Mathematics 361: Number Theory Assignment B

Reading: Ireland and Rosen, Chapter 2 (including the exercises) and into Chapter 3

Problems:

Even perfect numbers (nobody knows if there are any odd ones).

1. The sum of divisors arithmetic function $\sigma(n)=\sum_{0<d \mid n} d$ is introduced in Ireland and Rosen, and $\sigma\left(p^{a}\right)=\left(p^{a+1}-1\right) /(p-1)$ by the finite geometric sum formula, and σ is multiplicative. A positive integer is called perfect if it is the sum of its proper positive divisors, i.e., if $\sigma(n)=2 n$.
(a) Show that if $2^{p}-1$ is prime (forcing p to be prime) then $2^{p-1}\left(2^{p}-\right.$ 1) is perfect.
(b) If m is even and perfect, show that m takes the form $m=$ $2^{p-1}\left(2^{p}-1\right)$ where $2^{p}-1$ is prime. (Write $m=2^{p-1} t$ where $p \geq 2$ and t is odd and we don't yet know whether p is prime. Show that $\sigma(t)=2^{p} r$ where r is odd and $t=\left(2^{p}-1\right) r$. Note that r and t are distinct factors of t. Use this to show that $r=1$ and $2^{p}-1$ is prime.)
(c) Where does the argument in (b) break down if $p=1$? That is, why can't we argue as in (b) to show that there are no odd perfect numbers?
2. Work Ireland and Rosen exercises 1.30, some of 1.32-1.38.
3. Prove yet again that there are infinitely many primes by working Ireland and Rosen exercise 2.3 or exercises $2.4-2.5$ or exercises 2.6-2.8.
4. Get some practice with arithmetic functions by working a selection from Ireland and Rosen exercises 2.9-2.21.
5. Acquire some initial familiarity with the Riemann zeta function of analytic number theory by reading and perhaps working Ireland and Rosen exercises 2.25-2.26. Also, 2.27 is a nice variant of Euler's argument; to get going on it, note that every positive integer n factors uniquely as $n=m^{2} r$ with r squarefree.
