MATH 361: NUMBER THEORY — SEVENTH LECTURE

1. THE UNIT GROUP OF Z/nZ

Consider a nonunit positive integer,

n:Hpep>1.

The Sun Ze Theorem gives a ring isomorphism,
z/nz =[] z/p*2.

The right side is the cartesian product of the rings Z/p°Z, meaning that addition
and multiplication are carried out componentwise. It follows that the corresponding
unit group is

z/nz)* =] @/p2)".

Thus to study the unit group (Z/nZ)* it suffices to consider (Z/p°Z)* where p is
prime and e > 0. Recall that in general,

((Z/nZ)| = p(n),
so that for prime powers,
(Z/p°Z)*| = o(p°) = p*~H(p— 1),
and especially for primes,
[(Z/pZ)"| =p— 1.

Here are some examples of unit groups modulo prime powers, most but not quite
all cyclic.

(z/22) = ({1},-) = ({2°},) = ({0}, +) = 2/,
(Z/32)" = ({1,2},) = ({2°,2'},) = ({0,1}, 4) = Z/2Z,
(z/42)* = ({1,3},) = ({3°,3'},) = ({0,1}, +) = 2/22Z,
(Z/57)* = ({1,2,3,4},-) = ({2°,2%,22,2%}, )

=~ ({0,1,2,3},+) = Z/4Z,

(Z)77)* = ({1,2,3,4,5,6},-) = ({3°,3",32,3%,34 3%}, )
~ ({0,1,2,3,4,5}, +) = Z/6Z,

(z/87)* = ({1,3,5,7},-) = ({3°5°,3'5° 3%5" 3'5'} )
= ({0,1} x {0,1},4) = Z/27Z x L/ 2Z,

(Z)97)* = ({1,2,4,5,7,8},-) = ({2°,2%,22,23 2% 25} )

~ ({0,1,2,3,4,5},+) = Z/67Z.
1



2 MATH 361: NUMBER THEORY — SEVENTH LECTURE

2. PRIME UNIT GROUP STRUCTURE: ABELIAN GROUP THEORY ARGUMENT

Proposition 2.1. Let G be any finite subgroup of the unit group of any field. Then

G is cyclic. In particular, the multiplicative group modulo any prime p is cyclic,
(Z/pZ)* =1Z/(p - 1)Z.

That is, there is a generator g mod p such that

(Z/pZ)* ={1,9,9%,...,9" %}

Proof. We may assume that G is not trivial. By the structure theorem for finitely
generated abelian groups,

(G,") 2 (Z)d1\Z X D) Ao % -+ X T)dyZ,+), t>1, 1<dy |dy--|dy.

Thus the polynomial equation X% = 1, whose additive counterpart is d; X = 0, is
satisfied by each of the dids - --d; elements of G; but also, the polynomial has at
most as many roots as its degree d;. Thus t =1 and G is cyclic. (]

The proof tacitly relies on a fact from basic algebra:

Lemma 2.2. Let k be a field. Let f € k[X] be a nonzero polynomial, and let d
denote its degree (thus d > 0). Then f has at most d roots in k.

Proof. If f has no roots then we are done. Otherwise let a € k be a root. Write
fX)=q¢(X)(X —a)+7r(X), deg(r)<lorr=0.

Thus r(X) is a constant. Substitute a for X to see that in fact r = 0, and so
f(X) =q(X)(X — a). Because we are working over a field, any root of f is a or is
a root of ¢, and by induction ¢ has at most d — 1 roots in k, so we are done. 0

The lemma does require that k£ be a field, not merely a ring. For example, the
polynomial X2 — 1 over the ring Z/247 has for its roots

{1,5,7,11,13,17,19,23} = (Z/247)*.

To count the generators of (Z/pZ)*, we establish a handy result that is slightly
more general.

Proposition 2.3. Let n be a positive integer, and let e be an integer. Let v =
ged(e,m). The map
Z/n7 — Z/nZ, T ex

has
image (v + nZ), of order n/~,
kernel (n/~ + nZ), of order .

FEspecially, each e + nZ where e is coprime to n generates Z/nZ, which therefore
has o(n) generators.

Indeed, the image is {ex +nZ :x € Z} = {ex + ny+nZ: z,y € Z} = (v + nZ).
The rest of the proposition follows, or we can see the kernel directly by noting that
n | ex if and only if n/vy | (e/v)x, which by Euclid’s Lemma holds if and only if
n/y| .

Because (Z/pZ)* is isomorphic to Z/(p—1)Z, the proposition shows that if ¢ is a
generator then all the generators are the o(p —1) powers g¢ where ged(e,p—1) = 1.
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3. PRIME UNIT GROUP STRUCTURE: ELEMENTARY ARGUMENT

From above, a nonzero polynomial over Z/pZ cannot have more roots than its
degree. On the other hand, Fermat’s Little Theorem says that the polynomial

f(X) =X — 1€ (Z/pZ)[X]

has a full contingent of p — 1 roots in Z/pZ.
For any divisor d of p— 1, consider the factorization (in consequence of the finite
geometric sum formula)

=l
fX)=xr1—1=(x4-1) Y Xx* A g (X)h(X).
=0

‘We know that

e f hasp—1roots in Z/pZ,
e g has at most d roots in Z/pZ,
e h has at most p — 1 — d roots in Z/pZ.

It follows that g(X) = X¢ — 1 where d | p — 1 has d roots in Z/pZ.
Now factor p — 1,
p—1=]]q¢"

For each factor ¢¢ of p — 1,

e

X -1 has ¢° roots in Z/pZ,

X"~ 1 has q¢~! roots in Z/pZ,
and so (Z/pZ)* contains ¢° — ¢°~! = ¢(q°) elements x, of order ¢°. (The order of
an element is the smallest positive number of times that the element is multiplied
by itself to give 1.) Plausibly,

any product qu has order quq =p-1,

q q

and certainly there are ¢(p — 1) such products. In sum, we have done most of the
work of showing

Proposition 3.1. Letp be prime. Then (Z/pZ)* is cyclic, with p(p—1) generators.
The loose end is as follows.

Lemma 3.2. In a commutative group, consider two elements whose orders are
coprime. Then the order of their product is the product of their orders.

Proof. Let e and f denote the orders of a and b, and let g denote the order of ab.
Compute,

(ab)f = (a*) (b7)° = 171° = 1.
Thus g | ef. Also, using the condition (e, f) = 1 for the third implication to follow,
(ab)f =1 = 1= ((ab)g)f = (@) =d9 = e|fg = €|y,

and symmetrically f | g. Thus ef | g, again because (e, f) = 1. Altogether g = ef
as claimed. O
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4. Opp PRIME POWER UNIT GROUP STRUCTURE: p-ADIC ARGUMENT

Proposition 4.1. Let p be an odd prime, and let e be any positive integer. The
multiplicative group modulo p° is cyclic. That is, (Z/p°Z)* = Z/p°* *(p — 1)Z.

Proof. (Sketch.) We have the result for e = 1, so take e > 2. Because ¢(p°) =
p°~Y(p — 1), the structure theorem for finitely generated abelian groups and then
the Sun Ze theorem combine to show that (Z/p®Z)* takes the form (letting A,
denote an abelian group of order n)
(Z/p*Z)* = A
By the Sun Ze Theorem, it suffices to show that each of A,.-1 and A,_; is cyclic.
The natural epimorphism (Z/pZ)* — (Z/pZ)* taking a+ p°Z to a+ pZ maps
Ape-1 to 1in (Z/pZ)*, because the orders of the two groups are coprime but the
image is a quotient of the first and a subgroup of the second. Consequently the
restriction of the natural epimorphism to A,_; must be an isomorphism, making
A,_1 cyclic because (Z/pZ)* is. Further, this discussion has shown that Apye-1 is
the natural epimorphism’s kernel,

Ape—r ={a+p°Z € (Z/p°Z)* : a =1 mod p}.

Working p-adically, we have additive-to-multiplicative group isomorphisms

pe—1 X Apfl.

exp:prp —>1+prp, f>1,
because exp(ap’) for any a € Z,, begins with 1 + ap’, and then for n > 2,

aph™
w (25) 20l - L) 22— ) =212

n!

Especially, we have the isomorphisms for f = 1 and for f = e. Thus the surjective
composition pZ, R4 pZy, — Ape—1, where the second map is the restriction of
the ring map Z, — Z,/p°Z, ~ Z/p°Z to the multiplicative group map 1+pZ, —
(Z/p°Z)*, factors through the quotient of its domain pZ, by p°Z,,

Ly ————— 1+ pZ,

| |

Pl [Py —————— Ape—

Further, pZ, /p°Z, ~ pZ/p°Z ~ Z/p* 7. So the surjection pZ,/p°Z, — Ape-1 is
an isomorphism because the two finite groups have the same order, and then A1
is cyclic because Z/p°~1Z is. This completes the proof. (I

The condition —1/(p—1) > —1/2 in the proof fails for p = 2, but a modification
of the argument shows that (Z/2°Z)* has a cyclic subgroup of index 2.

Once one is aware that the truncated exponential series gives an isomorphism
pZ/p°l — Ape—1, the isomorphism can be confirmed without direct reference
to the p-adic exponential. For example with e = 3, any px + p3Z has image
14+ pz+ %p2x2 +p37Z, and similarly py + p>Z has image 1+ py + %p2y2 +p3Z; their
sum p(z +y) + p*Z maps to 1+ p(x + y) + 3p*(2* + 2zy + y*) + pZ, which is also
the product of the images, even though 14 p(z +y) + %pg(gc2 + 22y +y?) is not the
product of 1+ pz + 2p?2? and 1+ py + 2p*y?. This idea underlies the elementary
argument to be given next.
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5. Obpp PRIME POWER UNIT GROUP STRUCTURE: ELEMENTARY ARGUMENT

Again we show that for any odd prime p and any positive e, the group (Z/p°Z)*
is cyclic. Here the argument is elementary.

Proof. Let g generate (Z/pZ)*. Because the binomial theorem gives
(g+p)"~ =g""" + (p = 1)g"*p mod p,
we have (g + p)P~! # ¢g?~! mod p?, so in particular
g* ' #1mod p?® or (g+p)P ' #1mod p?
After replacing g with g + p if necessary, we may assume that ¢g?~! # 1 mod p?.
Thus we know that
¢t =1+kp, ptk.
Again using the binomial theorem,

p—1
PV = (L+kip)’ = 1+phip+ ) (?) kip + k{p”
j=2
=1+ kop®, ptho.

The last equality holds because the terms in the sum and the term kY p? are multiples
of p?. (Here it is relevant that p > 2. The assertion fails for p = 2, g = 3 because
of the last term. That is, 327! =14 1 -2 so that k; = 1 is not divisible by p = 2,
but then 322~1) =9 =14 222 50 that ky = 2 is.) Once more by the binomial
theorem,

P
gpz(p—l) = (14 kop?)? = 1 + pkop® + Z (?) kip®

j=2
=1+ksp®, pthks,
because the terms in the sum are multiples of p*. Similarly
g ") =1 4 kap, ptka,

and so on, up to
e—2
(

gp Pl = 1+ke—1p6_17 pjfke—l-
That is,
gpeﬂ(p_l) # 1 mod p°.
The order of g in (Z/p°Z)* must divide ¢(p®) = p°~!(p — 1). If the order takes
the form p°d where € < e —1 and d is a proper divisor of p — 1 then Fermat’s Little
Theorem (g? = g mod p) shows that the relation

gped =1 mod p°
reduces modulo p to
¢% =1 mod p.

But this contradicts the fact that g is a generator modulo p. Thus the order of g
in (Z/p°Z)* takes the form p°(p — 1) where ¢ < e — 1. The calculation above has
shown that ¢ = e — 1, and the proof is complete. [
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For example, 2 generates (Z/5Z)%, and 2°~! = 16 # 1 mod 52, so in fact 2
generates (Z/5°Z)* for all e > 1.

A small consequence of the proposition is that because (Z/pZ)* is cyclic for
odd p, and because p(p®) = p°*~1(p — 1) is even, the equation

z? =1 mod p°

has two solutions: 1 and g#(®")/2,

6. POWERS OF 2 UNIT GROUP STRUCTURE
Proposition 6.1. The structure of the unit group (Z/2°7)* is
Z]Z ife=1,
(z)2°7)* = { 7,)27 ife=2,
(Z)27) x (Z]2°72Z) if e > 3.
Specifically, (Z/272)* = {1}, (Z/AZ)* = {1,3}, and for e > 3,
(Z)2°Z)% = {1} x {1,5,5%,...,52 1}

Proof. The results for (Z/27)* and for (Z/47)* are readily observable, and so we
take e > 3.
Because |(Z/2°Z)*| = ¢(2¢) = 2°71, we need to show that

527" £1mod 2°, 5% =1 mod 2°,
Similarly, to the previous argument, start from
5 =5 =14 k2%, 2tko,
and thus
520 =52 =1+ 222 + k224 = 1+ k323, 21 ks,
and then
52° = 5% = 1+ 2k32% + k220 = 1+ ky2%, 24k,
and so on up to
52 = 14 ke12°7Y, 2% ke,
and finally
5277 =1+ k2%, 2tk
The last two displays show that
527" £1mod 2°, 5% =1 mod 2°
That is, 5 generates half of (Z/2°Z)*. To show that the full group is
(Z)2°7)* = {+1} x {1,5,5%,...,55 1},
suppose that
(=1)25° = (=1)°5% mod 2°, a,c € {0,1}, b,d € {0,---,2°72 —1}.

Inspect modulo 4 to see that ¢ = a. So now 5° = 5¢ mod 2¢, and the restrictions
on b and d show that d = b as well. g
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The group (Z/2°Z)* is not cyclic for e > 3 because all of its elements have order
dividing 2°72.
The equation
z? =1 mod 2¢

has one solution if e = 1, two solutions if e = 2, and four solutions if e > 3,
(1,1), (=1,1), (1,5, (=1,52").

With this information in hand, the Sun Ze Theorem shows that the number of
solutions of the equation

g
z? =1 mod n, (where n = 2¢ pr*)
i=1

is

29 ife=0,1,

2-29 ife=2,

4-29 ife>3.
For example, if n = 120 = 23 - 3 - 5 then the number of solutions is 16.

Especially, the fact that for odd n = le p;* there are 29 — 1 proper square

roots of 1 modulo n has to do with the effectiveness of the Miller—Rabin primality

test. Recall that the test makes use of a diagnostic base b € {1,...,n — 1} and of
the factorization n — 1 = 2°m, computing (everything modulo n)

bm’ (bm)Q, ((bm)2)27 s (bm2s’2>2 — bnfl'

Of course, if ™ = 1 then all the squaring is doing nothing, while if "' # 1 then
n is not prime by Fermat’s Little Theorem. The interesting case is when ™ # 1
but b"~! = 1, so that repeatedly squaring b™ does give 1: in this case, squaring b™
one fewer time gives a proper square root of 1. If n has g distinct prime factors
then we expect this square root to be —1 only 1/(29 — 1) of the time. Thus, if
the process turns up the square root —1 for many values of b then almost certainly
g =1, i.e., n is a prime power. Of course, if n is a prime power but not prime
then we hope that it isn’t a Fermat pseudoprime base b for many bases b, and the
Miller-Rabin will diagnose this.

7. Cycric UNIT GROUPS (Z/nZ)*

Consider a positive nonunit integer
n= H Pt
i
Recall the multiplicative component of the Sun Ze Theorem,
(Z/nZ)* — H(Z/pepZ)X, a mod n +— (a mod p{*,--- ,a mod p*).

Consequently, the order of a divides the least common multiple of the orders of the
multiplicand-groups,

lem{p(py"), - 0 (Pi*)}
and thus a cannot conceivably have order ¢(n) unless all of the ¢(pi*) are coprime.
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For each odd p, the totient p(p¢) is even for all e > 1. So for (Z/nZ)* to be
cyclic, n can have at most one odd prime divisor. Also, 2 | ¢(2°¢) for all e > 2. So
the possible unit groups (Z/nZ)* that could be cyclic are

(z/2z)*, (Z/AZ)*, (Z/p°Z)*, (Z/2p°Z)".
We know that the first three groups in fact are cyclic. For n = 2p®, the Sun Ze
Theorem gives

(Z)2p°2)* = (Z)22)* x (Z/p°L)" = (Z[p°L)*,

showing that the fourth group is cyclic as well. If g generates (Z/p°Z)* then
whichever of g and g + p© is odd generates (Z/2p°Z)*.



