
Math 431 Quiz October quiz Discussion

1. Let α be a root of f(x) = x3 − 4x − 1 and let F = Q(α). Prove that
ZF = Z[α]. Find a unit in ZF . Show that 2ZF is not a prime ideal (hint: to
find two algebraic integers whose product is in the ideal, you could choose one
of them to be α+ 1.) Find TrF/Q(αk) for k = 0, 1, 2, 3.

Discussion. From our formula for the discriminant of a cubic polynomial,

disc(x3 − 4x− 1) = −4(−4)3 − 27(−1)2 = 229.

By formulas in class this is equal to

disc(1, α, α2) = disc(ZF )[ZF : Z[α]]2.

Since 229 is squarefree (in fact, a prime) the index on the RHS must be equal
to 1, and we conclude that ZF = Z[α] and disc(ZF ) = 229.

The element α is itself a unit, as can be seen directly either from

α(α2 − 4) = 1

or the form equation

NF/Q(α−m) = −
3∏
i=1

(m− α(i)) = −f(m)

so that N(α) = −f(0) = 1. Since f(2) = −1 we also see that α− 2 is a norm.
To show that 2ZF = (2) is not a prime ideal we have to find two elements

of the ring that are not in the ideal but whose product is in the ideal. Many
things work, e.g., using the equation satisfied by α we find that

4α = α3 − 1 = (α− 1)(α2 + α+ 1)

and the two factors on the RHS are certainly not in 2Z[α].
The trace of αk is the sum of the k-th powers of the conjugates of α, i.e, it is

the power sum pk if the “xi” are the conjugates of α. The elementary symmetric
functions are the coefficients of the minimal polynomial satisfied by α, and we
find that e1 = 0, e2 = −4, e3 = 1. From the equations discussed earlier

p1 − e1 = 0, p2 − e1p1 + 2e2 = 0, p3 − e1p2 + e2p1 − 3e3 = 0

we discover that p1 = 0, p2 = 8, p3 = 3. The later trace could also be calculated
by using the additivity of the trace: since α3 = 4α+ 1 we have

Tr(α3) = Tr(4α+ 1) = 4Tr(α) + Tr(1) = 3.

If needed, traces of higher powers can be computed using the recursion

pn+3 − e1pn+2 + e2pn+1 − e3pn = 0.

2. Let u0, u1, · · · be a sequence of integers (i.e., elements of Z) such that

un+3 − 4un+1 − un = 0



for all n ≥ 0. Prove that there are numbers ai so that

un =
3∑
i=1

ai

(
α(i)

)n
where α is as given in the previous problem. (Hint: consider the first 3 terms
and the *** matrix.) What can you say about

lim
n→∞

|un|1/n ?

Discussion. Constant coefficient linear recursions are often treated in linear
algebra. One finds that if the recurrence “has distinct eigenvalues” then the
n-th term is a linear combination of the n-powers of the roots of the character-
istic polynomial. This can be verified directly. The linear equations for three
variables ai  u0

u1

u2

 =

 1 1 1
α(1) α(2) α(3)(
α(1)

)2 (
α(2)

)2 (
α(3)

)2
 a1

a2

a3


can obviously be solved (the coefficient matrix is a Vandermonde, and the fact
that the conjugates of α are distinct implies that the matrix is nonsingular).
Thus the equation

un = a1

(
α(1)

)n
+ a2

(
α(2)

)n
+ a3

(
α(3)

)n
is true for n = 0, 1, 2. Since the sequences un and αn satisfy the same recursion
it follows that the formula is true for all n.

The asymptotic behavior of the sequence is determined by the relative rela-
tionship of the roots α(i). A quick glance at the polynomial shows that there
is a real root between 2 and 3 (actually, much closer to 2 since f(2) = −1 and
f(3) = 14; the root can be isolated quite accurately by Newton’s method, and
one finds XXX). Since the product of the roots is equal to 1, the other two
complex conjugate roots have absolute value in the vicinity of 2/3. We find
that

|un|1/n = |a1|1/nα(1)|1 + (a2/a1)(α(2)/α(1))n + (a3/a1)(α(3)/α(1))n|1/n

where the numbering is chosen so that α(1) is the real root. This assumes that
the ui are not identically 0; using this, and also the fact that a1 isn’t 0 (which
can be verified in several ways), the limit is immediately seen to be α(1).

3. Describe all solutions to the diophantine equation

x2 + xy − 8y2 = 1.

Discussion. Since the discriminant of the quadratic form on the left is 33, we
expect that Q(

√
33) should have something to do with this. If δ = (1 +

√
33)/2



then δ+ δ′ = 1, δδ′ = −8, and δ satisfies the equation δ2− δ− 8 = 0. Moreover,
the quadratic form in the problem turns out to conveniently be the norm form:

N(x+ yδ) = (x+ yδ)(x+ yδ′) = x2 + xy − 8y2.

Thus we are being asked to find units of norm 1 in the real quadratic field
Q(
√

33).
Inspecting the equation g(x, y) = x2 + xy − 8y2 = 1 we see that x must be

odd and y even. Since g(x,−y) = g(x − 1, y) it suffices to consider positive y.
Moreover, writing the equation in the form (2x + y)2 − 33y2 = 4 one easily
checks that y ≡ ±1 mod 5 won’t work, since then y2 ≡ 1 mod 5 and we would
have a square being congruent to 2 modulo 5, which is impossible. Thus the
first two possible values of y to try are y = 2 and y = 8. Fortunately, the second
of these works, and we find that x = 19, y = 8 is a solution.

Is the unit 19 + 8δ fundamental? In fact, since 8 is the smallest value of y
that works, it isn’t too hard to show that the unit is fundamental (this is a
general fact in quadratic fields: the first y value that works is fundamental).
However, later we will need to be able to verify that units that we find by other
means are fundamental, so we will work through the procedure discussed in
class. Namely, any fundamental unit is larger than

√
D − 3 =

√
30. The cube

root of u = 19 + 8δ is smaller than
√

30, so either u is fundamental or else it is
the square of a fundamental unit. The equation

(a+ bδ)2 = 19 + 8δ

leads to a2 + 8b2 = 19 which is impossible to solve in integers, so u is funda-
mental.

Thus all units are of the form ±uk, for k ∈ Z. Another way to describe them
is by saying that a string of solutions are defined recursively by the equations
x1 = 19, y1 = 8 and

xn+1 = 19xn + 64yn, yn+1 = 8xn + 27yn

(multiplying un = xn + ynδ by 19 + 8δ and using δ2 = δ + 8 given above). And
that all other solutions are of the form (−xn,−yn), by taking the negatives, or
(xn + yn,−yn), by taking conjugates.

4. Show that if a polynomial with rational coefficients has r1 real roots and
r2 pairs of complex conjugate roots, then the sign of its discriminant is (−1)r2 .
(Hint: One easy way to do this is to factor the polynomial over R, and then
use formulae.) Show that if F is a number field with r1 real embeddings and
r2 pairs of complex conjugate embeddings then the sign of its discriminant is
(−1)r2 .

Discussion. The formula disc(fg) = disc(f)disc(g)Res(f, g)2 implies that the
sign of the discriminant of polynomials is equal to the product of signs of the
discriminants of the polynomials. Over the real numbers, a polynomial with
rational (or real) coefficients factors into linear factors x−a and quadratic factors



x2 +ax+ b that have complex conjugate roots (i.e., satisfying a2− rb < 0). The
discriminant of a linear polynomial x − a is equal to 1. The discriminant of a
quadratic with complex conjugate roots is negative. Putting this all together,
we see that the discriminant of a polynomial as described is positive if and
only if the number r2 of pairs of complex conjugate roots (i.e., the number of
quadratic factors over R) is even.

If F = Q(α) (which is is always the case, for some α, by the Primitive
Element Theorem) and we assume that α is an algebraic integer, then we know
that

disc(F ) = disc(ZF ) = disc(Z[α])/[ZF : Z[α]]2

and that the discriminant of Z[α] is the discriminant of its minimal polynomial.
Thus the sign of disc(F ) is equal to the sign of the discriminant of a generator¿α
and is equal to (−1)r2 .

5. Show that if I is a nonzero ideal in the ring of integers ZF of a number field
then I ∩ Z is a nonzero ideal in Z.

Discussion. The intersection of I and Z satisfies the conditions for being an
ideal, so it suffices to show that there is a nonzero element in the intersection.
One way to see this is to observe that the norm of α is in the intersection, and
another (equivalent) way is to observe that if the minimal polynomial of α has
the shape

xn + a1x
n−1 + · · ·+ a0 = 0

then a0 is in the ideal generated by α, and a0 is nonzero.

6. For each prime ideal P in Z[i] (see the class notes for 9/21 for an explicit
list) find, with explanation, the index [Z[i] : P ] of P in Z[i].

Discussion. One can find explicit coset representatives without too much
difficulty, but it is easy just to use the result from class saying that the index of
a sub-fab is the absolute value of the determinant of the change of basis matrix.
The ideals of the form P = (a+ bi) where a2 + b2 = p is a prime (which includes
the ideal (1+i) which contains 2) clearly have basis a+bi, and i(a+bi) = −a+bi.
The determinant of the changes of basis matrix is a2 + b2 = p.

Ideals of the form (p) where p is a rational prime have basis p, pi and the
determinant of the change of basis matrix is p2.

In all cases, we have [Z[i] : I] = N(x) if I is a prime ideal generated by x.

7. Let α and β be algebraic integers of degree n that satisfy

TrQ(α)/Q(αk) = TrQ(β)/Q(βk)

for 0 ≤ k ≤ n. Prove that α = β.

Discussion. The traces are power sums of α or β and their conjugates. El-
ementary symmetric functions can be determined recursively from the power
sums, using Newton’s identities. Thus the elementary symmetric functions of α
and β are the same, and alpha and β are roots of the same polynomial, and are
conjugate, as desired.


