
Math 431 homework Discussion Due Friday, October 26, 2001

1. Let I = (2, 1 +
√
−3) ⊂ Z[

√
−3]. Show that I2 = 2I. Why does this not

contradict unique factorization of ideals in a Dedekind domain?

Discussion. The product of two ideals is generated by all possible products of
pairs of generators. So

I2 = (4, 2(1 +
√
−3),−2 + 2

√
−3) = (4, 2 + 2

√
−3) = 2I.

This does not contract unique factorization in a Dedekind ring because Z[
√
−3]

isn’t a Dedekind domain.

2. Let F = Q(α), where α3−α2−2α−8 = 0. Show that ZF = spanZ(1, α, (α2+
α)/2). Find three nontrivial ring homomorphisms from ZF to Q2.

Discussion. The fab L := spanZ(1, α, (α2 + α)/2) satisfies

Z[α] ⊂6= L ⊂ ZF .

From the formula

disc(1, α, α2) = [ZF : Z[α]] disc(ZF )

and a calculation that the discriminant of the minimal polynomial for α is
−22 · 503 (note: the formula for the discriminant of a general monic cubic is in
the class notes on resultants and discriminants), we see that the index of Z[α]
in ZF must be 2, and that L = ZF .

If we let β = (α2 + α)/2, then ZF = spanZ(1, α, β). As can be checked by
computing αβ and β2, the ring structure is given by the rules

α2 = −α+ 2β, αβ = 2β + 4, β2 = 2α+ 3β + 6.

In order to define a homomorphism from ZF to Q2 = {0, 1} we have to map
rational integers to their residues mod 2, and map map each of α and β to 0 or 1.
So there are nominally four possibilities. A quick glance at the multiplication
rules shows that mapping α and β both to 1 would contradiction the multiplica-
tion rule for αβ, but that every other possibility gives a homomorphism. Thus
there are three homomorphisms all together. Note that the kernel of each of
this is a prime ideal of index (norm) equal to 2.

Digression: This explains why the field Q(α) has no power basis. The prime
2 splits into three prime ideals of degree 1. If there was a power basis, then
the minimal polynomial of the generator would have to factor into the product
of three irreducible polynomials of degree 1 modulo 2. Unfortunately, there are
only two such irreducible polynomials, x and x+ 1.

3. Show that any Dedekind domain with finitely many prime ideals is a PID.
(Hint: Use the CRT to find a generator of an ideal.)

Discussion. One way to do this is to show that each prime ideal P is principal.
Choose an element β in P but not in P 2. (This is possible since factorization
into primes is unique, so P and P 2 are distinct ideals.) Now use the Chinese
Remainder Theorem to chose an element α that is congruent to β modulo P 2



and congruent to 1 modulo all of the (finitely many) other prime ideals. By
construction the principal ideal (α) is equal to P , and P is principal, as desired.

4. Show that if I is any ideal in a number ring ZF then ZF /I is a PID.

Discussion. There is a one-to-one correspondence between ideals J in the
quotient ring and ideals J in ZF that contain I. Given such an ideal J , and a
corresponding ideal J , chose a nonzero element of I, and then apply our “two-
generator” theorem from class to find a β such that J = (α, β). Since α is in
I, we see that in the quotient α vanishes, and J = (β) so that J is principal as
desired.

The ring ZF /I need not be a Dedekind domain, since, for instance, it might
not even be an integral domain.

5. Let F = Q(α) where α3 + α+ 1 = 0. Show that in the ring ZF

(3) = PQ, where P = (3, α+ 2), Q = (3, α2 + α+ 2)

(31) = P 2Q, where P = (31, α− 14), Q = (31, α− 3).

For the primes over 3 we have

PQ = (9, 3α+ 6, 3α2 + 3α+ 6, 3α2 + 3α+ 3).

The difference of the last two generators is 3, and since every other generator is
a multiple of 3 we have PQ = (3).

For the primes over p = 31 we have P 2 = (p2, p(α−14), α2−28α+ 196) and

P 2Q = (p3, p2(α− 14), p(α2 − 28α+ 196), p2(α− 3), (1)
p(α2 − 17α+ 42), p(−α2 + 9α+ 19)). (2)

There are three generators that are nominally divisible by p. We eliminate
the α2 terms by subtracting the first two of these to give u = p(−11α + 154).
Adding the last two of these gives v = p(−8α+23). To eliminate the α term we
calculate 8u−11v = −979p. Since 979 is not divisible by p, the gcd of 979p and
p3 is p, so a suitable linear combination of those elements is equal to p. And
since every element is divisible by p, we conclude that (p) = P 2Q.


