
MATH 361: NUMBER THEORY — FIFTH LECTURE

1. The Sun Ze Theorem

The Sun Ze Theorem is often called the Chinese Remainder Theorem. Here is
an example to motivate it. Suppose that we want to solve the equation

13x = 23 mod 2310.

(Note that 2310 = 2 · 3 · 5 · 7 · 11.) Since gcd(13, 2310) = 1, we can solve the
congruence using the extended Euclidean algorithm, but we want to think about it
in a different way now. The idea is that

13x = 23 mod 2310

⇐⇒
13x = 23 (2), 13x = 23 (3), 13x = 23 (5), 13x = 23 (7), 13x = 23 (11)

⇐⇒
x = 1 (2), x = 2 (3), 3x = 3 (5), 6x = 2 (7), 2x = 1 (11)

⇐⇒
x = 1 (2), x = 2 (3), x = 1 (5), x = 5 (7), x = 6 (11).

This succession of equivalences has reduced one linear congruence with a large
modulus to a system of linear congruences with smaller moduli. Furthermore, the
moduli are pairwise coprime.

In general, given pairwise coprime positive integers n1, . . . , nk, compute the
integers

ei =

(∏
j 6=i

nj

)
×
(∏

j 6=i

nj

)−1
mod ni, i = 1, . . . , k.

These numbers satisfy the conditions

ei =

{
1 mod ni

0 mod nj for j 6= i.

That is, they are rather like the standard basis of Rn in that each ei lies one unit
along the ith direction and is orthogonal to the other directions. But in this context,
direction refers to a modulus.

With the ei in hand, we can solve the system of congruences

x = a1 (n1), x = a2 (n2), · · · , x = ak (nk).

A solution is simply the obvious linear combination,

x = a1e1 + a2e2 + · · ·+ akek.
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Returning to the example, a solution is

x = 1 · (3 · 5 · 7 · 11) · 1 + 2 · (2 · 5 · 7 · 11) · 2 + 1 · (2 · 3 · 7 · 11) · 3
+ 5 · (2 · 3 · 5 · 11) · 1 + 6 · (2 · 3 · 5 · 7) · 1

= 8531

= 1601 mod 2310.

(It is easy to verify that 13 · 1601 = 23 mod 2310.)

2. The Sun Ze Theorem Structurally

Again let n1, . . . , nk be pairwise coprime positive integers, and let n be their
product. The map

Z −→
∏
i

Z/niZ, x 7−→ (x mod n1, . . . , x mod nk)

is a ring homomorphism. Its kernel is nZ. So the map descends to an injection

Z/nZ −→
∏
i

Z/niZ, x mod n 7−→ (x mod n1, . . . , x mod nk)

But this injection surjects as well. One can see this either by counting (both sides
are finite rings with n elements) or by noting that in fact we have constructed the
inverse map,∏

i

Z/niZ −→ Z/nZ, (x1 mod n1, . . . , xk mod nk) 7−→
∑

xiei mod n.

For example, the inverse of

Z/12Z −→ Z/4Z× Z/3Z, x mod 12 7−→ (x mod 4, x mod 3)

is

Z/4Z× Z/3Z −→ Z/12Z, (x1 mod 4, x2 mod 3) 7−→ 9x1 + 4x2 mod 12.

Especially, if the ni are prime powers then we have an isomorphism

Z/(pe11 · · · p
ek
k )Z ∼−→ (Z/pe11 Z)× · · · × (Z/pekk Z),

or

Z/(
∏

pp
ep)Z ∼−→

∏
p

Z/pepZ.

3. The Miller–Rabin Test Again

Suppose that an odd integer n factors as n =
∏

p p
ep . By the Sun Ze Theorem,

the condition

x2 = 1 mod n

is equivalent to the simultaneous conditions

x2 = 1 mod pep for all p | n,
which in turn, because n is odd, is equivalent to the simultaneous conditions

x = ±1 mod pep for all p | n,
with all the “±” signs independent of each other. Thus, if n is divisible by k distinct
primes then there are 2k square roots of 1 modulo n.
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Of these 2k square roots of 1 modulo n, only one is −1 modulo n. The Miller–
Rabin test returns the result that n could be prime if it finds the particular square
root −1 of 1 modulo n. The odds of finding −1 rather than some other square root
of 1 are 1/2k, so they are at most 1/4.

4. A Simple Thresh-hold Scheme Based on the Sun Ze Theorem

Let n1, . . . , nk be pairwise coprime integers, all large. Define

N = the product of all the ni,

n = the product of all the ni except nk.

Thus
N/n = nk.

Consider a secret number
x : 0 ≤ x < N.

Let ai = xmodni for i = 1, . . . , k. Then:

All k of the ai determine x, but the first k − 1 of them do not .

Indeed, given a1 through ak, the Sun Ze Theorem shows how the congruences

x̃ = ai mod ni, i = 1, . . . , k,

give us a value x̃ in {0, · · · , N − 1} that agrees with x modulo N . But also x lies
in the same range as x̃, so they are equal.

On the other hand, given only a1 through ak−1), we can solve the congruences

x̃ = ai mod ni, i = 1, . . . , k − 1,

and so we have a value x̃ ∈ {0, · · · , n − 1} that agrees with x modulo n. But also
x̃ plus any multiple of n is a candidate for x until we reach N . Thus there are
N/n = nk candidates for x based on x̃.


