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Abstract. Evolutionary activity statistics have been used to visualize
and quantify the adaptive evolutionary dynamics in a wide variety of ar-
tificial and natural evolving systems, but the formalism for the statistics
has evolved over the years. Furthermore, the statistics can be applied
to many different aspects of an evolving system, and application in any
given context requires settling certain choices. In addition, the statistics
involve normalization with a special-purpose “neutral” system, which
requires making even more choices. So, to help make these statistics eas-
ier to use and understand, we situate them in a new and more general
formal framework and then show how this framework applies to earlier
work with the statistics.

1 The need for a framework for evolutionary activity

It is commonly accepted that the process of adaptation produces much of the
order and functionality evident in complex systems [11,10,8], but it is often
difficult to distinguish adaptive change in a system from other evolutionary phe-
nomena, such as random genetic drift [9, 12]. For natural systems the problem is
often the unavailability of the relevant data. Those studying artificial evolving
systems have the luxury of being able to collect virtually complete data; aside
from storage space, only imagination limits what kinds of data are gathered.
But this compounds rather than alleviates the problem, which is the inability to
highlight the relevant data. The study of evolutionary dynamics in natural and
artificial systems dearly needs an effective method for identifying and measuring
the creation of adaptations in the course of evolution.

A decade ago Bedau and Packard devised a method for visualizing adaptive
phenomena in evolving systems [2]. The method rests on the calculation of evolu-
tionary activity statistics which can be applied to various kinds of components of
evolving systems, including individual alleles [2], various classes of alleles [5], and
whole genotypes [3,4]. A significant part of the appeal of evolutionary activity
statistics is their applicability to a wide variety of evolving systems. Evolutionary
activity has been measured in many artificial life systems, including Packard’s
Bugs [3,14],

Ray’s Tierra and its derivatives [1,3,4], Lindgren’s evolving iterated pris-
oner’s dilemma [15], and Holland’s Echo [4]. It has also been measured in some



natural evolving systems, such as the biosphere as reflected in the fossil record [3,
4] and the evolution of technology as reflected in the patent record [16]. Compar-
ing evolutionary activity phenomenology within or between systems shows how
evolutionary phenomena vary as a function of such factors as mutation rate and
mode of selection [5], and quantifying evolutionary statistics enables adaptive
evolutionary dynamics in various artificial and natural systems to be directly
compared [2-4,14,16]. Evolutionary activity statistics have also been used to
study evolutionary contingency [19], punctuated equilibria [15], mutualism [13],
diversity [18], and classifications of evolutionary dynamics [4,17,6, 7].

Nevertheless, there are barriers to realizing the full potential of evolutionary
activity measurements. One is their very flexibility. Their applicability to an
open-ended variety of different kinds of entities obscures the constraints on their
proper use. Furthermore, the statistics have been defined in different ways in
different publications, and this hides their underlying equivalence. It can be
similarly unclear what unifies the different kinds of “neutral” systems that are
used to normalize the statistics. So providing a consistent and general formal
framework would help make evolutionary activity statistics more useful and more
used. That is the purpose of the present paper.

2 A formal framework for evolutionary activity

The purpose of evolutionary activity is to measure the extent to which compo-
nents of an evolving system are and have been resisting selection pressure. Per-
sisting in the face of exposure to selection is the sign of an adaptation (though
there are exceptions to this rule—see below). So the essential idea is to measure
a component’s exposure to selection, because continual exposure to selection
is evidence of resistance to selection. To get started on this project, one must
answer three questions about the system’s components:

Question 1. What should be the components of the system?
Question 2. What should be a component’s initial activity?
Question 3. What should be a component’s current activity?

Choosing different answers to these questions allows one to examine evolutionary
dynamics at different levels of analysis. We will consider each question in turn.

‘What should be the components of the system? An evolving system
typically contains many different kinds of evolving components, e.g., individual
genes, combinations of genes or schemata, individual phenotypic traits and clus-
ters of them, whole genotypes, species and higher taxonomic groups. One might
want to measure the adaptive evolution of any of these components. In general,
there is no unique right choice of component to study, but some choices are
wrong because some kinds of components in some systems are ill defined. After
choosing what type of component to study, one must focus on which instances of



those components are present in the system at a given time. If S is an evolving
system and F' is a property that identifies the components of interest, then the
set of components present in S at ¢ is:

Definition 1. C; = {c: c exists in S at ¢ A ¢ has property F'},
while the set of all such components across 7', the set of all time steps, is:
Definition 2. C=C;,, UC, U.. .,

where t1,ts,... € T.2 For example, if F is the property being a genotype, then
C; is the set of all genotypes extant at ¢ and C is the set of all genotypes extant
at some time or other. In most evolving systems the extant components change
over time, so we have a notion of the addition (“birth” or “origination”) and
subtraction (“death” or “extinction”) of a component, as follows:

Definition 3. ¢ is added to Cy if and only if ¢ € Cy_1 A c € C;.
Definition 4. c is subtracted from Cy if and only if ¢ € C;_1 A ¢ & C4.

For example, instances of a particular allele at particular loci exist in a system
at t if some agent has an instance of that allele at that locus at ¢, and a genotype
exists in a system at ¢ if some agent has that genotype at ¢.

What should be a component’s initial activity? Computing evolutionary
activity involves tracking each component’s evolutionary activity over time. As
a bookkeeping matter, a component’s activity is stored in its activity counter.
When a new component is added to an evolving system, its activity counter
must be initialized. In some cases the proper initial value will be the same for
all components at all times, but in other cases it will depend on the context. For
example, if one wished to record the activity in a component’s lineage, one might
initialize a new component’s activity with the activity of its immediate ancestor
(more on this later). We can represent this formally with AS ., : C — R, where
the initial value of a component ¢’s activity counter is A ., (c).

‘What should be a component’s current activity? A component’s activity
counter is a historical record (sum) of its activity over its entire lifetime. At
each moment that the component exists, its activity counter is incremented by
its current activity, i.e., its current exposure to selection. Exposure to selection
can be measured in various ways; some methods are easier than others and some
methods reveal selection exposure more clearly. The simplest measurement of se-
lection exposure is always a component’s existence, but this method is crude. A
more sensitive measure of a genotype’s exposure to selection is its concentration
in the population, and a more sensitive measure of an allele’s exposure to selec-
tion is its expression or use. How best to measure a component’s current activity

3 We assume that time is discrete since artificial evolving systems usually assume
discrete time. The formalism can be extended to continuous time.



will depend upon what one wants to learn about the target system and whether
one hopes to compare this information across systems. A component’s current
activity can be represented with the partial function A® : C x T — R, where
A%(c) is ¢’s activity at t if c is present in S at ¢ (and is otherwise undefined).

3 Definitions of evolutionary activity statistics

Evolutionary activity statistics aim to reflect how the evolutionary process is
creating adaptations by observing resistance to selection pressures. A component
of an evolving system can resist selection pressure only when it is “active” or
exposed to selection. So, we assign each component an activity counter to record
its exposure to selection pressure over its entire history.

Evolutionary activity and excess activity of a component. More pre-
cisely, we define the evolutionary activity (or activity counter) of component ¢
at time ¢ as ¢’s initial activity plus the sum of ¢’s activity increments up to t¢.
Formally, the value of ¢’s activity counter at ¢ is given by a® : O x T — R:

¢
Definition 5. a%(c,t) = A ., (c)+ Y.  A%(c,19).
i=Birth(c)

where Birth : C — T gives the time step at which ¢ is added to the system.

Every time a component is exposed to natural selection, selection can provide
feedback about its adaptive value. Obviously, it will not continue to be tested
by natural selection unless it has passed previous tests. So, the amount that a
component has been tested by selection reflects how successfully it has passed
those tests. If a sufficiently well-tested component persists and spreads through
the population, we have positive evidence that it is persisting because of its
adaptive value, i.e., that it is an adaptation. But natural selection is not instan-
taneous. Repeated trials might be needed to drive out maladaptive components.
So persistence in the face of some selection is no proof of being an adaptation.
Thus nonadaptive items can generate “noise” in evolutionary activity data, and
to gauge resistance to selection we must filter out this noise.

One way to filter the nonadaptive noise is to determine how activity would
accrue if components were persisting due solely to nonadaptive factors like ran-
dom drift or architectural necessity. A general way to measure the expected
evolutionary activity of such nonadaptive items is to construct a neutral vari-
ant of the target system, that is, a system that is similar to the target in all
relevant respects except that none of its components has any adaptive signifi-
cance. For example, if natural selection affects only births and deaths in a target
system, then a neutral system could be just like the target system except that
births and deaths are the result of random rather than natural selection. (More
details about neutral systems are available elsewhere [1,3,4,14,16,5].) The ac-
cumulated activity in neutral systems provides a no-adaptation null hypothesis
for the target system, which is used to screen off nonadaptive activity. If we



observe significantly more evolutionary activity in the target system than in its
neutral variant, we have good evidence that this “excess” activity cannot be
attributed to nonadaptive factors. That is, we have good evidence that the com-
ponents with excess activity are adaptations. So, we normalize target systems by
subtracting the evolutionary activity accrued in the corresponding neutral sys-
tem, and call the result excess activity. Specifically, we define the excess activity
QS coss 1 C X T — R of a component at a time as:
a%(c,t) — v(e,t) if a%(c,t) > v(c,t)
en={

", . C
Definition 6. og .

0 otherwise

where the function v is determined by the specific neutral system used. As this
definition indicates, the excess activity of a component is positive only if the
component’s raw observed activity exceeds the value of the activity observed in
the neutral system.

The choice of appropriate neutral system depends on details of the target
system. The v functions implied by three recent measurements of excess evolu-
tionary activity illustrate some possible forms of v. Sometimes v is a constant
function which ignores ¢ and ¢, in which case the significance of a component’s
activity depends only on its level and not on the identity of the particular com-
ponent or time. But this need not be the case (see the third example below).
The first example is from Bedau, Snyder, & Packard [4], who used a neutral
system to determine a threshold a’ above which activity could be regarded as
more likely than not to be the result of an adaptation. In this case, v is a simple
constant function:

Ezample 1. v(c,t) =a'.

The second example is from Skusa & Bedau [16]. They determined » by noting
the maximum activity value that the neutral system produced for any compo-
nent. If we let N® be the set of values of activity counters of the neutral system
at the end of the simulation, time t.,4, then one can define v as:

Ezample 2. v(c,t) =Max(N®%).

Third, Channon [7] uses a more fine grained neutral model, with a unique neu-
tral component corresponding to each component in the target system, and he
normalizes “on the fly” by taking the activity of each component target system
and subtracting the activity of its corresponding component in the neutral sys-
tem. If Vy is the set of neutral system components at ¢t and n: C x T — N, is
a function giving the neutral component n € N; that corresponds to the ¢ € Cy,
then one can define v as:

Example 3. v(c,t) = o™ (n(c,t),t).

Extent and intensity of activity of an evolving system. Activity and
excess activity are “micro” statistics defined for each component. It is possible
to define various “macro” statistics that summarize the evolutionary activity in



a whole system. In particular, one can measure a system’s intensity of adap-
tive evolution, that is, the rate at which new adaptations are being produced by
natural selection. In addition, one can measure a system’s extent of adaptive evo-
lution. The extent and intensity of evolutionary activity are two independently
varying aspects of a systems adaptive evolution. While these statistics could be
applied to either raw activity or excess activity, our concern here is with the
latter.*

The excess extent of evolutionary activity is given by the function E¢ : T —
R, defined simply as the sum of the excess activity of all extant components:
Definition 7. E9(t) = 3. Q% cess(C;1)-

excess
ceCy

This statistic measures the total continual adaptive success of all the compo-
nents in the system. The ezcess intensity is given by the function I¢ : T — R,
defined as the number of components that have newly given evidence of being
adaptations by having positive excess activity:

Definition 8. I9(t) = #{c € C; : 05 ess(c; T — 1) = 0 A @ ess(c, 7) > 0}
Sometimes one is interested in the mean or median of extent and intensity statis-
tics. It is easy to define these notions.

Note that two different kinds of time indicators appear in the definition of
the excess intensity of activity. This complication arises because the intensity
statistic is supposed to reflect the rate at which significant adaptations are aris-
ing, but it takes some time to determine whether a component is a significant
adaptation. We let 7 be the time when a component first provides evidence that
it is an adaptation, i.e., the time when its excess activity first become positive.
And we let ¢ represent the time when one considers a significant component to
have arisen. Now, consider some component ¢ which eventually has positive ex-
cess activity. The choice of how to define ¢t is the choice of when to consider ¢ to
have arisen. One option is to let ¢ be the time when ¢ first arises in the system,
i.e.,, t = Birth(c), in which case the intensity statistic would measure the rate
of origination of new components that will eventually provide evidence of being
an adaptation. At the other extreme, one could let ¢ be the time when c first
does provide significant evidence that it is an adaptation, i.e., t = 7, in which
case the intensity statistic would measure the rate at which components (which
might have arisen some time in the past) are showing they are adaptations. The
best approach will depend on the details of the system under investigation. For
example, Skusa and Bedau [16] let ¢ = Birth(c) because in their system excess
activity first becomes positive long after the origination of a component, but
Bedau, Snyder, and Packard [4] let t = 7 because this time lag in their systems
was minimal. However one chooses t, it is important of course to be consistent.

4 Here, we normalize activity before rather than after defining the macro statistics,
but essentially the same result can be achieved by reversing the procedure. E.g.,
Rechtsteiner & Bedau [14] define excess extent after summing component activity.



4 Application to different kinds of components

Different levels of activity can be measured in one and the same system at the
same time. Measurements of evolutionary activity in previous work can illustrate
how the present framework applies to various kinds of components. It might also
help suggest how to extend the framework to new kinds of components. (In the
examples below, we indicate the kind of component in question with an index
on C; and ¢; e.g. Cf and c¢” for allele tokens, C} and ¢V for allele types, etc.

Allele tokens. An allele token is an individual allele at a locus in some partic-
ular agent. When the activity of allele tokens in asexual populations has been
measured in previous work [2, 5], the concern has been to see lineages of highly
used alleles. Accordingly, if an allele token was inherited from an ancestor, it’s
activity counter was initialized to the value of the ancestral allele; otherwise, if
the allele token was the product of a mutation, it was initialized to zero. So, if
we let C* be the set of all allele tokens present at some time in the system, the
activity initialization function can be defined as follows:

cr K : K\ 3
Esample 4. AC"(c*,1) = {a (A(cF),t) if A(c”) is defined

init 0 otherwise

where A : C* — C* gives c*’s immediate ancestor and is otherwise undefined.?
Then, if we let Cf be the set of allele tokens present in the system at ¢, the
activity counter of an allele token is to be incremented just in case that allele
token was used or expressed, thus:

1 if c® € Cf Ac”is used at t

C"( .k —
Ezample 5. A“ (c*,t) = {0 if ¢® € CF A c® is not used at ¢

Allele types. Two agents with exactly the same kind of allele token at the
same locus have the same type of allele at that locus. Let C} and CV be sets
of allele types, defined analogously to the previous examples. An allele type,
¢V € CV, is present in S at t just in case there is at least one allele token of type
¢V present in some agent in S at t. The lineage of a given allele is in effect an
allele type,® so it makes most sense to initialize the activity of all allele types to
zero: AS,(cV) = 0. When activity of allele types has been measured in previous
work [5], the activity of an allele type ¢V was defined as the sum of the activity
of allele tokens ¢ of that type:

Ezample 6. AC"(cV,t) = > AC(c*,t)

ctecy

5 Example 4 can be easily modified for contexts in which reproduction is sexual.

5 So-called “back” mutations create an exception to this rule, because our approach
lumps together and ignores independent originations of the same allele. One could
define a component that exactly corresponded to an individual allele lineage, if one
wanted.



Phenotypic equivalence classes. Traits that are phenotypically the same
can be grouped into phenotypic equivalence classes. One can measure the evo-
lutionary activity of such phenotypic equivalence classes by attaching activity
counters to them. A given phenotypic equivalence class is present at a moment
if some member of the class is present at that moment. Let C’t‘f> be the set of all
phenotypic equivalence classes present at ¢. Phenotypic equivalence classes are
like allele types in that lineages of phenotypically equivalent traits make up such
classes. So it is natural to initialize the activity counters of phenotypic equiva-
lence classes to zero: Aic;;t(cd’) = 0. Provided the notion of the use of a trait is
well defined, it would also be natural to increment the activity of a phenotypic
equivalence class ¢® by the use of its member traits:

1 if ¢® € Cf Ac? is used at t

Ezample 7. AC°(c?,t :{
vampie (1) 0 if ¢® € Cf A c? is not used at ¢

See [5] for one way to measure evolutionary activity of phenotypic equivalence
classes.”

Genotypes. It is usually easy to measure the evolutionary activity of entire
genotypes. Let C; and C” be sets of genotypes, as in previous examples. A
genotype ¢” is present in a system at a time just in case some agent in the system
has ¢” as its genotype. A genotype covers all the instances of the genotype in a
genotype lineage, so it is natural to initialize the activity of genotypes at zero:
A7 (¢Y) = 0. Tt is also natural to increment a genotype ¢'’s activity by its
concentration in the population at ¢, as defined by con : C7 x T — R, thus:

Ezample 8. AC" (¢7,t) = con(c",t)

where this function is defined only if ¢” € C}. See [3,4,6,7,13-15,17-19] for
measurements of evolutionary activity statistics of genotypes.

5 Challenges and the future

It is straightforward to measure and interpret evolutionary activity of genotypes
or phenotypic equivalence classes in almost any system. This is the most common
level at which the statistics have been applied to date [3,4,6,7,13-15,17-19]. It
can be more difficult to apply the statistics at the level of genes. The evolutionary
activity of individual genes is most easy to interpret when each gene has a clearly
identifiable phenotypic function, because the method depends on a correlation
between an component’s activity and its utility for coping with selection pressure.
Complications arise when genotype-phenotype mapping if many genes together
affect single characters (e.g., epistasis) or if many characters are affected by
single genes (e.g., pleiotropy). For instance, a gene coding for a given connection

" Bedau and Raven were able to identify phenotypic equivalence classes with sets
of allele tokens, because there is a one-to-one genotype-phenotype mapping in the
model they studied.



strength in a neural network might influence the network’s behavior in different
ways depending on how activation is flowing through the other nodes. In this
case, it is very difficult to decompose the network’s traits and behavior and
assign responsibility for different pieces of it to different genes.

Nevertheless, one can usually still find a useful way to measure the evolution-
ary activity of genes in systems with genetic context sensitivity. For example,
although a genome encoding weights a neural net typically is highly epistatic,
one could still increment the activity of individual genes by their age. Long-lived
weights would tend to be those that are highly adaptive in many contexts or in
a few critical contexts, and these would accrue high activity. Alternatively, one
could increment the activity of a network weight whenever its activation in the
network exceeds some threshold. Those highly adaptive weights through which
a lot of network activation consistently flows would accrue high activity.

The most significant obstacle to applying activity statistics to natural sys-
tems is collecting enough of the right kind of data, specifically, a time series of a
some sort, of census of components in the system. The relative ease of collecting
the necessary data is the main reason why activity statistics have been applied
mostly to artificial systems to date. High throughput automated methods are
currently generating massive biological data bases of various kinds (genomic,
proteomic, metabolomic, etc.), and electronic media are increasingly accumu-
lating an ever growing variety of data about the evolution of various aspects
of culture (patents, financial markets, internet sites, newspapers, news groups,
etc.). So our ability to measure evolutionary activity in natural systems will grow
significantly in the near future.
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