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Abstract

We introduce and study a simple generic
model of neutral evolution of genotypes, de-
signed to provide a feasible and general
method for quantifying excess evolutionary
activity—the extent to which evolutionary
activity is the product of adaptive evolu-
tion. We compare the behavior of the generic
neutral model against two other models:
Packard’s agent-based model of the evolution
of sensory-motor functionality and a neutral
“shadow” of Packard’s model. Diversity and
evolutionary activity of these three models
across the mutation rate spectrum illustrate
the feasibility and general applicability of the
generic neutral model, confirm the appropri-
ateness of using neutral models to quantify
the extent of the continual adaptive success of
genotypes, and reveal power-law dependences
of evolutionary activity on mutation rate.

1 The Need for Neutral Models

Although it is commonly accepted that adaptive evo-
lution produces much of the structure and function-
ality in complex systems [6, 4], it is often difficult to
distinguish adaptive change from other evolutionary
phenomena such as random genetic drift [3]. Some
even question whether adaptations can be objectively
identified at all [3]. The ultimate goal of this paper
is to facilitate the investigation of universal laws of
adaptive evolution. Toward this end, this paper aims
to develop statistics for objectively identifying and
quantifying adaptive evolutionary activity, especially
statistics feasible and general enough to apply to a
broad enough range of natural and artificial evolution-
ary systems. This paper illustrates evolutionary activ-
ity statistics in the context of a simple artificial model
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of sensory-motor evolution—Packard’s Bugs model—
and we apply the method to a broadly applicable level
of analysis—whole genotypes. In this setting we do
find simple law-like regularities involving adaptive evo-
lution. Part of what makes this especially interesting
is that evolutionary activity statistics apply to myriad
evolutionary systems at myriad levels of analysis, so
we can investigate whether the same regulatities hold
in evolving systems in general.

We use the approach of Bedau and Packard [1, 2] to
identify the extent to which a system’s evolutionary
dynamics depend on adaptation rather than other evo-
lutionary forces like chance and necessity. That is, we
screen off the effect of non-adaptive evolutionary forces
by comparing the evolutionary dynamics observed in
target evolutionary systems with those observed in
analogous evolutionary systems in which adaptive evo-
lution cannot happen. We term these non-adaptive
evolutionary data filters “neutral models” of evolution.
Filtering observed data with a neutral model yields a
measure of excess evolutionary activity—that activity
due to adaptation. In effect, neutral models are null
hypotheses against which the action of adaptive evo-
lution stands out in relief.

One method for making neutral models is to craft a
system that “shadows” the target evolutionary system
in all relevant respects except that a shadow genotype’s
presence or concentration or longevity cannot be due
to the genotype’s adaptive significance [2]. Since such
“neutral shadows” are specifically tailored to the tar-
get system of interest, they create sharp no-adaptation
null hypotheses. But because they are tailor-made for
specific target systems, studying new target systems
requires constructing new shadow models, and it is
vexing to compare models that shadow different tar-
get systems.

An obvious way to address these problems is to create a
simple generic neutral model—one neutral model that



reasonably approximates a host of different shadow
models. The immediate goal of the present paper is to
define and study such a generic neutral model. There
are a series of steps involved in proving the value of
this generic model, such as comparing it with many
different shadow models, discerning how its behavior
depends on crucial model parameters, exploring how
adaptation alters its behavior, and connecting it with
related theoretical and empirical work. The present
paper takes the first step in this process by comparing
the generic neutral model with a simple evolutionary
system and its neutral shadow.

2 Evolutionary Activity Statistics

Evolutionary activity statistics are computed from
data obtained by observing an evolving system. We
view an evolving system as a population of compo-
nents participating in a cycle of birth, life and death,
with each component largely determined by inherited
traits. Birth and mutation introduce innovations into
the population. Adaptive innovations persist in the
population because of their beneficial effects for com-
ponent survival or reproduction, and non-adaptive in-
novations either disappear or persist passively.

The idea behind evolutionary activity is to identify in-
novations that persist and continue to be significant.
Counters are attached to components for bookkeeping
purposes, to update each component’s current activ-
ity as the component persists. If the components are
passed along during reproduction, the corresponding
counters are inherited with the components, maintain-
ing an increasing count for an entire lineage. Previous
work has studied components on the level of individual
alleles [1] as well as genotypes [2] and taxonomic fam-
ilies [2]. For simplicity, here we restrict our attention
to entire genotypes.

To measure activity contributions we attach a counter
to each component of the system, a;(t), where ¢ labels
the component and ¢ labels time. A component’s activ-
ity increases over time as follows, a;(t) = >, Ai(k),
where A;(k) is the activity increment for component
i at time k. Various activity incrementation functions
A;(t) can be used, depending on the nature of the
components and the purposes at hand. Since in the
present context more adaptive genotypes tend to per-
sist longer, it’s natural to measure a component’s con-
tribution to the system’s evolutionary activity simply
by its age. So we choose an activity incrementation
function that increases a component’s activity counter

by one unit for each time step that it exists:

(1)

_ | 1 if component ¢ exists at ¢
Ailt) = { 0 otherwise

Though there are ways to refine this simple counting
method [1, 2], this version facilitates direct comparison
with many other systems.

Now, we can define various statistics based on the com-
ponents in a system and their activity counters. There
are various ways to quantify diversity and evolution-
ary activity (e.g., [1, 2]). Here we choose statistics that
make it easy to compare diversity and evolutionary ac-
tivity across a wide variety of evolving systems.

Perhaps the simplest statistic is the system’s diversity,
D(t), which is the number of components present at
time ¢,

D(t) = #{i: ai(t) > 0} , (2)

where #{-} denotes set cardinality. A measure of the
continual adaptive success of the components in the
system at a given time is provided by the total cumu-
lative evolutionary activity, A(t), which simply sums
the evolutionary activity of all the components at a
given time:

A(t) = Zai(t) : (3)

Then, the cumulative activity per component, or mean
cumulative evolutionary activity, A(t), is simply the
cumulative evolutionary activity A(t) divided by the

diversity D(¢):

A = pr - @

In this paper we usually refer to mean cumulative evo-
lutionary activity simply as “mean activity” or, even
more simply, as “activity.”

Activity statistics most clearly reflect a system’s adap-
tive evolutionary dynamics after they have been nor-
malized by a “neutral” model [2], to screen off the con-
tribution of non-adaptive or maladaptive genotypes.
This normalization can be accomplished in various
ways. Here, we measure typical evolutionary activ-
ity in a neutral model and then divide the difference
between activity observed in the evolving system and
activity in the neutral model by neutral model activity.
We call this divergence between observed and neutral
activity, expressed as a fraction of neutral activity, a
system’s excess activity:

A _ Aobserved — Aneutral
excess — A . (5)
neutral



So, for example, if observed activity is ten times higher
than neutral activity, then Aeyccess = 9; also, excess ac-
tivity of any neutral model is nil. Excess mean cumu-
lative activity is our measure of the amount of the per-
sistence of extant genotypes that can be attributed to
the adaptive success of those genotypes. It should be
noted that excess activity does not measure how well
components are adapted to the environment. There is
no particular correlation between excess activity and
fitness. If excess activity becomes significantly higher,
that does not mean that the components in the sys-
tem have become significantly better adapted; rather,
it means that there has been a significant increase in
the history or activity (here, persistence) of compo-
nents that is due to their adaptive value.

It should be emphasized that mean evolutionary ac-
tivity is an extensive rather than intensive measure.
That is, it measures the extent of the continual adap-
tive success of the components in a system, rather than
the intensity with which new adaptive components are
being created. Thus, if a set of adaptive components
continue to persist, the extent of their continual adap-
tive success increases over time, even if the intensity
with which new adaptations are being created falls to
nil. On the other hand, if evolution is continually cre-
ating new adaptations and destroying older adaptive
components, the intensity of adaptive evolution will
be positive; but the extent of the continual adaptive
success in the system will be very low if none of those
adaptations persist for very long. (Component activ-
ity counters can also yield measures of the intensity of
adaptive evolution [1, 2].)

3 Packard’s Line Model

Packard’s Bugs simulation is a series of models origi-
nated by Norman Packard [7, 1]. Packard’s simulation
is designed to be a very simple model of the evolu-
tion of sensory-motor strategies. It consists of agents
sensing the resources in their local environment, mov-
ing as a function of what they sense, ingesting the
resources they find, and reproducing or dying as a
function of their internal resource levels. The mod-
el’s spatial structure is a grid of sites with periodic
boundary conditions, i.e., a toroidal lattice. The ver-
sion of Packard’s model that we study here has an
especially simple resource distribution: a thin con-
tinuous strip, one cell in width, that wraps entirely
around the world, with all the other sites in the world
entirely devoid of resources. We call this the “Line”
model. Resources are immediately replenished at a site
whenever they are consumed. The agents constantly
extract resources and expend them by living and re-

producing. Agents ingest all of the resources (if any)
found at their current location and store them inter-
nally. Agents expend resources at each time step by
“paying” (constant) “existence taxes” and “movement
taxes” (variable, proportional to distance moved). If
an agent’s internal resource supply drops to zero, it
dies and disappears from the world.

Each agent moves each time step as dictated by its
genetically encoded sensory-motor map: a table of
behavior rules of the form IF (environment j sensed)
THEN (do behavior k). An agent receives sensory infor-
mation about the resources (but not the other agents)
in the von Neumann neighborhood of five sites cen-
tered on its present location in the lattice. There
are exactly 4 detectable local environments: those de-
tected by agents either on the resource strip, imme-
diately to the strip’s left or right, or anywhere else.
Each behavior k is a jump vector between one and fif-
teen sites in any one of the eight compass directions.
Thus, an agent’s genotype, i.e., its sensory-motor map,
is just a lookup table of sensory-motor rules. But the
space in which adaptation occurs is fairly large, con-
sisting of 120* ~ 10® distinct possible genotypes.

An agent reproduces (asexually, without recombina-
tion) if its resource reservoir exceeds a certain thresh-
old. The parent produces one child, which starts life
with half of its parent’s resource supply. The child in-
herits its parent’s sensory-motor map, except that mu-
tations may replace the behaviors linked to some sen-
sory states with randomly chosen behaviors. A time
step in the simulation cycles through the entire popu-
lation and has each agent, in turn, complete the follow-
ing sequence of events: sense its present von Neumann
neighborhood, move to the new location dictated by
its sensory-motor map unless that site is already occu-
pied, in which case randomly walk to the first unoccu-
pied site, consume any resources found at its new lo-
cation, expend resources to cover existence and move-
ment taxes, and then, if its resource reservoir is high
enough or empty, either reproduce or die.

A given simulation starts with randomly distributed
agents containing randomly chosen sensory-motor
strategies. The model contains no a priori fitness
function, as Packard [7] has emphasized. Agents with
maladaptive strategies tend to find few resources and
thus to die, taking their sensory-motor genes with
them; by contrast, agents with adaptive strategies
tend to find sufficient resources to reproduce, spread-
ing their sensory-motor strategies (with some muta-
tions) through the population. The main adaptations
that occur in the Line model are learning how to stay
on the resource strip and learning to do so in step with



the other bugs on the strip (i.e., precisely meshing with
the “flock” of other bugs on the line). Another, sec-
ondary adaptation is optimizing the jump size on the
strip (smaller jumps are better). Furthermore, there
is a slight adaptive advantage to learning how to get
back on the strip when immediately adjacent to it.

4 A Neutral Shadow

The crucial property of a “neutral shadow” of a model
with implicit genotype dynamics like Packard’s mod-
els is that shadow system’s evolutionary dynamics are
like the normal model except that a shadow genotype’s
presence or concentration or longevity cannot be due
to its adaptive significance—for it has no adaptive sig-
nificance. The shadow model of a Packard Line model
consists of a population of only nominal “bugs” with
only nominal “genotypes.” A shadow “bug” has no
spatial location and it cannot ingest resources or in-
teract with other “bugs.” All it ever does is come into
existence, perhaps reproduce (perhaps many times),
and go out of existence; its only properties are its geno-
type and the times of its birth, reproductions (if any),
and death.

Each model run has its own corresponding neutral
shadow run. The neutral shadow’s birth and death
events and mutation rate are directly copied from
those in the Line simulation. When some creature is
born in the Line simulation a shadow parent is chosen
at random (with equal probability) from the shadow
population to reproduce. The new shadow child in-
herits its parent’s genotype unless a mutation gives
the child a new genotype. When some creature dies
in the Line simulation a “creature” is chosen at ran-
dom from the shadow population and killed. Thus, all
selection in the neutral shadow is random.

The evolutionary dynamics in a neutral shadow is a
neutral diffusion in genotype space. Genotypes arise
and go extinct, and their concentrations change over
time, but the genotype dynamics are at best weakly
linked to adaptation through the birth and death rates
determined by adaptation in the Line model. When
adaptive genotypes are evolving in a Line simulation,
one would expect their genotype activity levels to be
significantly higher than those in the corresponding
neutral shadows. For, although individuals in the Line
model and its neutral shadow have the same birth, re-
production, and death rates (indeed, all model param-
eters are identical), in the Line model natural selec-
tion can preferentially cull poorly adapted genotypes
and preserve well adapted genotypes while the selec-
tive force in the neutral shadow is entirely random.
The difference between the activity levels in the Line

model and its neutral shadow shows how much natural
selection affects the activity counts in the Line model.

5 A Generic Neutral Model

The generic model of neutral genotype evolution con-
sists of a population of individuals that reproduce and
die in a fixed genotype space. The genotype space
consists of some number of loci at each of which some
number of alleles are segregating. Parameters that
need to be specified in the generic neutral model are
N, the size of the population of individuals, r, the re-
production rate (the number of individuals that die
and reproduce per time step), I, the number of loci,
a, the number of possible alleles per locus, m;, the
probability that the allele at a given locus will be mu-
tated when an individual is born. (The probability
that an offspring will have a mutation somewhere in
its genome, i.e., the mutation rate per individual, is
m; = 1 — (1 —my)".) The parameters remain fixed
during any given instance of the model, and together
they determine the model’s behavior. The genotype
space is a hypercube of dimension [ and size a! (num-
ber of possible genotypes), with each location in this
space corresponding to a given genotype. The cur-
rent state of the model is given by the distribution
of N individuals in genotype space. Over time, the
population wanders through the space stochastically,
spreading and clustering at random locations.

The individuals in the initial population are assigned
genotypes at random. Time is discrete, and moves for-
ward each time step by iterating the following two-step
algorithm: (1) r individuals (selected at random, with
replacement) each produce a child that is genetically
identical to itself except for mutations. Mutant alleles
are chosen at random from the set of possible alleles.
(2) r individuals (selected at random, without replace-
ment) die and are removed from the population and
are replaced by the r children produced at step (1).

This neutral model is somewhat disanalogous to those
systems in which some of the generic model parameters
are variable. E.g., in Tierra [8] the number of loci is
variable; indeed, it is not clear exactly what to count as
a locus in Tierra. In addition, population size and re-
production rate vary over time in many artificial mod-
els of evolution, such as Echo [4] and Packard’s Bugs
models. Still, the neutral model might apply reason-
ably well to these systems if the relevant neutral model
parameters are set to plausible corresponding values.
For the comparisons here we set IV and r to the mean
observed value of the corresponding parameter in the
Line model. A main goal of this study is to assess the
usefulness of the generic neutral model under such an



approximation.

6 Experimental Methods

We observed the behavior of the Line model, the neu-
tral shadow model, and the generic neutral model
across the mutation rate spectrum (varied on a log
scale). All Line model simulations were started with
a randomly initialized populations of 500 individuals.
We did at least 10 runs at every mutation rate we stud-
ied, varying the simulation time between 5 x 10° and
5x 107 depending on the mutation rate. The transient
time is longer at lower mutation rates, and we aimed
to have long-enough simulations to minimize the vari-
ance in the time series data. The parameters for the
generic neutral model were set to correspond to the
Line model (four loci and 120 alleles per locus). We
observed average population size IV and reproduction
rate r from each Line simulation and set corresponding
parameter values in generic model runs.

We dumped 5000 data points in each simulation, so
the time interval between data dumps varied with run
length. We tested shorter and shorter data-dumping
frequencies until the statistics we were observing con-
verged. In the generic neutral model evolutionary ac-
tivity was calculated continuously, so the exact activ-
ity value could be recorded in each data dump. But
in the Line and neutral shadow models genotype data
was only sampled at each data dump. So, for simplic-
ity, we assumed that a genotype that first appeared
at a certain time arose immediately after the previous
data dump. This procedure loses all information about
short-lived genotypes that arose and went extinct be-
tween data dumps, and it significantly overestimates
the age of short-lived genotypes that appear in only a
few data dumps. To minimize this bias, we shortened
the data dumping time at higher mutation rates.

7 Results

Figure 1 shows diversity and activity time series data
for a typical run with a mutation rate of m; = 0.19
and a simulation time of 5 x 10% time steps. Note that
the diversity in the Line model is on average about one
quarter of that in the neutral models. The diversity for
the two neutral models are indistinguishable. The ac-
tivity time series for the Line simulation is very differ-
ent from the neutral models. First, it is much higher,
indicating much longer lived genotypes. It also has
larger-magnitude events like the steep drops of activ-
ity indicating the extinction of one or more long-lived
genotype. Note that up to time 5 x 10° the shadow
and generic activity differ. This reflects the coupling
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Figure 1: Time series of diversity, D, and mean evo-
lutionary activity, A, in a typical 5,000,000 time-step
run with mutation rate per individual m; = 0.19. Note
that the diversity and evolutionary activity data for
the generic and shadow neutral models are quite sim-
ilar, so similar that they are indistinguishable in this
figure. On the other hand, the Line model shows sig-
nificantly lower diversity and significantly higher evo-
lutionary activity than the neutral models.

of shadow and Line model, and is mainly due to Line
model reproduction rate fluctuations and population
fluctuations which are transmitted to the shadow neu-
tral.

Figure 2 shows the time average of diversity for the
Line model and for both neutral models plotted as
a function of the mutation rate per individual, m;.
As illustrated in Fig. 1, diversity is everywhere lower
in the Line model than the neutral models except for
very low mutation rates (when diversity reaches its
floor of unity, D = 1) and very high mutation rates
(when diversity reaches its ceiling of the population
size, D = N). Note how well the diversities of the
two neutral models match over the whole mutation
rate spectrum. Note also that the significantly higher
diversity in the neutral models compared with the Line
model (at those mutation rates away from the diversity
floor and ceiling), which is the expected effect of the
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Figure 2: Time average of diversity, D, as a function of
mutation rate per individual, m;, for the Line model,
its neutral shadow, and the generic neutral model. At
each mutation rate the mean (and standard deviation)
of at least ten runs is shown. Note the striking similar-
ity of the two neutral models. Note also the strikingly
lower diversity of the Line model, for all but extreme
mutation rates (except at very high and very low mu-
tation rates, when the system hits the diversity ceiling
and floor).

neutral models’ random selection.

Figure 3 shows the time average of mean cumulative
evolutionary activity for the Line model and for both
neutral models, plotted as a function of the mutation
rate per individual, m;. The longest runs we did were
5 x 107 time steps, so this is the maximum activity
we could record. This explains why activity in the
Line model levels off for m; < 0.05; it is an artifact of
too-short simulation times. We are exploring the Line
activity for m; < 0.05 with longer simulation times in
current work.

Note that the average activity of the two neutral mod-
els lies well within the standard deviation. We found
in other work that neutral model activity is inversely
proportional to reproduction rate. We would therefore
expect the varying reproduction rate in shadow mod-
els would make shadow activity higher than generic
neutral model activity, even though the generic model
reproduction rate is set to the average reproduction
rate in the shadow run. And, in fact, we do observe
that generic neutral model activity is generally some-
what lower than shadow model activity. Nonetheless,
their correspondence is very close.

Figure 3 also shows that neutral model activity’s de-
pendence on mutation rate approximately fits a power
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Figure 3: Time average of mean evolutionary activity,
A, as a function of mutation rate per individual, m;,
for the Line model, its neutral shadow, and the generic
neutral model. At each mutation rate the mean (and
standard deviation) of at least ten runs is shown. Ac-
tivity in the Line model at lower mutation rates is
artificially lowered by the simulation time being too
short. Note the striking similarity of the two neutral
models and the strikingly higher activity for the Line
model (at those mutation rates with long enough sim-
ulations). To show how evolutionary activity in the
neutral models and in the Line model approximately
fit power laws, we have superimposed lines of slope
—1.0 and —2.2 over the neutral and normal data, re-
spectively.
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Figure 4: Time average of excess mean evolutionary
activity, Aexcess, as a function of mutation rate per
individual, m;, for the Line model. Circles indicate
where simulation times were long enough for activity
statistics to converge. Data shown are mean (and stan-
dard deviation) of at least ten runs. A superimposed
a line shows that excess activity approximately fits a

power law, with cexcess = 1.1 £ 0.2.



law:
Aocmi®, (6)

with apeutral = 1.0 £ 0.1. (Error bounds on all expo-
nents reported here are based on standard deviations
of observed activity.) In addition, for m; > 0.05, where
activity is not affected by simulation time, Line model
activity fits the same power law, with arine = 2.2£0.2.

Figure 4 graphs excess activity Agycess in the Line
model as a function of mutation rate. This initial
picture of excess activity’s dependence on mutation
rate is understandably incomplete and noisy. For one
thing, we have good data for excess activity measure-
ments only for mutation rates m; > 0.05. Further-
more, we typically observed only ten runs at each mu-
tation rate; collecting much more data should reduce
noise considerably. Nevertheless, at those mutation
rates for which we do have good data, excess activity
Aexcess sShows the power-law dependence of Eq. 6, with
Qlexcess = 1.1 £ 0.2. There is one significant deviation
from this law at m; ~ 1, discussed below.

8 Discussion

The generic neutral model shows clear evidence of suit-
ably approximating the behavior of special-purpose
neutral shadows. In particular, the shadow and generic
neutral models show remarkable similarity in how di-
versity depends on the mutation rate, and the match of
their activity response to diversity is also quite signifi-
cant, especially when the variance in activity is consid-
ered. To be sure, the generic neutral model has only
passed one preliminary test, and its final confirmation
will come only if it shows similar success at approxi-
mating a range of other neutral shadows—a subject of
current work.

The other results presented here reveal why the generic
neutral model is important, because they underscore
that excess evolutionary activity is appropriate for
quantifying the extent to which evolution creates con-
tinual adaptive success. Just as one would expect,
the neutral models have higher diversity than the Line
model. Comparing neutral diversity with diversity in
the Line model (Figure 2) dramatizes how much ran-
dom selection of genotypes diversifies a system com-
pared with natural selection’s preference for conserv-
ing well adapted genotypes. Furthermore, again as one
would expect, mean genotypic activity (which in the
present context is equivalent to persistence) is signif-
icantly lower in the neutral models. The neutral ac-
tivity in Fig. 3 shows precisely how much of the Bug’s
model activity is not due to the genotype’s adaptive

success, and this allows us to compute excess activity,

Acxcess, the difference between observed and neutral
activity, expressed in proportion to neutral activity.

The significant rise in excess activity at mu; ~ 1,
clearly evident in Figure 4, bears some discussion be-
cause it might seem surprising or even anomalous. At
those mutation rates at which our statistics converge,
excess activity generally seems to have a power-law
dependence on mutation rate, but there is one signif-
icant exception to this pattern, at mu; ~ 1. In fact,
though, this exception proves the rule, i.e., it confirms
that excess activity measures continual adaptive suc-
cess. The most crucial locus for success in the Line
model is the Line locus itself. Any agent that can’t
stay on the Line is doomed to die. So, if there is a
mutation at the Line locus, then the child will almost
certainly have lost all information about how to stay
on the Line. As the mutation rate increases, more
and more children loose the information about how to
stay on the Line. Therefore, there is less competition
for space on the Line and all agents on the Line live
longer (the Line model enforces no finite lifetime on the
agents). In other words, the potentially indefinite Line
agent lifetime give a significant adaptive advantage to
founder genotypes, whatever they happen to be, but
this adaptive advantage occurs only at mu; ~ 1.

How can we explain evolutionary activity’s power-law
dependence on mutation rate (Eq. 6). For the neutral
models we can explain this law with an argument of
Kimura [5]. Kimura has calculated the time it takes on
average for a new neutral mutant gene to reach fixation
during neutral evolution, on the assumption that genes
get substituted one after another and not at the same
time. Kimura finds that the average time to reach fix-
ation can be described by two different time scales.
If we neglect all mutants that go extinct before they
reach fixation, the first time scale—the time it takes
on average for a neutral mutant to spread through-
out, the population—is proportional basically to the
population size, N. The second time scale—the time
it takes on average for such a mutant gene to occur
in the population—is proportional to the number of
mutations that occur, which is proportional to mi_l.
For low mutation rates Kimura’s discussion also ap-
plies to genotype substitution in our neutral models.
A new mutant gene corresponds in our neutral models
to a new mutant genotype. Kimura’s assumption that
genes are substituted one after another corresponds in
our neutral models to the assumption that genotypes
are substituted one after another, and this assump-
tion holds when the mutation rate is not too high.
For low enough mutation rates only the second time
scale—the time it takes for new mutants to occur—is



relevant; the other time scale is basically constant (be-
cause population is basically constant) and becomes
negligible. Activity (here, mean lifetime of genotypes
in a population) will therefore show the same relation-
ship with mutation rate as the second time scale, i.e.,
activity will be proportional to mi_l, thus explaining
why apeutral = —1.0.

It is also striking that the Line model excess activity
shows evidence (at least where we have good data) of
a simple power-law dependence on mutation rate (ex-
cept at mu; ~ 1, of course).! One would expect Bug
model excess activity to be inversely proportional to
mutation rate—at least, if the mutation rate is not too
low—for mutations cause the system to “forget” adap-
tations. But none of this explains why apine = 2.2
and excess = 1.1. These precise quantitative results
cry out for explanation and raises a number of inter-
esting questions, all of which are straightforward to
answer: Does the same law hold in many, or even any,
other models? Is the same exponent found? Exactly
what explains the values of the exponents? Answering
such questions would significantly advance our quan-
titative understanding of the foundations of adaptive
evolution—all made possible by a feasible generic neu-
tral model of the evolution of genotypes.
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