Math 431 homework Discussion

1. Let $I = (2, 1 + \sqrt{-3}) \subset \mathbb{Z}[\sqrt{-3}]$. Show that $I^2 = 2I$. Why does this not contradict unique factorization of ideals in a Dedekind domain?

Discussion. The product of two ideals is generated by all possible products of pairs of generators. So

$$I^{2} = (4, 2(1 + \sqrt{-3}), -2 + 2\sqrt{-3}) = (4, 2 + 2\sqrt{-3}) = 2I.$$

This does not contract unique factorization in a Dedekind ring because $\mathbb{Z}[\sqrt{-3}]$ isn't a Dedekind domain.

2. Let $F = \mathbf{Q}(\alpha)$, where $\alpha^3 - \alpha^2 - 2\alpha - 8 = 0$. Show that $\mathbf{Z}_F = \operatorname{span}_{\mathbf{Z}}(1, \alpha, (\alpha^2 + \alpha)/2)$. Find three nontrivial ring homomorphisms from \mathbf{Z}_F to \mathbf{Q}_2 .

Discussion. The fab $L := \operatorname{span}_{\mathbf{Z}}(1, \alpha, (\alpha^2 + \alpha)/2)$ satisfies

$$\mathbf{Z}[\alpha] \subset_{\neq} L \subset \mathbf{Z}_F.$$

From the formula

$$\operatorname{disc}(1, \alpha, \alpha^2) = [\mathbf{Z}_F : \mathbf{Z}[\alpha]] \operatorname{disc}(\mathbf{Z}_F)$$

and a calculation that the discriminant of the minimal polynomial for α is $-2^2 \cdot 503$ (note: the formula for the discriminant of a general monic cubic is in the class notes on resultants and discriminants), we see that the index of $\mathbf{Z}[\alpha]$ in \mathbf{Z}_F must be 2, and that $L = \mathbf{Z}_F$.

If we let $\beta = (\alpha^2 + \alpha)/2$, then $\mathbf{Z}_F = \operatorname{span}_{\mathbf{Z}}(1, \alpha, \beta)$. As can be checked by computing $\alpha\beta$ and β^2 , the ring structure is given by the rules

$$\alpha^2 = -\alpha + 2\beta, \quad \alpha\beta = 2\beta + 4, \quad \beta^2 = 2\alpha + 3\beta + 6.$$

In order to define a homomorphism from \mathbf{Z}_F to $\mathbf{Q}_2 = \{0, 1\}$ we have to map rational integers to their residues mod 2, and map map each of α and β to 0 or 1. So there are nominally four possibilities. A quick glance at the multiplication rules shows that mapping α and β both to 1 would contradiction the multiplication rule for $\alpha\beta$, but that every other possibility gives a homomorphism. Thus there are three homomorphisms all together. Note that the kernel of each of this is a prime ideal of index (norm) equal to 2.

Digression: This explains why the field $\mathbf{Q}(\alpha)$ has no power basis. The prime 2 splits into three prime ideals of degree 1. If there was a power basis, then the minimal polynomial of the generator would have to factor into the product of three irreducible polynomials of degree 1 modulo 2. Unfortunately, there are only two such irreducible polynomials, x and x + 1.

3. Show that any Dedekind domain with finitely many prime ideals is a PID. (Hint: Use the CRT to find a generator of an ideal.)

Discussion. One way to do this is to show that each prime ideal P is principal. Choose an element β in P but not in P^2 . (This is possible since factorization into primes is unique, so P and P^2 are distinct ideals.) Now use the Chinese Remainder Theorem to chose an element α that is congruent to β modulo P^2 and congruent to 1 modulo all of the (finitely many) other prime ideals. By construction the principal ideal (α) is equal to P, and P is principal, as desired.

4. Show that if I is any ideal in a number ring \mathbf{Z}_F then \mathbf{Z}_F/I is a PID.

Discussion. There is a one-to-one correspondence between ideals \overline{J} in the quotient ring and ideals J in \mathbb{Z}_F that contain I. Given such an ideal \overline{J} , and a corresponding ideal J, chose a nonzero element of I, and then apply our "two-generator" theorem from class to find a β such that $J = (\alpha, \beta)$. Since α is in I, we see that in the quotient α vanishes, and $\overline{J} = (\overline{\beta})$ so that \overline{J} is principal as desired.

The ring \mathbf{Z}_F/I need *not* be a Dedekind domain, since, for instance, it might not even be an integral domain.

5. Let
$$F = \mathbf{Q}(\alpha)$$
 where $\alpha^3 + \alpha + 1 = 0$. Show that in the ring \mathbf{Z}_F

(3) = PQ, where
$$P = (3, \alpha + 2), Q = (3, \alpha^2 + \alpha + 2)$$

$$(31) = P^2Q$$
, where $P = (31, \alpha - 14), Q = (31, \alpha - 3).$

For the primes over 3 we have

$$PQ = (9, 3\alpha + 6, 3\alpha^2 + 3\alpha + 6, 3\alpha^2 + 3\alpha + 3).$$

The difference of the last two generators is 3, and since every other generator is a multiple of 3 we have PQ = (3).

For the primes over p = 31 we have $P^2 = (p^2, p(\alpha - 14), \alpha^2 - 28\alpha + 196)$ and

$$P^{2}Q = (p^{3}, p^{2}(\alpha - 14), p(\alpha^{2} - 28\alpha + 196), p^{2}(\alpha - 3),$$
(1)

$$p(\alpha^2 - 17\alpha + 42), p(-\alpha^2 + 9\alpha + 19)).$$
(2)

There are three generators that are nominally divisible by p. We eliminate the α^2 terms by subtracting the first two of these to give $u = p(-11\alpha + 154)$. Adding the last two of these gives $v = p(-8\alpha + 23)$. To eliminate the α term we calculate 8u - 11v = -979p. Since 979 is not divisible by p, the gcd of 979p and p^3 is p, so a suitable linear combination of those elements is equal to p. And since every element is divisible by p, we conclude that $(p) = P^2Q$.