## Mathematics 361: Number Theory Assignment D

Reading: Ireland and Rosen, Chapter 4 (including the exercises) and into Chapter 5

For this assignment it will be very helpful to bear in mind the following result:

Given $n$ and $e$, let $\tilde{e}=\operatorname{gcd}(e, n)$. The multiplication-by-e map $\mathbb{Z} / n \mathbb{Z} \longrightarrow \mathbb{Z} / n \mathbb{Z}$ given by $x \mapsto e x$ has image $\langle\tilde{e}+n \mathbb{Z}\rangle$ of order $n / \tilde{e}$, and it has kernel $\langle n / \tilde{e}+n \mathbb{Z}\rangle$ of order $\tilde{e}$, so it is $\tilde{e}$-to- 1 . Especially the map is an isomorphism if $\operatorname{gcd}(e, n)=1$.
This result transfers to the multiplicative group $G=(\mathbb{Z} / p \mathbb{Z})^{\times}$where $p$ is prime, a cyclic group having a generator $g$, through the isomorphism $(\mathbb{Z} /(p-1) \mathbb{Z},+) \longrightarrow(G, \cdot)$ given by $a \mapsto g^{a}$. The self-map of $G$ corresponding to $x \mapsto e x$ on $(\mathbb{Z} /(p-1) \mathbb{Z},+)$ is $y \mapsto y^{e}$. Thus the eth power map on $(\mathbb{Z} / p \mathbb{Z})^{\times}$is is $\tilde{e}$-to- 1 and it takes the $(p-1) / \tilde{e}$ values $\left\{1, h, h^{2}, \ldots, h^{(p-1) / \tilde{e}-1}\right\}$ where $h=g^{\tilde{e}}$.

## Problems:

Ireland and Rosen, Exercises 4.8, 4.13 as it should be phrased (do these first and then use them freely in working the rest of the problems); 4.1, 4.17, 4.18; 4.2 (for $p=7,11,13$ ), 4.19; 4.10 (let $f(d)=\sum_{u: \text { order } d} u$ and let $g(d)=\sum_{u: u^{d}=1} u$, which can be evaluated as a geometric sum; $g$ has an expression in terms of $f$ and then Möbius inversion gives $f$ in terms of $g$; the exercise is requesting $f(p-1)$ ); 4.20 excluding the $p=19$ part. (The more you use algebra, the less tedious these will be.)

