the simultaneous evolution of author and paper
networks [29]. In these models, the rule of attachment be-
haves as

(k;, 7) ~ kP77 )" (11)

with a time-dependent component following a Weibull-like
form. Here, 7, (the so-called scale parameter) gives the
maximum of Il(k;,7) at a fixed k; value and controls the
rightward extension of the curve. As 7, increases, so does the
probability of citing older papers. On the other hand, small
values of 7, indicate strong aging that favors recently pub-
lished patents [29]. Here we choose the simplest assumption
(preferential attachment, 8=1) and consider the aging func-
tion in Eq. (11). Consequently, the average connectivity of
the ith patent at time ¢ evolves according to the following
equation:

k(i) mk(i,0)f(t—1i)

ft k(u,0)f(t — u)du

0

(12)

where m is the number of links introduced at each step (m
=1 is the DM model). Now we address the following ques-
tion: Is the above equation consistent with the patent network
evolution? In the following, we will estimate the form of the
attachment kernel (and the corresponding «, B, and 7, pa-
rameters) for the patent citation data.

First, we consider system size N as our time index instead
of real time 7. In this way we avoid any bias due to the
pattern of nonlinear growth and thus follow the standard for-
mulation of network models. Then, Eq. (12) becomes
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FIG. 5. (a) Illustration of the kernel estimation procedure. We
compare two consecutive patent network snapshots indicated by all
patents existing at time T, and the patents created in [7T;,T;+AN].
Here, T, >T, in order to avoid unwanted biases in the measure-
ments [31]. The probability to cite the sth patent is a function of its
age 7,=T—s and in-degree k,, with s <T,. Patent attachment prob-
ability TI(k, 7) is approximated by the fraction of T, citations in the
T, network (see text for details). (b) The empirical attachment ker-
nel when 7, corresponds to the year 2002 and 7'} corresponds to the
year 2003.

gk(i,N)  mk(i,N)f(N - i)

f k(u,t)f(N — u)du

0

(13)

Using dk/IN=(dk/dt)(dt/ IN) and the time-dependent scal-
ing N()=At% we have

gk(i,N) 1, dk(i,1)

= (14)
IN — Af Jt

We assume the rate of attachment of new links is the product
of a preferential attachment function g(k) and an aging func-
tion f(7):

(k,7) ~ g(k)f(7). (15)

In order to minimize the impact of noisy fluctuations we
partition the whole time interval N into N/AN time slots
(bins) comprising the same number AN<<N of patents (see
[30]). Here, N=~2.8 million patents corresponding to the
time interval 1976-2005. The sth time slot has the same
number of new AN=10° patents. The large number of nodes
N in the system ensures that we will gather sufficient
samples. Following [31], we study the citation process by
comparing two consecutive patent network snapshots 7, and
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FIG. 6. Estimation of the attachment rule for the patent citation
network at 7,=2002. (a) The preferential attachment function fits a
scaling law g- (k) ~k#*! with B~1. Each curve corresponds to
nodes having the same age (7=120 for the open circles, 7=75 for
the filled triangles, and 7=50 for the open squares). (b) Fitting for
the aging function f(7) predicts the Weibull distribution described
in the text with a=1.45. Each curve corresponds to nodes having
the same in-degree (k=1 for open circles and k=35 for filled circles).
For every curve we have used 7;=T,+1. These curves are cross
sections of the attachment kernel [see Fig. 5(b)].

T,. The T, network is defined by all the patents existing at
time T, and the 7| network comprises all the patents added
between [T,,T,+AN], where AN<T, and T,>T, [31]. To
measure the attachment rule II(k;,7) we will compute the
fraction of links acquired by 7, nodes with exactly in-degree
k; and age T

2 aija(k - kj) ot~ 7',‘)

€T, JET,

> Ok - k;)0(T— 7))

JETY

H[k, T, To, Tl] = N (16)

where a;; are the adjacency matrix, 6(z)=1 if z=0 and 6(z)
=0 otherwise, and k; and 7;,=T,~j is the in-degree and the
age of the jth node (j <T,), respectively [see Fig. 5(a)]. The
attachment kernel can be further decomposed in the prefer-
ential attachment g(k) and aging f(7) components [see Eq.
(15)]. We can estimate these components by taking cross
sections from the empirical attachment kernel [see Fig. 5(b)].
Using our data set, we have estimated that g(k)~k? and
found B=1, which further validates our assumption of pref-
erential attachment [see Fig. 6(a)]. Notice that in our fittings
we have used the cumulative function

k
g=(k) =f g(k)dk (17)
0

to reduce the noise level. On the other hand, Fig. 6(b) shows
the f(7) sections together with the approximated Weibull dis-
tributions, which fit very well the aging function f(7):
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al 7\*! T\“
f(T)=—(—> exp(——> (18)

To 7o

with an exponent a=1.45 and 7,=~40. An obvious advan-
tage of using the Weibull form is that it naturally includes as
limit cases both exponential and Gaussian distributions. Us-
ing this distribution, we can estimate the average 7, given
from

<T>=TOF<1—L> (19)
a-1
with I'(z) being the gamma function. From our estimated
parameters, we obtain {7)=27.58 which defines the average
time required for a patent to start getting cited (using our
patent-based time scale). Such a value thus represents an
estimate of the time required for a patent to get known and
developed in order to start being used by other inventions.
The common structure of the aging term found here and
in the network of paper citations [29] suggests that common
patterns of organization and evolution might be shared. The
paper citation graph, obtained by looking at the list of refer-
ences included in each paper, is in fact close to the basic
rules defining the patent citation graph. In both cases, cross
links are associated to some underlying set of features which
is shared by both patents and papers. As it occurs with the
patent case, new papers are based on previous ones providing
the background required to build a new idea. On the other
hand, as new ideas and concepts develop into well-defined
areas, they will tend to attach less to more generic or older
works. Additionally, the modular organization might also
contribute to deviation from the simple power-law attach-
ment assumed in previous theoretical studies. What seems
clear is that there might be some universal trends canalizing
the growth of innovation networks, whether scientific or
technologic.

V. DISCUSSION

The patterns of innovation emerging in our society are the
outcome of an extensive exchange of shared information
linked with the capacity of inventors to combine and im-
prove previous designs. Even very original inventions are not
isolated from previous achievements. A patent can be identi-
fied as an object which needs a minimum amount of origi-
nality to be considered as truly different from previous pat-
ents. Moreover, to be obtained, it must properly refer to
related patents in a fair way. Such constraints make this sys-
tem especially interesting since we can conjecture that it rep-
resents the expansion of real designs through some underly-
ing technology landscape. Such a concept [32] is consistent
with a number of commonalities shared by both organisms
and artifacts [33]. Technological evolution, as biological evo-
lution, displays radiations, stasis, extinctions, and novelty.
That technological change might actually occur on fitness
landscapes is illustrated by the so-called learning curves
[32,34], where universal patterns of improvement can be ex-
plained in terms of adaptive walks on so-called NK rugged
landscapes [35-37]. Our analysis provides a different quan-
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titative approach to this evolving structure by using the ap-
proach of complex networks.

In this paper, we have analyzed the architecture of large
patent citation networks obtained from the USPTO database.
The networks have been shown to be heterogeneous, with
most patents having just a few citations whereas a small set
of patents have many of them. The distribution was shown to
follow a Zipf-Mandelbrot function. Together with some ex-
amples of the modular character of the network (using a
community detection algorithm) we used the C(k) curve as a
straighforward way of identifying the presence of hierarchi-
cal organization. As it happens with other complex networks,
modularity is not defined in terms of coexisting, independent
groups of elements, but instead as a nested hierarchy of in-
terconnected clusters of related inventions.

We have shown that the underlying rules of network
change for our system reveal a mixture of preferential attach-
ment favoring a rich-gets-richer mechanism together with an
aging term weighting the likelihood of citing old patents. As
the network grows, recent patents will tend to cite recent
designs (since innovation is likely to involve redefining re-
cent inventions) and less likely to link to old patents. The
consequence of this, as predicted by previous mean field
models, is that the expected scaling law in the degree distri-
bution associated to preferential attachment kernels will be
modified in significant ways. Here we have shown that the
network of patents, defined by using the in degree as a sur-
rogate of patent relevance, scales as P(k)~ (k+ky)~7 with
vy>4. This is not far from previous predicted scaling laws
(DM) associated with preferential attachment and power-law
aging [i.e., f(1)~¢®] which predict P(k)~k ¥ (with y
~4 for @~0.5). However, the humped shape of our aging
term (as described by the Weibull distribution) makes it nec-
essary to modify these approximations.

In our study of the patent network, we have tentatively
characterized network modularity using standard methods of
community detection, which are known to have several limi-
tations [14]. Our partial exploration of this feature suggests
that there is a good correlation between topological modules
and the properties that define the sets of patents within them,
but further work is required in order to prove the generality
of these observations. The emergence of correlations is a
natural consequence of the specialized features shared by
related patents. But it might also reveal the structure of the
innovation landscape itself: New patents related to previous
ones can also be understood as improved solutions that ex-
plore the neighborhood of previous inventions. This view
would provide a quantitative picture of the topology of tech-
nology landscapes [32,34]. Such an evolutionary interpreta-
tion in terms of fitness functions will be explored elsewhere.
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