
Mathematics 361: Number Theory
Assignment A

Reading: Ireland and Rosen, Chapter 1 (including the exercises)

Problems:

The Euclidean algorithm.
1. Let 0 < b < a. The Euclidean algorithm is:

• (Initialize) Set

[x, y;α, β, γ, δ; s] = [a, b; 1, 0, 0, 1; 0].

• (Divide) We have x = qy + r, 0 ≤ r < y; set

[x, y;α, β, γ, δ; s] = [y, r; γ, δ, α− qγ, β − qδ; s+ 1].

If y = 0, go to the next bullet; otherwise repeat this one.
• (Output) Return x; α, β; s. Here x = gcd(a, b) = αa+ βb, and

the running time is s. (Here s stands for steps.)

For example, to compute gcd(986, 357) the algorithm proceeds as
follows:

x y α β γ δ s calculation for next line
986 357 1 0 0 1 0 986 = 2 · 357 + 272
357 272 0 1 1 −2 1 357 = 1 · 272 + 85
272 85 1 −2 −1 3 2 272 = 3 · 85 + 17
85 17 −1 3 4 −11 3 85 = 5 · 17
17 0 4 −11 4

Thus gcd(986, 357) = 17 = 4 · 986− 11 · 357, and the algorithm took 4
steps.

The questions to follow are about the general case of the algorithm,
not the particular example just given.

(a) Show that after the initialization,

(x, y) = (a, b), x = αa+ βb, y = γa+ δb.

(b) Show that each division preserves the conditions by showing that

(xnew, ynew) = (a, b),

xnew = αnewa+ βnewb,

ynew = γnewa+ δnewb,

given that these relations are established with “old” instead of “new”
throughout.
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(c) Show that at termination the conditions are

(x) = (a, b),

x = αa+ βb.

Thus x = gcd(a, b) (the positive greatest common divisor), and we have
expressed gcd(a, b) as a linear combination of a and b.

(d) The algorithm generates a succession of remainders

r−1 = a,

r0 = b,

rk = rk−2 − qkrk−1, k = 1, · · · , s,
with each qk ≥ 1 and

r−1 > r0 > r1 > · · · > rs−1 > rs = 0, s ≥ 1.

Again, s is the number of steps that the algorithm takes. Let F0 = 0,
F1 = 1, F2 = 1, F3 = 2, and so on be the Fibonacci numbers. Thus we
have

rs−1 ≥ 1 = F2,

rs−2 ≥ 2 = F3,

rs−3 ≥ rs−2 + rs−1 ≥ F4,

...

b = r0 = rs−s ≥ Fs+1.

A lemma (see page 72 of Jamie Pommersheim’s book) that you may
take for granted or prove says that Fk+2 > ϕk for k ≥ 1, where ϕ = (1+√

5)/2 is the Golden Ratio. Show that consequently, if the Euclidean
algorithm to compute gcd(a, b) where 0 < b < a requires s ≥ 2 steps
then an integer upper bound of the step-count is

dlogϕ(b)e ≥ s.

So long as b is greater than 1, this formula covers the case s = 1 as
well. Even though running the Euclidean algorithm with b = 1 is
silly, we could well instruct a computer to do so by omitting to code a
special-case check. Changing the left side of the boxed formula to the
maximum of dlogϕ(b)e and 1 covers all cases.

(e) Work Ireland and Rosen exercises 1.3 (just the first part, but do
it demonstrating the method at the beginning of this exercise), 1.6–1.8,
1.13, 1.14. For 1.13, let g be the generator of the ideal generated by
the ni and argue that g is the gcd of the ni. Then use this idea in 1.14.
Also, 1.6 can be done tidily by using ideals.
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2. Prove that Z(i) ⊂ Q[i]. Obviously Q[i] ⊂ Q(i). Prove that
Q(i) ⊂ Z(i), and so all three are equal. The same can be done with
ω in place of i, but there is no need because we will do this in fuller
generality later. The point of this exercise is that Ireland and Rosen
in chapter 1 tacitly use the relations Z(i) = Q[i] and Z(ω) = Q[ω] in
proving that Z[i] and Z[ω] with the usual norm Nz = zz are Euclidean.

3. (a) Show that for any squarefree negative integer n ≡ 2, 3 (mod 4),
the ring R = Z[

√
n] is only the lattice Z ⊕ Z

√
n. For what such n is

this ring with the usual norm Euclidean?
(b) Show that for any squarefree negative integer n ≡ 1 (mod 4),

the ring R = Z[(1 +
√
n)/2] is only the lattice Z ⊕ Z(1 +

√
n)/2. For

what such n is this ring with the usual norm Euclidean?

Mersenne primes and Fermat primes; cf. Ireland and Rosen exercises
1.24–1.26.

4. Let a ≥ 2 and n ≥ 2. Use the finite geometric sum formula and
its variant,

rn − 1 = (r − 1)
n−1∑
j=0

rj

and

rn + 1 = (r + 1)
n−1∑
j=0

(−1)jrj for n odd,

to prove that (a) if an−1 is prime (now safely using prime as a synonym
for irreducible when talking about positive integers) then a = 2 and n
is prime (such 2p− 1 primes are called Mersenne primes); (b) if an + 1
is prime then a is even and n is a power of 2 (in particular, 22n + 1
primes are called Fermat primes).

Incidentally, the geometric sum formula and its variant quickly yield
the identities

xn − yn = (x− y)
n−1∑
j=0

xn−1−jyj

and

xn + yn = (x+ y)
n−1∑
j=0

(−1)jxn−1−jyj for n odd,

which should be familiar from high school for small values of n.

No polynomial generates a sequence of prime values.
5. Let f be a nonconstant polynomial with integer coefficients.
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(a) If f has degree n show that

f(x+ h) = f(x) +
f ′(x)

1!
h+

f ′′(x)

2!
h2 + · · ·+ f (n)(x)

n!
hn.

(One can show this using Taylor’s Theorem with Remainder or prove
it as a formal polynomial identity.) Note that each f (j)(x)/j! also has
integer coefficients.

(b) Show that the sequence

{f(1), f(2), f(3), . . . }
does not consist solely of primes past any starting index, as follows.
Without loss of generality, the leading coefficient of f is positive, so
f(n0) > 1 for some integer n0 beyond which f is monotone increasing;
then f(n0 + kf(n0)) is composite for all k ≥ 1.

(The polynomial expression x2−x+41 is prime for 0 ≤ x ≤ 40. You
are not being asked to show this.)


