FUJISAKI'S LEMMA, AFTER WEIL

This writeup is modeled closely on a writeup by Paul Garrett.
Let k be a number field. Let A be the adele ring of k, let J = A* be the idele
group, and let J* = {a € J : |a| = 1} be the group of norm-1 ideles.

Fujisaki’s Lemma. The quotient k*\J' is compact.

The first section to follow will give the main proof of Fujisaki’s Lemma. However,
the main proof relies on a description of the idele topology that may be unfamiliar,
and so the second section will explain the natural topology on the unit subgroup
of a topological ring, encompassing the idele topology.

1. PROOF OF FUJISAKI'S LEMMA
Give A a measure u. Take a compact set
CoC A, u(Cy) > p(k\A).
We show the Minkowski-like result that the natural quotient map
A— KA z—k+z

is not injective on C,. Indeed, suppose instead that the quotient map is injective
on C,. Then for any T € k\A and for any distinct 7,7’ € k, v+ « and 7 + = can
not both lie in C,. Let f be the characteristic function of C,, and compute that
consequently

W€ = [ fa@yae= [ S o raydr< [ = utoin).
A K\ STk E\A
The display contradicts the fact that pu(C,) > p(k\A), and so injectivity on C, is
untenable.
Consider any norm-1 k-idele

acJ.
The associated change of measure on A is trivial, d(az) = |a|dx = dz. Tt follows
that p(aCy,) > p(k\A), and pu(a=1C,) > u(k\A) similarly. By the previous para-
graph, there exist distinct x,y € C, such that ax —ay € k, and the same statement
holds with ¢! in place of a. With this in mind, define the set

C=C,—Co={z—y:2,y€C,}
We have just argued that aC N kX and a~'C N kX are nonempty. Elementwise,
there exist ¢,¢c € C and &, € k* such that
ac = d_l, ate=a"t.
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a~ = cc lies in the set
S=k*n(C-0).
1

It follows that the quantity o~
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The set S is the intersection of discrete set and a compact set, making it finite. Also,
S is independent of a. Since cé € S it follows that ¢! € C'- S~!. To summarize so
far, we have shown that given a € J!, there exist o and ¢ such that

a = ac, ack*, (qchyeCxC- S
Let H denote the adelic hyperbola,
H={(z,27") :x € A™},

endowed with the subspace topology from A x A. Since the set C' x C' - S~! is
compact in A x A, the intersection K, = (C x C' - S71) N H is compact in H. By
the nature of the idele topology (to be explained in the next section), this means
precisely that the set of first coordinates of K,-points,

K={cecA*:(c,c?) e K,},

is compact in A*, Now the summary at the end of the previous paragraph says
that given a € J!, there exist o and ¢ such that

a = ac, ack”, cekK.

So the continuous map
K — E\J', cr—k*c

surjects, showing that the quotient is compact.

2. THE UNIT TOPOLOGY

To justify the description of the idele topology from a moment ago, we work in
slightly more generality. The ideles are the unit group of the adeles, a topological
ring.

Let R be an associative ring with identity, and let U denote its unit group, i.e.,
the multiplicative group of the multiplicatively invertible elements of R. Suppose
further that R is a topological ring, meaning that its underlying set is endowed
with a topology, and that addition and multiplication are continuous on R under
the topology. This makes additive inversion continuous as well. The multiplicative
subgroup U inherits a topology from R. Under this topology, the restriction of
multiplication to U is automatically continuous, but multiplicative inversion on U
need not be. So the question is:

Given the topology on R, what topology naturally should be put on U
to make multiplicaton and inversion continuous?

Again, the answer is not the subspace topology that U inherits from R.
To answer the question, define

P=RXxR (P stands for product),
H={(u,u™"):ueU}C P (H stands for hyperbola).
Identify the unit group U and the hyperbola H as follows,
u e (u,u"t).

Since R has a topology, the product P = R X R carries the product topology. The
hyperbola H inherits a topology from P. The unit group thus acquires a topology
from H via their identification. This topology on U is the unit group topology. We
next discuss it.
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The unit topology on U is at least as fine as the subspace topology. Indeed,
letting m : P — R be 71 (z,y) = x, the composition

T
Uunit > H Usubspace

is the identity as a set-map and is continuous.

Any topology on U that is at least as fine as the subspace topology and makes
inversion continuous is at least as fine as the unit topology. To see this, let U
denote the set U with a topology that is at least as fine as the subspace topology
and makes inversion continuous. Then the map

U— H, ur— (u,u™?)

is continuous, giving the desired result.

Summarizing so far: The unit topology is the unique candidate topology to refine
the subspace topology just enough to make inversion on U continuous while keeping
multiplication on U continuous as well.

Inversion is continuous on U under the unit topology. This fact is essentially
instant from the definition. Inversion on U is the map

u—s u L
So on the copy H of U, inversion is the map

(w,u™) — (u™h ).

But this map is the restriction to H of the coordinate-exchange map on P,

(r,7) — (7, 7).
The coordinate-exchange map on P is certainly continuous. Hence so is the inver-
sion map on U.

Finally, multiplication is continuous on U under the unit topology. Because the
unit topology refines the subspace topology, this fact is not automatic. To see that
it is true nonetheless, first note that the product H x H can be identified with the
subspace H x H of P x P. (It is best to forget for the moment that P itself is again
a product.) This is easily seen by checking that the two spaces have the same basis.

Now, since multiplication on P,

PxP— P, ((gc,y)7 (z,w)) — (zz,yw),
is continuous, so is its restriction to H,
Hx H—H, ((au), (@d) — (ui,ua?),

viewing H x H as a subspace of P x P. But also we may view H x H as a product
in the previous display, and then it follows that the restriction to first coordinates,

UxU—U, (u,u)— ut,

is again continuous.



