Mathematics 361: Number Theory Assignment \mathbf{F}

Reading: Ireland and Rosen, Chapter 6 (including the exercises) and into Chapter 7

Problems:

Ireland and Rosen, Exercises 6.2; 6.4, 6.5; 6.11, 6.12, 6.13, 6.14; 6.23, 6.18; 6.19 (note that $\cos (2 \pi / 5)=\left(\zeta_{5}+\zeta_{5}^{-1}\right) / 2$ where $\zeta_{5}=e^{2 \pi i / 5}$ and that the polynomial of ζ_{5} is $\left.1+X+X^{2}+X^{3}+X^{4}\right)$.

Some of these exercises may be facilitated by invoking or first establishing the following two results:

- Given a nonzero polynomial f with rational coefficients, there exists a unique positive rational number r such that $r f$ has integral coefficients with greatest common divisor 1.
- Granting the result of exercise 6.4, if a nonzero integral polynomial $g(X) \in \mathbb{Z}[X]$ factors in $\mathbb{Q}[X]$ then it factors in $\mathbb{Z}[X]$.

