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Abstract

We evaluate whether John Holland’s Echo model exemplifies his theory of complex adaptive
systems. After reviewing Holland’s theory of complex adaptive systems and describing his
Echo model, we describe and explain the characteristic evolutionary behavior observed
in a series of Echo model runs. We conclude that Echo lacks the diversity of hierarchi-
cally organized aggregates that typify complex adaptive systems, and we explore possible
explanations for this failure.
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1 Introduction

In the second edition of Adaptation in Natural and Artificial Systems (ANAS), John Holland
situates his book within a general attempt to understand complex adaptive systems (CAS).
He makes it clear that, from the beginning, he has sought to understand general principles
that apply across a wide variety of adaptive systems, and we see Holland in ANAS drawing
upon fields as diverse as genetics, economics, and neurophysiology (Holland, 1992, 32–65).
It is in this context of a general understanding of CAS that Echo was initially conceived.

Holland’s original impetus for creating Echo was a request from Murray Gell-Mann
to produce a model illustrating the creation of complex structures by natural selection
(Holland, 1995, 94–95). Echo shares many features with the mathematical framework laid
out in ANAS, but it is not merely an implementation of ANAS’s mathematical framework of
schema and optimal trial allocation. Commenting upon the relationship between Echo and
classifier systems (a mathematical refinement of ANAS’s “broadcast languages”), Holland
states,

Echo and classifier systems are similar in many ways. The conditions em-
ployed by an agent in Echo are quite similar to the condition/action rules of a
classifier system. However, the actions in Echo (combat, trading, mating) are
much more concrete than the rule-activating messages used by a classifier sys-
tem. They are much easier to interpret when one is trying to understand aspects
of distributed control and emergent computation in complex adaptive systems
(Holland, 1992, 195).
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The outline of a general theory of CAS is already evident in the original edition of
ANAS, and it is fairly well developed in the recent work described in the second edition
(Holland, 1992, 184–186). But it’s most sustained presentation is in Hidden Order: How
Adaptation Builds Complexity, Holland’s 1995 book based on his talks given for the inaugural
Ulam Lectures at the Santa Fe Institute. Here Holland enumerates a list of seven orga-
nizational principles and behaviors that he sees as central to all complex adaptive systems.
The seven basics of CAS are broken down into four properties (aggregation, nonlinearity,
resource flows, and diversity) and three mechanisms (tags, internal models, and building
blocks) (Holland, 1995, 10–37). Holland created Echo to support the development of this
general theory of CAS. Here Echo plays the role of the gedanken experiment in physics.
By implementing various aspects of the general theory, Echo provides a framework within
which some of the logical consequences of the theory can be explored. Holland says, “By
looking for pervasive phenomena in these gedanken experiments, we can study complex
adaptive systems with a new version of the classic hypothesize-test-revise cycle” (Holland,
1992, 196). Evaluating Echo is a way to assess the general theory.

In this paper we will:

� situate Echo within the context of Holland’s work on adaptive systems in general with
a brief overview of Holland’s general theory of CAS;

� provide an updated working description of the most recent implementation of Echo
(which has changed somewhat from the original);

� present extensive experimental data from Echo at both macro (population) and micro
(individual genomes) levels;

� explore possible explanations for discrepancies observed between Echo and Holland’s
theory of CAS.

This last topic fulfills Holland’s ambition that Echo might be used in the classic
hypothesize-test-revise cycle. We applaud this ambition (see Bedau (1995)) and try to
apply it here.

2 Holland’s Theory of Complex Adaptive Systems

Holland’s general theory of complex adaptive systems can be summarized in terms of four
properties and three mechanisms that Holland thinks all CAS share:
� Aggregation (Property): This property captures the hierarchical organization that is so

striking in CAS. Bodies are made of cells. Economies are made of individuals. In CAS,
often the formation of more complex meta-agents are built of simpler agents. To quote
Holland (1995, 12), “Aggregation ... is indeed a basic characteristic of all CAS, and the
emergent phenomena that result are the most enigmatic aspect of CAS.”

� Tagging (Mechanism): Tags are “external” characteristics of agents that can be rec-
ognized by other agents. They facilitate selective interactions and the formation of
aggregates and boundaries by allowing agents to identify and categorize each other.

� Nonlinearities (Property): CAS exhibit nonlinear behavior, so it is difficult to predict
their behavior. Aggregate behaviors can not be easily analyzed into the separate
behaviors of component variables via the simple operations of summing and averaging.

� Flows of Resources (Property): Another striking characteristic of CAS is that resources
continually flow through the system — the familiar “open-system” or “matter-energy
throughput” of CAS. Often CAS maintain their identity as higher-level entities in
spite of the perpetual turnover of their constituent components. Cells are constantly
replenished in the body. People come and go in an economy.
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� Diversity (Property): Populations in CAS are diverse and tend to operate far from
equilibrium. To quote Holland: “It should be evident then that we will not find CAS
settling to a few highly adapted types that exploit all opportunities. Perpetual novelty
is the hallmark of CAS” (Holland, 1995, 31).

� Internal Models (Mechanism): CAS form internal models that allow them to predict
and anticipate their environment. These internal models are generally of two types:
Tacit models prescribe a current action under an implicit prediction of some desired
future state, such as when bacteria follow chemical gradients. Overt models are used as
a basis for explicit, but internal, explorations of alternative behaviors, e.g., lookahead
in chess. In both types of models the organism’s chances of survival are enhanced by
the prediction.

� Building Blocks (Mechanism): Building blocks play several roles in CAS. Often physical
construction of CAS involves lower level building blocks in the sense of aggregation
described above. CAS also use building blocks to help navigate their environment and
generate internal models. CAS tend to decompose their environment by clustering
together similar objects and ignoring unnecessary details. Then actions are taken based
upon these higher level categories, e.g., friend or foe.

According to Holland, these seven attributes are the essential attributes of complex
adaptive systems. Furthermore, these are the attributes that Holland aims to capture in the
Echo model. With this in mind, we now will take a closer look at Echo itself.

3 The Echo Model

It is important to note that Echo is really a family of models as opposed to a single model.
The original version was implemented by Terry Jones at the Santa Fe Institute (Jones and
Forrest, 1993), and it has undergone a variety of revisions since then. The present work
was performed using Echo version 1.3 beta 2 in a UNIX environment. This version,
prepared by Simon Fraser while maintaining Echo at the Santa Fe Institute, includes a
number of simplifications of the original version. The graphical interface was disabled, the
determination of the outcome of a combat interaction was simplified, and a number of new
data collection tools were added.1 In this section, we present a detailed summary of Echo
version 1.3 beta 2. Our decision to study this particular version of Echo was based on the
fact that it was the most current available version when this study was undertaken.2

There are three levels of parameter-defined structures in Echo: the world, sites, and
agents. Each of these structures and the parameters that define them are discussed in detail
below. Sample parameter files for each of the three structures can be found in the Appendix.

3.1 Worlds

An Echo world is a square toroidal lattice of sites. Each site can have different characteristics.
World parameters are universal in the sense that they constrain all sites and all agents. World
parameters control the following properties: the percentage of the population that will be
selected for possible interactions in a given cycle; the amount of excess resources an agent
must have accumulated in order to reproduce; what percentage of an agent’s resources

1The source code and additional information on this version of Echo can be found at
http://www.santafe.edu/projects/echo/#research.

2Fraser describes the motivation for the revisions in literature available at the Echo web site mentioned earlier.
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will be given to its offspring; the neighborhood relationship on the world; how many sites
the world contains; and how many distinct kinds of resources are available in the world.
Each type of resource in the world is represented by a different letter of the alphabet (e.g.,
a, b, c, and d for a four resource world). The world parameters also specify the payoff
matrix for combat interactions, but in the version of Echo studied here, the outcome of
combat interactions is determined by a simple Hamming distance calculation. The combat
interaction is discussed in detail in Section 3.4. Finally, the world parameters determine
how many of which type of sites the world contains.

3.2 Sites

As mentioned above, the parameters for different sites in a given world can differ. The
parameters for a given site include the probability of mutation; the probability of inser-
tion/deletion; the probability of cross-over; the probability of random death; the initial
resource levels; how many and which resources are produced per model cycle; and the
maximum resources that can accumulate at the site. Each of the parameters for resource
availability must be set for each of the world’s resources. Finally, the site parameters specify
how many of which types of agents initially populate the site.

3.3 Agents

An Echo agent is defined by a “chromosome” that consists of a collection of arbitrary length
sub-strings. Each sub-string is made up of the letters of the alphabet that represent the
available resources in the world (e.g., “bbdcb”). The sub-strings of the chromosome each
define a distinct characteristic of the agent. These characteristics fall into four classes: tags,
conditions, uptake masks, and traded resource.

Tags and conditions determine the outcome of the three types of interactions between
agents: combat, trade, and mating. Whether two agents interact and what type of in-
teraction they have is determined by comparing tags and conditions. A string match of
the appropriate tag and condition allows the interaction to take place. Tags are external
in the sense that they represent information that is available to other agents. There are
four tags: interaction tags, mating tags, offense tags, and defense tags. Conditions, on the
other hand, are not accessible by other agents. There are three condition strings, one each
for combat, mating, and trading. How each of these strings affects the outcome of the
various interactions is discussed in Section 3.4. The existence of external tags and internal
conditions is one of Echo’s critical features. Tags and conditions allow for complex (e.g.,
non-transitive) relationships to exist between the agents. They are also central to one of
the features Holland has stressed about Echo (Holland, 1992, 195): its endogenous fitness
function, i.e., a fitness function that is an emergent property of the environment and the
other agents (a feature perhaps first emphasized by Norman Packard (1989)).

An agent has an uptake mask for each of the available resources in the world. An
agent’s facility at collecting a particular resource from the environment is determined by
the length of the uptake mask for the given resource. How much of each resource an agent
is able to take up is determined by the length of the substring corresponding to the given
resource, with longer strings indicating greater facility. The particular letters that compose
the uptake mask are irrelevant. Finally, the last sub-string of each agent is a single letter
called the “traded resource.” It determines what resource the agent will trade in a trading
interaction.
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A sample agent chromosome from a four resource world is given below (IT is the
interaction tag, MT is the mating tag, OT is the offense tag, DT is the defense tag, CC
is the combat condition, TC is the trading condition, MC is the mating condition, UMa
through UMd are the uptake masks, and TR is the traded resource):

IT MT OT DT CC TC MC UMa UMb UMc UMd TR
dba bb cca db ddc aa bbc b ddc cca b

Note the possibility of zero length strings as in the defense tag above. In addition to a
chromosome, each agent has a reservoir in which it stores resources that it acquires via
interactions and foraging.

3.4 Agent Interactions

In a given cycle of an Echo world, agents are selected at random to participate in interactions.
If the interaction fraction parameter in the world file is set to 0:5 and there are 100 agents
in the world, then 50 of the agents will be selected to interact. For each of these agents, a
second agent is selected from the population at random. These two agents then compare
tags and conditions to determine what, if any, interactions they will have. They are tested
in sequence for combat, trading, and mating.

The combat interaction takes place if the combat condition of one agent is a prefix of
the other agent’s interaction tag. Combat only requires a one-way match. The outcome of
a combat interaction is, at present, determined by a Hamming distance calculation between
the offense tag of one agent and the defense tag of the other agent (in both directions).
The Hamming distance is equal to the number of points at which the two strings differ.
Both of these tags are visible to each of the agents. They know the likely outcome of a
fight in advance. If one agent’s offense tag is similar enough to another agent’s defense tag,
then the former agent is more likely to prevail. Extra points are given to either agent for
having the longer tag. Once these calculations have been made the outcome of the battle
is determined probabilistically. Each agent is given a chance to flee (which it does with a
probability equivalent to the probability of it losing in the combat encounter).

Mating and trading interactions both require two-way matches. The mating interaction
takes place if the mating conditions of both agents are prefixes of each other’s mating tags.
The result of a successful mating interaction is more analogous to the types of genetic
exchange seen in bacteria as opposed to sexual reproduction. The two participating agents
exchange genetic material via crossover (at a random point in the chromosome) and replace
their “parents” in the population. Trading takes place if there is a prefix match between the
trading condition of the first agent and the interaction tag of the other agent and vice versa.
A trading interaction between two agents results in each agent transferring the excess of
its traded resource (the amount of resources in the agent’s reservoir over and above what it
needs for reproduction) to the other agent.

Agents that have acquired enough resources in their reservoir to copy their chromo-
some (as determined by the self replication threshold parameter in the world file) are able
to reproduce asexually. Asexual reproduction is subject to a probability of mutation, which
is normally a point mutation, but can also be further subject to a probability of mutation
by crossover or insertion-deletion within the parent chromosome. As a part of asexual re-
production, parents give a fixed percentage of the resources remaining in their reservoir to
their offspring. It is mutation, together with the selection pressure due to competition for
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resources, that drives the evolution of Echo agents. Agents acquire resources via foraging,
fighting, and trading. Agents lose resources via a fixed metabolic tax, trading, and asexual
reproduction.

An illustrative example of interacting agents was created by Holland based on a three
way ecology given by Hölldobler and Wilson (1990). The ecology consists of ants, cater-
pillars, and parasitic flies. In this ecology the flies are parasites on the caterpillars. The
ants benefit the caterpillars by attacking the flies and in turn are rewarded by collecting
honeydew that the caterpillars excrete from their skin. Agent parameters for the caterpillar,
ant, and fly ecology are given below (asterisks represent wild cards).

Name cat ant fly
Initial Rsrv 10 10 10 10 10 10 10 10 10 10 10 10
Trade Rsrc b a c
Uptake Msk * * * * * * * * * * * *
Interact Tag d b a
Offense Tag d b a
Defense Tag a b b
Mating Tag a a a
Comb Cond c a d
Trade Cond b d c
Mate Cond b b b

Note the following relationships: The caterpillar trading condition is a prefix match of the
ant interaction tag and vice versa. Thus a caterpillar and ant will trade with each other.
The fly combat condition is a prefix match with the caterpillar interaction tag. Thus the
fly will initiate combat with the caterpillar. Also, the fly offense tag matches the caterpillar
defense tag making the match ‘close’ in the sense of Hamming distance and thus giving the
fly the upper hand in a fight. On the other hand the caterpillar offense string is not ‘close’
to the fly defense string. A similar relationship holds between the ant and fly (ant attacks
fly). Finally note that the ant chromosome consists of many b’s thus making b a valuable
resource to the ant. The caterpillar trading resource is b, so when ant and caterpillar trade,
the ant receives the excess b’s in the caterpillar’s reservoir. This helps the ant acquire the
particular resources it needs to replicate.

3.5 The Model Cycle

One time step in the Echo model consists of the following cycle of events: A proportion of
the agents are selected to undergo interactions, and the interactions take place. Resources at
a site are distributed to those agents that can accept them (according to their uptake masks).
Agents are taxed probabilistically. Some agents are randomly killed (if there is a non-zero
probability of random death) and their resources returned to the environment. Agents that
have not collected resources migrate to a randomly chosen neighboring site (in multi-site
worlds). Finally, agents that have acquired sufficient resources reproduce asexually. In this
paper we will sometimes refer to one Echo time step as a “generation” even though there is
no guarantee that any agents will reproduce or die during a given model cycle.
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4 Description of Echo’s Behavior

We have generated thousands of Echo runs, many of them for as long as 106 generations.
Here we describe a particular set of runs in which we varied the mutation rate, but our
present goal is not to study the effect of mutation rate; instead, we want to identify and
explain the characteristic kinds of evolutionary dynamics exhibited by Echo.

The runs described here all use the “simple” parameters given in the Appendix. With
the exception of their initial resource levels, all agents in the initial population have randomly
chosen chromosomes (as indicated by the wildcard characters in the agent parameters).
The only parameter that varies from run to run is the probability of mutation — a site
parameter. In this section we analyze several runs and identify their robust evolutionary
dynamics. Section 5 explains those characteristic dynamics.

We generated many Echo runs at each of six different mutation probabilities: 0.00001,
0.0001, 0.001, 0.005, 0.01, and 0.05. (Populations with significantly higher mutation
probabilities tended not to survive.) Each run lasted 105 generations. Our story about
Echo is told through a detailed analysis of one characteristic run at five of these mutation
probabilities.

Studies like ours must choose an evolutionary unit upon which to focus attention.
Should we focus on the whole population? the genomes within it? each individual agent?
something else? Should similar genomes be considered a single evolutionary unit, i.e., be
regarded as a species? In this study we choose to focus on genomes for purely pragmatic
reasons: it explains the observed behavior.

Many agents can have identical genomes. Though there may be multiple copies of
a given genome in a population we still refer to the genome as a singular entity. A given
genome exists for as long as there are agents possessing that genome. We consider genomes
to be significant if they persist in the population for a long time or if a large number of agents
possess them. We present both macro-level and micro-level dynamics. Macro-level data are
typically time series of agent population levels and genome diversities (i.e., number of extant
genomes), though sometimes we also show the frequency of the various interactions and
the presence of the different resources in the agents’ reservoirs. Micro-level data typically
are lists of all the significant genomes in the population. The genomes in such lists are
presented in the following form:

Born it mt ot dt cc tc mc a b c d tr #tr Die
13476 c c a ac d c a cba a b c a 6 34000

This representation indicates the generation in which the agent was born, the components
of the chromosome (interaction tag through traded resource — see Section 3.3 for an
explanation of the components), the number of traded resources in the agent’s genome, and
the generation in which the genome died (rounded down to the nearest thousand). As will
become clear below, in most cases the next to last entry — the number of traded resources in
the genome (indicated by “#tr”) — turns out to be a genome’s most significant feature. We
use the convention of naming a genome with the generation number at which it arose; thus
the genome shown above is g13476. Although this would create an ambiguity if multiple
genomes arose in a single generation, in practice this never happens.
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Figure 1: Time series plots of population (total number of agents) and variety (number of
distinct genomes) for run with probability of mutation equal to 0.0001.
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4.1 Probability of Mutation 0.0001

We will describe this first run in considerable detail since it illustrates many recurring
themes especially clearly. The population graph (Figure 1) shows three distinct epochs in
the population levels. The variety graph (Figure 1) shows that usually one or two genomes
exhaust the population, though sometimes as many as four distinct genomes exist at once.
The significant genomes in this run are listed here:

Born it mt ot dt cc tc mc a b c d tr #tr Die
0 a d c b c a b c a d d a 4 8000
1121 a b c b c a b c a d d a 4 8000
7135 a b c a c a b c a d d a 5 30000
22592 a b c a c a b c a d a a 6 100000
35352 a b c a c a b b a d a a 6 43000
54248 a b c a c a b c a c a a 6 58000

Micro-analysis reveals the following story. By generation 2,000 we have a two-genome
ecology of g0 and g1121. Both genomes trade with themselves and with one another, and
both share the same traded resource — a. Genome g1121 differs from g0 at the mating tag.
In principle, this could be a significant mutation since it enables agents with genome g1121
to mate with each other, but interaction statistics show that no mating actually happens.
The ability to mate is no advantage if mating never occurs. As it happens, rampant trading
activity blocks mating; agents are tested for trading before being tested for mating and they
cannot mate if they trade. So, genomes g0 and g1121 coexist through generation 8,000,
with genome g1121 tending to be more populous (presumably through random genetic
drift).

At generation 8,000 we meet genome g7135. Genome g7135 is a mutation of g1121,
with a defense tag of a instead of d. As it happens, this mutation is actually irrelevant to
combat since combat never occurs in this population. But the mutation is quite significant
because it increases the presence of the population’s traded resource (a) in g7135’s genome.
We will see this this kind of innovation occur in every single Echo run, usually many times.
Genome g7135 has 5 a’s as opposed to 4 in g0 and g1121, and genome g7135 has taken over
the population by generation 9,000 when genomes g0 and g1121 go extinct. Note also that
it is at about this point that the population level makes its first significant jump. Again and
again we will see such population level jumps occurring when the population is taken over
by a new genome with more of the traded resource.

Genome g7135 is joined at generation 23,000 by genome g22592. Genome g22592
differs from g7135 at the uptake mask for resource d. This mutation is not a functional
advantage for g22592 since only the length of an uptake mask affects a genome’s capacity
to gather a given resource, and the d uptake mask is the same length for both g7135 and
g22592. However, the mutation puts another copy of the traded resource (a) in genome
g22592, and by generation 31,000 genome g22592 has taken over the population. Note the
increase in the population level at the demise of genome g7135.

Genomes g35352 and g54248 join g22592 for a period of time at different points in the
run. Genome g35352 differs from g22592 in the a uptake mask, and g54248 differs from
g22592 in the b uptake mask. As mentioned before, these are both neutral mutations from
a resource collecting perspective, and neither increases the traded resource in the genome.
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This run illustrates several important themes. First, all of the significant genotypes
trade the same resource. Second, mutations which increase the traded resource in a genome
tend to take over the population, though not immediately. Third, when the new genome
does take over the population, the population level distinctly increases; i.e., the genome
containing more of the traded resource supports a larger population of agents.

4.2 Probability of Mutation 0.001

The following list of significant genomes shows that the same themes are repeated when
the mutation rate is increased an order of magnitude.

Born it mt ot dt cc tc mc a b c d tr #tr Die
2022 a b a b c a c b d a d d 3 5000
3775 a b a b d a c b d a d d 4 11000
9853 a b d b d a c b d a d d 5 33000
28027 a b d b d a c b d d d d 6 82000
57028 a d d b d a c b d d d d 7 100000

All of the genomes trade d’s, and each mutation increases the number of d’s. Note the
new d’s, highlighted in bold, and note the steadily increasing representation of the traded
resource shown in the column #tr. Note that none of the mutations result in a functional
difference for the genome since they don’t create any new interactions, affect the outcome
of an interaction, or increase the genomes ability to gather resources.

The first genome to get a foothold is g2022. It has 3 d’s in its genome. It is displaced
by g3775, which has 4 d’s. Genome g3775 is displaced by g9853, which has 5 d’s. We see
a jump in the population level when g3775 goes extinct at generation 11,000 (Figure 2).
Genome g9853 is overtaken by g28027, which has 6 d’s. There is a corresponding jump
in the population level upon the demise of g9853 at generation 33,000. Finally, g57028
takes over from g28027, but not before the two coexist for over 24,000 generations. The
population level jumps up when g28027 perishes.

Increasing the mutation rate increases the diversity in the population (Figure 2), as
expected. But other than that, the evolutionary dynamics in this run are essentially like
those in the previous run.

4.3 Probability of Mutation 0.005

With the increase in the mutation probability, we see the expected increase in genomic
variety (Figure 3), though the population levels are not significantly changed. What is
most interesting about this run is that the now familiar trading succession is interrupted
by a second typical evolutionary dynamic in Echo — a “combat spike,” which is a brief
proliferation of fighting agents that decimate a trading ecology. The sharp drop in the
population level at generation 45,000 is caused by such a combat spike. These are the
significant genomes before the combat spike:

Born it mt ot dt cc tc mc a b c d tr #tr Die
1074 a b d b c a d b d d d d 6 10000
1145 a b d b c a a d d d d d 6 9000
2160 a b d b d a d b d d d d 7 32000
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Figure 2: Time series plots of population (total number of agents) and variety (number of
distinct genomes) for run with probability of mutation equal to 0.001.
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2397 a d d b c a d b d d d d 7 19000
16866 a d d b d a d b d d d d 8 43000
21056 a b d d d a d b d d d d 8 43000
30596 a d d b d a d a d d d d 8 43000
30749 a d d d d a d b d d d d 9 43000

Genomes g1074, g1145, g2160, and g2397 are the first genomes to get a foothold, and they
all trade d’s. Genomes g2160 and g2397 outlive g1074 and g1145. Genome g2160 persists
through generation 32,000 and is superseded by the ecology of g16866, g21056, g30596,
and g30749. Note the steadily increasing representation of the traded resource in these
genomes (the #tr column). This group persists through generation 43,000, at which point
the whole ecology is brought down by a burst of combat.

At generation 44,000, during the period of combat, the following are the most persistent
and populous genomes:

Born it mt ot dt cc tc mc a b c d tr #tr Die
43980 d b a a d a c c d c a d 4 44000
43989 d b a a d a c b d c a d 4 44000
43994 d b c a d a c c d c a d 4 44000
43996 d b a a d a c c d c c d 4 44000

Note that all of the genomes can fight one another and that none of them exist for more than
20 generations. They are all gone by generation 44,000. This is typical of combat spikes.
When combat is a significant feature of the landscape, no genome can get a foothold. The
combat is brief. It covers the period from 43,600 to 44,200. Once it ceases the demolished
population begins to rebuild and a new trading ecology emerges doing their business in c’s.
This trading ecology gradually builds throughout the remainder of the run, as the list of
significant genomes below shows:

Born it mt ot dt cc tc mc a b c d tr #tr Die
44260 d b b a a b c c d c a d 3 48000
47722 b d b a a b c c d c a c 4 51000
49809 b d b a a b c c c c a c 5 53000
50708 b d c a a b c c d c a c 5 62000
51761 b d c d a b c c d c a c 5 62000
53929 b d c c a b c c d c a c 6 79000
66276 b d c c a b c c d c c c 7 100000
70124 b d c c a b c c c c a c 7 85000
73228 b d c c c b c c d c a c 7 92000
79594 b d c c c b c c c c a c 8 100000
80255 b b c c a b c c c c a c 7 100000

4.4 Probability of Mutation 0.01

Another increase in the probability of mutation simply increases the frequency of the
patterns we have already seen. In this run, we see seven cycles of trading populations
destroyed by combat spikes occurring at generations 5800, 9400, 10700, 15100, 28300,
31700, and 49200 (Figure 4). The longest bout of combat lasts for 400 generations. After
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Figure 3: Time series plots of population (total number of agents) and variety (number of
distinct genomes) for run with probability of mutation equal to 0.005.
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Figure 4: Time series plots of population (total number of agents) and variety (number of
distinct genomes) for run with probability of mutation equal to 0.01.
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the last combat spike, a genome with a 2-character combat condition arises. This makes
the population less susceptible to combat spikes, for combat can occur only if the combat
condition prefix matches the interaction tag but the interaction tag is only one character
long. Thus the population stabilizes and repeats the familiar pattern as indicated by the
genomes below:

Born it mt ot dt cc tc mc a b c d tr #tr Die
50212 b b dacc dad d b d c d d c d 8 67000
50810 b d dacc dad cd b d c a d c d 8 62000
50937 b b dacc dad cd b d c d d c d 8 61000
51089 b b dacc dad cd b d c a d d d 8 67000
51526 b b dacc dad cd b d b a d d d 8 67000
54321 b b dbcc dad dd b d c d d c d 9 71000
54631 b d dacc dad cd b d c d d c d 9 72000
55858 b d dacc dbd cd b d c d d c d 9 78000
55979 b b dacc dad dd b d c a d d d 9 98000
57325 b b dacc dad cd b d c d d d d 9 72000
58722 b b dacc ddd cd b d d a d b d 9 98000
59150 b b dadc dad cd b d b a d d d 9 96000
60714 b b dacc dad cd b d b d d d d 9 89000
61400 b b dacc dad d b d c d d d d 9 88000
63853 b d dacc dad cd b d b a d d d 9 97000
64593 b b dacc dad dd b d d a d c d 9 87000
64714 b d dacc dad cd b d c d d d d 10 100000
68678 b b dacc dad dd b d b d d d d 10 100000

We can see a sort of arms race occurring in the offense and defense tags. The long tags
attained their final lengths by generation 30,000. These tags are used to determine the
outcome of a combat interaction as discussed in Section 3.4. Extra points are awarded in
the payoff calculation for the longer tag.

4.5 Probability of Mutation 0.05

The last run we analyze begins with a period of sustained combat and trading. Combat
and trading alternate and even coexist up through roughly generation 4,000. At this point
genomes with a zero length interaction tag take over. A zero length interaction tag can
only be matched by a zero length condition. Thus trading and combat do not take place
during this period. No genome seems to get a foothold in this interactionless environment.
At any given time slice the oldest genome has usually not been around for more than 500
generations. Eventually, at generation 21,000, the population evolves genomes with a zero
length trading condition, and the familiar pattern resumes (see Figure 5). Sample genomes
from throughout the run are given below:

Born it mt ot dt cc tc mc a b c d tr #tr Die
943 d a ac ca a d d c b c d a 5 1000
1888 d a bb ac d c c a b da c d 4 2000
3887 b c bd abda d b b d dba ba c b 8 4000
8780 b dc ac d c a d bcb ba d a 4 9000
13713 bd cc d b b aac db a b 5 14000
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Figure 5: Time series plots of population (total number of agents) and variety (number of
distinct genomes) for run with probability of mutation equal to 0.05.
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20493 bd dd d ab cca db d d 7 31000
21184 bd dd d dc cca bb d d 7 33000
22968 ad dd d ab cca db d d 7 34000
23504 bd dd d dd cca bb d d 8 50000
29883 ad dd d dd cca bb d d 8 52000
30891 cd dd d ad dca bd b d 8 54000
33614 cd dd d ad dca bd d d 9 67000
45832 cd dd d ad dca ddc a d 9 86000
62993 cd dd d ad dca ddc d d 10 100000

4.6 Robust Echo Behavior

What is interesting about the runs we have analyzed is the recurrence of a few robust
behavioral patterns. At the heart of each run is a simple trading ecology in which agents
with identical (or nearly identical) genomes all trade the same single resource. A succession
of such trading ecologies dominates each run, and each succeeding genome incorporates
more of the traded resource. Although the new genome may coexist with its predecessor for
a while, eventually its predecessor goes extinct and at this point the population level rises.
These simple trading ecologies can be decimated by a combat spike, and no genome persists
in a combat spike for very long. A combat spike is eventually broken when a genome that
can avoid the combat arises, and this sets off another succession of trading ecologies.

5 Explanations of Echo’s Behavior

Resource flow, driven by trading, is behind most of Echo’s robust evolutionary dynamics.
To understand these dynamics we must clarify how resources flow in Echo. We now briefly
digress to cover these details.

5.1 Echo’s Resource Flows

Resource flow in Echo is governed by six things: foraging, combat, trading, reproduction,
taxes, and death. Agents can acquire resources from foraging. At each time step a fixed
amount of resources is added to each site (20 units in these runs). Although the resources
released by taxes and death are returned to a site, the present Echo implementation makes
these freed resources unavailable for foraging, so for all practical purposes it’s as if those
resources did not exist. The length of an agent’s uptake mask for a given resource indicates
its facility at gathering that resource. So if all agents have the same length uptake mask, as
in our runs, they are all equally successful foragers.

Agents can also acquire resources through combat and trading interactions. When
combat occurs, the winning combatant ends up with all the resources in the losing com-
batant. Trading is more complicated. Trading agents exchange the amount of the traded
resource in their reservoir over and above what they need to make a single copy of them-
selves. When agents all trade the same resource, the average effect of trading is to equalize
the amount of the traded resource possessed by each agent in the population. When the
interaction fraction is high enough and when agents typically pass the trading interaction
test, virtually all 50 agents successfully trade (trading levels in our runs average about 50%).
Under these circumstances, we can expect trading to distribute the traded resource relatively
evenly across the resource reservoirs in the population.

Evolutionary Computation Volume 8, Number 4 435



R. Smith and M. Bedau

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

In
te

ra
ct

io
ns

Combat
Trade

Figure 6: Time series plot of relative frequencies of combat and trading interactions in the
world reported on in Sections 4.3 and 5.2. Interactions are difficult to distinguish in the
figure because of the density of the trading frequency time series. Trading is the interaction
at the 0.5 level, except for the period from roughly 45000 to 50000, a period of combat.

Reproduction dramatically affects resource flow in Echo. Agents are tested each
generation to see if they can replicate. In order to replicate, an agent must have enough
resources in its reservoir to make two copies of itself. When an agent replicates, it makes
one copy of its genome for its child, and it divides the remaining resources in its reservoir
with its child. For example, an agent with 5 c’s in its genome needs 10 c’s in its reservoir to
replicate. It uses 5 of those c’s to create its child’s chromosome, and the 5 remaining c’s are
then divided between parent and child reservoirs: the child gets 2 c’s and the parent is left
with 3.

Echo’s metabolic tax also has a dramatic effect on resource flow. At each time step each
agent can be served with a tax bill; the probability of receiving a tax bill is one of the world
parameters. In the runs studied here, this maintenance probability is 0.2, which means that
agents must pay a metabolic tax once every five generations, on average. When an agent is
called upon to pay a metabolic tax, it is first tested to see if it has enough resources in its
reservoir to make one copy of its genome. If the agent passes this test, it pays the tax as
specified in the maintenance vector of the site file. For the worlds studied here, this tax is
a single unit of each resource. On the other hand, if the agent fails this test, it immediately
dies. So metabolic tax is a very severe selection pressure. Agents cannot sustain their
metabolism if they go very long without enough resources to copy their genome.

5.2 Probability of Mutation 0.005 Revisited

In order to understand the robust evolutionary dynamics we have observed in Echo, we will
take a more detailed look at one of the runs: the one with probability of mutation 0.005
(recall Section 4.3). Looking more closely at the interactions and reservoir resource levels
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Figure 7: Time series plot of frequencies of each resource in an average agents reservoir,
normalized by population level. Again, the time series are difficult to distinguish due to
their density. The lowest resource is the traded resource. In the first half of the run it is c.
In the second half of the run it is d. See Section 5.2 for additional details.

will help illuminate what is happening.

Figure 6 shows the relative frequency of combat and trading interactions. Trading
is constant at the 0.5 level except during the period following the combat spike around
generation 44000. We also see an earlier combat spike just before generation 20000, but
it was not sufficiently intense to destroy the trading ecology. Recall that this run showed
two distinct epochs separated by a combat spike. The first epoch was characterized by a
population of agents that traded d’s. The bottom time series from generations 0 to 44000 is
for the resource d. The second epoch consists of a population that trades c’s. The bottom
time series from the period of roughly generation 48000 to the end of the run is for the
resource c. The figure shows very clearly that the traded resource is driving the population
and is the limiting resource for this population. Also note that the traded resource time
series contains much of the information that we see in the population time series for this
run. The level of the traded resource increases at precisely those points at which a genome
containing more of that resource takes over the population. (Since the resource level data
is normalized by population level, we can be sure the resource level dynamics are not an
artifact of changing population levels.)

Figure 7 shows the average level of each resource in the average agent’s reservoir.
We sum the total resources in all the agents reservoirs for a given resource and then we
normalize (divide) by the population level. Because the sampling is so dense (every 10
generations), it is difficult to distinguish the four time series in this plot, but the traded
resource is always the time series at the bottom of the plot. The time series for the other
three resources are all clustered together above the time series for the traded resource.

A probabilistic analysis can reveal the adaptive advantage of those genomes with more
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of the traded resource. Consider two genomes from the latter half of this run — g50708
and g53929, containing 5 and 6 units of the traded resource (c), respectively. And consider
the period from generation 57000 to 82000. We will analyze how a genome’s reproduction
rate affects the selection pressure it feels from the process of metabolization. The essential
mechanism is that increasing the limited traded resource in a genome makes it harder for
agents with that genome to reproduce, which allows agents with that genome to live longer,
enabling that genome to support larger populations.

Note that during the epoch of the run in question, dominated by genome g50708
(roughly generations 50000 to 62000), the population level averages about 65 agents, and
the frequency of the traded resource in the reservoir of the agents averages about 6.5. In
order for an agent with genome g50708 to replicate, it will have to have 10 c’s in its reservoir,
as described above. We know it will replicate as soon as it acquires the 10 c’s, since Figure 7
shows that it has plenty of each of the other resources to replicate itself twice over. Since
20 units of the traded resource are coming into the population at each time step, an agent
with genome g50708 will acquire a unit of the traded resource about every 3.25 generations.
Since our agent needs 10 c’s to replicate, it will take, on average, about 13 generations to
acquire the requisite resources if it does not trade during those 13 generations. Recall that
trading equalizes the level of the traded resource among agents. We know that a population
of agents with genome g50708 is only able to support a certain level of the traded resource
as shown in Figure 7. Thus an agent, on average, has to go 13 generations without trading
in order to replicate. We can determine the probability that an agent will not trade in a given
cycle using a binomial distribution, since an agent’s probability of being picked to trade can
be viewed as a problem of sampling with replacement. Since 50% of the population is
selected at random to trade at each time step, and each selected agent picks another agent
to trade with at random, there will be 65 agents selected to trade (out of a population of 65)
each time step. Note though that this is sampling with replacement. Using the binomial
distribution (and considering each generation a separate trial), we can roughly estimate that
the probability of an average agent being selected to trade is 0.3707. Thus the probability
of going 13 generations without trading in this population is (1� 0:3707)13 = 0:0024. This
means that the average agent in a population of agents with genome g50708 is likely to
reproduce every 412 generations (1=0:0024 = 412). So, on average, an agent reproduces in
this population every 6.34 generations (412=65 = 6:34).

Once an agent with genome g50708 self replicates, as in our example given at the end
of Section 5.1, it is left with 3 c’s in its genome and its child has 2. If the tax man comes
around soon, both parent and child are history. They will not be able to pass the test of
having the 5 c’s in their reservoirs necessary to reproduce their genome. Let us look at
how difficult it is for an agent (or its progeny) from this population to survive after having
self replicated. Recall that, in this population, a recently self-replicated agent can expect
to receive 1.5 c’s in a trade. This is because, on average, agents in this population have
6.5 c’s in their reservoirs and 5 in their makeup. The average agent will give 1.5 c’s to the
self replicated agent. The self replicated agent, on the other hand, won’t give away any
c’s since it doesn’t have enough in its reservoir to make a copy of itself. An agent in this
population can expect to trade 37% of the time (recall our binomial analysis) or about every
three generations. Also recall that an agent can expect to forage a single c in this population
every 3.25 generations. The parent agent from the self replication needs to trade once and
forage once before the tax man comes in order to get the amount of the traded resource in
its reservoir up to the requisite 5 instances. The child agent from the self replication needs
to either trade twice or trade once and forage twice. The tax man cometh, on average, 20%
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of the time, or once every five generations.

A similar analysis for agents with genome g53929, i.e., agents with 6 c’s, shows that the
average agent replicates every 1632 generations and that, on average, an agent replicates
every 20.4 generations. Once replicated, both parent and child are left with 3 units of the
traded resource in their genomes. In a trade with an average agent from the population,
the deficient agents can expect to receive 2.5 c’s. The analogous binomial analysis shows
that agents in this population can also expect to trade 37% of the time. They can expect to
forage a c every four generations. The probability of getting hit with a metabolic tax is still
20%. Though the calculations for figuring out the exact probability of an agent surviving
self replication are difficult (involving several different scenarios), it is clear that it is no
more difficult to survive self replication in this population of agents with genome g53929
then it is for agents from a population with genomes 50708. In fact, it seems more likely
that an agent will survive self replication in a population of agents with genome g53929.

Some analysis remains to be done to explain the transition from, for example, a pop-
ulation of agents with genome g50708 to a population of agents with genome g53929. It
would seem that, initially, an agent with genome g53929 would be at a disadvantage in
a population of agents with genome g50708. An agent with genome g53929 would still
expect to replicate approximately every 1600 generations, but it would be more difficult
for an agent with g53929 to build its reserves back up, since in a population of agents with
g50708, it can only expect to receive 1.5 units of the traded resource in a trade. An agent
with g53929 needs to get its reserve of c’s up to 6 units whereas an agent with g50708 only
needs five units.

Finally, note that the frequency of the traded resource in the genome is completely
correlated to population levels throughout all the runs presented in this paper (cf. population
levels with frequency of the traded resource for the dominant genome). Genomes with 4
units of the traded resource support average populations of 45-50 agents. Genomes with 5
units of the traded resources support populations of 60-65 agents. 6 units supports 75-80
agents, 7 units supports 80-85 agents, 8 units supports about 85-90 agents, and 9 units
supports about 95 agents.

5.3 Summary

The mechanism we have uncovered in this run applies with equal generality to all the other
Echo runs. As the amount of the traded resource increases in the genome, agents with that
genome don’t replicate as often, so they tend to live longer. Since they live longer, they
can acquire more of the limiting (traded) resource. Finally, if an agent does replicate, it is
at least as likely if not more likely to get its reserves back up to the requisite level before
getting wiped out prematurely by the metabolic tax. In the end, Echo’s robust evolutionary
dynamics have a relatively simple if surprising explanation.

6 Echo is Not a Complex Adaptive System

Does Echo exemplify the features in Holland’s theory of complex adaptive systems? To
some extent Echo does possess the mechanisms of tags, internal models, and building blocks,
for they were put into the model by design. Echo agents are bestowed with external tags
that facilitate selective interactions. They are also bestowed with a genetic structure that
serves as a tacit model of their environment. The fact that they interact through fighting,
trading, and mating entails that they navigate and decompose their environment with those
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three building blocks. But none of this is very interesting, for two reasons: First, these
mechanisms were installed by fiat rather than emerging through the evolutionary process;
second, we found no evidence that Echo agents built up complex adaptive structures through
those capacities.

What about the remaining four properties that Holland thinks define complex adaptive
systems: non-linear behavior, aggregation, resource flows, and diversity? Echo certainly
does exhibit non-linear behavior, but this is not surprising since non-linearity is ubiquitous in
models of complex adaptive system. And resources obviously flow through Echo, although
we’ve seen that this flow is typically quite simple, consisting of everyone trading the same
resource or of the population being decimated through combat.

There is no evidence of the emergence of a diversity of hierarchically organized adaptive
aggregates. The only evident aggregations were simple trading ecologies and transitory
combat ecologies. Although the number of distinct genotypes grew with the mutation
rate, this heterogeneity never created any significant diversity in behavior; it was genotypic
diversity without phenotypic diversity. All the populations evolved into simple trading
ecologies. Even calling them “trading” ecologies is misleading since the interactions merely
equalized the distribution of a single resource. This lack of diverse adaptive aggregates
is a vital dissonance with Holland’s theory of CAS. Holland hoped Echo would generate
something like the caterpillar, ant, fly ecology described in Section 3.4, but this dream never
materialized.

We have augmented the present work by seeing what happens when we vary a number
of key parameters, including the interaction fraction (number of interactions per time step),
the maintenance probability (rate at which agents’ resources are taxed), and the number of
sites in the world. Although we have done detailed microanalysis of only a fraction of these
runs, we never saw any macro-level evidence for more interesting evolutionary dynamics
than those described and explained here. (This is somewhat at odds with other published
results (Forrest and Jones, 1994; Hraber et al., 1997)). The macro-level dynamics vary in
intensity but they show no qualitatively different dynamics. This makes us confident that
the behaviors explained here typify what we can expect to see Echo generate. We conclude
that Echo does not exemplify Holland’s theory of CAS.

This is not a drawback of Echo alone. Our conclusion about Echo parallels the absence
of unbounded evolutionary creativity noted in many other agent-based evolutionary models
(Bedau et al., 1997, 1998). As far as we know, no present model actually has the features by
which Holland characterizes complex adaptive systems.

7 The Next Step

If we are right that Echo is not a complex adaptive system, this should not be viewed as a
set-back in the study of complex adaptive systems but as progress — progress made possible
only because Echo was actually implemented and studied empirically. Specifically, we have
learned that we need another iteration of the hypothesis-test-revise methodology.

A few trivial revisions of the current implementation of Echo might make a difference
in its behavior. Specifically, it would be interesting to see what happens when agents can
forage for resources freed up through metabolic taxes and death, and when reproduction
is blocked until both parent and child can survive the metabolic tax. It would also be
interesting to allow mating to coexist with combat and trading. But it’s far from clear
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whether these changes would make diverse aggregations emerge in Echo. Perhaps Echo’s
dynamics would be more likely to generate diverse aggregations if the creation of new
genomes caused the creation of new kinds of resources, but it is unclear how to implement
this idea in a sufficiently general way.

Our work here is an attempt to apply Holland’s hypothesize-test-revise methodology
simultaneously to Holland’s Echo model and to his general theory of complex adaptive
systems. We have treated Holland’s theory of CAS as a working hypothesis in the back-
ground; in the foreground is the hypothesis that Echo is such a complex adaptive system.
Empirical study of a working model is a constructive way to tell whether a given model
actually captures a given theory. An important virtue of Echo is precisely that it is such a
model. The problem is Echo fails to capture key features in Holland’s theory.

Echo’s failure to exemplify Holland’s theory of complex adaptive systems does not
repudiate the theory, of course, but it does underscore that we don’t fully grasp the theory.
There are a number of significant unanswered questions about it. For example, it is not
clear that the seven properties and mechanisms in the theory have an equal footing, nor
that they are independent, nor that they are all necessary. We ourselves are inclined to
think that what explains and unifies Holland’s seven features is the property of robust,
open-ended emergence of hierarchical, adaptive structures. Furthermore, this property
may well explain an eighth characteristic property of complex adaptive systems: the ability
of emergent interacting components to create and flexibly maintain their own boundaries
and their capacities for interacting with other components. But these suggestions of ours
at present are really just so many words. Concretely embodying them in some successor
model to Echo is the only way to make them precise and subject them to rigorous scrutiny.
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A Parameters

All the Echo runs reported here were generated with exactly the same set of Echo model
parameters except that the mutation probability was varied. The full set of parameters is
given here. Wild cards (*) indicate that particular parameters are to be chosen at random.

Agent Parameters

Name simple.agent Defense Tag *
Init Rsrv 10 10 10 10 Mating Tag *
Trad Rsrc * Comb Cond *
Uptk Msk * * * * Trade Cond *
Interac Tag * Mate Cond *
Offense Tag *
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World Parameters Site Parameters

Name simple.world Name simple.site
Trad Frac 0.5 Mutate Prob [various]
Interact Frac 0.5 InsrtDel Prob 0.02
Self Repl Frac 0.5 CrsOv Prob 0.0
Self Repl Thresh 2.0 RandDth Prob 0.0
Maint Prob 0.2 Prod Func 20 20 20 20
Neighborhood NONE InitRes Lev 20 20 20 20
Rows 1 Maxima 1000 1000 1000 1000
Columns 1 Maintenance 1 1 1 1
# of Rsrcs 4 Agents simple.agent 100
Comb Matr 1 1 1 1 0
Comb Matr 1 1 1 1 0
Comb Matr 1 1 1 1 0
Comb Matr 1 1 1 1 0
Comb Matr -1 -1 -1 -1 0
Sites simple.site
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