Mathematics 361: Number Theory Assignment E

Reading: Ireland and Rosen, Chapter 5 (including the exercises) and into Chapter 6

Problems:

1. (Don't turn this in, but make sure to do it if you haven't yet.) Confirm for odd primes p that

$$
(-1)^{(p-1) / 2}=\left\{\begin{aligned}
1 & \text { if } p \equiv 1 \quad(\bmod 4) \\
-1 & \text { if } p \equiv 3 \quad(\bmod 4)
\end{aligned}\right.
$$

and

$$
(-1)^{\left(p^{2}-1\right) / 8}=\left\{\begin{aligned}
1 & \text { if } p \equiv \pm 1 \quad(\bmod 8) \\
-1 & \text { if } p \equiv \pm 3 \quad(\bmod 8)
\end{aligned}\right.
$$

2. Use Quadratic Reciprocity to prove Euler's observation by justifying the following computation for distinct odd primes p and q with $4 q>p$:

$$
\begin{aligned}
\left(\frac{q}{4 q \pm p}\right) & =(-1)^{\frac{q-1}{2} \cdot \frac{4 q \pm p-1}{2}}\left(\frac{4 q \pm p}{q}\right)=(-1)^{\frac{q-1}{2} \cdot \frac{ \pm p-1}{2}}\left(\frac{ \pm p}{q}\right) \\
& =(-1)^{\frac{q-1}{2} \cdot \frac{p-1}{2}}\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right) .
\end{aligned}
$$

3. Read Ireland and Rosen Exercises 5.3; 5.4-5.8; 5.9, 5.10; 5.11; $5.12,5.13 ; 5.14,5.15 ; 5.16 ; 5.17$ (just the Proposition); 5.18-5.21; 5.22;
$5.23,5.24 ; 5.38$, and work a small selection of them.
4. Work Ireland and Rosen Exercises 5.25-5.28 and/or 5.29-5.31.
