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Abstract. We measure the environment that is relevant to a popula-

tion's adaptation as the information-theoretic uncertainty of the distri-

bution of local environmental states that the adapting population expe-

riences. Then we observe the dynamics of this quantity in simple models

of sensory-motor evolution, in which an evolving population of agents

live, reproduce, and die in a two-dimensional world while competing for

resources. Although the distribution of resources is static, the agents'

evolution creates a dynamic environment for adaptation.

1 The Environment for Adaptation

The process of adaptation is driven by the environment, but it also shapes the

environment. If we focus on the environment for adaptation, that is, the aspect

of the environment that is relevant to adaptive evolution, we would tend to agree

with Lewontin [7] that organisms construct their environment:

The environment is not a structure imposed on living beings from the

outside but is in fact a creation of those beings. The environment is not

an autonomous process but a reection of the biology of the species.

But to think clearly about how organisms and their environment a�ect one

another, we must �rst clarify what the environment for adaptation is. How can

it be measured? How is it a�ected by the behavior of the evolving population?

This paper takes a �rst step at answering these questions.

Part of an answer to these questions involves distinguishing two kinds of

local environmental states: those that exist in the environment and so could

conceivably be relevant to the agents' adaptation, and those that the agents

experience and so that a�ect their adaptation. To appreciate how evolution

is both cause and e�ect of the environment, one must focus on the latter. In

this paper we propose how to measure the environment for adaptation, and

we observe its dynamics in evolving systems with �xed resource distributions|

what we call static resource models. We see that even simple systems with static

resource distributions have a dynamic environment for adaptation.

Classifying and quantifying the environment for adaptation is the subject of

a variety of recent work in arti�cial life. The relevance of this work includes both



its implications for theoretical insights into the evolutionary process and its prac-

tical consequences for engineering and controlling evolving systems. Wilson [14]

and Littman [8] provide an abstract categorization of environments, with Wil-

son focusing on the degree of non-determinism in an environment and Littman

characterizing the simplest agent that could optimally exploit an environment.

But neither method provides a dynamic quantitative measure of the environ-

ment the population experiences. Other recent work experimentally investigates

agents adapting in di�erent environments. Todd and Wilson [12] introduce an

experimental framework for investigating how adaptation varies in response to

di�erent kinds of environments, and Todd et al. [13] demonstrate di�erent adap-

tations in di�erent kinds of environments. In neither case, though, is environ-

mental structure actually classi�ed or measured. The present project grows out

of previous work on how adaptability depends on quantitative measures of envi-

ronmental structure [2, 4, 5]. What is novel here is the focus on the environment

actually experienced, which allows the measures to be dynamic where the pre-

vious ones were static. While Lewontin [7] verbally stresses the centrality of the

environment for adaptation, being able to quantify and observe it provides the

empirical footing needed to respond to skeptics [6].

2 Adaptation in Packard's Static Resource Models

All of our empirical observations are from computer simulations of a certain

model|originated by Norman Packard [9, 3]|that is designed to be a very sim-

ple model of the evolution of sensory-motor strategies. Packard's model consists

of agents sensing the resources in their local environment, moving as a function

of what they sense, ingesting the resources they �nd, and reproducing or dying

as a function of their internal resource levels. The model's spatial structure is

a grid of sites with periodic boundary conditions, i.e., a toroidal lattice. Re-

sources are immediately replenished at a site whenever they are consumed. The

agents constantly extract resources and expend them by living and reproducing.

Agents ingest all of the resources (if any) found at their current location and

store them internally. Agents expend resources at each time step by \paying"

(constant) \existence taxes" and \movement taxes" (variable, proportional to

distance moved). If an agent's internal resource supply drops to zero it dies.

Each agent moves each time step as dictated by its genetically encoded

sensory-motor map: a table of behavior rules of the form if (environment j

sensed) then (do behavior k). An agent receives sensory information about the

existence of resources (but not the other agents) in the von Neumann neigh-

borhood of �ve sites centered on its present location in the lattice. Thus, each

sensory state j corresponds to one of 25 = 32 di�erent detectable local environ-

ments. Each behavior k is a jump vector between one and �fteen sites in any one

of the eight compass directions, or it is a random walk to the �rst unoccupied

site, so an agent's genome continually instructs it to move somewhere. Thus, an

agent's genotype, i.e., its sensory-motor map, is just a lookup table of sensory-

motor rules. But the space in which adaptation occurs is fairly large, consisting



of 12132 � 1066 distinct possible genotypes. In a resource �eld missing some of

von Neumann neighborhoods, the number of e�ectively di�erent genotypes will

smaller (about 1029 for the resource �elds studied here).

An agent reproduces (asexually, without recombination) if its resource reser-

voir exceeds a certain threshold. The parent produces one child, which starts

life with half of its parent's resource supply. The child also inherits its parent's

sensory-motor map, except that point mutations can replace the behaviors linked

to some sensory states with randomly chosen behaviors (there is roughly one mu-

tation per reproduction event, on average). A time step in the simulation cycles

through the entire population and has each agent, in turn, complete the following

sequence of events: sense its present von Neumann neighborhood, move to the

new location dictated by its sensory-motor map (if that site is already occupied,

it randomly walks to the �rst unoccupied site), consume any resources found

at its new location, expend resources to cover existence and movement taxes,

and then, if its resource reservoir is high enough or empty, either reproduce or

die. A given simulation starts with randomly distributed agents containing ran-

domly chosen sensory-motor strategies. The model contains no a priori �tness

function, as Packard [9] has emphasized. Agents with maladaptive strategies

�nd few resources and thus to die, taking their sensory-motor genes with them;

by contrast, agents with adaptive strategies tend to �nd su�cient resources to

reproduce, spreading their strategies (with mutations) through the population.

Here we restrict resources to blocks: a square grid of lattice sites which all

have the same �xed quantity of resources. In a resource distribution formed of

blocks, every site that is not inside a block is part of a resource-free desert.

We focus on two distributions, one with many small blocks randomly sprinkled

across space, the other with one large block. If the resource distribution contains

just one block, then all evolution concerns strategies for exploiting the resources

on the block. But if the resource distribution contains many blocks scattered in

space, then each block is an evolutionary island supporting its own evolutionary

development and subject to migration from nearby islands. So a behavioral inno-

vation that originates on one island can hop from island to island and eventually

colonize the entire archipelago. Resource blocks come in di�erent sizes (widths).

If the block is small enough (width � 3) then the agent's sensory information

always unambiguously indicates the agent's exact location on the block (NW

corner, middle, N edge, etc.). As the width increases above 3, so does the am-

biguity of the agents' sensory information [4]. Agents cannot always tell exactly

where they are, for the sites inside the block all look alike, as do the sites at

its edge. Here we studied two size blocks: one (3�3) that is unambiguous, and

another (30�30) with rampant ambiguity.

Agents on a given 3�3 block usually all follow the same strategy, for agents

following heterogeneous strategies tend to collide and be bumped into the re-

source desert. The strategy observed are cycles jumping through a sequence of

sites on the block. The simplest cycles (period 2) consist of jumping back and

forth between two sites. Since a 3�3 block contains 9 distinct sites, it can sup-

port at most a period 9 strategy. A period n strategy has room for at most



n� 1 agents (one agent in the cycle must move �rst and the space to which it is

jumping must be unoccupied). Thus, longer period strategies can support larger

populations because they can exploit more of the energetic resources on a block

All agents reproduce at the same rate, so a block with a larger population will

produce o�spring at a higher rate. Thus, blocks with larger period strategies

will exert greater migration pressure and thus will have a selective advantage.

So evolution in an archipelago of tiny 3�3 resource islands will exhibit one main

kind of adaptive event: lengthening the period of an existing strategy. Agents on

one large 30�30 block tend to exhibit a uidly changing ecosystem of coexisting

strategies. These strategies fall into two main categories: Edge strategies and the

Random strategy. The Random strategy relies on one central gene: if inside the

middle of a block (i.e., if sensing the neighborhood with resources at all �ve sites),

do a random walk to the �rst unoccupied site. (Recall that one of the possible

genetically encoded behaviors k is a random walk.) Although unsuccessful on a

3�3 block, a 30�30 block is large enough for the Random strategy to succeed.

An Edge strategy consists of moving in a straight line when inside the block and

jumping back into the middle of the block when detecting the edge. A prolif-

erating Edge strategy will �ll a region of the block with a perpetually rolling

population. 30�30 blocks have three main kinds of adaptive events: lengthening

an Edge strategy's jump back, discovering a new Edge strategy compatible with

the strategy ecology, and discovering the Random strategy.

3 A Measure of the Environment for Adaptation

We are interested in how best to measure the environment that is relevant to a

population's adaptation. For the sake of concreteness, we will develop and apply

our methods in the context of the static resource models described above. The

quantities we de�ne and observe �t within a family of measures that has been

developed and studied in similar contexts previously [2, 4, 5].

The basic idea behind our measure of the environment for adaptation is quite

simple. The �rst step is to de�ne a partition of relevant local environments.

Of all the environmental states that exist or could be de�ned in an evolving

system, �rst focus on those that are local to the individual agents in the system

in the sense that di�erent agents can be in di�erent local environmental states

at the same time. Next limit attention to just those that are relevant to the

survival or reproducibility of the agents, i.e., those that can be expected to be

relevant to the population's adaptation. This includes only those states that

can a�ect or be a�ected by the agents. Finally, consider a partition of local

relevant environments|a set of states that is disjoint and exhaustive in the

sense that at each time each individual agent is unambiguously in exactly one of

the states. For example, in Packard's model studied here, a natural partition of

local relevant environments is the set of di�erent von Neumann neighborhoods

that the agents can distinguish (the presence or absence of resources in each

of the �ve detectable neighboring sites). At each time each agent is in exactly

one of these local states. The states a�ect the agents by being their sensory



input, and the agents a�ect the states through their behavior [2]. The states are

relevant to the agents' adaptation, for the agents' adaptive task is to evolve a

genome that associates each those states with an appropriate behavioral rule in

a sensory-motor strategy and natural selection shapes only the rules for those

von Neumann neighborhoods that are actually experienced by the population.

During the course of evolution, the agents experience states in the partition

of local relevant environments with di�erent frequencies. The frequency (proba-

bility) distribution of the states is a straightforward reection of the environment

that is currently relevant for the population's adaptation. That is, let feig be

the partition of local relevant environments, and let PE(ei) be the frequency

with which agents in the population experience the ith local state ei (during

some time window) in the global environment E. Then the probability distri-

bution PE reects the nature of the environment that is currently relevant to

the population's adaptation. It is important to note that the distribution PE

is de�ned relative to the partition feig. Di�erent partitions will yield di�erent

probability distributions, so the usefulness and interest in the distribution PE

hinges on the choice of partition feig.
1 In Packard's model where feig is the von

Neumann neighborhoods, PE shows the frequencies with which the population

visits di�erent neighborhoods.

The �nal step in our measure of the environment for adaptation is to quantify

the variety in PE , and information-theoretic uncertainty (Shannon entropy) [11]

is the natural tool to use:

H(PE) = �

X

i

PE(ei) log2 P
E(ei): (1)

H(PE) reects two aspects of PE : its width (number of di�erent neighborhood

indices i) and atness (constancy of the value of PE(ei) for di�erent i). The wider

and atter PE is, the more uncertainty there is about which neighborhood the

agents will experience and the higher H(PE) will be.

Even in static resource models, PE and so H(PE) can change, for PE

depends on the adapting population's behavior. As the population's behavior

evolves, the population may experience di�erent local environments, so PE and

thus H(PE) may be dynamic. The dynamics of H(PE) simultaneously reects

both cause and e�ect of the adapting population. That is, H(PE) measures

both the environment created by the population's past adaptation and the envi-

ronment relevant for the population's future adaptation, as reected in the local

environmental states the population experiences. The population's adaptation

to its environment changes the frequency with which it experiences di�erent lo-

cal environments, and this creates a self-organizing dynamic in H(PE). (Parisi,

1 Since the distribution PE pools information about the local relevant environments

experienced by all the agents, it in e�ect averages this information across the pop-

ulation. If di�erent subsets of agents experience substantially di�erent subsets of

local environments (e.g., if they exist in di�erent niches), the averaging in PE will

obscure this di�erence. To counteract this, one could collect di�erent probability

distributions for di�erent subsets of agents.



Nol�, and Cecconi [10] and Bedau [2] study this issue.) The dynamics of H(PE)

show how adaptation changes the environment for subsequent adaptation.

To get a feel for how PE and H(PE) reect the environment for adaptation,

assume the environment consists of an archipelago of randomly scattered 3�3

resource blocks in Packard's model. Since prolonged stay in the resource desert

is lethal, the population will overwhelmingly experience some subset of the nine

neighborhoods on the block. For example, if the populations on the di�erent

resource islands are all exhibiting the same period two cyclic strategy, then the

bulk in P 3�3 is evenly divided between the two neighborhoods visited (agents

bumped o� out of the cycle will visit a few other local environments before

perishing). As evolution increases the length of the strategy followed by the

agents, the population will encountered new environmental states and P 3�3 will

stay at but become wider. Thus the environment for adaptation, H(P 3�3),

will tend to increase. The magnitude of this trend is bounded by the number

of di�erent resource sites on the tiny block; with nine distinct resource sites,

H(P 3�3) � log
2
9 � 3:17.

Now consider an environment containing only one large 30�30 block.Whether

the block is populated by an ecology of coexisting Edge strategies or dominated

by the Random strategy, most of the population will be inside the block, so the

bulk of P 30�30 will reect that one neighborhood with most of the rest shared

among various edge neighborhoods (plus a small fraction for the agents bumped

into the desert). The dynamics of H(P 30�30) can be varied. Lengthening the

inside jump of an Edge strategy increases the relative frequency with which the

population encounters the neighborhood inside the block, and this makes P 30�30

less at and thus shrinks H(P 30�30). Discovering a new Edge strategy raises the

number of sites experienced in the ecology of strategies, so P 30�30 becomes wider

and H(P 30�30) rises. Discovering the Random strategy typically increases the

frequency with which the population encounters the inside the block, so P 30�30

narrows and H(P 30�30) falls. Thus, the environment for adaptation on a 30�30

block should both rise and fall, but the eventual evolution of the Random strat-

egy will ultimately drive it to a low value.

4 Observations of the Environment for Adaptation

We observed H(PE) in 100 3�3 blocks scattered randomly in space, and in one

30�30 block. Both resource distributions pump resources into the environment

at the same rate, so they can support comparable maximum population sizes.

In this resource-driven and space-limited model, population size is a good re-

ection of the dynamics of adaptation (�tness). Except for varying the resource

distribution, all the parameters in the models observed were the same.

Evolution on an archipelago of 3�3 blocks always exhibits a pattern of period-

lengthening adaptations. The population starts with a small period cycle on one

of the blocks. This strategy migrates across the archipelago, until it has colo-

nized virtually all the blocks. Eventually the appropriate mutations will create

a longer-period cycle on one of the blocks and the agent with this longer cycle
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Fig. 1. Dynamics of population size and environment for adaptation, H(PE), in two

typical simulations. The top two graphs are from an archipelago of 100 3�3 blocks.

The bottom two graphs are from one 30�30 block.



will sometimes supplant the agents on that block with the shorter cycle, so the

block is now populated by a tiny subpopulation with the longer cycle. Children

from this subpopulation migrate to other blocks and supplant the shorter-cycle

agents there, until they eventually colonize the entire archipelago. This sequence

is repeated again and again with ever longer-period cycles, until the cycle length

gets close to its maximum possible value (nine).

The top two graphs in Figure 1 show time series of population level and the

environment for adaptation, H(PE), in a typical simulation in an archipelago

of 3�3 blocks. The course of evolution has four epochs. Epoch I starts with

a period-2 cyclic strategy on a single block. As this strategy reproduces and

starts to migrate go other blocks, the population rises, until about all the blocks

are colonized. Epoch II starts at about time 75,000 when a period-lengthening

mutation enables a period-3 cycle to become established on one of the blocks. The

3-cycle then invades the rest of the archipelago. Epoch III starts at around time

150,000 when a coordinated combination of mutations create a 5-cycle on one

block, which then invades the rest of the archipelago. Another period-lengthening

mutation on one block initiates Epoch IV with a 6-cycle at around time 200,000.

This strategy then colonizes the rest of the archipelago. These period-lengthening

adaptations each cause a rise inH(PE), as the more complicated strategies make

the experienced environment more complex.

Evolution on the 30�30 block tends to exhibit its own distinctive pattern of

adaptations. One or two edge strategies in the initial random seed population will

live on the block, growing to �ll the space available in the niche on the block used

by those strategies. From time to time new strategies arise by mutation, but most

die o� quickly. Some �nd an unoccupied niche on the block and coexist with their

ancestral strategies. Others compete for niche space with ancestral strategies and

supplant their ancestors. In this way, the block supports a changing ecosystem

of subpopulations surviving through di�erent strategies in di�erent regions on

the block. Eventually, though, the Random strategy always gets a foothold in

the population and drives all Edge strategies extinct.

The bottom two graphs in Figure 1 show data from a typical illustration

of a co-evolving succession of Edge strategies ending with domination by the

Random strategy. The course of evolution again has four epochs. In Epoch I,

one strategy (call it B11) jumps o� the bottom edge a half-dozen steps into the

block. The population of agents following this strategy grows until at about time

4000 it �lls the space along the entire bottom edge with a population size pushing

80. Except for momentary spikes (caused when a crop of children get bumped

o� the block, thus briey experiencing the desert neighborhood before dying),

H(PE) is basically stable during this epoch. The entire population experiences

two neighborhoods: the inside of the block and the bottom inside edge. Epoch II

starts around time 6000 when a second strategy (R11) starts to coexist with B11

by occupying the block's right edge. This strategy lives only right along the edge,

so only a handful of agents can occupy the niche created by this strategy. H(PE)

shows a slight rise a subpopulation experiences two new neighborhoods (right

inside edge and bottom right corner). Epoch III starts around time 9000 when a



third strategy (L11) shares the block with B11 and R11 by exploiting the hitherto

unused left edge with a small jump into the block. L11 grows to �ll its niche along

the left edge, with a subpopulation of a couple dozen. H(PE) rises again during

this epoch as a new neighborhood (inside left edge) gets experienced more and

more frequently. Epoch IV starts around 13000 when the Random strategy arises

inside the block and it quickly sweeps across the block, knocking B11, R11, and

L11 out of their niches and �lling virtually all the space on the block. H(PE)

drops dramatically because the neighborhoods experienced by the population

shows much less variety. As the population grows, more agents experience an

edge or the desert, so H(PE) rises slightly.

5 Conclusions

Two main conclusions follow from this work, one methodological and the other

substantive. The methodological conclusion is that we now have a dynamic and

quantitative reection of the environment that the evolving population actually

experiences|the environment for adaptation. This measure of the environment

for adaptation is quite general and feasible, and it can straightforwardly be

applied to many other evolving systems. Its drawback is that it depends on an a

priori partition of the environmental states relevant to the population's adaptive

evolution. Such a partition is easy in the simple systems studied here but more

complex systems can present di�culties, especially if qualitatively new kinds of

environmental states emerge unpredictably in the course of evolution.

The substantive conclusion is that the environment for adaptation is dy-

namic even in simple static resource models like those studied here. Sometimes

a population evolves a more complicated behavioral strategy which enables it to

experience and exploit more of the environment's complexity. Subsequent evo-

lution then takes place in the context of this more complicated environment for

adaptation. In other cases the population bene�ts by evolving a simpler behav-

ioral strategy and thus simplifying its environment. An agent's environment for

adaptation includes the rest of the population with which the agent interacts. In

static resource models, agent{agent interactions like collisions can be a signi�-

cant part of the adaptive landscape, so the shape of the landscape depends on the

collection of behavioral strategies in the population. Space is itself a resource [1],

and available space is dynamic since it depends on the changing spatial location

of the population with which agents interact. The dynamics of the environment

for adaptation strongly depend on the actual course that evolution happens to

take. Repeating a simulation with exactly the same resource distribution (data

not shown here) can yield qualitatively di�erent environmental dynamics, which

shows the \uidity" of these environmental dynamics. These conclusions per-

tain in the �rst instance just to the particular systems studied here, but they

are likely to hold quite generally.
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