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Abstract. We introduce a new variant of the dissipative particle dynamics 
(DPD) model that includes the possibility of dynamically forming and breaking 
strong bonds. The emergent reaction kinetics may then interact with self-
assembly processes. We observe that self-assembled amphiphilic aggregations 
such as micelles have a catalytic effect on chemical reaction networks, chang-
ing both equilibrium concentrations and reaction frequencies. These simulation 
results are in accordance with experimental results on the so-called “concentra-
tion effect.” 
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1   Introduction 

We seek to understand the properties of networks of chemical reactions that implicitly 
interact with self-assembled amphiphilic structures1. Chemical reaction networks as 
well as self-assembled amphiphilic structures2 are complex systems. Real complex 
systems in nature often involve the integration of sub-groups of complex systems. The 
system we study here is one such example. It couples chemical reaction networks 
with self-assembling amphiphilic structures. 

There is ample experimental evidence that such coupled networks exhibit interest-
ing behavior, in particular, that self-assembled amphiphilic structures affect certain 
chemical reactions. Micelles and other self-assembled structures are known to pro-
foundly increase the rates of certain reactions [11]. The core mechanism is simply that 

                                                             
1 This is an extended version of a paper with the same title to appear in: Advances in Artificial 

Life, 9th European Conference ECAL 2007. Lecture notes in Artificial Intelligence 2801, 
Berlin, Springer (2007). 

2 Various parameters such as temperature, pH, and critical threshold concentration influence the 
type (or “phase”) of structures that self-assemble from the amphiphiles. In addition to famil-
iar amphiphiles such as fatty acids and phospholipids, other materials self-assemble includ-
ing biopolymers like oligopeptides [12]. 
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the supramolecular structures increase the local concentration of the reagents, just as 
some catalysts do, and thus accelerate reaction rates. For example, hydrophobic rea-
gents will spontaneously concentrate inside micelles, leading to reaction rate accelera-
tion. Sometimes called “micellar catalysis” [24, 27], this catalytic concentration effect 
has been observed in a variety of chemical systems that involve micelles and reverse 
micelles [28, 35]. For example, the presence of micelles increases the rate of RNA 
self-cleavage reactions 100-fold [27]. Many kinds of reactions are catalyzed by mi-
celles, such as redox [21] and hydrolysis reactions [7]. Micellar catalysis is very gen-
eral and happens with many kinds of self-assembling materials besides amphiphiles. 
Examples include polymerized and polymeric amphiphiles [24] and dendrimers [7, 
23]. Dendrimers are spherical macromolecules that are somewhat similar to micelles, 
except that while micelles are rather fluid aggregations composed of many am-
phiphilic molecules held together by the hydrophobic effect, dendrimers are single 
static structures tightly held together by covalent bonds.  

Our goal here is to model and study this kind of catalysis by self-assembled struc-
tures in emergent reaction networks, where the dynamics of the network are not ex-
plicitly specified in the rules governing the system. Historically, biochemical reaction 
networks have been modeled using several approaches. Early approaches used net-
works whose nodes represented chemical species, and lines between nodes repre-
sented reactions. Autocatalytic reaction networks also included lines from catalyst 
nodes to reaction lines, to represent catalyzed reactions [8, 16]. Other reaction net-
works have been modeled in immunology: idiotypic networks [9] and more recently, 
cytokine networks [18]. The chemistry in many of the early network models was ab-
stract. The models intentionally sought to escape from the details of real chemical in-
teractions, for two reasons: capturing the details of real chemical interactions is diffi-
cult and immediately begs the question of what level of detail is to be captured, and 
the results sought from the model were expected (hoped) to be relatively independent 
from details of the individual chemical reactions; for large networks, the bulk proper-
ties of the network (connectivity, scaling, etc.) were hoped to be independent of the 
details. 

More recently, the experimental understanding of reaction networks has been in-
creasing substantially, and there has been an increased awareness of the need to 
model details of real chemical reactions in order to define and understand biochemical 
functionality in a given context, e.g., for a cell [29] and for reaction networks with re-
action properties based on quantum mechanics [2, 3, 4]. Simultaneously, there has 
been a growing awareness that chemical reactions cannot by themselves provide a 
complete picture of biochemical functionality. Structural properties of amphiphilic as-
semblies must be added to the purely chemical picture.  A very rich example is that of 
lipid structures. These structures are particularly interesting because they have com-
plex phase diagrams, with phase transitions between several different phases, e.g., 
lipid solution, micelles, and vesicles, because the transitions between these phases 
may be catalyzed by the presence of other biopolymers, and because some of the 
phases may themselves have catalytic properties, e.g., for template-directed replica-
tion [19, 20, 26]. Finely tuned chemical control of phase transitions in biochemical 
gels (including more complex gels than simple lipid structures) has been proposed as 
a general framework for cellular function [25]. 
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In this paper we introduce a model of interacting microscopic particles that com-
bines relatively simple chemical reaction properties with properties deriving from 
self-assembly processes that can strongly affect the chemical reactions. Interactions 
between the particles determine both the chemistry and the self-assembly. The macro-
scopic result of a model simulation is the emergence of a network of chemical reac-
tions that may interact with the self-assembled structures.  

2   The model 

Our model of chemical reaction systems is based on the well-studied dissipative parti-
cle dynamics (DPD) framework [13, 14, 22, 30, 31, 32]. The DPD framework is a 
mesoscopic system simulator meant to bridge the gap between molecular dynamics 
(MD) models and continuous substance models. The extreme computational demands 
of MD models make them appropriate only for simulating small systems for brief in-
tervals—orders of magnitude smaller than the time and length scales of interest here. 
Continuous substance models are inappropriate as models of molecular scale systems 
in which the discrete nature of particles impacts the dynamics of the system. In DPD, 
the equations of motion are second order, with explicit conservation of momentum, in 
contrast to Langevin or Brownian dynamics. Solvent molecules may be represented 
explicitly, but random and dissipative forces are included in the dynamics to compen-
sate for the dynamical effects of replacing the hard short-range potentials of MD by 
softer potentials in DPD simulations. This procedure allows a major acceleration of 
the simulation compared with MD. 

Our work is based on a DPD implementation of a model of monomers and poly-
mers in water. Some elements in the model represent bulk water (one model element 
representing many molecules). Other elements could represent hydrophilic or hydro-
phobic monomers. In some cases those elements are connected by explicit bonds, 
which are represented as springs that freely rotate about their ends. These complexes 
explicitly but very abstractly represent the three-dimensional structure of polymers. 
For example, amphiphilic molecules can be created by explicitly bonding a hydro-
philic monomer “head” onto a hydrophobic “tail” (chain of hydrophobic monomers).  

All the elements move in a two- or three-dimensional continuous space, according 
to the influences of four forces:  
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A weak, conservative force 
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Fij
Cgoverns symmetric pairwise repulsion and attrac-

tion of elements. A dissipative force 
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D  causes the kinetic energy of elements to 

move towards equilibrium with other elements in the region. A random force 

! 

Fij
R  im-

parts kinetic energy to the elements in arbitrary directions. The strength of the random 
force is calibrated to balance the lessening of system energy due to the dissipative 
force, maintaining the temperature at a fixed average value, with fluctuations about 
this average depending on the system size. All of these forces are considered to oper-
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ate only within a certain local cutoff radius r
0

. The cutoff radius is a primary mecha-
nism for improving model computational efficiency. In all the simulations presented 
here, the cutoff radius has unit length, r

0
= 1. Elements that are strongly bonded to 

other elements are also influenced by the movement of those elements to which they 
are bonded, through

! 

Fij
B , the spring force that connects them.  

We will now further specify DPD’s two distinct types of particle interaction. The 
first type of particle interaction is referred to as “strong bonds,” which represent cova-
lent chemical bonds. All strong bonds in DPD are specified initially, and subsequently 
cannot form or break. Strong bonds are modeled by a Hookian law spring: 
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ij
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= k rij " l( ) , 

 
 where

! 

rij  is the Euclidean distance between the particles, k is the spring constant 
specifying the strength of the bond, which in our simulations has the same value for 
all strong bonds, and l is the relaxed bond length. The spring constant is set to k = 100 
and the spring distance is set to l = 0.01 for our simulations. For simplicity, the DPD 
chemical bonds discussed here have the restriction that each element can have at most 
two strong bonds at a given time, allowing the formation of polymers, but not more 
complex chemical structures.  

The second type of particle interaction are weak, conservative forces, which repre-
sent associations resulting from Van der Waals forces or hydrogen bonds, for exam-
ple. Weak interactions are typically modeled by the Lennard-Jones potential:  
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 and specific to the types of I and J, or by various linear approxima-
tions. In the work presented here, we use a linear function for the conservative force, 
following [5]: 
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Different parameter values are possible for interactions between different particle 

types. Orientation of individual elements also plays no role, as the forces affecting 
DPD elements are radially symmetric. The pairing that occurs is a cooperative phe-
nomenon, as are structures that self-assemble as a result of these forces.  

The dissipative force is calculated by: 
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where v
i
 is the velocity of i, 

! 

"  is a weighting factor given by 

! 

" =# 2
/2 and 

! 

"  is a 
balancing factor between dissipative and random forces which serves to maintain the 
temperature of the system around a more or less fixed point.  

The random force is calculated by  
 

! 

F
ij

R
= "w

R
1#rij( )u , 

 
where 

! 

w
R  is an independent random factor and u is a uniform random number chosen 

from the interval (-1,1). In our simulations, 

! 

"=3 and 

! 

w
R=2.73205 (calibrated to give 

appropriate random fluctuations for water particles). 
A DPD system with the forces listed above can create self-assembled structures 

held together with the weak associative forces. For example, a DPD system with am-
phiphiles in water can exhibit a wide variety of the known amphiphilic phases, includ-
ing monolayers, bilayers, micelles, rods, vesicles, and bicontinuous cubic structures 
[17, 15, 30, 33, 34].  

We augmented the standard DPD framework [1, 6] to introduce the possibility of 
chemical reactions by making strong bonds dynamic. This dynamic-bonding DPD (or 
dbDPD) adds a new characteristic of reactivity for particles, with the following two 
rules for reactive particles:  

 
1. Bonds form between reactive particles i and j if elements come within the bond-

forming radius, 

! 

rij < rIJ
f , (

! 

rIJ
f  = 0.2 in our simulations). 

2. Bonds break between reactive particles i and j if bonded elements go outside the 
bond-breaking radius, 

! 

rij > rIJ
b , (

! 

r
IJ

b  = 0.4 in our simulations). 
 
Not all particles need be reactive; only reactive particles are affected by these new 

rules. The strong bond strength parameter k governs the strength of all strong bonds, 
whether or not they were present in the initial conditions.  

For the present simulations, we make no attempt to enforce strict energy conserva-
tion during the bond formation and breaking processes, and so small amounts of en-
ergy are added to the system when bonds are formed, and taken from the system when 
bonds are broken. However, the momentum in the system is constant, since the 
changes in the momentum of individual elements due to bonding events is always 
symmetrical with respect to the bonded particles. Note also that after an initial tran-
sient, bond formation events equilibrate with bond breaking events, so the tempera-
ture stabilizes. 
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3   Emergent Chemical Reaction Networks 

Some of the networks in the literature are emergent [2, 16], some not. Reaction net-
works that arise as a result of our chemistry within dbDPD are highly emergent, in the 
sense that their equilibrium state is very hard to derive without explicit simulation. 
Given rules for forming and breaking bonds, together with the constraint of only two 
or less bonds allowed per particle, we have the basis for a network of polymerization 
reactions. The architecture of the reaction network is determined by the constraints 
that are set on the process of strong bond formation. The reaction network complexity 
is controlled with the specification of the pairs of particle types that can form strong 
bonds and of the maximum length N of the polymeric chains resulting from the strong 
bond formation process.  

The simple example we explore first is a reaction network identified by the duple 
<{5,4}, 2>, namely having two reactive particle types labeled with integers 5 and 4 
that can only form chains of length N=2, resulting in the architecture shown in Fig. 1. 

 

 
Fig. 1. Architecture of the reaction network for the first experiment, polymerization from 
monomers to dimers. 

Each labeled node represents a chemical species that can undergo strong bonding 
reactions; each solid dot connecting edges from the chemical species represents one 
of the three possible reactions that can take place: 

 
5 + 4! "# 54

5 + 5! "# 55

4 + 4! "# 44

 

 
Note that bond forming and bond breaking radii don’t influence a chemical reac-

tion network’s architecture, but play a main role in determining the rate of interaction 
of reagents in the process of strong bond formation. In our simulations the values of 

! 

rIJ
f  and 

! 

r
IJ

b , with 

! 

rIJ
f <

! 

r
IJ

b , were the same for all reagents. Thus we can say that all rea-
gents share the same intrinsic reaction rate. 
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3.1   Results in a simple network 

The first experiment we report concerns a simple network that contains five particle 
types: water (type 1), amphiphilic heads (type 2), amphiphilic tails (type 3), and two 
reagents (types 4 and 5). Because it is so simple, this network clearly illustrates the 
main kinds of interactions between self-assembled structures and emergent reaction 
networks. 

The inter-particle interactions use the linear function described above, with  
(

! 

"
IJ

,

! 

"
IJ

) values specified in Table 1. 

Table 1. 

! 

"
IJ
,#

IJ( )  values for particle interactions in simple network. The particle types 4 and 5 
are the monomers that polymerize in the reaction network. 

 

! 

"
IJ
,#

IJ( )  water head tail 4 5 
water (1,1)     
head (1,1) (150,1)    
tail (4,1) (15,5) (5,1)   
4 (1,1) (1,5) (1,1) (1,1)  
5 (1,1) (1,5) (1,1) (1,1) (1,1) 

 
Note that “neutral” interactions, e.g. between water and water, are taken to be very 

weak repulsive interactions, with (

! 

"
IJ

,

! 

"
IJ

) = (1,1). 
The self-assembly process of amphiphilic dimers into micelles can require several 

time steps in DPD, depending on several factors, such as the temperature of the sys-
tem and the strength of the weak forces. In our experiments, we wanted to simulate a 
real chemical system in which lipophilic reagents are placed into an aqueous solution 
containing micelles that have already formed. In control cases, the amphiphilic dimers 
were replaced by water and particle initial positions were chosen randomly. All the 
other DPD parameters were kept the same.  

The experiments that we ran were set within a 30x30 toroidal space with 7200 par-
ticles, composed of 2/7 reagents, 2/7 amphiphilic dimers and 3/7 water. Simulations 
were run without allowing the reagents to form bonds, until the amphiphiles aggre-
gated into micelles and the distribution of reagents reached the equilibrium, according 
to the weak forces that reagents feel towards amphiphiles. Then the particle positions 
were saved and the simulation was restarted loading those positions as initial condi-
tions. 

Fig. 2 shows a picture of the DPD simulation for the control case (without the mi-
celle-forming dimers) and the experiment (with micelle forming dimers). Fig. 3 shows 
a time series of the concentrations of all chemical species present in the reaction net-
work of Fig. 1. Note that the equilibrium concentrations (long-time average concen-
trations) are radically different for the control vs. the experiment. 
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Fig. 2. DPD simulation of the control (left) with no amphiphilic dimers, and the experiment 
(right) with amphiphilic dimers. 

 

      

 

 

Fig. 3.  Concentration time series of different chemical species for control (left) and experiment 
(right). At long times, the concentrations fluctuate about equilibrium. 

One straightforward way to compare the behavior of the system with micelles to a 
control without micelles is by analyzing the average concentrations of the species 
identified by the network’s nodes at equilibrium. As we can see from Fig. 4 and Table 
2, in the control case concentrations fall into three clearly distinguishable classes. The 
dominant species are monomers, followed by the only non-palindromic dimer and 
then by the two palindromic dimers, produced by a self-reaction, which is a reaction 
between two monomers of the same kind. The experimental case is, in contrast, domi-
nated by the non-palindromic dimer, followed by the two non-palindromic ones and 
then by monomers. Note that palindromic dimers are half as concentrated as non-
palindromic dimers in both systems. 
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Fig. 4. Equilibrium concentration of different chemical species for a representative dbDPD run 
of control (left) and experiment (right). The error bars are smaller than the size of the symbols. 
Note that the triangle has the highest concentration for the experiment, shifted significantly 
from the control. 

Table 2. Equilibrium concentration for each chemical species as shown in Fig. 4. 

Chemical species Equilibrium concentration Length 
                                                                   CONTROL 

4, 5 ~ 404 Monomers 
54 ~ 300 Non-palindromic dimer 

44, 55 ~ 162 Palindromic dimers 
 EXPERIMENTAL  

54 ~ 491 Non-palindromic dimer 
44, 55 ~ 230 Palindromic dimers 

5, 4 ~ 79 Monomers 
 

Table 3. Reaction frequency for the same run as in Figs. 2-4 and Table 2. 
Chemical reactions Reaction frequency Observations 

CONTROL 
5 + 4 ↔ 54 ~ 103 Monomer + monomer ↔  

non-palindromic dimer 
5 + 5 ↔ 55 
4 + 4 ↔44 

 
~ 52 

Monomer + monomer ↔ 
palindromic dimer 

EXPERIMENTAL 
5 + 4 ↔ 54 ~ 88 Monomer + monomer ↔  

non-palindromic dimer 
5 + 5 ↔ 55 
4 + 4 ↔44 

 
~ 42 

Monomer + monomer ↔ 
palindromic dimer 
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We may also compare the reaction dynamics of the two systems, in particular, how 
frequently reactions happen. Table 3 displays how often each possible reaction hap-
pens on average over 50 time steps once the dynamics have reached the equilibrium. 
In both the control and the experimental case reaction frequencies fall into two 
classes, the one containing the self-reactions and the other one the non–self-reactions. 
Note that in both cases, the reactions that involve palindromic dimers are half as fre-
quent as those that involve non-palindromic ones. The experimental case shows that 
the frequency of each reaction is lower than its corresponding one in the control. We 
now discuss two different observed effects in detail. 

Concentration effect: In the control case the only force that can keep the reagents 
close to each other is due to the (possible) strong covalent bonds formed between two 
of them. As we said above, if two reagents come within a distance smaller than their 
bond forming radius, then they form a strong bond that keeps on existing as long as 
the reagents’ distance is smaller than their bond breaking radius. The reagents are free 
to float around until they form a strong bond. At this point, the bond strength will de-
termine how long the bonded monomers will stay close to each other enough to keep 
their bond intact. The weaker the bond, the more likely it will be for it to get broken 
in the following time steps, leaving the two resulting monomers free floating again. 
Apart from the bond strength, nothing affects the survival probability of a dimer. 

In the experimental case, clusters of reagents form because of the weak forces that 
attract them to micelles. Therefore when the covalent bonds are broken, the mono-
mers don’t start to freely diffuse again, but continue to be entrapped in the same clus-
ter, then it is very likely that they are involved in new bonding reactions, possibly 
with other free monomers in the same cluster  

The probability of existence of a bond depends on several factors. One main factor 
is the reagents’ density (number of reagents over space area). The higher the density, 
the smaller the average distance between reagents. This probability affects equilib-
rium concentrations. If bonds are highly likely, then longer polymers are more preva-
lent. If bonds are unlikely, then monomers are more prevalent. For the reasons we ex-
plained above, the reagent density is locally increased by micelles, and that explains 
why dimers are more concentrated than monomers. By spatially concentrating rea-
gents the micelles act as catalysts. We could also have obtained an analogous result in 
the control case, by increasing the bond strength.  

The concentration effect caused by micelles can be observed from the change in 
reaction frequencies. Due to the concentration effect, bonded dimers survive for a 
longer time than when there is no concentration effect, reducing the frequency of the 
bond breaking reactions. This results in a low number of free reactive monomers, 
which decreases the frequency of the forward reactions as well.  

Palindrome effect.  We noticed that the 55 and 44 dimers’ concentration is around 
half of that of the 54 dimer at equilibrium (Fig. 4, Table 2). We also noticed that the 
frequency of each reaction involving 55’s or 44’s is half as much of that of the only 
reaction that involves 54’s. The reason is that dimers 54 and 45 have been identified 
as the same dimer.  For all possible pairwise combinations of monomers of type 4 and 
type 5, if 4’s are as many as 5’s, there are equal numbers of 44, 45, 54, and 55, so if 
45 and 54 are considered identical, their number is double that of 44 and 55. More 
generally, one may consider all polymer types of a given length, and see by the same 
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argument that those that are non-palindromic will be doubled by identifying polymers 
read in one direction with those that are the same when read in the opposite direction. 

While the concentration effect concerns the difference between control and ex-
perimental equilibria, the palindrome effect concerns the difference between palin-
dromic and non-palindromic N-mers in either control or experimental situations. The 
palindrome effect is actually seen in both the control and the experimental case. 

3.2   Results for a larger network 

We observed qualitatively the same kinds of effects in a wide variety of more 
complex emergent reaction networks, with higher maximum polymer length and more 
kinds of reagents. The goal was to understand if and how the behaviors observed in 
the simple network described above, could be qualitatively confirmed. We briefly 
present here the results from the network <{6,5,4}, 3>, made up of 27 nodes and 33 
branches (Fig. 5), versus 5 and 3 respectively in the simple example. 

 

 
Fig. 5.  Architecture of the more complex reaction network, polymerization of dimers and trim-
ers from three species of monomers. 

The (

! 

"
IJ

,

! 

"
IJ

) values specifying inter-particle interactions in the network in Fig. 5 
are the same as those for the simpler network, with particle type 6 matching particles 
4 and 5. 

Fig. 6 shows a time series of the concentrations of representative chemical species 
present in the reaction network of Fig. 5. Note that the equilibrium concentrations are 
radically different for the control vs. the experiment (Fig. 7). In particular, when we 
compare the experimental equilibria with the control case, the increased concentration 
of the trimers (both palindromic and non-palindromic) and the decreased concentra-
tion of the monomers is an instance of the concentration effect. Just as in the simpler 
network, the self-assembled micelles act as catalysts by concentrating reagents. Fig. 7 
also illustrates the palindrome effect, as expected, for in both the control and experi-
mental cases, non-palindromic N-mers have double the concentration of palindromic 
N-mers. 
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Fig. 6. Time series of concentration of representative chemical species for control (left) and ex-
periment (right). The log scale on the y-axis helps resolve low concentration species. At long 
times, the concentrations fluctuate about equilibrium. 

 
Fig. 7. Equilibrium concentrations of representative chemical species for control (left) and ex-
periment (right). The error bars are smaller than the size of the symbols. The log scale on the y-
axis is to aid comparison with Fig. 6. Note that the trimers concentrations are significantly 
higher in the experiment. 

Cascade effect: The more complex networks illustrated a third effect. Micelles in-
crease the frequency of the reactions involving higher length polymers, as they tend to 
increase the concentration of their required ingredients compared to the control case. 
On the way to equilibrium, however, we see that first monomer concentration de-
creases as dimer concentration rises, then, after reaching a maximum, dimer concen-
tration decreases as trimer concentration increases, and so on. We term this effect 
moving through successive length polymers the “cascade effect”. 
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4   Discussion and Conclusion 

We have studied a new variant of dissipative particle dynamics (DPD) with dynamic 
bond forming and breaking, which we termed “dbDPD”. This yields a microscopic 
mechanism for chemical reactions, from which emerges macroscopic chemical kinet-
ics. The reagents may be represented as nodes on a graph, the reaction network, which 
also emerges from the microscopic chemical reaction mechanism. The emergent reac-
tion network and reaction kinetics have many of the hallmarks of real reaction net-
works, e.g., the existence of many side reactions Here, we have studied a particular 
class of reactions, polymerization between two or three monomer types. 

DPD is well known as a modeling framework that is suited for studying self-
assembled structures from amphiphilic molecules. Our addition of chemical reactions 
in dbDPD enables the additional study of the interplay between chemical reactions 
and self-assembly processes. 

We report a clear identification of an experimentally known type of micellar ca-
talysis: the concentration effect. Essentially, the effect comes about because lipophilic 
reagents may aggregate within or near the micelles, effectively increasing their local 
concentration and changing the equilibrium concentrations of resulting reaction prod-
ucts. In particular, long polymers that have very low equilibrium concentration in the 
absence of micelles may have very high equilibrium concentration (relative to all 
other reagents) in the presence of micelles. 

In addition to the concentration effect, we identified two other effects that should 
be experimentally observable: (i) the palindrome effect, the doubling of the concen-
tration of non-palindromic polymers because of the identification of polymers read in 
one directions with those that are the same when read in the opposite direction, and 
(ii) the cascade effect, seen when starting with high concentration of monomers: the 
concentration of monomers goes down as the concentration of dimers increases, then 
the concentration of dimers reaches a maximum and then decreases as the concentra-
tion of trimers increases, and so on. 

Future directions for research based on dbDPD include refinement of the micro-
scopic chemical reaction mechanisms to make them more realistic for particular target 
experiments. We also believe that introduction of variations into reaction products 
may enable the system to display evolvability. 
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