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Abstract

The Santa Fe Arti�cial Stock Market [13, 4] is an agent-based arti�-

cial model in which agents continually explore and develop expectational

models, buy and sell assets based on the predictions of those models that

perform best, and con�rm or discard these models based on their perfor-

mance over time. The purpose of this paper is to classify the di�erent

types of behavior that emerge in the market as a function of evolutionary

learning rate, and to explain these emergent behaviors. We observe four

di�erent types of behavior, which are distinguished by their e�ects on the

volatility of prices, the complexity of strategies, and the wealth earned

by agents over time. We also show that the di�erences between these

behaviors may be attributed to variations in the rate at which agents re-

vise their trading rules and the subsequent types of rules|technical or

fundamental|that emerge in the market.

1 Introduction

Financial markets are complex. Their booms and crashes [15, 16, 17], distinct

moods [1], and non-linearities [14, 8, 9] all blunt the analytical tools of traditional

economic theory. Reexamination of �nancial market behavior with the new

techniques of agent-based economic modeling is now suggesting that this type

of complexity may be an intrinsic property of such systems [13, 4, 10, 7].

�Current address: Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe NM 87501
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The Santa Fe Arti�cial Stock Market, developed by Brian Arthur, John Hol-

land, Blake LeBaron, Richard Palmer, and Paul Taylor at the Santa Fe Institute,

provides a compelling example of how simple endogenous forces can cause com-

plex market behavior. Arthur et al. [13, 4] showed that varying the rate at

which individual agents learn new investment strategies reveals two di�erent

kinds of overall market behavior. If investment strategies evolve slowly, the

market showed behavior generally consistent with the prediction of traditional

economic theory. But if the strategies were allowed to evolve more quickly,

the market showed the kind of instabilities and statistical properties typically

observed in real-world markets. Their work suggests that the cause of the com-

plex behavior of �nancial markets may involve the rate at which investment

strategies evolve.

This paper follows up on the work of Arthur et al. by taking a closer look

at the kinds of behavior exhibited by the Santa Fe Stock Market model. We

systematically study how the market's behavior depends on the rate of evo-

lutionary learning, classify the various behaviors that emerge, and attempt to

explain these behaviors. The main novelty of the present study is the light shed

on market behavior by the historical patterns in the activation of investment

strategies.

2 The Santa Fe Arti�cial Stock Market

The arti�cial stock market we study here was developed by Brian Arthur, John

Holland, Blake LeBaron, Richard Palmer, and Paul Taylor [13, 4]. The market

consists of a population of heterogeneous agents that buy, sell, and hold stocks

and bonds. An agent's buy, sell, and hold decisions are made on the basis of that

agent's beliefs about whether the stock's dividend is likely to go up or down,

and those beliefs are determined by a set of market forecasting rules that are

continually being assessed as to accuracy. Over time an agent's set of market

forecasting rules evolve under the action of a genetic algorithm.

The following sections provide a brief introduction to the Santa Fe Arti�cial

Stock Market model. More detailed descriptions are available elsewhere [13, 4].

When mentioning some of the model parameters below, we indicate the speci�c

parameter values we used in the work reported here with typewriter font inside

brackets [like this].

2.1 The Market

The market contains a �xed number N [25] of agents that are each initially

endowed with a certain sum of money (in arbitrary units) [1000]. Time is

discrete. Each time period each agent must decide whether to invest her money

in a risky stock or in a risk-free asset analogous to a real world Treasury Bill.

The risk-free asset is in in�nite supply and pays a constant interest rate r [10%].

The risky stock, issued in N shares, pays a stochastic dividend that varies over
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time. The stock's dividend stream is an exogenous stochastic process whose

present value is unknown to the agents.

Agents apply their market forecasting rules to their knowledge of the stock's

price and dividend history to perform a risk aversion calculation and decide how

to invest their money at each time period. The price of the stock rises if the

demand for it exceeds the supply, and falls if the supply exceeds the demand.

Each agent in the market can submit either a bid to buy shares, or an o�er

to sell shares|both at the current price pt|or neither. Bids and o�ers need

not be integers; the stock is perfectly divisible. The aggregate demand for the

stock cannot exceed the number of shares in the market. The agents submit

their decisions and o�ers to the market specialist|an extra agent in the market

who controls the price so that his inventory stays within certain bounds. The

specialist announces an initial trial price, collects bids and o�ers from agents at

that price, from these data announces a new trial price, and repeats this process

until demand and supply are equated. The market clearing price serves as the

next period's market price.

2.2 Agents and Market Forecasting Rules

Agents possess a constant absolute risk-aversion utility function of the form

U(c) = �exp(��c), where � [0.5] measures the extent of risk aversion and

0 < � � 1000. At each time period each agent determines the number of shares

and risk-free bonds that maximizes her utility of consumption. The outcome

of this decision depends on the agent's estimate of the pro�tability of the stock

and bond.

The agents make their investment decisions by using a set of hypotheses or

rules about how to forecast the market's behavior. At each time period, each

agent considers a �xed number [100] of forecasting rules. The rules determine

the values of the variables a and b which are used to make a linear forecast of

next period's price:

E(pt+1 + dt+1) = a(pt + dt) + b

where pt is the trial price and a and b are the forecasting parameters. The

forecasting rules have the following form:

if (the market meets condition Di) then (a = kj ; b = kl)

where Di is a description of the state of the market and kj and kl are constants.

Market descriptors (Di) match certain states of the market by an analysis

of the price and dividend history. The descriptors have the form of a boolean

function of some number [12] of market conditions. The set of market conditions

in each rule is represented as an array of bits in which 1 signals the presence

of a certain condition, 0 indicates its absence, and # indicates \don't care".

The breadth and generality of the market states that a rule will recognize is

proportional to the number of # symbols in its market descriptor; rules with

descriptors with more 0s and 1s recognize more narrow and speci�c market
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states. As these strings are modi�ed by the GA, the number of 0s and 1s

might go up, allowing them to respond to more speci�c market conditions. An

appropriate re
ection of the complexity of the population of forecasting rules

possessed by all the agents is the number of speci�c market states that the rules

can distinguish, and this is measured by the number of bits that are set in the

rules' market descriptors.

There are two di�erent kinds of market conditions: those pertaining to trends

in the stock price, which are recognized by technical trading bits, and those per-

taining to the relationship between the stock's price and its fundamental value,

which are recognized by fundamental trading bits. So, there are two (overlap-

ping) kinds of rules, depending on whether their descriptors have technical or

fundamental bits set. Technical trading rules are activated when the current

state of the market meets some condition pertaining to a price trend (e.g., the

condition that the current stock price exceeds the average price over the past

�fty time periods). Fundamental trading rules are activated when the current

state of the market meets a condition pertaining to the relation between the

stock's price and fundamental value (e.g., the condition that the the current

stock price times the interest rate divided by the most recent stock dividend

exceeds 0.75). This method of modeling expectation formation makes it is pos-

sible to track exactly which descriptor bits (technical or fundamental) are being

used by agents in the model, and this allows us to study the conditions under

which technical trading emerges in the market.

An example may help clarify the structure of market forecasting rules. Sup-

pose that there is a twelve bit market descriptor, the �rst bit of which corre-

sponds to the market condition in which the price has gone up over the last

�fty periods, and the second bit of which corresponds to the market condition

in which the price was 75% higher than its fundamental value. Then the de-

scriptor 10########### matches any market state in which the stock price has

gone up for the past �fty periods and the stock price is not 75% higher than its

fundamental value. The full decision rule

if 10########## then (a = 0:96; b = 0)

can be interpreted as \If the stock's price has risen for the past �fty periods and

is now not 75% higher than its fundamental value, then the (price + dividend)

forecast for the next period is 96% of the current period's price."

If the market state in a given period matches the descriptor of a forecasting

rule, the rule is said to be activated. A number of an agent's forecasting rules

may be activated at a given time, thus giving the agent many possible forecasts

to choose from among. The agent decides which of the active forecasts to use

by measuring each rule's accuracy and then choosing at random from among

the active forecasts with a probability proportional to accuracy. Once the agent

has chosen a speci�c rule to use, the rule's a and b values determine the agent's

investment decision.
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2.3 The Genetic Algorithm

A genetic algorithm (GA) provides for the evolution of the population of fore-

casting rules over time. Whenever the GA is invoked, it substitutes new fore-

casting rules for a certain fraction [5%] of the least �t forecasting rules in each

agent's pool of rules. A rule's �tness is determined by both how well it has

performed and by how complex it is (the GA has a bias against complex rules).

Applying the genetic operators of mutation, crossover, and inversion to the most

successful rules in the agent's rule pool creates the new rules, with more accu-

rate rules producing more o�spring. New rules are assigned an initial accuracy

by averaging the accuracy of their parent rules.

The only market parameter that we varied in the results described below

is the waiting time between invocations of the GA. We term this waiting time

between GA invocations the GA interval. So, if the GA is invoked every time

period, GA interval is 0; if the GA is invoked every 1000 time periods, GA

interval is 1000; if the GA is never invoked, GA interval is 300000 (this was the

total length of the simulation).

The model contains another mechanism for changing an agent's rules. If

some agent's rule is not activated (thus not considered for use) by an agent for

a signi�cant number of time periods [1000], then one of the bits in the rule that

is set is changed to a # so that it matches a broader set of market states. This

makes it more likely to be activated and used by agents in the market.

3 Experimental Methods

We systematically studied how the behavior of the market depends on a key

model parameter identi�ed in earlier work|the interval between successive in-

vocations of the genetic algorithm (GA), which we will term the \GA interval."

Previous experiments with GA interval [13, 4, 12] simultaneously varied the

probability of crossover and the accuracy updating parameter.1 Here, we �x

the crossover probability at 0.3 and the accuracy updating parameter at .01.

All simulations were run for 300; 000 time periods in order to make the results

independent of the initial random assignment of forecasting rules and to allow

the asymptotic properties to emerge. We collected statistics on stock prices,

stock trading volumes, accumulated wealth of agents, and number of bits set

(technical and fundamental) in forecasting rules.

In order to explain the behavior we observed, we also collected data on the

activation histories of various rules during a simulation. The activation history

at time period t is the number of times a particular rule has been activated until

time period t (summed over time). If a hypothesis is activated but not used, in

one way or another it will eventually be removed by the genetic algorithm. So

a rule's activation history us a rough indication of the number of times it has

actually been used by an agent in the market.

1Unpublished results involving variation in GA interval alone have been mentioned in a
footnote in [4].
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4 Results

We observed four distinct types of behavior in the model, corresponding to four

kinds of evolutionary learning. Two have been previously noted [13, 4]; the other

two are boundary conditions. The di�erences between the four kinds of behavior

can be seen in the volatility of prices, the wealth earned by agents (Figure 1),

the total number of bits that are set in the forecasting rules, the relative number

of technical and fundamental bits set (Figure 2), and the activation histories of

the rules used by agents (Figures 3 and 4). Other di�erences (not shown here)

can be seen in the mean prices, the trading volumes, and the deviations of the

stock price from its fundamental value. The four classes of behavior can be

summarized as follows, starting with the two boundary conditions:

Class I: No evolution so no rule switching. When the GA is never in-

voked (GA interval is the length of the simulation, i.e. 300; 000 time

periods), the agents have no choice but to stick with the pool of hypothe-

ses with which they were initially endowed. The main characteristics of

this regime are low volatility of prices, low accumulated wealth, and sim-

ilar levels of fundamental and technical trading.

Class II: Too fast evolution prevents rule switching. When the GA is

invoked at every time period (GA interval is 0), the prices are very stable,

the complexity of strategies is very low, there is no signi�cant di�erence

between technical and fundamental trading, and wealth earned is high.

Class III: Slow evolution enables only slow rule switching. When the

GA interval is moderately low (1000 � interval � 10000), price volatility

is moderately low, the complexity of forecasting rules is low, wealth earned

is high, and technical trading is low. In previous work the model authors

noted that this class of behavior is consistent with the predictions of the

theory of Rational Expectations and the e�cient markets hypothesis is

�nance, so they called this the Rational Expectations (RE) regime [13, 4].

Class IV: Fast evolution encourages frequent rule switching. When

the GA interval is moderately high (100 < interval � 1000), prices are

volatile, the complexity of strategies is very high, wealth earned is low,

and there is signi�cant technical trading. The model authors observed

that prices in this class of behavior deviate signi�cantly from their funda-

mental values, bubbles and crashes occur frequently and the market shows

statistical properties similar to real world stock markets [13, 4] They called

class IV the Complex Regime.

Classes I and II are very similar but we classify them separately because their

behavior has signi�cantly di�erent causes. In Class II the GA is invoked at each

time step and so the pool of decision rules is constantly changing, whereas in

Class I the GA is never invoked and the pool of rules undergoes no changes

at all. The behavior seen in Class II arises from a market that appears to be

somewhat chaotic, even though it resembles a regime that is the exact opposite.
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Figure 2: Number of bits in each agent's pool of trading strategies that are set

to non-null values (a measure of strategy complexity) as a function of the GA

interval. A line showing the average number of bits set at each GA interval

overlays a scatter plot of data from all the simulations. Above: all bits are

graphed together. Below: technical trading bits (open triangles) and funda-

mental trading bits (open dots) are graphed separately. The number of bits set

is normalized (i.e., divided) by the total number of bits available. The number

of bits set at very large GA intervals simply re
ects the number of bits set in

the initial population of strategies; the GA cannot change the strategy bits if

it virtually never runs. When the GA interval does signi�cantly change the

complexity the strategies, large interval GA lowers it, small interval GA raises

it, and very small GA interval lowers it.
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It is important to note that the classes described above are separated by

periods of transition. At GA interval of 5 for example, the market shows char-

acteristics of Class II and Class III behavior. The time series data of stock

prices, wealth, technical and fundamental trading and the complexity of strate-

gies appear to belong to class III, and the underlying behavior resembles both

Class II and Class III(Figure 4).2. An interesting topic future research is to

investigate the exact nature of the transition between these classes.

5 Discussion

The four di�erent classes of behavior described above may be attributed to the

e�ects of GA invocation rates on agent's evolutionary's learning. Evolutionary

learning a�ects the rate at which the agents switch between trading strategies.

At the boundary conditions (GA interval 0 and GA interval 300,000) evolution-

ary learning is virtually nonexistent and so there is no signi�cant evolution of

trading strategies. Since the agents' trading strategies are relatively stable, so

is the price series in the market. By contrast, when the GA interval is moder-

ately low or moderately high, evolutionary learning is signi�cant and this leads

the agents' trading strategies to evolve, and this in turn makes the market less

stable.

The speed at which agents switch strategies also a�ects the type of rules

that they use: technical trading is signi�cantly higher when the GA interval

is moderately small. One explanation of this e�ect, developed below, depends

on the connection between the \breathing time" a new rule enjoys before being

scrutinized by the GA. Arthur et al. provide an additional explanation of this

e�ect [4]: When GA interval is small, the agents switch rules often enough that

it becomes likely for similar technical trading rules to be used by other agents

in the population. Technical trading rules, when used by enough agents, can

become self-ful�lling prophesies|if enough people believe the stock price is due

to increase and buy the stock as a result, their demand for the stock will drive

up the price|thus leading to market bubbles and crashes. Market volatility is

roughly proportional to the presence of technical trading, so the regimes with

less technical trading are signi�cantly more stable.

In class I with GA interval at or near 300; 000, the same pool of market fore-

casts available to the agents virtually never changes. The number of technical

and fundamental bits set in the population of forecasting rules (Figure 2) re
ects

the complexity of the rules randomly assigned at the start of the simulation. In

addition, as Figure 3 (top) shows, the rate at which di�erent forecasting rules

are activated by the market states is quite constant over time, and presumably

the rules the agents actually use is similarly constant. In fact, fully a quarter

of all of the available rules are activated virtually every time period, and thus

2The activation history graph (Figure 4)shows that that the set of strategies used by agents

is quite stable over time. This makes it similar to Class II. But unlike class I, some other

strategies are also used (though not as frequently as the set of stable strategies). This makes

it resemble Class III
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contribute to the slope 1 line in the Figure. The agents' behavior becomes quite

stable and predictable, which makes the market stable and predictable in turn,

as Figure 1 (top) shows. (We are unsure why average �nal wealth in this regime

varies as observed in the bottom of Figure 1.)

In class II with GA interval at or near 1, the GA's continual operation

causes continual 
ux in the population of rules available to the agents. Yet, as

Figure 3 (bottom) shows, virtually always the same subset of forecasting rules

is activated. Furthermore, close to 95% of the available rules contribute to the

slope 1 line representing these continually activated rules. The rules the agents

actually use are chosen from these continually reactivated rules, of course, so

Figure 3 (top) shows that the agents' trading strategies are stable over time.

Thus, although there is a continual 
ux in the population of rules, the subset

of rules actually used virtually never changes. The same subset (5%) of rules

is continually replaced by the GA. Thus in class II the genetic algorithm only

generates useless hypotheses so the rules being used never changes. As in class

I, this stability of forecasting strategies makes the market relatively stable and

predictable, as Figure 1 (top) shows. Figure 2 shows that class II evolution

produces simpler strategies. This is probably due to the built-in cost of set bits,

i.e., the evolutionary bias toward simpler strategies. If evolution cannot build

useful strategies, as class II evolution evidently cannot, then simpler strategies

should prevail. (We are unsure how to explain the variation in average �nal

wealth seen in the bottom of Figure 1.)

Class III behavior appears when the GA interval is moderately large, roughly

1000 � interval � 10000. The GA is invoked frequently enough for evolutionary

learning to signi�cantly improve the agents' strategies, unlike in the bound-

ary conditions which cannot support evolutionary learning. The accumulated

wealth in Figure 1 (bottom) shows the value of the strategies that evolutionary

learning can produce. Only 4% of the rules are continuously activated|they

are the rules that contribute to the slope 1 line in Figure 3 (bottom)|so the

rules the agents actually use continue to evolve over the course of the simula-

tion. The agents switch their investment strategies, but only relatively slowly.

At the same time, the waiting time between GA invocations is long enough that

newly generated rules have a relatively long time to prove their worth before

they face selection pressure from the GA. This means that evolutionary learning

has an opportunity to discover those forecasting rules that are successful only

in the long run (technical trading rules that identify very long-term trends or

fundamental trading rules that do well only over the long haul). To the extent

that agents are using rules that are successful only over the long haul, their rule

use will tend to be fairly stable over time. This explanation would predict the

kind of rough correlation between GA interval and price stream variance visible

in the class III portion of Figure 1 (top), and the agents' risk aversion explains

class III's inverse correlation between price stream variance and average �nal

wealth (Figure 1). Evidently, these rules that focus on the long-term are not

especially complex, so the GA bias toward simpler rules probably explains the

relatively low complexity of class III rules (Figure 2).

Class IV behavior happens when the GA interval is moderately small, roughly
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�1000 � interval � 100. Figure 1 (bottom) shows that agents are able to accu-

mulate some signi�cant wealth, so the GA interval is not so low that it disables

evolutionary learning. Yet the waiting time between GA invocations is short

enough that rules must prove their worth relatively quickly to avoid succumbing

to the GA. This sort of evolutionary learning favors rules that perform well in

the short run. As with class III, only 4% of the rules are continuously acti-

vated; Figure 4 (top) shows that the subset of rules that the agents actually is

continually evolving. Agents are switching their investment strategies relatively

quickly. This instability in investment strategies used causes instability in the

stock price (Figure 1 top), and the market becomes less predictable than in

any other regime. Given the agents' risk aversion, this market instability drives

the price down (Figure 1 bottom), Figure 2 shows not only that the rules pro-

duced in class IV are relatively complex and use more trading bits than those

in any other class; the complexity of the quickly evolving trading strategies pro-

vides enough value to outweigh the GA's built-in bias toward simple rules. In

class IV, and only in class IV, evolutionary learning supports the emergence

of signi�cantly complex strategies, and complex technical trading strategies in

particular.

6 Summary and Conclusion

Varying the interval of the GA in the Santa Fe Stock market results in the

appearance of four distinct kinds of market behavior. These correspond to four

di�erent rates of evolutionary learning. Evolutionary learning controls the rate

at which agents switch between di�erent rules in the population of rules. It also

a�ects the types of di�erent strategies (technical or fundamental) that evolve

over time. Di�erences between rates of switching between rules and the types

of rules that evolve in these classes lead to di�erences in the volatility of prices,

wealth earned by agents, the complexity of strategies, the types of strategies

that evolve in the market over time and the activation history of rules.

At low GA intervals, the frequent switching between strategies as well as

the signi�cant usage of technical trading rules results in high price volatility,

increases in the complexity of strategies and lower overall wealth. At longer GA

intervals, the infrequent switching between rules as well as the lower usage of

technical trading rules results in lower price volatility, the usage of strategies

of lower complexity and higher overall wealth. At the boundary conditions the

usage of the same pool of rules over time leads to very low volatility and almost

equal usage of technical and fundamental rules.

In conclusion, this paper has classi�ed the various types of behavior in the

Santa Fe Stock market and provided an explanation for the di�erences between

observed behaviors. Given the resemblance of Class IV behavior to real world

�nancial markets [4, 12], we hope that our results are also a step toward ex-

plaining the complexity of real world �nancial markets. Current and future

work in this area includes quantifying evolutionary activity in this model using

neutral models and evolutionary activity statistics [5, 6], and also studying the
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emergence of technical trading in �nancial markets[11].
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