Mathematics 361: Number Theory Assignment A

Reading: Ireland and Rosen, Chapter 1 (including the exercises)

Problems:

The Euclidean algorithm.

1. Let $0<b<a$. The Euclidean algorithm is:

- (Initialize) Set

$$
[x, y ; \alpha, \beta, \gamma, \delta ; s]=[a, b ; 1,0,0,1 ; 0] .
$$

- (Divide) We have $x=q y+r, 0 \leq r<y$; set

$$
[x, y ; \alpha, \beta, \gamma, \delta ; s]=[y, r ; \gamma, \delta, \alpha-q \gamma, \beta-q \delta ; s+1]
$$

If $y=0$, go to the next bullet; otherwise repeat this one.

- (Output) Return $x ; \alpha, \beta ; s$. Here $x=\operatorname{gcd}(a, b)=\alpha a+\beta b$, and the running time is s. (Here s stands for steps.)
For example, to compute $\operatorname{gcd}(986,357)$ the algorithm proceeds as follows:

x	y	α	β	γ	δ	s	calculation for next line
986	357	1	0	0	1	0	$986=2 \cdot 357+272$
357	272	0	1	1	-2	1	$357=1 \cdot 272+85$
272	85	1	-2	-1	3	2	$272=3 \cdot 85+17$
85	17	-1	3	4	-11	3	$85=5 \cdot 17$
17	0	4	-11			4	

Thus $\operatorname{gcd}(986,357)=17=4 \cdot 986-11 \cdot 357$, and the algorithm took 4 steps.

The questions to follow are about the general case of the algorithm, not the particular example just given.
(a) Show that after the initialization,

$$
(x, y)=(a, b), \quad x=\alpha a+\beta b, \quad y=\gamma a+\delta b .
$$

(b) Show that each division preserves the conditions by showing that

$$
\begin{aligned}
\left(x_{\text {new }}, y_{\text {new }}\right) & =(a, b), \\
x_{\text {new }} & =\alpha_{\text {new }} a+\beta_{\text {new }} b, \\
y_{\text {new }} & =\gamma_{\text {new }} a+\delta_{\text {new }} b,
\end{aligned}
$$

given that these relations are established with "old" instead of "new" throughout.
(c) Show that at termination the conditions are

$$
\begin{aligned}
(x) & =(a, b), \\
x & =\alpha a+\beta b .
\end{aligned}
$$

Thus $x=\operatorname{gcd}(a, b)$ (the positive greatest common divisor), and we have expressed $\operatorname{gcd}(a, b)$ as a linear combination of a and b.
(d) The algorithm generates a succession of remainders

$$
\begin{aligned}
r_{-1} & =a \\
r_{0} & =b \\
r_{k} & =r_{k-2}-q_{k} r_{k-1}, \quad k=1, \cdots, s
\end{aligned}
$$

with each $q_{k} \geq 1$ and

$$
r_{-1}>r_{0}>r_{1}>\cdots>r_{s-1}>r_{s}=0, \quad s \geq 1
$$

Again, s is the number of steps that the algorithm takes. Let $F_{0}=0$, $F_{1}=1, F_{2}=1, F_{3}=2$, and so on be the Fibonacci numbers. Thus we have

$$
\begin{gathered}
r_{s-1} \geq 1=F_{2} \\
r_{s-2} \geq 2=F_{3} \\
r_{s-3} \geq r_{s-2}+r_{s-1} \geq F_{4} \\
\vdots \\
b=r_{0}=r_{s-s} \geq F_{s+1}
\end{gathered}
$$

A lemma (see page 72 of Jamie Pommersheim's book) that you may take for granted or prove says that $F_{k+2}>\varphi^{k}$ for $k \geq 1$, where $\varphi=(1+$ $\sqrt{5}) / 2$ is the Golden Ratio. Show that consequently, if the Euclidean algorithm to compute $\operatorname{gcd}(a, b)$ where $0<b<a$ requires $s \geq 2$ steps then an integer upper bound of the step-count is

$$
\left\lceil\log _{\varphi}(b)\right\rceil \geq s
$$

So long as b is greater than 1 , this formula covers the case $s=1$ as well. Even though running the Euclidean algorithm with $b=1$ is silly, we could well instruct a computer to do so by omitting to code a special-case check. Changing the left side of the boxed formula to the maximum of $\left\lceil\log _{\varphi}(b)\right\rceil$ and 1 covers all cases.
(e) Work Ireland and Rosen exercises 1.3 (just the first part, but do it demonstrating the method at the beginning of this exercise), 1.6-1.8, 1.13, 1.14. For 1.13, let g be the generator of the ideal generated by the n_{i} and argue that g is the gcd of the n_{i}. Then use this idea in 1.14. Also, 1.6 can be done tidily by using ideals.
2. Prove that $\mathbb{Z}(i) \subset \mathbb{Q}[i]$. Obviously $\mathbb{Q}[i] \subset \mathbb{Q}(i)$. Prove that $\mathbb{Q}(i) \subset \mathbb{Z}(i)$, and so all three are equal. The same can be done with ω in place of i, but there is no need because we will do this in fuller generality later. The point of this exercise is that Ireland and Rosen in chapter 1 tacitly use the relations $\mathbb{Z}(i)=\mathbb{Q}[i]$ and $\mathbb{Z}(\omega)=\mathbb{Q}[\omega]$ in proving that $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$ with the usual norm $\mathrm{N} z=z \bar{z}$ are Euclidean.
3. (a) Show that for any squarefree negative integer $n \equiv 2,3(\bmod 4)$, the ring $R=\mathbb{Z}[\sqrt{n}]$ is only the lattice $\mathbb{Z} \oplus \mathbb{Z} \sqrt{n}$. For what such n is this ring with the usual norm Euclidean?
(b) Show that for any squarefree negative integer $n \equiv 1(\bmod 4)$, the ring $R=\mathbb{Z}[(1+\sqrt{n}) / 2]$ is only the lattice $\mathbb{Z} \oplus \mathbb{Z}(1+\sqrt{n}) / 2$. For what such n is this ring with the usual norm Euclidean?

Mersenne primes and Fermat primes; cf. Ireland and Rosen exercises 1.24-1.26.
4. Let $a \geq 2$ and $n \geq 2$. Use the finite geometric sum formula and its variant,

$$
r^{n}-1=(r-1) \sum_{j=0}^{n-1} r^{j}
$$

and

$$
r^{n}+1=(r+1) \sum_{j=0}^{n-1}(-1)^{j} r^{j} \quad \text { for } n \text { odd }
$$

to prove that (a) if $a^{n}-1$ is prime (now safely using prime as a synonym for irreducible when talking about positive integers) then $a=2$ and n is prime (such $2^{p}-1$ primes are called Mersenne primes); (b) if $a^{n}+1$ is prime then a is even and n is a power of 2 (in particular, $2^{2^{n}}+1$ primes are called Fermat primes).

Incidentally, the geometric sum formula and its variant quickly yield the identities

$$
x^{n}-y^{n}=(x-y) \sum_{j=0}^{n-1} x^{n-1-j} y^{j}
$$

and

$$
x^{n}+y^{n}=(x+y) \sum_{j=0}^{n-1}(-1)^{j} x^{n-1-j} y^{j} \quad \text { for } n \text { odd }
$$

which should be familiar from high school for small values of n.
No polynomial generates a sequence of prime values.
5 . Let f be a nonconstant polynomial with integer coefficients.
(a) If f has degree n show that

$$
f(x+h)=f(x)+\frac{f^{\prime}(x)}{1!} h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\cdots+\frac{f^{(n)}(x)}{n!} h^{n} .
$$

(One can show this using Taylor's Theorem with Remainder or prove it as a formal polynomial identity.) Note that each $f^{(j)}(x) / j$! also has integer coefficients.
(b) Show that the sequence

$$
\{f(1), f(2), f(3), \ldots\}
$$

does not consist solely of primes past any starting index, as follows. Without loss of generality, the leading coefficient of f is positive, so $f\left(n_{0}\right)>1$ for some integer n_{0} beyond which f is monotone increasing; then $f\left(n_{0}+k f\left(n_{0}\right)\right)$ is composite for all $k \geq 1$.
(The polynomial expression $x^{2}-x+41$ is prime for $0 \leq x \leq 40$. You are not being asked to show this.)

