Mathematics 361: Number Theory
Assignment A

Reading: Ireland and Rosen, Chapter 1 (including the exercises)
Problems:

The Euclidean algorithm.
1. Let 0 < b < a. The Euclidean algorithm is:

e (Initialize) Set
[z, y; 0, 8,7, 05 5] = [a,;1,0,0,1;0].
e (Divide) We have x = qy+ 7, 0 < r < y; set

[z, y; 0, 8,7, 038) = [y, 17,6, 0 — q7, B — qd; s + 1].
If y =0, go to the next bullet; otherwise repeat this one.
e (Output) Return z; «, §; s. Here x = ged(a, b) = aa + b, and
the running time is s. (Here s stands for steps.)

For example, to compute ged(986,357) the algorithm proceeds as
follows:

x Yy @ 8 v 0 | s | calculation for next line
986 357 | 1 0 O 110]986 =2-357+ 272
357 272| 0 1 1 =2|1|357=1-2724+285
272 85 1 -2 -1 3(12(272=3-85+17
8 17 | -1 3 4 —11|3|8=5-17
17 0 4 —11 4
Thus ged(986,357) = 17 =4 -986 — 11 - 357, and the algorithm took 4

steps.
The questions to follow are about the general case of the algorithm,
not the particular example just given.
(a) Show that after the initialization,
(x,y) = (a,b), = =aa+pb, y=r~a+db.

(b) Show that each division preserves the conditions by showing that

(xnewa ynew) = (a7 b)a
Tnew = Qnew@ + ﬂnewb7
Ynew = Tnew@ + 6newb7

given that these relations are established with “old” instead of “new”
throughout.
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(c) Show that at termination the conditions are
(‘I) = (av b)?
x = aa + Pb.
Thus x = ged(a, b) (the positive greatest common divisor), and we have

expressed ged(a,b) as a linear combination of a and b.
(d) The algorithm generates a succession of remainders

r_1=a,
T0:b7
Th = Th—2 — QuTh—1, k=1,--+s,

with each ¢ > 1 and
roa>rg>ry > >re g >rys=0, s>1.

Again, s is the number of steps that the algorithm takes. Let Fy = 0,
Fy =1, F, =1, F3 =2, and so on be the Fibonacci numbers. Thus we
have

Ts—1 Z 1= F27
T's—2 Z 2= F37
Ts—3 2 Ts—2 + Ts—1 Z F47

b=19="s_5 > Fs+l-

A lemma (see page 72 of Jamie Pommersheim’s book) that you may
take for granted or prove says that Fj o > ¢©F for k > 1, where p = (1+
v/5)/2 is the Golden Ratio. Show that consequently, if the Euclidean
algorithm to compute ged(a,b) where 0 < b < a requires s > 2 steps
then an integer upper bound of the step-count is

[log,,(b)] > s.

So long as b is greater than 1, this formula covers the case s = 1 as
well. Even though running the Euclidean algorithm with b6 = 1 is
silly, we could well instruct a computer to do so by omitting to code a
special-case check. Changing the left side of the boxed formula to the
maximum of [log(b)] and 1 covers all cases.

(e) Work Ireland and Rosen exercises 1.3 (just the first part, but do
it demonstrating the method at the beginning of this exercise), 1.6-1.8,
1.13, 1.14. For 1.13, let g be the generator of the ideal generated by
the n; and argue that ¢ is the ged of the n;. Then use this idea in 1.14.
Also, 1.6 can be done tidily by using ideals.
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2. Prove that Z(i) C Q[i]. Obviously Q[{] C Q(i). Prove that
Q(i) C Z(i), and so all three are equal. The same can be done with
w in place of i, but there is no need because we will do this in fuller
generality later. The point of this exercise is that Ireland and Rosen
in chapter 1 tacitly use the relations Z(i) = Q[i] and Z(w) = Q[w] in
proving that Z[i] and Z[w] with the usual norm Nz = 2% are Euclidean.

3. (a) Show that for any squarefree negative integer n = 2,3 (mod 4),
the ring R = Z[y/n] is only the lattice Z & Z+/n. For what such n is
this ring with the usual norm Euclidean?

(b) Show that for any squarefree negative integer n = 1 (mod 4),
the ring R = Z[(1 + /n)/2] is only the lattice Z & Z(1 + y/n)/2. For
what such n is this ring with the usual norm Euclidean?

Mersenne primes and Fermat primes; cf. Ireland and Rosen exercises
1.24-1.26.

4. Let a > 2 and n > 2. Use the finite geometric sum formula and
its variant,

[y

Mm—1=(r—-1) r
J

Il
o

and
n—1

m4+1=(r+1) Z(—l)jrj for n odd,
5=0
to prove that (a) if a™—1 is prime (now safely using prime as a synonym
for irreducible when talking about positive integers) then a = 2 and n
is prime (such 2P — 1 primes are called Mersenne primes); (b) if a” + 1
is prime then a is even and n is a power of 2 (in particular, 22" + 1
primes are called Fermat primes).
Incidentally, the geometric sum formula and its variant quickly yield
the identities

n—1
2t =yt = —y) ) @Y
=0
and
n—1
" +y" = (r+vy) Z(—l)jx"’l’jyj for n odd,
=0

which should be familiar from high school for small values of n.

No polynomial generates a sequence of prime values.
5. Let f be a nonconstant polynomial with integer coefficients.



(a) If f has degree n show that

f'(z) "(z) [ (=)
flx+h)=f(x)+ TR W+ + oy
(One can show this using Taylor’s Theorem with Remainder or prove
it as a formal polynomial identity.) Note that each fU)(x)/;! also has
integer coefficients.

(b) Show that the sequence

{F(1), f(2), (3),--- }

does not consist solely of primes past any starting index, as follows.
Without loss of generality, the leading coefficient of f is positive, so
f(ng) > 1 for some integer ny beyond which f is monotone increasing;
then f(ng+ kf(ng)) is composite for all k£ > 1.

(The polynomial expression x? —x + 41 is prime for 0 < z < 40. You
are not being asked to show this.)

h™.




