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Abstract

We examine a simple form of the evolution of evolvability—the
evolution of mutation rates—in a simple model system. The system
is composed of many agents moving, reproducing, and dying in a two-
dimensional resource-limited world. We first examine various macro-
scopic quantities (three types of genetic diversity, a measure of pop-
ulation fitness, and a measure of evolutionary activity) as a function
of fixed mutation rates. The results suggest that (i) mutation rate
is a control parameter that governs a transition between two quali-
tatively different phases of evolution, an ordered phase characterized
by punctuated equilibria of diversity, and a disordered phase of char-
acterized by noisy fluctuations around an equilibrium diversity, and
(ii) the ability of evolution to create adaptive structure is maximized
when the mutation rate is just below the transition between these two
phases of evolution. We hypothesize that this transition occurs when
the demands for evolutionary memory and evolutionary novelty are
typically balanced. We next allow the mutation rate itself to evolve,
and we observe that evolving mutation rates adapt to values at this
transition. Furthermore, the mutation rates adapt up (or down) as
the evolutionary demands for novelty (or memory) increase, thus sup-
porting the balance hypothesis.
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1 Introduction

Evolvability—the capacity for evolution to create adaptations—has received
considerable attention recently in both the biological and evolutionary com-
putation communities. The practical benefit for evolutionary computation of
understanding and enhancing evolution’s adaptive power is obvious, but the
theoretical implications of evolvability are also significant. There is general
agreement that evolvability is crucial for understanding the orgin of complex
adaptations [9, 10, 21, 34, 23] as well as the process of open-ended evolution
[32, 26], a central open problem in artificial life [7, 8, 5]. In addition, Wagner
and Altenberg [1, 34] argue that evolvability can unify and explain a host
of seemingly related issues, including epistasis, genetic canalization, genetic
modularity, developmental constraints, developmental and morphological in-
tegration, and biological versatility.

Studies of evolvability center on understanding how it originates [21, 1, 34]
and how it evolves [33, 9, 10, 1, 34]. This paper treats the second issue.
Evolvability has been criticized on the grounds that it involves group se-
lection and it bestows a future rather than present benefit of individuals,
but previous discussions have thoroughly defended evolvability’s credentials
(33,9, 10, 1, 34, 23, 35, 11] so current research can focus on constructive tasks
rather than polemics. Previous accomplishments include verbal and biolog-
ical arguments for evolvability’s feasibility and centrality [9, 10, 23, 35, 11]
and on mathematical and computational demonstrations of the evolution
of evolvability in simple situations such as infinite populations with a fixed
fitness function. The present work takes the next step and considers the evo-
lution of evolvability in a finite population adapting to a dynamic endogenous
fitness function.

A system’s evolvability depends on its ability to produce adaptive phe-
notypic variation, and this hinges on both the extent to which the system’s
phenotype space contains adaptive variation and the ability of evolutionary
search to locate it. Two main factors control the effectiveness of the evo-
lutionary search process: the way in which genetic operators traverse geno-
type space, and the way that genotypes are phenotypically expressed (the



genotype-phenotype mapping). For evolutionary search to explore a suitable
variety of viable evolutionary pathways, genetic operators must generate suf-
ficient “novelty.” At the same time, since evolutionary adaptations are built
through successive improvements, the evolutionary process must “remem-
ber” incremental improvements. Genetic operators like mutation rate simul-
taneously affect the demands for both evolutionary novelty and memory, so
evolvability requires genetic operators to balance these competing demands
successfully. (In the evolutionary computation literature this is known as the
tension between “exploration” and “exploitation” [18].) Furthermore, the ap-
propriate balance between evolutionary novelty and memory can continually
change as evolution progresses, so evolvability requires genetic mechanisms
to adjust the balance flexibly. Thus, understanding evolvability involves ad-
dressing the following questions:

e Where are evolutionary novelty and memory balanced?
e How does this balance shift during the course of evolution?

e Can the genetic mechanisms that structure evolution flexibly adapt to
this shifting balance?

A simple way to address these questions is to let second-order evolution con-
trol the genetic mechanisms that structure first-order evolution—thus study-
ing the evolution of evolvability. And the simplest genetic mechanism that
structures the variety of evolutionary alternatives is the mutation rate.

Optimal and evolving mutation rates are discussed in both the biological
and evolutionary computation literatures. A fundamental open question in
evolutionary biology is whether mutation rates are as low as physically pos-
sible or whether they are at an optimal positive value [25]. The premise that
mutations are generally harmful has been used to argue that natural selection
of mutation rates can only go in one possible direction: toward zero (e.g.,
see [36]). On the other hand, mathematical analyses of certain one-locus,
two-allele models with a separate modifier (mutation rate) locus have shown
that evolution yields optimal, positive mutation rates under some sets of con-
ditions (see, e.g., [17, 16, 19, 24]). But it remains unclear what, if anything,
such results might reveal about the evolution of mutation rates in a finite
population with many loci and many alleles per loci, and when the context
of evolution continually changes and thus the fitness function unpredictably
varies.



The discussion of evolving mutation rates in the evolutionary computa-
tion literature mainly focuses on the issue of automated control of evolution,
in the context of efforts to minimize the time required to solve function
optimization problems. Preliminary efforts were devoted to proving that au-
tomated control is feasible (e.g., [15, 2]), and current research in this area
is proceeding along several fronts [12]. Although the potential technological
value of this work is obvious, it is unclear how, if at all, it will illuminate
the theoretical questions about the evolution of evolvability. In particular,
all the above-cited work presumes that evolution is driven by a fixed and
externally-specified fitness function, whereas the most interesting theoreti-
cal issues concern evolution with implicitly-specified fitness functions which
continually change in the course of evolution [30]. These theoretical concerns
have been addressed more directly in a study of evolving mutation rates in
a host—parasite model [20], but explicit fitness functions still play some role
in that work.

We aim to address some of the fundamental theoretical questions con-
cerning the evolution of evolvability in the context of adaptation of mutation
rates. Although simple, our model has rich evolutionary potential, with a
finite population containing many loci and many alleles per loci, and an im-
plicit fitness function that can continually change as the population evolves.
After describing the model in section 2, we investigate how the model be-
haves as a function of different fized mutation rates in section 3, by observing
genetic diversity (section 3.1), fitness (section 3.2), and evolutionary activity
(section 3.3). Those observations suggest that evolution’s ability to create
useful adaptive structure is maximized at transitional mutation rates that
separate two phases of evolution characterized by genetic order and genetic
disorder. We hypothesize (section 3.4) that these mutation rates are critical
for the system’s evolvability because they balance the competing demands
for evolutionary novelty and memory. When we let the mutation rates evolve
in section 4, we see that they evolve to the critical values at which evolvabil-
ity is maximized, so we test the hypothesis that this adaptation of mutation
rates is driven by the balance between novelty and memory by engineering
circumstances that change the relative value of novelty and memory.



2 A Simple Model of Sensorimotor Evolution

Our evolutionary system is composed of many agents that could be called
organisms, on analogy with biological systems. It has been used in various
studies of the evolution of sensory-motor functionality [30, 6, 4, 3, 7, 31].
The system consists of many agents that exist together in an environment,
in this case a toroidal lattice. The lattice has a real-valued field defined on
it, £(x), which may be interpreted as an resource field. The resource field is
driven by periodically adding resources (from an external source), £+4!(x) =
Ex)+ Az — &), where A is a function over the plane and £ is a position in
the plane. The agents are constantly gathering resources, extracting them at
their location in the field and then expending them through their behavior.
Thus, the agents function as the system’s resource sinks, and the whole
system is dissipative.

In analogy with biological systems, the dynamics of the population as
a whole is comprised of all the birth-life-death cycles of the agents. Births
occurs when agents accumulate enough resources to reproduce (see below),
deaths occur when agents run out of resources, and the lives of agents consist
of their interactions the environment. We label each agent with the index 1,
let I* be the set of agents existing at ¢. Time is discrete. One unit of time ¢
is marked by each agent interacting with the environment.

During its lifetime, each agent exchanges information with the environ-
ment by sensing and affecting the resource field in its local neighborhood.
We assume that there is a discrete set of different possible sensory states,
s € S = {s1,...,5ns}- The agents exchange no information with each other
directly (although this would be an easy generalization). Each agent (labeled
with the index 7) has certain information associated with it: (i) a current lo-
cation, z¢, (ii) a current sensory state, s, (iii) a current reservoir of resources,
E!, and (iv) a sensory-motor map, ¢;, that yields a behavior given sensory
information as input. In this model, an agent’s behavior is a vector b denot-
ing the agent’s movement in the environment, z¢ — z/*! = 2!+ b!; in general,
bt = pi(s!) (an exception is explained below). We assume that b! is a mem-
ber of a discrete set of different possible behaviors, gf € B= {51, ce 5NB}.
(Another easy generalization would be to include other kinds of possible be-
haviors.) Each behavior causes a change in the agent’s supply of resources:
an augmentation from extracting resources at the agent’s new location, a



constant-sized reduction, and a reduction proportional to the distance moved,
E! — Eff' = Ef + (M (z4*Y)) — 8 — y(bt). Here, a(z) may be interpreted
as the resource extraction function, § as the constant metabolic cost of sur-
viving, and y(z) as a function for the variable metabolic cost of a specific
behavior.

The sensory-motor map (; operating on a sensory input si has a par-
ticularly simple form because the sensory input is discrete. Since s! €
{s1,.-.,8ng}, we may identify the function ¢; with its graph, a set of Ng
behavior values, {¢;s}. Pursuing the biological analogy, we will consider
the sensory-motor strategy elements {¢;,} as i’s genome, with Ng loci, and
each particular element b = ;s as the trait (or allele) at the s locus of i’s
genome.

Reproduction occurs when an agent’s resource supply exceeds a threshold,
E,.. The parent splits its resources with its child, and the child inherits its
parent’s strategy elements {;s}, except for mutations. The genome of each
agent ¢ contains one special gene, u;,—the rate at which ¢’s strategy elements
mutate when ¢ reproduces, i.e., the probability that a strategy element of ¢’s
children is chosen (with equal probability) from the set of possible behaviors
B. We also introduce a meta-mutation rate parameter, p,—the probability
that 4’s children’s mutation-rate gene is chosen (with equal probability) from
the interval [y; — €, pt; + €]. The value of y, is fixed during the course of a
given simulation, and the value of y; is fixed during the course of i’s lifetime
(as are all of i’s genes).

In order to investigate how natural selection affects the evolutionary dy-
namics of behavioral strategies and mutation rates, we introduce a behavioral
noise parameter, By, defined as the probability that gf is chosen at random
from B rather than determined by ¢;(st). If By = 1, then agents survive and
reproduce differentially, and children inherit their parents’ strategy elements
(except for mutations), but the inherited strategies {¢;s} reflect only random
genetic drift.

This model provides a simple setting for empirical study of the evolu-
tion of evolvability. Agents’ immediate environments produce sensory states,
which then trigger actions by means of the agents’ sensory-motor maps, and
these actions subsequently change the environment. In this way, the agents’
sensory-motor maps influence the conditions of their own evolution. Since the
agents’ survival and reproduction depends directly on their ability to contin-



ually find resources in their environment, the implicit fitness functions in this
model are constantly buffeted by the contingencies of natural selection and,
thus, unpredictably change. This first-order evolution is structured by the
sensory-motor maps actually compared and tested by natural selection. One
especially simple mechanism that regulates the variety of maps available for
evolutionary exploration is the mutation rate; the higher the mutation rates,
the greater the variety. Thus, by allowing mutation-rate genes to evolve, we
can study second-order evolution of evolvability.

Appendix A contains the values of all parameters for the empirical results
reported here.

3 Phases of Evolution

We first studied the present model without evolving mutation rates. In this
case, a global mutation parameter p is applied to all agents, and reproduc-
tion copies a parent’s strategy elements {¢;s} to its child with probability
i of being chosen randomly from the set of possible strategy elements B.
We measured several “macroscopic” quantities, where macroscopic means an
average is performed over all agents or all sites in the world:

Diversity. Three different versions of diversity are measured, each of which
is a different variance of genetic distributions in the population of
agents.

Fitness. Implicitly, the goal of agents is to accumulate resources. Thus, the
overall fitness of the population is inversely reflected by the amount of
unconsumed resource in the world.

Evolutionary Activity. This quantity is derived from usage statistics, which
reflect how well natural selection has tested the traits that persist in
the population. If components are well-tested on an evolutionary time
scale, evolutionary activity is positive.

These macrovariables are each defined in the following subsections. All of
these quantities are measured as a function of mutation rate, which we set
as a fixed parameter of the system for a given experimental run over which
a measurement is made.



3.1 Diversity

We define three types of diversity for a population of agents. Recall that
b = ¢, is the s allele of the i™ agent, which is a two dimensional vector
representing the behavior of ¢ when stimulated by s. ||z|| is the two dimen-
sional Euclidean norm, i.e., length, of the vector z.

Within-gene diversity. The variance of each allele value at a given locus,
averaged over all loci:

Wt = (Var,(gp,s))t
2
= - 1
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where (i)t = 1/Np¢ > ,cr @is is the average at t over agents of the
value of the s allele.

Between-gene diversity. The variance of the average allele values at each
locus:

B' = Var8(<9015>t)
= —ZH Pis)i — (Pis)is|l (2)
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where (@)t = 1/(NpNs) et Yses is 18 the average at ¢ of all the
alleles at all the loci of all the agents.

Total diversity. The variance of each allele value at each locus:
D' = Varfs(gp,s)
_ B 2
NIth Z Z llpis — (wis zs” (3)
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An easy calculation shows that D! = W' + B,

The most notable aspect of the empirically observed diversity dynamics
is that, as mutation rate is varied, there is a transition from punctuated
equilibria dynamics to random-looking fluctuations. Typical diversity time
series at different mutation rates are shown in Figure 1 without selection and



in Figure 2 with selection. We see the same pattern in both cases: At very low
mutation rates diversity exhibits punctuated equilibrium dynamics, and at
very high mutation rates diversity dynamics are random-looking fluctuations.
Intermediate mutation rates show more complicated fluctuations. (Further
details about these different diversity dynamics are found elsewhere [4, 3].)
Furthermore, total diversity D is dominated by within-gene diversity W at
low mutation rates, and by between-gene diversity at high mutation rates
B, as the correlations among the diversity dynamics shows (Figure 3). To
further resolve the relationship among the different diversity components, we
define:

Ct =4W'B? 4

BCT W

The quantity C* reflects the extent to which the total diversity D! is not
dominated by either of its components W* or B'. (The factor of 4 scales
C" between 0 and 1.) The transition between the two phases of evolution
is evident in the time series of C* (Figure 4). Examining how the time
average C = (C'); depends on mutation rate (Figure 5) shows that the
transition between phases occurs when the mutation rate is in the range
1072 < p < 1072. The transition occurs both when selection is acting and
when it is absent, and it seems sharper without selection.

3.2 Fitness

The fact that our model is resource-driven allows us to consider the overall
fitness of the population in terms of its efficiency at extracting resources
from their environment. A crude measure of this efficiency is the residual
resource in the environment &', .., i.e., the resource that is not contained in
the agents. Using the notation described in section 2,

E:esid = Z 5t(‘r) (5)

In Figure 6 we show the time average Eresia = (€ 5iq)¢ Of Tesidual resource
as a function of mutation rate. Note that the no selection case shows &,¢sq
to be relatively constant; this is expected, as in this case no evolutionary
learning is taking place. Note also that when selection is present population
performance is maximized at mutation values around the transition, 1073 <
u <1072



3.3 Evolutionary Activity

The computation of evolutionary activity is based on measuring the adaptive
significance displayed by each trait (where, in this study, each strategy entry
b= ;5 is considered a trait for the 7" agent). We consider a trait’s adaptive
significance to be the positive contribution it has made to the ongoing exis-
tence of its host agent (further discussion of this suggestion occurs elsewhere
[6, 7, 8, 31].) We judge such a contribution to be indicated by the degree
to which the trait has been well tested by natural selection, with the trait
persisting through repeated use and, in particular, accumulating more usage
than would be expected a priori. Measuring a trait’s adaptive significance,
then, requires distinguishing its actual usage from its usage weighted by the
extent to which it exceeds a priori expectations.

In order to measure “raw” usage of the various traits, we simply assign
a usage variable uf, to each trait b = @;, of each agent. The usage, ul,, is
initially zero when an element enters the population through mutation (or
at the very beginning of the simulation), and is incremented every time the
element is actually used, i.e., when the agent receives the sensory input s
and thus performs the behavior b= Vis:

ultt = ul, 4+ 6(sH — s), (6)

where §(x) is the Dirac delta function, which is one if x = 0 and zero oth-
erwise. We add the proviso that if By > 0 and behavioral noise prevents
@i(siT1) from determing b"', then the above rule for usage incrementing
does not apply and uf' = ul,. Note that if By = 1 then uf, = 0 for all i, s,
and .

We must expect some raw usage to be insignificant, however, i.e., to be
usage that accrues by random triggering of a trait even though the trait lacks
selective value. To eliminate the contribution of this insignificant usage, we
modify the above algorithm and weight raw usage increments by a function
wW:

att = a4+ W (st — s). (7)
W can depend on a variety of factors, such as the state of the agent, the
state of the trait being activated, and the mutation rate pu.

For the experiments reported here, W depends on the age A;; of the
s'™ trait of the i agent, and on the drift duration, t,. The drift duration

10



t, is computed by observing age distributions of traits for the no-adaptive-
evolution case (By = 1); these distributions have an exponential fall-off that
depends on the mutation rate p. The drift duration is defined as the age at
which the frequency of observed ages goes to zero for the population sizes of
the current experiment. Then we set W = 0(A;; —t,), where the age A;s of
the s trait of the 7" agent is defined as the number of times steps since ;,
was originally introduced by mutation at the s** locus in i’s genetic lineage,
and @(z) is the Heaviside theta function, zero for z < 0 and one otherwise.
Simpler weighting functions have also been used [6], and other schemes for
screening off insignificant usage have been pursued in related work [7, 8, 31].
Evolutionary activity is simply the sum of the weighted usage:

At =3"Nal (8)
i€lt s€S

Figure 7 shows how the time average A = (A'); of evolutionary activity
depends on mutation rate. We see that the activity appears to follow the
law A o« p%, with a & —2.3 +0.3. Limitations of computational resources
currently prevent us from exploring how activity varies at lower mutation
rates (the drift duration becomes prohibitively long). Nevertheless, over the
mutation spectrum that we can observe, we see that evolutionary activity
steadily increases as the mutation rate approaches the transitional region
1073 < <1072

3.4 Balancing Evolutionary Novelty and Memory

There are three main observations to be gleaned from our measurements of
diversity, fitness, and evolutionary activity. First, diversity measurements
indicate that there is a transition with distinctly different diversity dynamics
for low mutation rates and high mutation rates. So far, because of the lack
of measurement precision, it is not clear how sharp the transition is; there
might even be a range of mutation values over which the transition takes
place. Second, measurement of residual resource as a function of mutation
rate shows a minimum that coincides with the transition region. Third,
evolutionary activity increases as the mutation rate approaches the transition
region from above. The basic picture painted by these results has two parts:

e The mutation rate is governs a transition between two qualitatively
different phases of evolutionary dynamics. When the mutation rate

11



is significantly below the phase transition, the whole gene pool tends
to remain frozen at a given strategy; the gene pool has a tremendous
amount of redundancy and is highly ordered. When the mutation rate
is significantly above the phase transition, the gene pool tends to be
a continually changing plethora of randomly related strategies; it is
highly disordered. The phase transition itself occurs in a characteristic
mutation rate region.

e The ability of evolution to create useful adaptive structure is maximized
at or just below the mutation rates that transition into the genetically
disordered systems.

The upshot of these two effects is that evolutionary adaptation tends to be
maximized when the gene pool is “at the edge of genetic disorder.” These
results are quite reminiscent of the error threshold from molecular evolution—
the critical mutation rate at which evolutionary adaptations are destroyed
more quickly than natural selection can produce them [13, 14]. It is still
an open question to what extent our results might be a reflection of an
error threshold, for our results are obtained in a significantly more compli-
cated context than that in which the error threshold has been demonstrated,
and our bifurcation of diversity dynamics occurs whether or not selection is
present.

We suggest that these results can be explained by considering the compet-
ing demands for evolutionary “novelty” and “memory” (also known in the
evolutionary computation literature as the tension between “exploration”
and “exploitation”). Evolution’s ability to build adaptive structure depends
on the accessibility of viable evolutionary alternatives; the right range of
accessible alternatives can make evolution easy, while too many or too few
can make adaptation difficult or even impossible. In the present model,
the population can evolve better sensory-motor strategies only if it can test
enough novel strategies (its need for evolutionary “novelty”). At the same
time, the populations sensory-motor strategies can adapt to a given environ-
ment only if strategies that prove beneficial can persist in the gene pool (its
need for evolutionary “memory”). The mutation rate simultaneously affects
both. The lower the mutation rate, the greater the number of genetic strate-
gies remembered from parents; the higher the mutation rate, the greater
the number of novel genetic strategies introduced with children. Too much
mutation (not enough memory) will continually flood the population with

12



new random strategies; too little mutation (not enough novelty) will tend to
lock the population at arbitrary strategies. Successful adaptive evolution re-
quires a mutation rate suitably intermediate between these extremes, where
the competing demands for memory and novelty are suitably balanced. Our
hypothesis is that mutation rates around the transition optimally balance
the competing evolutionary demands for novelty (high mutation) and mem-
ory (low mutation).! The balance between evolutionary novelty and memory
that is critical for evolvability is evidently “at the edge of genetic disorder.”

4 Evolution of Mutation Rates

The previous results show that evolvability in our model system is greatest
when mutation rates are in the range 1072 < y < 1072, This naturally raises
the question whether second-order meta-evolution can adapt the system so
that its mutation rate is in this critical region. We pursued this question by
extensively simulating evolving mutation rates, holding all model parameters
constant except for systematically varying the meta-mutation rate, 1, and
switching adaptive evolution on and off (By = 0 and By = 1). In the initial
population sensory-motor genes were assigned randomly and initial mutation-
rate genes were either assigned randomly or all set to an arbitrary value. We
then observed various “macroscopic” properties of the model, including the
distribution of mutation rates,

M () = 0k — ) (9)

iclt

Figure 8 shows that, as one could expect, when the agents’ sensory-motor
genes merely drift (B, = 1), the mutation distribution drifts up and down,
with the width of the distribution and the rate of change being proportional
to p,. (Note that M'(u) does not spread out indefinitely because the pop-
ulation is continually truncated due to the random contingencies of finding
resources.) On the other hand, when adaptive evolution happens (By = 0),
the mutation distribution eventually becomes clustered at low mutation rates

Tf our transition between genetic order and disorder is a manifestation of the er-
ror threshold, then our results provide independent evidence to support the argument of
Ochoa et al. [28] that the error threshold explains optimal mutation rates in evolutionary
algorithms.
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(Figure 9). As one can see, the width of the distribution and the rate at which
the distribution falls are typically proportional to p,, which is to be expected.

Figure 10 presents a range of data from a typical simulation with adap-
tation of sensory-motor and mutation-rate genes. When we resolve the low
end of the mutation distribution in exponentially-smaller-sized bins, we can
clearly see second-order evolution pushing the bulk of the mutation distribu-
tion into the bin (third from the top) collecting mutation rates in the range
1073 < p; < 1072, which exactly corresponds to the previously observed tran-
sition. Population mean mutation rates corroborate this conclusion. These
effects are robust across all kinds of initial conditions, even those which are
so extreme as to effectively prevent adaptive evolution.

In addition, Figure 10 shows a marked increase in population fitness (i.e.,
decrease in residual resource) corresponding to the drop in mean mutation
rate—clear evidence that the mutation rate drop is associated with increasing
adaptation of sensory-motor maps. Note that this fitness increase is not
evidently associated with a marked increase in population level; rather, the
agents are evidently becoming much more efficient at extracting available
resources from their environment.

These results further the case for the evolutionary significance of the
transition. More important, we now have present clear evidence that second-
order evolution can adapt mutation rates to the transition. In this sense,
effective first-order evolution can emerge from second-order evolution, i.e.,
evolvability can evolve.

If we combine this conclusion with our earlier hypothesis that transitional
mutation rates optimally balance the competing demands for novelty and
memory, we would predict that the mutation distribution can be raised tem-
porally by suddenly increasing the demands for evolutionary novelty. To test
this hypothesis, we occasionally externally perturbed the model after first-
and second-order evolution had substantially progressed, forcing evolution-
ary adaptation to start from scratch. For example, one kind of perturbation
we employed was to randomize each agents’ sensory-motor genes but leave
their mutation-rate genes untouched.

These perturbation data confirm our prediction. As soon as the exter-
nal perturbation shifts the balance toward the need for more evolutionary
novelty, we observe the striking sequence of events illustrated in Figure 11:
(a) the residual resource in the environment sharply rises, showing that the
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population fitness has precipitously dropped;? (b) immediately after the fit-
ness drop the mean mutation rate dramatically rises as the mutation rate
distribution shifts upward; (c) by the time that the mean mutation rate has
risen to its highest point the drop in residual resource level shows that the
populations fitness has substantially improved, so the balance shifts toward
the need for more evolutionary memory; (d) the fitness levels and mutation
rates eventually return to their previous equilibrium levels. As Figure 11
illustrates, population level fluctuations play no evident role in these effects.

These results show the mutation rate distribution shifting up and down
just as the balance hypothesis predicts. A change in the context for evolution
can increase the need for rapid exploration of a wide variety of sensory-
motor strategies and thus dramatically shift the balance toward the need for
novelty. Then, subsequent sensory-motor evolution can reshape the context
for evolution in such a way that the balance shifts back toward the need for
memory.

The underlying regularity behind these results is that mutation rates
evolve in such a way that evolutionary novelty and memory remain suitably
balanced as required for maximal evolvability. The balance point is typically
at “the edge of genetic disorder,” but if the contingencies of evolution shift
the point of balance elsewhere then the mutation rates adapt appropriately.?

5 Conclusion

Evolvability requires that the competing demands for evolutionary novelty
and memory are suitably balanced. Our investigation of a simple evolution-
ary model with finite population and endogenous fitness function suggests
that this balance point is located along the mutation spectrum at a transi-
tion separating two phases of evolution: genetic order and genetic disorder.

2Notice that the residual resource levels in this simulation are significantly lower than
those in Figure 10. This is apparently due to the fact that the simulation shown in
Figure 11 used a significantly smaller genome (Ng = 32 vs. Ng = 1024). Evidently, on
these time scales at certain regions of parameter space, fitness can become significantly
higher if the task of evolutionary adaptation is simplified through smaller genomes. The
adaptation of mutation rates after perturbation happened for all size genomes studied.

3The similarity between this result and the famous—and controversial—claims about
“adaptation to the edge of chaos” [29, 22, 27] is obvious, but it is an open question whether
this similarity is more than superficial.
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Furthermore, when we allow the mutation rates in this model to themselves
adapt, the second-order evolution adapts the mutation rates as the demands
for novelty and memory unpredictably shift. We thus have a concrete illus-
tration of how evolution automatically and flexibly tunes the genetic mech-
anisms as the requirements for evolvability change.
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A Parameter Values for the Simulations

The world has 128 sites on each side, and periodic boundary conditions.
Individuals are updated sequentially, in an arbitrary order; no effort is made
for parallel updating of all agents. A produces a pyramidal energy pile; A(&)
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has a peak of 255 at £ and falls linearly to 0 at a distance of 8 sites from &,
where £ is chosen at random from the world sites. Each of the four nearest
neighbors and the current site produces two bits of sensory information,
yielding 10 bits total, or Ng = 1024. bis a displacement from zero to fifteen
steps in one of the eight compass directions, so Np = 128. «(&(x)) is a
function returning all of £(x) up to a threshold &,, = 100, § = 20, and 7(5)
is a function returning the magnitude of b. E, = 500. In the evolution of
mutation experiment, the interval from which new mutation rates are chosen

is truncated at O or 1 if p —e <0 or y+ € > 1; € = .0025.
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Diversity time-series
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Figure 1: Time series of W, B!, and D! for three different mutation rates,
illustrating a transition in diversity dynamics. Above: p = 3 x 1075. Middle:
i = 3 x 1072, Below: pu = 1.0 These measurements were made without
adaptive evolution (B = 1).
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Diversity time-series (with selection)
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Figure 2: Time series of Wt B!, and D! for three different mutation rates,
as in the previous figure, except that adaptive evolution operates (By = 0).
The same transition in diversity dynamics is present. Above: u =3 x 1072,
Middle: g =3 x 1073, Below: pu = 1.0
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Diversity correlations
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Figure 3: The correlations among the diversity components: Corr(W,B)
[solid line], Corr(W,D) [little dashes|, Corr(B,D) [large dashes], where W =
(W', B = (B');, and D = (D');. Note that at mutation rates below the
transition D is well correlated with B, and at mutation rates above the
transition D is well correlated with W. Adaptive evolution is absent in these
data (By = 1). Qualitatively similar results occur when adaptive evolution
occurs (By = 0).
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in the changes in these dynamics. Qualitatively similar results occur when

adaptive evolution occurs (By = 0).
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Figure 8: Dynamics of mutation rate distribution, M*(u), without adaptive
evolution (By = 1), at two different meta-mutation rates, for 10° time steps.
Time increases to the right. The y-axis depicts 500 equal-sized bins, ranging
from 1.0 < p; < 0.998 at the top to 0.002 < u; < 0.0 at the bottom. The
gray-scale indicates a bin’s frequency in the population (darker for greater
frequency). Above: p, = 1.0. Below: u, = 0.33.
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Figure 9: Dynamics of mutation rate distribution, M*(u), exactly as in the
previous figure, but with adaptive evolution (B, = 0). Above: p, = 1.0.
Below: 1, = 0.33.
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Figure 10: Time series of the mutation distribution M*(u) (with two forms of
binning), population mean mutation rate (u;);cr: (note the log-normal scale),
and residual resource, from a typical simulation with adapting sensory-motor
maps and mutation rates. 10° time steps are shown, with data sampled
every 100 time steps; the mutation distribution of the initial population is
flat across the mutation spectrum; Ng=1024; yu, =0.66. M"(u) above with
500 equal-sized bins, below with ten exponentially-smaller-sized bins (from
top, 10°<p; <1071, 1071 < p; <1072 ete.).
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Figure 11: Time series of the mutation distribution M*(u) (with ten
exponentially-smaller-sized bins, 10° < p; < 1071, 107! < p; < 1072, etc.),
population mean mutation rate (u;)ic;t (note the log-normal scale), resid-
ual resource, and population level, from a typical simulation with adapting
sensory-motor maps and mutation rates. 10° time steps are shown, with
data sampled every 1000 time steps; the mutation distribution in the initial
population is flat across the mutation spectrum; Ng = 32; u, = 0.66. At
time step 333334 all agents’ sensory-motor genes—but not those governing
mutation-rates—are randomized. 37



