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Artificial life is the study of life and life-like pro-
cesses through simulation and synthesis.

INTRODUCTION

Artificial life literally means ‘life made by human
artifice rather than by nature’. It has come to refer
to a broad, interdisciplinary endeavor that uses the
simulation and synthesis of life-like processes to
achieve any of several possible ends: to model
life, to develop applications using intuitions and
methods taken from life, or even to create life. The
aim of creating life in a purely technological context
is sometimes called ‘strong artificial life’.

Artificial life is of interest to biologists because
artificial life models can shed light on biological
phenomena. It is relevant to engineers because it
offers methods to generate and control complex
behaviors that are difficult to generate or control
using traditional approaches. But artificial life also
has many other facets involving inter alia various
aspects of cognitive science, economics, art, and
even ethics.

There is not a consensus, even among workers in
the field, on exactly what artificial life is, and many
of its central concepts and working hypotheses are
controversial. As a consequence, the field itself is
evolving from year to year. This article provides a
snapshot and highlights some controversies.

HISTORY

The roots of artificial life are quite varied, and
many of its central concepts arose in earlier intel-
lectual movements.

John von Neumann implemented the first artifi-
cial life model (without referring to it as such) with
his famous creation of a self-reproducing, compu-
tation-universal entity using cellular automata. At
the time, the construction was surprising, since

many had argued its impossibility, for example on
the grounds that such an entity would need to
contain a description of itself, and that description
would also need to contain a description, ad infini-
tum. Von Neumann was pursuing many of the very
issues that drive artificial life today, such as under-
standing the spontaneous generation and evolution
of complex adaptive structures; and he approached
these issues with the extremely abstract method-
ology that typifies contemporary artificial life. Even
in the absence of modern computational tools, von
Neumann made striking progress.

Cybernetics developed at about the same time as
von Neumann’s work on cellular automata, and he
attended some of its formative meetings. Norbert
Wiener is usually considered to be the originator of
the field (Wiener, 1948). It brought two separate
foci to the study of life processes: the use of
information theory and a deep study of the self-
regulatory processes (homeostases) considered
essential to life. Information theory typifies the ab-
stractness and material-independence of the ap-
proach often taken within both cybernetics and
artificial life. Both fields are associated with an
extremely wide range of studies, from mathematics
to art. As a discipline, cybernetics has evolved
in divergent directions; in Europe, academic de-
partments of cybernetics study rather specific
biological phenomena, whereas in America cyber-
netics has tended to merge into systems theory,
which generally aims toward formal mathematical
studies. Scientists from both cybernetics and
systems theory contribute substantially to contem-
porary artificial life.

Biology (i.e. the study of actual life) has provided
many of the roots of artificial life. The subfields of
biology that have contributed most are microbiol-
ogy and genetics, evolution theory, ecology, and
development. To date there are two main ways
that artificial life has drawn on biology: crystalizing
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intuitions about life from the study of life, and
using and developing models that were originally
devised to study a specific biological phenomenon.
A notable example of the latter is Kauffman’s use of
random Boolean networks (Kauffman, 1969, 1993).
Biology has also influenced the problems studied in
artificial life, since artificial life’s models provide
definite answers to problems that are intractable
by the traditional methods of mathematical biol-
ogy. Mainstream biologists are increasingly partici-
pating in artificial life, and the methods and
approaches pioneered in artificial life are increas-
ingly accepted within biology.

The most heavily represented discipline among
contemporary researchers in artificial life is com-
puter science. One set of artificial life’s roots in
computer science is embedded in artificial intelli-
gence (Al), because living systems exhibit simple
but striking forms of intelligence. Like Al, artificial
life aims to understand a natural phenomenon
through computational models. But in sharp con-
trast to Al, at least as it was originally formulated,
artificial life tends to use bottom-up models in
which desired behavior emerges in a number of
computational stages, instead of top-down models
that aim to yield the desired behavior directly (as
with expert systems). In this respect, artificial life
shares much with the connectionist movement that
has recently swept through artificial intelligence
and cognitive science. Artificial life has a related
set of roots in machine learning, inspired by the
robust and flexible processes by which living
systems generate complex useful structures. In par-
ticular, some machine learning algorithms such as
the genetic algorithm (Holland, 1975) are now seen
as examples of artificial life applications, even
though they existed before the field was named.
New areas of computer science (e.g., evolutionary
programming, autonomous agents) have increas-
ingly strong links to artificial life. (See Artificial
Intelligence, Philosophy of)

Physics and mathematics have also had a strong
influence on artificial life. Statistical mechanics and
thermodynamics have always claimed relevance to
life, since life’s formation of structure is a local
reversal of the second law of thermodynamics,
made possible by the energy flowing through a
living system. Prigogine’s thermodynamics of dis-
sipative structures is the most modern description
of this view. Statistical mechanics is also used to
analyze some of the models used in artificial life
that are sufficiently simple and abstract, such as
random Boolean networks. Dynamical systems
theory has also had various contributions, such
as its formulation of the generic behavior in

dynamical systems. And physics and dynamical
systems have together spawned the development
of synergetics and the study of complex systems
(Wolfram, 1994), which are closely allied with arti-
ficial life. One of artificial life’s main influences
from physics and mathematics has been an em-
phasis on studying model systems that are simple
enough to have broad generality and to facilitate
quantitative analysis.

The first conference on artificial life (Langton,
1989), where the term ‘artificial life” was coined,
gave recognition to artificial life as a field in its
own right, although it had been preceded by a
similar conference entitled ‘Evolution, Games, and
Learning’ (Farmer et al., 1986). Since then there
have been many conferences on artificial life, with
strong contributions worldwide (e.g., Bedau et al.,
2000). In addition to the scientific influences de-
scribed above, research in artificial life has also
come to include elements of chemistry, psychology,
linguistics, economics, sociology, anthropology,
and philosophy.

CONCEPTS AND METHODOLOGY

Most entities that exhibit lifelike behavior are com-
plex systems — systems made up of many elements
simultaneously interacting with each other. One
way to understand the global behavior of a com-
plex system is to model that behavior with a simple
system of equations that describe how global vari-
ables interact. By contrast, the characteristic ap-
proach followed in artificial life is to construct
lower-level models that themselves are complex
systems and then to iterate the models and observe
the resulting global behavior. Such lower-level
models are sometimes called agent- or individual-
based models, because the whole system’s behav-
ior is represented only indirectly and arises merely
out of the interactions of a collection of directly
represented parts (‘agents’ or ‘individuals’).

As complex systems change over time, each
element changes according to its state and the
state of those ‘neighbors” with which it interacts.
Complex systems typically lack any central control,
though they may have boundary conditions. The
elements of a complex system are often simple
compared to the whole system, and the rules by
which the elements interact are also often simple.
The behavior of a complex system is simply the
aggregate of the changes over time of all of the
system’s elements. In rare cases the behavior of a
complex system may actually be mathematically
derived from the rules governing the elements’ be-
havior, but typically a complex system’s behavior
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cannot be discerned short of empirically observing
the emergent behavior of its constituent parts. The
elements of a complex system may be connected in
a regular way, such as on a Euclidean lattice, or in
an irregular way, such as on a random network.
Interactions between elements may also be without
a fixed pattern, as in molecular dynamics of a
chemical soup or interaction of autonomous agents.
When adaptation is part of a complex system’s
dynamics, it is sometimes described as a complex
adaptive system. Examples of complex systems in-
clude cellular automata, Boolean networks, and
neural networks. Examples of complex adaptive
systems include neural networks undergoing a
learning process and populations of entities evolv-
ing by natural selection.

One of the simplest examples of a complex
system is the so-called ‘game of life’ devised by
the mathematician John Conway (Berlekamp ef al.,
1982). The game of life is a two-state two-
dimensional cellular automaton with a trivial
nearest-neighbor rule. You can think of this
‘game’ as taking place on a two-dimensional rect-
angular grid of cells, analogous to a huge checker-
board. Time advances in discrete steps, and a cell’s
state at a given time is determined by the states of
its eight neighboring cells according to the
following simple ‘birth—death” rule: A ‘dead’ cell
becomes ‘alive’ if and only if exactly three neigh-
bors were just ‘alive’, and a ‘living’ cell ‘dies” if and
only if fewer than two or more than three neighbors
were just ‘alive’. From inspection of the birth-death
rule, nothing particular can be discerned regarding
how the whole system will behave. But when the
system is simulated, a rich variety of complicated
dynamics can be observed and a complex zoo of
structures can be identified and classified (blinkers,
gliders, glider guns, logic switching circuits, etc.). It
is even possible to construct a universal Turing
machine in the game of life and other cellular au-
tomata, by cunningly configuring the initial config-
uration of living cells. In such constructions gliders
perform a role of passing signals, and analyzing the
computational potential of cellular automata on the
basis of glider interactions has become a major
research thrust.

Those who model complex adaptive systems en-
counter a tension resulting from two seemingly
conflicting aims. To make a model ‘realistic’ one
is driven to include complicated realistic details
about the elements, but to see and understand the
emergent global behavior clearly one is driven to
simplify the elements as much as possible. Even
though complex adaptive systems include systems
whose elements and dynamical rules are highly

complicated, the spirit of most artificial life work
is to look for the complexity in the emergent global
behavior of the system, rather than to program the
complexity directly into the elements.

Computation is used extensively in the field of
artificial life, usually to simulate models to gener-
ate data for studying those models. Simulation
is essential for the study of complex adaptive
systems for it plays the role that observation and
experiment play in more conventional science.
Having no access to significant computational
machinery, Conway and his students first studied
the game of life by physically mapping out dy-
namics with go stones at teatime. Now thousands
of evolutionary generations for millions of sites
can be computed in short order with a conven-
tional home computer. Computational ability to
simulate large-scale complex systems is the single
most crucial development that enabled the field
of artificial life to flourish and distinguish itself
from precursors (such as cybernetics or systems
theory).

The dependence of artificial life on simulation
has led to debate within the field over the onto-
logical status of the simulations themselves. One
version of strong artificial life holds that life may
be created completely within a simulation, with its
own virtual reality, yet with the same ontological
status as the phenomenon of life in the real world.
Some hold, however, that simulated, virtual reality
cannot possibly have the same ontological status as
the reality we experience. These point out that a
simulated hurricane can never cause us to become
wet. They also believe that if artificial life is to
achieve the status of reality, it must include an
element of embodiment, an extension into the
real, non-simulated world enabling an interaction
with that world. Believers in the reality of simula-
tion point out that a simulation has its own embodi-
ment within a computer, that a simulation is not an
abstract formula specifying a program but the
actual running of a program in a real physical
medium using real physical resources. The belief
that artificial life has its own bona fide reality
is particularly strong among those who generate
experimental data with simulations.

Both living systems and artificial life models are
commonly said to exhibit emergent behavior —
indeed, many consider emergent behavior to be a
hallmark of life — but the notion of emergence
remains ill-defined. There is general agreement
that the term has a precise meaning in some con-
texts, most notably to refer to the resultant aggre-
gate global behavior of complex systems. The
higher-level structures produced in Conway’s
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game of life provide a classic example of this kind
of emergent behavior. In spite of clear examples
like the game of life, there is no agreement
regarding how one might most usefully define
emergence. Some believe that emergence is merely
a form of surprise. On this view, emergence exists
only in the eye of the beholder and whether a
phenomenon is emergent or not depends on the
mindset of the observer. Others believe that there
is an objective, observer-independent definition of
emergence in terms of whether a phenomenon is
derivable from the dynamical rules, even if it is
often difficult to tell a priori what can be derived
from the dynamical rules underlying complex
systems. These difficulties lead some to argue that
the term ‘emergence’ should simply be dropped
from the vocabulary of artificial life. However,
this advice is not widely heeded at present.

Complexity is another commonly recognized
hallmark of life, and this notion has also so far
eluded satisfactory definition. Apparently several
different concepts are involved, such as structural
complexity, interaction complexity, and temporal
complexity. To some, it seems obvious that the
biosphere is quite complex at present and that
its complexity has increased on an evolutionary
timescale. But the difficulties of defining complex-
ity lead others to claim that life’s present com-
plexity and its increase over time are either
illusory or a contingent artifact of our particular
evolutionary history. Understanding complexity
and its increase through the course of evolution
are at the center of much research in artificial life.
In fact, one of the field’s main goals at present is to
produce and then understand open-ended evolu-
tion, an ongoing evolutionary process with con-
tinually increasing complexity.

Darwin’s view of evolution, with its emphasis on
survival of the fittest, implied that the process of
adaptation was the key to the creation of intelligent
design through life’s evolution. However, the role
and significance of adaptation is controversial
today. Some hold that adaptation is the main force
driving the changes observed in evolution. Others
maintain that most of evolution consists of non-
adaptive changes that simply explore a complex
space of morphological forms. Still others claim
that much of the apparent intelligence of complex
systems is a necessary result of certain com-
plex system architectures. Artificial life may shed
light on this debate by providing many diverse
examples of evolutionary processes, with an at-
tendant ability to analyze the details of those pro-
cesses in a way that is impossible with the
biosphere, because the analogous assaying of

historical data is currently impractical and much
of the historical data is simply unavailable.

Analysis of adaptation has led to the idea of a
fitness landscape. Organisms (or agents in an arti-
ficial life model) are considered to be specified by a
genome (or sometimes a set of model parameters).
The interaction of the organism with other organ-
isms as well as with its environment yields an
overall fitness of the organism, which is often
thought of as a real-valued function over the
space of possible genomes (or model parameters).
In various applications of evolutionary algorithms,
such as the genetic algorithm, specifying a fitness
function is an essential part of defining the prob-
lem. In such cases, adaptation is a form of optimiza-
tion, ‘hill climbing in the fitness landscape’. In
artificial life models, however, fitness is often not
specified explicitly, but is a property emerging
from the interactions of an organism with its world.

The concept of a fitness landscape as an analyt-
ical device suffers various limitations. One is that
a fitness landscape is generally an approximation;
the fitness landscape itself can evolve when organ-
isms in a population interact strongly with each
other. Another reason is that on an evolutionary
timescale, the space on which a fitness function is
defined is changing with the advent of new elem-
ents to the genome or new model parameters for
artificial organisms. Simulating agent-based artifi-
cial life models is a natural and feasible way to
study these more general situations.

MODELS AND PHENOMENA

Generally, artificial life models choose a level of
biological life to model. The lowest stratum may
be thought of as analogous to the chemical level;
higher stages include modeling of simple organ-
isms such as bacteria, constituents of more complex
organisms such as cells, complex organisms them-
selves, and varieties of complex organisms that can
give rise to ecologies. One might consider a holy
grail of artificial life to be the discovery of a single
model that can span all these levels; so far the field
has had difficulty producing a model that spans
even one connected pair of levels.

The most primitive phenomenon explored by
some artificial life models is self-organization.
Such models study how structure may emerge
from unstructured ensembles of initial conditions.
Naturally, one aim is to discover the emergence of
lifelike structure; some models explicitly aim to
model the origin of life — such as chemical soups
from which fundamental structures such as self-
maintaining autocatalytic networks might be seen
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to emerge. Models for the immune system are an-
other example of a lifelike process emerging from
chemical interactions. Self-organization has also
been studied in models for higher-level living
structures, such as metabolisms and cell networks,
with Boolean networks whose dynamics converge
to different structures depending on model meta-
parameters (Kauffman, 1969, 1993).

A host of models target the organismic level,
sometimes with significant interactions between
organisms. These models typically allow changes
in the organisms as part of the system’s dynamics
(e.g., through a genetic mechanism), and the most
common goal of research using these models is to
identify and elucidate structure that emerges in the
ensuing evolutionary process. Some models fit in
between the chemical level and the organismic
level, aiming to understand development by mod-
eling interacting cells. Other models are inter-
organismic, in the sense that they aim explicitly to
model interactions between different types of or-
ganisms or agents. These models often contain
elements of game theory.

Many of the models studied in artificial life
should be viewed as “purely digital’ models. Purely
digital models drop any pretense of modeling any
pre-existing biological structures; their elements
are digital constructs having no direct biological
reference. Such models seek to produce novel,
purely digital instances of biological phenomena
in their emergent behavior. Conway’s game of life
is a purely digital model at the physical or chemical
level, embodying an extremely simple and unique
form of ‘chemical’ interactions (the birth—-death
rule). The self-organization exhibited in the game
of life is not a representation of chemical self-
organization in the real world but a wholly novel
instance of this phenomenon. Another chemical-
level model is AlChemy (Fontana, 1992), which
consists of a mixture of ‘reacting chemical mol-
ecules’ that are actually simple programs that pro-
duce new programs as output when one program is
given as input to another program.

One example of a purely digital model on the
‘organismic’ level is Tierra (Ray, 1992), which con-
sists of ‘organisms’ that are actually simple self-
replicating computer programs populating an
environment consisting of computer memory.
Tierra was a mature version of earlier efforts of a
model called Core Wars (Dewdney, 1984) and has
been followed by more developed versions such as
Avida (Adami and Brown, 1994). In Tierra, the
world is a one-dimensional ring of computer
memory, which may be populated with instruc-
tions that are much like idealized microprocessor

assembly language instructions (e.g., copy, jump,
conditional branch, etc.). The instructions are the
microscopic components of the model, and the
model’s central processing unit (CPU) implements
the instructions in memory, creating a chemistry
from which structure in the model can emerge.
The model is generally seeded with a primordial
organism consisting of a group of instructions that
can copy itself to another place in memory. The
copying is accompanied by errors (mutations) that
can enhance the functionality of the organisms.

The accomplishments and shortcomings of most
artificial life models are exemplified by those of
Tierra. On the side of accomplishments, Tierra
shows clear evidence of evolution, and the
resulting emergence of structure and organization
that were not ‘programmed’ into the model expli-
citly. Careful analysis of the evolutionary results
reveals computational features such as evolution
of subroutines and versions of parasitism. On the
negative side, the model shows only one level of
emergence (e.g., the model must be seeded by a
primordial organism; evolution of an unstructured
soup has not yet produced an emergent viable
organism). Secondly, the evolution of the digital
organisms appears to ‘level off’, reaching a stage
where increasingly insignificant innovations are
absorbed into the population, instead of displaying
the open-ended evolution of natural systems.
Reasons for this limitation include (1) simplicity
of the model’s evolutionary driving force (the evo-
lutionary value of replication with minimal CPU
time), (2) structural limitations on the space of in-
novations possible, which create limitations on
organism functionality, and (3) structural limita-
tions on organisms’ ability to interact with each
other and their environment. Different artificial
life models have different detailed reasons for the
two limitations we have discussed in Tierra, but the
limitations are generally prevalent.

Another important area of artificial life is not so
much a modeling activity as much as an implemen-
tation activity. This work aims to produce hard-
ware implementations of lifelike processes. Some
of these implementations are practical physical
devices. But some of this activity is primarily the-
oretical, motivated by the belief that the only way
to confront the hard questions about how life
occurs in the physical world is to study real phys-
ical systems. Again, there is an analogy with bio-
logical levels. The ‘chemical’ level is represented by
work on evolvable hardware, often using program-
mable logic arrays (e.g., Breyer et al., 1998). The
‘organismic” level is represented by recent work in
evolutionary robotics (e.g., Cliff et al., 1993). An
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‘ecological’ level might be represented by the Inter-
net along with its interactions with all its users on
computers distributed around the world.

Artificial life, like its antecedent, cybernetics, has
a peculiarly broad cultural scope extending beyond
cut and dried scientific progress. This breadth is
best exemplified by the work of Karl Sims (Sims,
1991), who has coupled rich image-producing com-
putational environments with interactions between
those environments and people watching the
images at an exhibit. The result is an evolutionary
system that is not constrained to live within the
confines of a particular model’s framework, but
rather that is a coupling of two evolutionary sub-
systems, one of which is natural (the audience).
Sims’ interactive evolutionary art has produced
several visually striking results, and human inter-
action seems to give the evolutionary system
an open-ended quality characteristic of natural
evolution.

FUTURE DIRECTIONS

One broad direction artificial life will continue to
take in the future is that of synthesis: the synthesis
of significant biological phenomena either within
the context of model simulation or hardware im-
plementation. A grave difficulty facing progress in
this area is the lack of any quantitative basis of
comparison for many of the biological phenomena
artificial life aims to model. An example of this
difficulty is modeling open-ended evolution. How
could we know when this is achieved? In general,
measurable characterization of phenomena is a
prerequisite to quantitative comparison, and
much progress is needed in order to achieve this
for many target phenomena.

Probably the largest goal of the field is to under-
stand the nature of life itself. This will be furthered
to some extent with the quantitative comparisons
just mentioned, but there is also a broader goal of
discerning what the boundaries of life are, and how
the idea of life might be extended to phenomena
beyond biological life. Is there a sense in which
financial markets or sociotechnical networks are
alive, independent of the lives of their biological
constituents? Many in the field of artificial life be-
lieve that, if the concept of life is properly framed
and understood, such questions may well have a
precise affirmative answer.
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Laboratory evidence indicates that prices of finan-
cial assets such as stocks and bonds respond to
changes in the assets’ fundamental value but are
also sometimes distorted by investors’ cognitive
and other biases.

INTRODUCTION

Any society allocates some resources to current
consumption and some to investment, to building
a better future. Asset markets determine the extent
and form of investment in modern economies.
Non-market allocation procedures such as those
once used in Communist countries clearly worked
less well and became less prevalent in the late
twentieth century. Asset markets now have global
scope and significance.

By definition, asset markets are efficient when
asset prices reflect all relevant information about
investment opportunities. Theory shows that effi-
cient asset markets lead society to choose only the
most productive investment prospects, and to
choose the best overall level of investment.

The efficient asset price is called fundamental
value. Actual asset prices are set by fallible human
investors in imperfect markets, and thus may con-
tain other components, called bubbles, that can lead
to inefficient resource allocation and impair future
wellbeing.

Laboratory and field evidence sheds light on
asset market efficiency. Asset markets sometimes
compensate for investors’ cognitive biases, but at
other times they amplify them and produce large
bubbles. Laboratory experiments help to test pol-
icies intended to improve asset market efficiency.

FUNDAMENTAL ASSET VALUE

An asset is anything that provides its owner with a
stream of benefits over time. Its economic value is
the monetary equivalent of the net benefits it pro-
vides. Valuation of a real asset (such as a house, a
pizza delivery car or a microprocessor production
facility) involves estimating prices for the services
the asset generates and for the resources required
to maintain its productivity. This article will focus



