
Math 431 September 21 homework discussion

1. An element u of ZF is a unit if and only if N(u) = ±1. A unit is nontrivial
if it is not equal to ±1. Find all nontrivial units in all imaginary quadratic
fields. Find a nontrivial unit in Q(

√
3). Find a nontrivial unit in Q(

√
6). Find

a nontrivial unit in Q(
√

29).

Discussion. If N(u) = uu′ = ±1 then u is a unit. On the other hand, if uv = 1
then N(u)N(v) = 1 so N(u) = ±1 since the norm of an algebraic integer is an
integer.

As usual let δ =
√
d, or (1 +

√
d)/2 according as d ≡ 2, 3 mod 4 or d ≡

1 mod 4; in the first case, the discriminant D is equal to 4d and the norm form is
N(x+yδ) = x2−dy2, and in the second caseD = d andN(x+yδ) = x2+xy−d′y2

where d′ = (d− 1)/4.
If F is an imaginary quadratic field (d < 0) of the first type then a unit

x+ yδ satisfies x2− dy2 = 1. Note that −d is positive so this is a hard equation
to solve; if d < −1 then the only solution is x = ±1, y = 0, and if d = −1 then
there are four solutions — two as before, and x = 0, y = ±1.

If F is an imaginary quadratic field of the second type (d ≡ 1 mod 4) then
we are interested in the equation

x2 + xy − d′y2 = 1.

(Note that since d′ is negative, the RHS can not be −1.) Multiplying by 4 and
completing the square shows that we are interested in

(2x+ y)2 − dy2 = 4.

If d = −3 there are six solutions x = 0, y = ±1, and 2x + y = ±1, y = ±1. If
d < −3 then any solution has y = 0 so that x = ±1.

All in all we find that the units in ZF for imaginary quadratic fields are as
follows:

• If D = −3 then there are six units Z∗F = {±1,±ω,±ω2}, where ω =
(−1 +

√
−3)/2 = e2πi/3.

• If D = −4 then there are four units Z∗F = {±1,±i}.

• For all other D < 0, Z∗F = {±1}.

For real quadratic fields, we just have to find units by searching for solutions
to N(x+ yδ) = ±1. For d = 3, one finds easily that N(2 +

√
3) = 1. For d = 6,

we find N(x + y
√

6) = x2 − 6y2 and 5 + 2
√

6 is a unit. For d = 29, one finds
that N(x+ yδ) = x2 + xy − 7y2, and N(2 + δ) = −1.

2. Let ω = e2πi/3 = (−1 +
√
−3)/2. Show that Z[ω] is a Euclidean domain

(with respect to the function N(a + bω) = a2 − ab + b2.) Show 5 is a prime
element in Z[ω] but that 3 and 7 are not. What is the order of the quotient
Z[ω]/I where I is the principal ideal (1− ω). Same question for I = (5).

Discussion. If x and y are elements of Z[ω], with y 6= 0 then write x/y =
A+Bω, where A,B ∈ Q. Let the quotient q be a+ bω, where a and b are the



nearest integers to the rational number A and B respectively. Then |a − A| ≤
1/2, |b−B| ≤ 1/2. Then

N(x− y(a+ bω)) = N(y)N(x/y − (a+ bω))
= N(y)

(
(A− a)2 − (A− a)(B − b) + (B − b)2

)
≤ 3N(y)/4 < N(y)

so Z[ω] is euclidean as claimed.
The ideal I = (1 − ω) contains 3 since N(1 − ω) = 3. Since ω ≡ 1 mod I

it follows that a + bω ≡ a + b mod I. Therefore every element in the ring is
congruent to 0, 1, or 2 modulo I, and there are three cosets and the quotient
Z[ω]/I has three elements.

The ideal I = (5) is of index 25. Indeed, every element a+ bω is congruent
to one of the 25 elements a+ bω, where 0 ≤ a, b < 5, and it is easy to check that
no two of these are congruent modulo I.

3. Let p be an odd prime. Prove that f(x) = (xp − 1)/(x − 1) = xp−1 +
xp−2 + · · · + x + 1 is irreducible, so that [Q(e2π/p) : Q] = p − 1. Prove that
[Q(cos(2π/p) : Q] = (p− 1)/2.

Discussion. From the binomial theorem we have

f(x+ 1) = ((x+ 1)p − 1) /x =
p∑
i=1

(
p

i

)
xi−1

which is irreducible by the Eisenstein criterion. Therefore f is irreducible, and
[Q(z) : Q] = p− 1 since f is the minimal polynomial of z = e2πi/p.

The field Q(cos(2π/p) is a subfield of Q(z) since cos(2π/p) = (z + z−1)/2,
and it is a proper subfield (since Q(cos(2π/p) has an embedding in R, but
Q(z) does not). On the other hand, z satisfies a quadratic equation over the
field, since z2 − 2 cos(2π/p)z + 1 = 0. Thus the degree is exactly two, and by
multiplicativity of degrees we have [Q(cos(2π/p) : Q] = (p− 1)/2.

4. Let F = Q(
√

2). Let u = −1 +
√

2. Prove that Z∗F = {±uk : k ∈ Z}.

Discussion. It is slightly more convenient to work with v := −u′ = 1 +
√

2
so we prove that Z∗F = {±vk : k ∈ Z}. If w is a unit then, by negating and
reciprocating if necessary we can assume that w = a + b

√
2 > 1. Since a ≥ 1

and b ≥ 1 we see that if w 6= v then w > v. Then w has to be a positive power
of v; indeed vk < w < vk+1 then 1 < w/vk < v, but there are no units between
1 and v.

Note, for the sake of the next problem, that uu′ = −1 so that u−1 = −1/u′,
and the set of all units is the same as the set {±(1±

√
2)k : k ≥ 0}.

5. Find all integers that are simultaneously triangular and square, such as 1
and 36.

Discussion. We are being asked to solve

y2 =
x(x+ 1)

2



in positive integers. Multiplying by 8 and doing some algebra leads to

(2x+ 1)2 − 2(2y)2 = 1.

From the analysis in the preceding equation we know that this implies that

2x+ 1 + 2y
√

2 = ±(3± 2
√

2)n

for some positive integer n. (Since the unit has norm 1, we take powers of
v2 rather than v.) The right hand side has the form ±(A + B

√
2) where A

is positive, so the first ± sign can be eliminated. Since the RHS is less then
one if the remaining sign is chosen to be positive, we see that the other sign is
positive as well. Using the binomial theorem, we find that the integers that are
simultaneously square and triangular are

y2 =

[(n−1)/2]∑
k=0

(
n

2k + 1

)
3n−2k−123k

2

.

Alternatively, we can give a clean iterative description. Define a pair of se-
quences xn, yn by initial values x1 = 3, y1 = 2 together with a joint recursion
xn+1 = 3xn + 4yn, yn+1 = 3xn + 2yn. The simultaneously square and trian-
gular integers are numbers of the form (yn/2)2. The first few examples are
1, 36, 1225, 41616, 1413721, 48024900, · · ·.

6. Suppose that K is an algebraic number field, and that α is integral over K
in the sense that it satisfies a monic polynomial whose coefficients are in ZK .
Prove that α is an algebraic integer.

Discussion. An algebraic number z is an algebraic integer then

spnZ(1, z, z2, · · ·)

has a finite basis. Each of the coefficients of the minimal polynomial of α over K
is an algebraic integer, so they are all contained in a finitely generated abelian
groupG, and the polynomial equation of degree n for α shows that α is contained
in the group generated by the first n− 1 powers of α and the generators of G,
so that α is an algebraic integer itself.


