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Abstract

We study the effects of environmental catastrophes on the
evolution of a population of sensory-motor agents with in-
dividually evolving mutation rates, and compare these effects
in a variety of control systems. A catastrophe makes the bal-
ance shift toward the need for evolutionary novelty, and we
observe the mutation rate evolve upwards. As the population
adapts the sensory-motor strategies to the new environment
and the balance shifts toward a need for evolutionary mem-
ory, the mutation rate falls. These observations support the
hypothesis that second-order evolution of the mutation flexi-
bly balances the need for evolutionary “novelty” and “mem-
ory,” both of which are controlled by the mutation rate.

Introduction

The evolution of life on Earth has repeatedly been forced
to adapt to environmental catastrophes (Raup, 1991), and
evolution through such catastrophes has been suggested as
a mechanism behind adaptive radiation (Raup, 1986). As
artificial evolving systems increasingly interact with unpre-
dictable environments, their robustness in the face of envi-
ronmental catastrophes will also become increasingly criti-
cal. Thus, understanding the nature and source of evolution-
ary robustness in the face of environmental catastrophes is
important for understanding both natural and artificial evo-
lution.

The ability of a system to adapt to environmental catas-
trophes is related to its evolvability, i.e., the capacity for
evolution to create new adaptations. Evolvability has re-
ceived considerable attention recently in both the biological
and evolutionary computation communities. There is gen-
eral agreement that evolvability is crucial for understanding
the origin of complex adaptations (Conrad, 1982; Wagner
and Altenberg, 1996) as well as the process of open-ended
evolution (Taylor, 1999; McMullin, 2000), a central open
problem in artificial life (Bedau et al., 2000). This paper
treats the issue of how evolvability evolves and specifically
focuses on the evolution of evolvability in a finite popula-
tion adapting to a dynamic endogenous fitness function in a
spatial environment.

A system’s evolvability depends on its ability to produce
adaptive phenotypic variation, and this hinges on both the
extent to which the system’s phenotype space contains adap-
tive variation and the ability of evolutionary search to locate
it while avoiding maladaptive traps. Two main factors con-
trol the effectiveness of the evolutionary search process: the
way in which genetic operators traverse genotype space, and
the way that genotypes are phenotypically expressed (the
genotype-phenotype mapping). For evolutionary search to
explore a suitable variety of viable evolutionary pathways,
genetic operators must generate sufficient amounts of the
right kind of geneticnovelty. At the same time, since evo-
lutionary adaptations are built through successive improve-
ments, geneticmemoryis required for the evolutionary pro-
cess to retain incremental improvements.

Genetic operators like mutation rate simultaneously af-
fect the demands for both evolutionary novelty and memory,
so evolvability requires genetic operators to balance these
competing demands successfully. (In evolutionary compu-
tation this principle is known as the tension between “explo-
ration” and “exploitation” (Holland, 1975).) Furthermore,
the appropriate balance between evolutionary novelty and
memory can continually change as evolution progresses, so
evolvability requires genetic mechanisms to adjust the bal-
ance flexibly. Thus, understanding evolvability involves un-
derstanding how the balance between evolutionary novelty
and memory shifts during the course of evolution, and what
mechanisms allow this balance to flexibly shift. One way to
address these questions is to let second-order evolution con-
trol the genetic mechanisms that structure first-order evolu-
tion, enabling us to study the evolution of evolvability. There
are a variety of such genetic mechanisms, but perhaps the
simplest is the mutation rate. This paper addresses the evo-
lution of evolvability in this simple context.

Optimal and evolving mutation rates are discussed in
both the biological and evolutionary computation literatures
(Kimura, 1960; Eiben et al., 1999); further references are
cited elsewhere (Bedau and Packard, 2003). But it remains
unclear what, if anything, such results might reveal about
the evolution of mutation rates in a finite spatial population



with many loci and many alleles per locus, with heavy neu-
tral evolution, and when the context of evolution continually
changes and thus the fitness function unpredictably varies—
the context of the present study. The discussion of evolv-
ing mutation rates in the evolutionary computation literature
mainly focuses on the issue of automated control of evolu-
tion, in the context of efforts to minimize the time required
to solve function optimization problems. But this work
typically presumes that evolution is driven by a fixed and
externally-specified fitness function, whereas the theoreti-
cal issues that interest us concern evolution with implicitly-
specified fitness functions that continually change in the
course of evolution.

An earlier treatment of these issues provided prelimi-
nary evidence that second-order evolution of mutation rates
can respond flexibly to the exogenously shifting demands
for evolutionary novelty and memory (Bedau and Packard,
2003). The present paper systematically explores this ear-
lier result, in order to determine how robust the process is
and to identify the mechanisms behind it. In particular, we
study the robustness of this process by observing hundreds
of catastrophes caused by transitions to a variety of different
kinds of environments. In addition, we isolate the mecha-
nisms behind what we observe by comparing these results
with a variety of control systems.

Our experiments with environmental catastrophes enable
us to address a further issue: whether and how having
evolved through a history of environmental catastrophes in-
creases a population’s ability to adapt to novel environments
in the future. Earlier work has shown that autonomous
agents that have the ability to learn during their lifetime
can evolve to a changing environment (Menczer and Belew,
1996), can choose from a variety of environmental niches
(Walker, 1999), and can evolve increased genomic and
neural complexity when subjected to noisier environments
(Seth, 1998). Environmental catastrophes have also been
shown to affect the diversity dynamics of evolving commu-
nicative systems (Green et al., 2000). Because our system
includes second-order evolution, we can look at similar is-
sues in a simpler and more fundamental context, and thus
perhaps explain what happens in more complex settings.

The Model
Our evolutionary system is composed of many agents that
could be called organisms, on analogy with biological sys-
tems. It has been used in various studies of the evolution
of sensory-motor functionality; see the references in earlier
work (Bedau and Packard, 2003). The system consists of
many agents that exist together in an environment, in this
case a toroidal lattice. The lattice has a binary field defined
on it, E(x), which may be interpreted as a resource field.
The pattern of the resource field is static and resources are
not depleted by agents. Thus, agents are constantly gath-
ering resources and expending them through their behavior,

but the resource pattern in the environment remains fixed
except when there are environmental catastrophes, as de-
scribed below.

The resource patterns in our system consist of three qual-
itatively distinct types. The first,B, maps a square onto the
lattice. The absolute amount of resources available to the
agents across different simulations inB is fixed, but the lo-
cation is chosen at random. The second,C, maps resources
onto the environment in numerous pairs of equivalent, mutu-
ally bisecting, perpendicular line segments. The placement
of each pair of line segments inC is chosen at random in-
dependently of other pairs leading to partial or, with a van-
ishingly small likelihood, complete overlap. The absolute
amount of resources availble is thus an inverse function of
the degree of overlap in that particular instantiation ofC.
The third resource pattern,R, maps individual resource sites
onto the environment at random. As withC, the sites are
chosen independently of one another leading to a degree of
overlap and variable absolute amounts of food. However,
in all but improbable cases of extreme overlap, the total re-
sources,ΣE , are such thatΣER > ΣEC > ΣEB.

In analogy with biological systems, the dynamics of the
population as a whole is comprised of all the birth-life-death
cycles of the agents. Births occurs when agents accumu-
late enough resources to reproduce (see below), deaths oc-
cur when agents run out of resources, and the lives of agents
consist of their interactions the environment. We label each
agent with the indexi, let I t be the set of agents existing att.
Time is discrete. One unit of timet is marked by each agent
acting based on their local environment.

During its lifetime, each agent extracts information from
the environment by sensing and reacting to the resource field
in its local neighborhood. We assume that there is a discrete
set of different possible sensory states,s∈ S= {s1, ...,sNS}.
The agents exchange no information with each other directly
(although this would be an easy generalization). Each agent
(labeled with the indexi) has certain information associ-
ated with it: (i) a current location,xt

i , (ii) a current sensory
state,st

i , (iii) a current reservoir of resources,Et
i , and (iv) a

sensory-motor map,ϕi , that yields a behavior given sensory
information as input. In this model, an agent’s behavior is a
vector~b denoting the agent’s movement in the environment,
xt

i → xt+1
i = xt

i +~bt
i where~bt

i = ϕi(st
i ). We assume that~bt

i
is a member of a discrete set of different possible behav-
iors,~bt

i ∈ B = {~b1, . . . ,~bNB}. (Another easy generalization
would be to include other kinds of possible behaviors.) The
agent’s supply of resources may be changed in one of two
manners: an augmentation from extracting resources at the
agent’s new location, or a constant-sized universal reduc-
tion, Et

i → Et+1
i = Et

i +α(E(xt+1
i ))−β. Here,α(z) may be

interpreted as the resource extraction function andβ as the
constant metabolic cost of surviving.

The sensory-motor mapϕi operating on a sensory input
st
i has a particularly simple form because the sensory in-



put is discrete. Sincest
i ∈ {s1, . . . ,sNS}, we may identify

the functionϕi with its graph, a set ofNS behavior values,
{ϕis}. Pursuing the biological analogy, we will consider the
sensory-motor strategy elements{ϕis} as i’s genome, with
NS loci, and each particular element~b = ϕis as the trait (or
allele) at thesth locus ofi’s genome.

Reproduction occurs when an agent’s resource supply ex-
ceeds a threshold,Er . The parent splits its resources with
its child, and the child inherits its parent’s strategy elements
{ϕis}, except for mutations. The genome of each agenti
contains one special gene,µi—the rate at whichi’s strategy
elements mutate wheni reproduces, i.e., the probability that
a strategy element ofi’s children is chosen (with equal prob-
ability) from the set of possible behaviorsB. We also in-
troduce ameta-mutationrate parameter,µµ—the probability
that i’s children’s mutation-rate gene is chosen (with equal
probability) from the interval[µi − ε,µi + ε]. The value of
µµ is fixed during the course of a given simulation, and the
value ofµi is fixed during the course ofi’s lifetime (as are
all of i’s genes).

This model provides a simple setting for empirical study
of the evolution of evolvability. Agents’ immediate envi-
ronments produce sensory states that then trigger actions by
means of the agents’ sensory-motor maps. Since the agents’
survival and reproduction depends directly on their ability
to continually find resources in their environment, the im-
plicit fitness functions in this model are constantly buffeted
by the contingencies of natural selection and, thus, unpre-
dictably change. This first-order evolution is structured by
the sensory-motor maps actually compared and tested by
natural selection. One especially simple mechanism that
regulates the variety of maps available for evolutionary ex-
ploration is the mutation rate; the higher the mutation rates,
the greater the variety. Thus, by allowing mutation-rate
genes to evolve, we can study second-order evolution of
evolvability.

Methods
We collected data from the model in an experimental situa-
tion and three kinds of controls. In the experimental condi-
tion, the agents’ mutation rates were allowed to evolve and
the environment cycled through a sequence of qualitatively
different patterns,B, C and R, at a regular interval. The
effect of these environmental catastrophes on the agents in
this phase and all subsequent phases was measured in terms
of population and average mutation rate across the entire
population. The Same-Environment (SE) control was just
like the experimental situation except that the catastrophes
did not involve a qualitative change in environment; rather,
whichever pattern was in place was redistributed so that lo-
cal environments were changed, but the environment on the
whole was qualitatively identical. In the Population-Only
(PO) control, the environmental catastrophe was replaced
by an artificial population catastrophe. Ninety percent of the

B C R

Figure 1: Top-down pictures of a part of the three environ-
ments B, C, andR.

population was selected at random and killed, mimicking
the effect that environmental catastrophes had on the pop-
ulation. Data were also collected for populations of agents
undergoing qualitatively distinct environmental changes, but
with a fixed mutation rate, in the No-Meta-Mutation (NMM)
control.

We conducted 80 trials in the experimental situation,
and these data were averaged for analysis. In each trial
the environment sequenced through different resource pat-
terns every 10,000 model updates in the following order:
...RBCRBCR... Before analyzing the data, we dropped the
initial environment from each trial, keeping only data gener-
ated while the population was recovering from an environ-
mental catastrophe. In addition, we generated a total of 48
runs in the SE control, 29 in the PO control, and 13 in the
NMM control.

The size of the torroidal lattice was held fixed at 141×141
sites and all trials had 120,000 iterations. When the muta-
tion rate was allowed to evolve, the initial mutation ratesµ
were set to 0.3 andµµ was set to 0.5; when the mutation rate
was fixed in the NMM control,µ was set to 0.1. The ratio
of metabolic cost to the resource intake rate and to the re-
production threshhold was 10:11:50 in all conditions. Initial
populations always consisted of 1,000 agents. Reproduction
was always asexual and always produced exactly one new
agent. Population and mutation rate data were sampled ev-
ery 30 model updates. Resource patternB was 45×45 sites
for a total of 2,025 resource sites. PatternC consisted of 70
pairs of lines with 101 total resource sites for a total of 7,070
resource sites less any overlapping sites when line segments
cross. 12,500 resource sites were distributed in theRpattern
(less some overlap). See Figure 1.

Results
Figure 2 shows the population level response to the follow-
ing regular sequence of environmental catastrophes:R, B, C,
R, B, etc. The results from 80 runs were averaged, and the
data before the first catastrophe was discarded. The catas-
trophes occur sufficiently quickly that the population level
is never able to reach equilibrium in any environment. The
regular environmental catastrophes have a dramatic impact
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Figure 2: Dynamics of the population level (blue) plus and
minus the standard error (red), averaged across 80 runs. Ev-
ery 10,000 model updates the environment suffers an envi-
ronmental catastrophe.

on population level, truncating the population to less than
10% of its pre-catastrophe size, but the population recovers
as it adapts to its new environment. By comparison, the pop-
ulation bottleneck in the SE control is never even as small
as 50% of the population size (data not shown). Evidently,
when the population experiences a new instance of the same
kind of environment in the SE control, most can successfully
use the same genes in the new environment. This implies
that after a environmental catastrophe in the experimental
condition, the population cannot rely on genes it already has
but must adapt anew. Even if the population experienced that
same kind of environment earlier in its history, it remembers
little if anything about how to behave in that environment
since it has most recently been living in two very different
kinds of environments.

When the population adapts to a given environment and is
free from all catastrophes, the mutation rate evolves down to
an equilibrium value, which is slightly different in different
kinds of environments (highest inR, lowest inB, data not
shown). Figure 3 shows a very different kind of response to
environmental catastrophes. After each kind of catastrophe,
the mean mutation rate rises significantly, and the popula-
tion level starts to recover from the catastrophe. While the
population level is continuing to rise, after some time the
mean mutation rate then starts to fall and it continues to fall
when the next catastrophe strikes. This starts the same mean
mutation rate dynamics again. Evidently, the catastrophes
occur too quickly for the mutation rate to reach an equilib-
rium level.

Figure 4 shows the mean mutation recovery from the three
different kinds of environmental catastrophes. Note that
each kind of environment produces a characteristic muta-
tion rate dynamics, and that theR dynamics differs signifi-
cantly from the characteristicB andC dynamics, which are
quite similar but still distinguishable. Comparing the mu-

0 500 1000 1500 2000 2500 3000

0.0
5

0.0
6

0.0
7

0.0
8

0.0
9

0.1
0

environments: R B C R B C R B C

updates (x 30)

me
an

 m
uta

tio
n r

ate

Figure 3: Dynamics of the mean mutation rate (blue) plus
and minus the standard error (red), averaged across the same
runs as in Figure 2. Every 10,000 model updates the envi-
ronment suffers an environmental catastrophe.

tation rate dynamics in the PO control (green) shows that
the mutation rate response to environmental catastrophes is
not caused by the resulting population bottleneck alone. Fur-
thermore, the mutation rate dynamics in the SE control (data
not shown) is like that in the PO control, so the mutation rate
response to environmental catastrophe is not caused by ex-
periencing a new instance of the same kind of environment.
Rather, it is caused by experiencing a new kind of environ-
ment, even if that same kind of environment had been expe-
rienced at some point in the past.

Figure 5 shows how the population level responds to dif-
ferent kinds of environmental catastrophes. Note that differ-
ent kinds of environment produce characteristically different
kinds of population dynamics. Also note that in theR en-
vironment the population is adapting more quickly to later
R catastrophes (the thick line has lower slope than the thin
line). We see a different but related effect in theB environ-
ment (higher maximum population levels after experiencing
more catastrophes), and there is some evidence of the same
effect at the end of theC catastrophe response. In addition,
note that the maximum population level (blue) in theC en-
vironment is significantly higher than in the NMM control
(green), although we do not see the same effect in theRand
B environments. But note that the initial slope of the pop-
ulation curves in theR environment are significantly higher
than they are in the NMM control.

Discussion
The mutation rate dynamics seen in Figure 3 fits the hypoth-
esis that second-order evolution can fluidly balance evolu-
tionary memory and evolutionary novelty. The low popu-
lation level immediately after an environmental catastrophe
indicates that the population is not well adapted to its new
environment, so the balance shifts toward evolutionary nov-
elty. The observed rise in mutation rate achieves this. As the



0 100 200 300

0.05
0.06

0.07
0.08

0.09

R env

updates (x 30)

mea
n mu

 (blu
e), p

op−c
atas

troph
y co

ntrol
 (gre

en)

0 100 200 300

0.05
0.06

0.07
0.08

0.09

B env

updates (x 30)

popu
latio

n (bl
ue), 

no m
u co

ntrol
 (gre

en)

0 100 200 300

0.05
0.06

0.07
0.08

0.09

C env

updates (x 30)

popu
latio

n (bl
ue), 

no m
u co

ntrol
 (gre

en)

Figure 4: The response of mean mutation rate (blue) in three different kinds of environmental catastrophes, averaging data from
80 runs. The three different curves in a given environment correspond to the first (thick blue line), second (medium blue line),
and third (thin blue line) time that kind of environment was encountered in the series of catastrophic environmental changes.
This is compared with the mean mutation rate response in the same environment to 6 catastrophes in the PO control (green),
averaging 11 runs in theC environment, 11 in theB environment, and 7 in theRenvironment.

population level climbs, the population becomes adapted to
its new environment, so the balance shifts back toward evo-
lutionary memory. The observed fall in mutation rate brings
this about.

What is the mechanism by which the mutation rate
adapts? Having a higher or lower mutation rate does not af-
fect an individual’s chances of surviving or reproducing; its
benefit would be felt only by an individual’s offspring.This
might make the evolution of mutation rate look like some
kind of group selection, but there is another explanation of
the process. If an individual has the appropriate mutation
rate in a given context (high or low, as the case may be),
it is more likely that the individual’s offspring will survive
and flourish. So, if an individual’s fitness is measured also
by the survivorship and fecundity of its offspring, then hav-
ing the right mutation rate increases an individual’s fitness.
This view extends an individual’s fitness over time through
a lineage, and it is somewhat analogous to “inclusive fit-
ness” which extends an individual’s fitness over space to kin
(Hamilton, 1964).

The different characteristic mutation rate dynamics
elicited by different kinds of environmental catastrophes
shown in Figure 4 further indicates the fluidity of this bal-
ancing process. When and how the balance shifts depends
on the details of the environment, and it also depends on the
extent to which the population is adapted to that environ-
ment.

We would explain the characteristic mutation dynamics
in the different environments by reference to their different
local niche structure. The balance remains shifted towards
evolutionary novelty (higher mutation rates) longer inR than
in B andC becauseR contains a greater number of different
local niches that call for different local behavioral strategies,
so the adaptation process takes more time. By contrast, it is

relatively easy to find the local strategies needed inB andC
so the balance quickly tips back toward evolutionary mem-
ory. In addition, we would explain the slightly faster shift
back toward memory inB than inC by reference to the fact
that theB local environments are in one contiguous space
(the resource block) while theC local environments are dis-
tributed randomly across space, so it takes the agents longer
to physically explore all the niches.

The local niche structure in the different environments
also explains the characteristic population dynamics seen in
Figure 5. The population inR continues to adapt to new lo-
cal niches throughout its time in theR environment, so the
population is continually rising. In both theB andC en-
vironments the population eventually starts to saturate the
available niches, so the population starts to level off.

The fact that the population adapts to newRenvironments
better after it has experienced moreRcatastrophes is intrigu-
ing (left panel of Figure 4). This provides evidence for the
hypothesis that experiencing environmental catastrophes in-
creases a population’s ability to adapt to new environments,
a hypothesis suggested by the fossil record (Raup, 1986).
The way in which the final population level inB andC en-
vironments increases with the number of catastrophes expe-
rienced tends to further corroborate this hypothesis, as does
the fact that theC populations are higher than their NMM
controls. It should be noted, however, that the population
levels in theR andB environments are not higher than their
NMM controls; how to explain this is a subject of future
work.

Two addition topics for future work are (i) getting experi-
mental evidence about the robustness of the flexible balance
of evolutionary memory and novelty by studying a wider
range of models subject to a wider range of environmental
catastrophes, and (ii) constructing a quantitative theory of
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Figure 5: The response of the population level (blue) to three different kinds of environmental catastrophes, averaging data from
80 runs. This is compared with the response in the NMM control (green), averaging 13 runs. The three curves (blue and green)
in a given environment show the response to the first (thick line), second (medium line), and third (thin line) environmental
catastrophe of a given kind.

the flexible balance of evolutionary memory and novelty that
enables the mutation dynamics to be predicted, and that ex-
plains the connections of this phenomenon with other theo-
ries about mutation rate such as that concerning quasispecies
(Eigen and Schuster, 2001; Eigen et al., 1988).
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