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Abstract

One can study the the evolution of sensorimotor functionality by synthesizing this process

in an abstract arti�cial life model, speci�cally, a population of agents that interact with each

other and with their environment in a way that allows natural selection implicitly to shape

their sensorimotor couplings. The present paper de�nes very general measures of environ-

mental and sensory uncertainty, and of action's direct and indirect e�ects on perception, and

reports a series of observations of these quantities in the context of the model.
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1 The Project

Agents perceive their environment and act on it. It is obvious that action is in
uenced by per-

ception; what an agent does depends on its experience. But it is equally true that perception

is in
uenced by action. An agent does not just passively receive sensory information; the agent

is embedded within its local environment and its interactions with its environment a�ect its

own sensory experience. Rather than being an input-output device, this reciprocal relation-

ship between perception and action gives an agent the logical form of a sensorimotor \loop"

[Varela91, Parisi92, Nolfi93].

The survival and 
ourishing of agents, especially those that must act autonomously in

an unpredictably changing environment, depends on the functionality of these sensorimotor

couplings|i.e., the non-accidental bene�cial e�ects they provide the agents [Bedau92c,Bedau92a,

Bedau93a, Bedau91]. On one view, intelligence consists of just this sort of sensorimotor func-

tionality; intelligent agents are those that have the capacity to 
ourish by means of suitably ad-

justing their interactions with an environment on which they depend for resources, even though

the agent (and the agent's designer, if any) cannot safely make a priori assumption about

the environment [Varela91, Parisi92, Nolfi93, Cliff93a, Cliff93b, Steels94]. Adap-

tive evolution and kindred processes are especially salient sources of this kind of sensorimotor

functionality [Bedau91, Varela91, Parisi92, Nolfi93, Cliff93a, Cliff93b, Steels94]|

indeed, they may be its only source. Thus, a fundamental research goal is to understand how

the process of adaptive evolution creates and shapes sensorimotor functionality.

Those e�ects of action on perception involved in sensorimotor functionality take at least

two forms. An agent's actions can change its position and orientation in its environment, which

a�ects which local environment it will perceive; I call this a direct e�ect of action on perception.

Walking into the kitchen directly a�ects what you perceive. In addition, an agent's actions can



change the environment itself, and in this way a�ect its perception of that environment; call

this an indirect e�ect of action on perception. Opening the refrigerator door indirectly a�ects

what you perceive.

If the sensorimotor couplings are allowed to evolve, the direct and indirect e�ects of action

on perception can simultaneously both increase and decrease functionality. On the one hand,

the evolution of actions' e�ects on perception can generate environmental change and unpre-

dictability that makes survival more of a challenge. But, on the other hand, one of actions'

e�ect on perception can be to bene�cially constrain the environment's unpredictability.

Methodologies for studying evolving sensorimotor functionality in autonomous agents range

from building real robots that interact with real environments [Steels94], to simulating max-

imally realistic models of of robots [Cliff93a, Cliff93b], to simulating more abstract mod-

els [Parisi92, Nolfi93]. My approach is to simulate maximally abstract models, with the

aim of discerning maximally general and fundamental principles governing this phenomena

[Bedau92b,Bedau91,Bedau92d,Bedau93b,Bedau94a,Bedau94b,Bedau94c,Bedau94d].

Pursuing this project involves addressing questions like these:

� How can we de�ne general measures of the uncertainty of the environment, the discrim-

inatory capacity of sensory mechanisms, and the direct and indirect a�ects of action on

perception?

� In general, what is the nature of action's e�ect on the environment, and what is the nature

of action's direct and indirect e�ects on perception?

� How do these e�ects depend on fundamental system parameters, such as the strength of

natural selection and the sensitivity of sensory mechanisms?

In what follows I present a very abstract model of the evolution of sensorimotor couplings, then

de�ne general measures of various quantities central to understanding sensorimotor functional-

ity, and �nally report a series measurements in the model.

2 The Model

The model used here is designed to be simple yet able to capture the essential features of

agents with sensory-motor couplings shaped by the open-ended forces of adaptive evolution

[Packard89, Bedau91, Bedau92d, Bedau94a, Bedau94b, Bedau94d, Bedau94c]. The

evolutionary system consists of many agents that could be called organisms, on analogy with

biological systems. The agents exist together in an environment, in this case a toroidal lattice.

The lattice has a real-valued �eld de�ned on it, E t(x), which may be interpreted as an energy

�eld, or food �eld. The energy �eld is driven by constantly adding energy (from an external

source), E t+�t(x) = E
t(x) +�(x� �t), where � is a function over the plane and �t is a position

in the plane. The agents are constantly gathering energy, extracting it at their location in the

�eld and then expending it through their behavior. Thus, the agents function as the system's

energy sinks, and the whole system is dissipative.

In analogy with biological systems, the dynamics of the population as a whole is comprised

of all the birth-life-death cycles of the agents. Births occurs when agents accumulate enough

energy to reproduce (see below), deaths occur when agents run out of energy, and the lives of

agents consist of their interactions the environment. We label each agent with the index i and

denote the population level at t by N t
i . Time is discrete. One unit of time t is marked by each

agent interacting with the environment.
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During its lifetime, each agent exchanges information with the environment by sensing and

a�ecting the energy �eld in its local neighborhood. We assume that there is a discrete set of

di�erent possible sensory states, s 2 S = fs1; :::; sNS
g. The agents exchange no information with

each other directly (although this would be an easy generalization). Each agent (labeled with

the index i) has certain information associated with it: (i) a current location, xti, (ii) a current

sensory state, sti, (iii) a current reservoir of energy, E
t
i , and (iv) a strategy map, 'i, that yields

a behavior given sensory information as input. In this model, an agent's behavior is a vector ~b

denoting the agent's movement in the environment, xti ! xt+1i = xti +
~bti; in general, ~bti = 'i(s

t
i)

(an exception is explained below). We assume that ~bti is a member of a discrete set of di�erent

possible behaviors, ~bti 2 B = f~b1; : : : ;~bNB
g. (Another easy generalization would be to include

other kinds of possible behaviors.) Each behavior causes a change in the agent's energy supply:

an augmentation from extracting energy at the agent's new location, a constant-sized reduction,

and a reduction proportional to the distance moved, Et
i ! Et+1

i = Et
i+�(E

t+1(xt+1i ))���
(~bti).

(Here, �(z) may be interpreted as the energy extraction function, � as the constant metabolic

cost of surviving, and 
(z) as a function for the variable metabolic cost of a speci�c behavior).

The strategy map 'i operating on a sensory input s
t
i has a particularly simple form because

the sensory input is discrete. Since sti 2 fs1; : : : ; sNS
g, we may identify the function 'i with

its graph, a set of NS behavior values, f'isg. Pursuing the biological analogy, I will consider

the strategy elements f'isg as i's genome, and each particular element ~b = 'is as the trait (or

allele) at the sth locus of i's genome. Reproduction occurs when an agent's energy Et
i exceeds

a threshold, Er. During reproduction, a parent's energy is split evenly among its children,

and a parent's strategy elements f'isg are copied over to its o�spring, each element with some

probability � of being altered. Altered strategy elements are chosen randomly from the set of

possible strategy elements B. We call � the mutation rate.

In order to investigate how natural selection a�ects the evolutionary dynamics of strategies

f'ig, I introduce a behavioral noise parameter, P0, de�ned as the probability that ~bti is chosen at

random from B rather than determined by 'i(s
t
i). If P0 = 1, then agents survive and reproduce

di�erentially, and children inherit their parents' strategy elements (except for mutations), but

the inherited strategies f'isg re
ect only random genetic drift.

A sensory map, S� : Nx ! S, associates a sensory state with each local environment. The

sensory map generally produces an agent's sensory state, sti = S�(x
t
i) (but this rule can be

violated by sensory noise, in which case sti is chosen randomly from S.) The precise nature

of the mapping depends on the sensory apparatus, �, which passes some of the information

available at local environments. All agents have the same kind of sensory apparatus, unless it

is put under genetic control and allowed to evolve.

An especially simple kind of sensory apparatus is a set of sensory thresholds, � = f�1; : : : ; �tg,

which partition the possible environmental states at each site in a local environment into discrete

\bins" and associate each bin with a unique signal. In this case, the sensory state associated

with the sites in a local environment is a set of signals from those sites. The thresholds determine

at which energy levels a site's signal changes. In this way, the sensory thresholds determine

what raw sensory information the agents receive from their environment.

In the simplest case, one threshold � assigns the energy level at each site x in a local

environment into one of two \bins," to which signals are then assigned, sig(xt) = T (E t(x)),

where T (z) is a function which is zero for z < � and one otherwise. � may take on values within

the interval de�ned by the minimum possible value of E(x) and one greater than the maximum

possible value of E(x). Note that if � is set to either its maximum or minimum value, then all

sites at all times send the same signal; the agents are \blind."
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This model provides an abstract and general way to study the evolution of sensorimotor

functionality. In this setting, the sensorimotor coupling goes from the sensory states the agent

experiences in response to its environment, to the action triggered in response to that sen-

sory state by the agent's corresponding strategy element, then to the environmental changes

produced by the agent's actions, at which point the cycle repeats. The evolving link in this

coupling is the strategy elements. Sensorimotor functionality is crucial for these agents, since

their survival and reproduction depends directly on their ability to sustain themselves by �nd-

ing continually locating energy in their environment. At the same time, the collective e�ect of

the agents' actions continually causes unpredictable e�ects on the environment's energy �eld.

The agents possess no a priori model of the environment, but the adaptive evolution of their

strategy elements builds an a posteriori model of it|a collection of strategy elements well

suited for 
ourishing in that environment. This a posteriori model is continually adapting in

an open-ended manner to new environmental contingencies. The agents are autonomous in the

sense that their internal action-generating models are created through an evolving history of

contingent interactions with their environment.

3 The Measures

As a necessary prelude to a general study of the evolution of sensorimotor functionality, this

section presents objective, general measures of the uncertainty of the environment (two forms),

of the discriminatory capacity of the agents's strategy map (two versions), and of the direct

and indirect e�ects of action on perception. All these measures are based on the Shannon

entropy [Shannon49], which quanti�es the information-theoretic uncertainty of a probability

distribution. But �rst I describe how I quantify sensorimotor functionality.

3.1 Sensorimotor Functionality

Since our model is energy driven, and the survival and reproduction of the agents depends

directly on their success at extracting energy from the environment, we can judge the overall

performance of the population by its e�ciency at extracting and using energy from its environ-

ment. A crude measure of this e�ciency is re
ected by the residual energy in the environment

E
t
resid, i.e., the energy that is not contained in the organisms:

E
t
resid =

X

x

E
t(x): (1)

(Recall that E t(x) is the residual energy at site x.) Population performance is inversely related

to residual energy. Residual energy can be directly compared across di�erent systems if all

background system parameters a�ecting performance are equivalent. This is the case in all

observations reported here.

3.2 Uncertainty Associated with the Environment

Possible environmental states are distributed over the world sites, and this distribution changes

over time. In the present model, the the world contains only an energy �eld (besides the

organisms), so possible environmental states correspond to possible levels of energy. Di�erent

aspects of the uncertainty|or, conversely, structure|associated with the environment can be

distinguished and measured on the basis of probability distributions concerning di�erent aspects

of the energy �eld.
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Site uncertainty of the environmental states, H t
x;E , re
ects how uniformly the residual energy

is distributed among those single sites in the world that contain some energy:

H t
x;E = �

NxX

x=1

p(x) log2 p(x); (2)

where Nx is the number of sites in the world, and p(x) is the probability that a randomly chosen

unit of residual energy is located at world site x, which is measured as the proportion of the

residual energy at x:

p(x) =
E
t(x)

E
t
resid

: (3)

(Recall that sti is i's sensory state and NS is the number of possible sensory states.)

Environmental state uncertainty of the sites, H t
E;x, re
ects how uniformly the energy values

found at sites in the world are distributed over the possible energy levels:

H t
E ;x = �

NEX

l=0

p(l) log2 p(l); (4)

where p(l) is the probability that a randomly chosen world site x contains energy level l, and

NE is the maximal possible energy level at a site (in energy level units). That is, p(l) is the

proportion of sites that have level l:

p(l) =

P
x �(E

t(x)� l)

Nx

; (5)

where �(x) is the Dirac delta function, equal to one if x = 0 and zero otherwise.

The values of site uncertainty and environmental state uncertainty generally behave quite

di�erently. Note that if the environmental state uncertainty is zero, then the energy �eld is

uniformly distributed across all sites in the world, so the site uncertainty is maximal. In addi-

tion, note that if the environmental state uncertainty is maximal, then all possible energy levels

are uniformly distributed over world sites, so site uncertainty will be intermediate. Finally,

note that if the environmental uncertainty is zero, then all the world's energy is located at

one site, so the site uncertainty will be positive but nearly zero. Since site and environmental

uncertainty measure di�erent quantities, the pair provide a useful composite view of the uncer-

tainty associated with the environment. (Additional measures of uncertainty associated with

the environment could also be de�ned.)

3.3 Uncertainty Associated with the Sensory Apparatus

The agents experience sensory states produced by contact with their environment. The fre-

quency with which the environment generates di�erent sensory states in e�ect determines the

sensitivity, i.e., discriminatory capacity, of the agents' sensory mechanisms. The frequency of

sensory states can be measured with respect to either the subset of local environments that the

agents actually encounter or all local environments in the world, each of which yields a measure

of sensory sensitivity.

Sensory uncertainty of the agents, H t
s;i, re
ects how uniformly distributed are the sensory

states s detected by the agents i:

H t
s;i = �

NsX

s=1

pi(s) log2 pi(s); (6)
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where pi(s) is the probability that the sensory state that a randomly chosen agent i experienced

is s, measured as follows:

pi(s) =

P
i �(s

t
i � s)

N t
i

: (7)

(Recall that sti is i's sensory state and N t
i is the population level.)

The agents' sensory uncertainty is determined by three factors: the uncertainty of the world

the agents sense (discussed in section 3.2), the sensory mapping S� , and the possibility of sensory

noise (refer to section 2 for the latter two). Aside from possible sensory noise, the agent's sensory

uncertainty re
ects how much raw information about the environment the agents have detected.

Sensory uncertainty of the sites, H t
s;x, re
ects how uniformly the sensory states s are dis-

tributed over the world sites x, i.e., how much uncertainty there is about which sensory state s

an agent located at a random site x would experience:

H t
s;x = �

NsX

s=1

px(s) log2 px(s); (8)

where px(s) is the probability that the sensory state that an agent located at site x would sense

is s, measured thus:

px(s) =

P
x �(S�(x

t)� s)

Nx

: (9)

(Recall that S�(x
t) is the sensory state an agent located at site x at time t would experience.)

Sensory uncertainty of the sites indirectly measures the uncertainty of the environment,

speci�cally, the amount of raw information in the environment that could be discerned by the

agents given their sensory apparatus �. This quantity is sensitive to changes in �, of course.

3.4 The E�ects of Action on Perception

In selection is absent (i.e., P0 = 1), the agents actions will be randomly chosen from the

available set of possible actions (see section 2. In this case, aside from random sampling e�ects,

the agents' actions will place them in a subset of local environments that is representative of

those available in the world. Thus, the agents' sensory uncertainty will be approximately the

same as the sites' sensory uncertainty. This entails that the absence of selection prevents the

possibility of there being any signi�cant direct e�ect of action on perception, i.e., any e�ect on

perception due to action placing agents in a distinctive subset of available local environments.

Thus, an approximate measure of the magnitude of action's direct e�ect on perception, V t
D, is

the di�erence between the agents' and the sites' sensory uncertainties,

V t
D = jH t

s;i �H t
s;xj: (10)

V t
D re
ects the direct e�ect of action on perception to the extent that V t

D that is not due to

sampling e�ects. The value of V t
D without selection is a rough measure of the magnitude of the

di�erence due just to sampling.

Actions could have a signi�cant e�ect on the environment without having any indirect e�ect

on perception. Agents are able to detect only a fraction of the raw information that exists in

the environment, even that information created through their own a�ects on the environments.

Thus, there is no guarantee that agents can perceive their e�ects on the environment. However,

the sites' sensory uncertainty measures precisely the environmental information that they can

perceive. We have noted that changing the sensory mechanism � can change the sites' sensory
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Figure 1. Time averaged sensory uncertainty of the world sites, Hs;x = hHt

s;x
it, and of the

agents, Hs;i = hHt

s;i
it, as a function of �, with and without selection.

uncertainty. In fact, if we can assume that changing � does not change the no-selection agents'

e�ect on their environment, then the no-selection sites' sensory uncertainty is a measure of how

changing � changes the sites' sensory uncertainty. In this case, a rough measure of the indirect

e�ect of action on perception, V t
I , is the di�erence between the sites' sensory uncertainty with

and without selection:

V t
I = jH t

s;x(P0 = 0)�H t
s;x(P0 = 1)j: (11)

We are entitled to interpret V t
I as the indirect e�ect of action on perception only if we can assume

that changing the sensory mechanism does not change the kind of e�ect that no-selection agents

have on their environment.

4 The Experiment

I observed the quantities de�ned in section 3 in an extensive series of simulations of the

model. I used an especially simple form of sensory map, determined by just one sensory threshold

�. Previous studies of this model have shown that agents can achieve signi�cantly greater senso-

rimotor functionality at mutation rates in the range 10�4 < � < 10�3, and that at these muta-

tion rates population diversity displays complex dynamics [Bedau92d, Bedau93b, Bedau94a,

Bedau94c]. Endogenous determination of an individual's mutation rate also evolves towards

these same mutation rates [Bedau94b, Bedau94c]. Thus, in the simulations reported here the

mutation rate was set at � = 10�3. Each simulation consisted of 105 time steps. All parameters

in all simulations were the same except for the presence or absence of selection (P0 = 0 or

P0 = 1) and the setting of the sensory threshold �. (A full speci�cation of the parameters used
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Figure 2. Left: Time averaged residual energy, Eresid = hE t

resid
it as a function of �, with

and without selection. Right: Time averaged residual energy as a function of time averaged

sensory uncertainty of agents, Hs;i = hHt

s;i
it, with and without selection.

in the simulations is provided in Appendix A.)

The notable observations from these simulations are the following:

Maximal Sensory Discriminability. Figure 1 shows that sensory uncertainty of both agents

and sites strongly depends on the sensory threshold �. (The di�erences between selection

and no selection, and between agents and sites, will be discussed below.) Blind agents

(� = 0 or � = 256), extract no information from the environment and so always have

zero sensory uncertainty. When agents can make sensory discriminations, environmental

uncertainty generally monotonically decreases with �. The lower � is, the more sensory

discriminations agents can (Hs;x) and do (Hs;i) make; very high � make the agents almost

blind. Thus, in the present class of environments maximal sensory discriminability tends

to be provided by � settings that distinguish between the presence and absence of energy.

(This is believable, given that these environment consists of energy-free \deserts" sparsely

scattered with pyramidal energy heaps.)

Functionally Optimal Sensory Discriminability. Figure 2, left, shows that the presence

or absence of selection a�ect on sensorimotor couplings makes a signi�cant di�erence to

population performance. When sensorimotor couplings cannot adapt to their environment,

performance is 
at across the � spectrum (as could be expected) and, for given � values,

worse than when sensorimotor couplings do adapt (again, as could be expected). Although

the amount of sensory information extracted from the environment varies with � (�gure 1),

�gure 2, right, shows that this has no e�ect on performance in conditions of no selection.

On the other hand, when the presence of selection permits sensorimotor couplings to

undergo adaptive evolution, performance depends strongly on �, being optimized at low

values, approximately in the range 1 � � � 50. Comparison of �gure 2, left, with �gure 1

shows that, when selection is present, level of performance correlates extremely well with

both how much sensory information about the environment the agents do extract (the
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the environment under conditions of no selection.) Notice also that this e�ect is generally

much stronger around those � values that make the sites' sensory uncertainty much larger,

roughly 1 � � � 50. Action indirectly lowers the uncertainty of the environment to the

extent that the sensory discriminability allows sensorimotor functionality to be shaped by

adaptive evolution.

Action Directly A�ects Perception. When selection is absent, agents' and sites' sensory

uncertainty is roughly the same (there is a slight di�erence due to sampling e�ects in

the agents' sensory uncertainty). On the other hand, when selection is present sensory

uncertainty of the sites is signi�cantly lower than sensory uncertainty of the agents, so VD
is signi�cantly positive (�gure 4, right) over most of the � spectrum, especially those �

values at which performance is most enhanced (roughly, 1 � � � 50). Action is clearly

a�ecting perception directly, by putting agents into a detectably di�erent subset of the

local environments available in the world. Furthermore, the strength of this e�ect depends

on �, being maximized when the sensory discriminability is greatest, roughly, roughly

1 � � � 50. Thus, action directly lowers the uncertainty of the environment to the extent

that sensorimotor functionality is subject to adaptive evolution.

5 Conclusion

I have presented very general methods for objectively measuring the direct and indirect e�ects

of action on perception and their connection with sensorimotor functionality. Both the direct

and indirect e�ects can be observed in the very simple model explored here. Their existence and

strength depends on the discriminability of the sensory mechanism, and thus is correlated with

the degree to which adaptive evolution can shape sensorimotor functionality. The robustness

of these e�ects in this very simple model suggests that they are very general and fundamental

processes.

Future work will will extend the present project in various respects. First, I am studying the

correlations among the uncertainty measures de�ned here and the other macroscopic quanti-

ties I have examined in other work [Bedau91, Bedau92d, Bedau93b, Bedau94a, Bedau94b,

Bedau94d, Bedau94c]. Second, I am letting � evolve, and thus adding the possibility for a new

kind of sensorimotor functionality. Like the adaptive evolution of mutation rates [Bedau94b],

this constitutes a simple form of the evolution of evolvability|the second-order adaptation of

the mechanisms that govern the �rst-order adaptation of strategy elements. Preliminary results

show that � evolves toward those values that yield optimal functionality. Third, I am study-

ing how to measure the amount of useful information that is extracted from the environment.

The sensory uncertainties de�ned here measure the extraction only of \raw" information. Sen-

sorimotor functionality might well be set in signi�cantly sharper relief when re
ected by the

capacity of sensory mechanism to extract useful information from the environment.
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A Parameter Values for the Simulations

The world has 128 sites on a side and periodic boundary conditions. � produces a pyramidal

energy pile; �(�) has a peak of 255 at � and falls linearly to 0 at a distance of 8 sites from �,

where �t is chosen at random from the world sites. Sensory information is received from the

current site and its four nearest neighbors, with each site yielding one bit of information, so

NS = 32. ~b is a displacement from zero to �fteen steps in one of the eight compass directions,

so NB = 128. �(E(x)) is a function returning all of E(x) up to a threshold Em = 100, � = 20,

and 
(~b) is a function returning the magnitude of ~b. Er = 500.
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