Mathematics 361: Number Theory Assignment C

Reading: Ireland and Rosen, Chapter 3 (including the exercises) and into Chapter 4

Problems:

The pigeonhole principle and congruences.

1. Let m be a positive integer and a_{1}, \ldots, a_{m} be any integers, possibly repeating. Show that for some nonempty subset S of the indices $\{1, \ldots, m\}, \sum_{i \in S} a_{i} \equiv 0(\bmod m)$. (Hint: pigeonhole the partial sums.)

The fifth Fermat number is composite.
2. Fermat defined the numbers $F_{n}=2^{2^{n}}+1$ for $n \geq 0$. Thus

$$
\begin{aligned}
& F_{0}=3, \quad F_{1}=5, \quad F_{2}=17, \quad F_{3}=257, \\
& F_{4}=65537, \quad F_{5}=4294967297, \quad \text { etc. }
\end{aligned}
$$

He conjectured that all the F_{n} are prime, as indeed F_{0} through F_{4} are. Euler showed that F_{5} is composite, using techniques that were actually available to Fermat and applied by him in similar situations. André Weil, in his book Number Theory: An Approach Through History, conjectures that Fermat tried these techniques on F_{5}, made an arithmetic error (as he apparently often did), and never rechecked them. Following Euler, investigate whether F_{5} is composite. To search for candidate prime factors p of F_{5}, reason as follows: $p \mid 2^{32}+1$ is equivalent to $2^{32} \equiv-1(\bmod p)$, showing that 2 has order 64 in $(\mathbb{Z} / p \mathbb{Z})^{\times}$. It follows that $64 \mid \phi(p)=p-1$, so p must take the form $p=64 k+1$. Thus candidates for p are
193, 257, 449, 577, 641, etc.

Testing whether each of these primes p divides F_{5} is easy. As above, we need to check whether $2^{32} \equiv-1(\bmod p)$, so simply compute $2,2^{2}$, $2^{4}, 2^{8}$, etc. modulo p up to 2^{32}. Use this method to show that 193 does not divide F_{5}. Neither do 257, 449 or 577, but don't bother showing this. Use this method to show that 641 does divide F_{5}.

Note that this shows F_{5} to be composite without ever computing it.
Using algebra rather than arithmetic.
3. The Fibonacci numbers are $u_{0}=0, u_{1}=1, u_{n}=u_{n-1}+u_{n-2}$ for $n \geq 2$ (this is slightly different indexing from earlier). Read through
the following method to compute a closed form expression for u_{n} via linear algebra:

Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Induction quickly shows that $A^{n}=\left[\begin{array}{cc}u_{n+1} & u_{n} \\ u_{n} & u_{n-1}\end{array}\right]$ for $n \geq 1$. So to find u_{n} in closed form it suffices to compute either off-diagonal entry of A^{n}.

To diagonalize A with no mess, one easily computes that its characteristic polynomial is $\chi_{A}(\lambda)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-\lambda-1$. We let τ and $\tilde{\tau}$ denote the roots of χ_{A} but we don't compute them yet- the numerical values only muddy the calculation. The coefficients of the characteristic polynomial show that

$$
\begin{equation*}
\tau+\tilde{\tau}=1, \quad \tau \tilde{\tau}=-1 \tag{1}
\end{equation*}
$$

Note that the second relation in (1) tells us that one root-say, τ is positive and the other negative. Thus the roots are distinct and each corresponding eigenspace of A has dimension 1. In particular, the matrix

$$
A-\tau I=\left[\begin{array}{cr}
1-\tau & 1 \\
1 & -\tau
\end{array}\right]
$$

must have nullity 1 and therefore rank 1 , meaning its two rows are linearly dependent so that any vector orthogonal to the second row spans the matrix's nullspace. For example, $\left[\begin{array}{l}\tau \\ 1\end{array}\right]$ works. Continuing this argument shows that

$$
\begin{aligned}
& A^{n}=P J^{n} P^{-1} \quad \text { where } J=\left[\begin{array}{ll}
\tau & 0 \\
0 & \tilde{\tau}
\end{array}\right] \text { and } P=\left[\begin{array}{ll}
\tau & \tilde{\tau} \\
1 & 1
\end{array}\right] \text {, } \\
& \text { so } P^{-1}=\frac{1}{\tilde{\tau}-\tau}\left[\begin{array}{rc}
1 & -\tilde{\tau} \\
-1 & \tau
\end{array}\right] .
\end{aligned}
$$

To obtain a closed form expression for u_{n}, compute that $(\tilde{\tau}-\tau) A^{n}$ is

$$
\left[\begin{array}{cc}
\tau & \tilde{\tau} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\tau^{n} & 0 \\
0 & \tilde{\tau}^{n}
\end{array}\right]\left[\begin{array}{cc}
1 & -\tilde{\tau} \\
-1 & \tau
\end{array}\right]=\left[\begin{array}{cc}
* & * \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\tau^{n} & * \\
-\tilde{\tau}^{n} & *
\end{array}\right]=\left[\begin{array}{cc}
* & * \\
\tau^{n}-\tilde{\tau}^{n} & *
\end{array}\right],
$$

and so

$$
\begin{equation*}
u_{n}=\frac{\tau^{n}-\tilde{\tau}^{n}}{\tau-\tilde{\tau}} \tag{2}
\end{equation*}
$$

Finally, since $\tau, \tilde{\tau}=(1 \pm \sqrt{5}) / 2$, we have Binet's formula

$$
u_{n}=\frac{((1+\sqrt{5}) / 2)^{n}-((1-\sqrt{5}) / 2)^{n}}{\sqrt{5}}
$$

Note how clean the calculation is when one ignores the numerical value of τ until the end.
(a) Use relations (1) and the convention $\tau>0$ to show that $|\tilde{\tau}|<\tau$.
(b) Now use (2) to show that $\lim _{n \rightarrow \infty}\left(u_{n+1} / u_{n}\right)=\tau$. (None of (a) or (b) requires the numerical value of τ.)
4. Ireland and Rosen exercises 3.24, 3.25, 3.26. Note: 3.25 is technical; roughly λ is a square root of 3 and therefore a fourth root of 9 , and so the condition $\alpha=1(\lambda)$ suggests that $\alpha^{3}=1\left(\lambda^{3}\right)$, but the issue is to finagle one more power of λ to get to $\alpha^{3}=1\left(\lambda^{4}\right)$; and problem 3.24 can tell us that one of three elements must be a multiple of λ.
5. Work a selection from Ireland and Rosen exercises 3.1, 3.4, 3.83.10, 3.12-3.13, 3.16, 3.17, 3.18, 3.23.

Optional alternate problems.
6. Use Hensel's Lemma to show that for distinct odd primes p and q, the 2 -adic equation

$$
p x^{2}+q y^{2}=z^{2}, \quad x, y, z \in \mathbb{Z}_{2}
$$

has a nonzero solution if at least one of p and q is 1 modulo 4 but not if both are 3 modulo 4 .
7. Let $a, b \in \mathbb{Q}$ be nonzero. Show that the inhomogeneous condition

$$
a X^{2}+b Y^{2}=1 \quad \text { has a solution in } \mathbb{Q}^{2}
$$

and the homogeneous condition

$$
a X^{2}+b Y^{2}=Z^{2} \quad \text { has a nonzero solution in } \mathbb{Z}^{3}
$$

are equivalent.

