
A USEFUL LITTLE FACT

Let R and R̃ be commutative rings with multiplicative identity. Suppose that
we have a ring homomorphism that preserves multiplicative identities,

f : R −→ R̃, f(1R) = 1 eR.

Let n be a positive integer. We will show that the matrix map obtained by applying
f entrywise to n-by-n matrices,

g : Mn(R) −→ Mn(R̃), g([rij ]) = [f(rij)],

is a ring homomorphism that preserves multiplicative identities. As such, it restricts
to a group homomorphism

g : GLn(R) −→ GLn(R̃),

and the group homomorphism takes the special linear subgroup into the special
linear subgroup,

g : SLn(R) −→ SLn(R̃).

(Again, to make sure that the notation is clear: f takes ring elements to ring
elements, while g takes matrices to matrices by applying f entrywise.)

The argument is straightforward. First, the map

g : Mn(R) −→ Mn(R̃)

is characterized by the property

(g(m))ij = f(mij), m ∈ Mn(R), i, j ∈ {1, · · · , n}.

It follows immediately that g preserves matrix sums. Indeed, using the character-
izing property, compute that for any row and column indices i, j ∈ {1, · · · , n} and
for any matrices a = [aij ] and b = [bij ] in Mn(R),

(g(a + b))ij = f((a + b)ij) by the characterizing property of g

= f(aij + bij) since matrix addition proceeds entrywise

= f(aij) + f(bij) since f preserves scalar addition

= (g(a))ij + (g(b))ij by the characterizing property of g.

Since i and j are arbitrary, g(a + b) = g(a) + g(b), i.e., g preserves sums as desired.
Similarly, g preserves matrix products in consequence of f being a ring homomor-

phism. Again using the characterizing property, compute that for any i, j and a, b
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as before,

(g(ab))ij = f((ab)ij) by the characterizing property of g

= f

(∑
k

aikbkj

)
by definition of multiplication in Mn(R)

=
∑

k

f(aik)f(bkj) because f is a ring homomorphism

=
∑

k

g(a)ikg(b)kj by the characterizing property of g

= (g(a)g(b))ij by definition of multiplication in Mn(R̃).

Since i and j are arbitrary, g(ab) = g(a)g(b), i.e., g preserves products as desired.
Also, since f(1R) = 1 eR, it follows that g(In,R) = In, eR.

To summarize so far, g : Mn(R) −→ Mn(R̃) is a ring homomorphism that
preserves multiplicative identities.

Next, since
GLn(R) = (Mn(R))×,

and similarly with R̃ in place of R, and since any ring homomorphism that preserves
multiplicative identities restricts to a homomorphism of multiplicative groups, we
have immediately that g restricts to a homomorphism

g : GLn(R) −→ GLn(R̃),

Two comments are relevant here. First, the general argument that any ring homo-
morphism h that preserves multiplicative identities restricts to a homomorphism of
multiplicative groups is

xy = 1 =⇒ h(x)h(y) = h(xy) = h(1) = 1,

so that if x is multiplicatively invertible then so is h(x). Second, the multiplicative
group

GLn(R) = {m ∈ Mn(R) : det(m) ∈ R×}.
consists of the matrices having invertible determinants rather than nonzero deter-
minants. In the context of linear algebra, where the matrix entries are always
elements of a field, all nonzero scalars are invertible, but this condition does not
hold in a general ring.

Next we show that

det(g(m)) = f(det(m)), m ∈ Mn(R).

(The equality has g on the left side since m is a matrix with entries in R, and it
has f on the right side since det m is an element of R.) The displayed identity holds
because the n-by-n determinant is a universal polynomial of the matrix entries,
making the result an immediate consequence of f being a ring homomorphism,

det(g(m)) = det({(g(m))ij}) viewing det as a polynomial of the entries

= det({f(mij)}) rewriting the entries

= f(det({mij})) because f is a ring homomorphism

= f(det(m)) returning to det as a function of matrices.
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Especially, the identity combines with the condition f(1R) = 1 eR to show that g

takes SLn(R) into SLn(R̃),

det(g(m)) = f(det(m)) = f(1R) = 1 eR, m ∈ SLn(R)

A relevant example on the midterm is that the matrix reduction map

g : SL2(Z) −→ SL2(Z/NZ)

is a group homomorphism because the scalar reduction map

f : Z −→ Z/NZ

is a ring homomorphism that preserves multiplicative identities.
Another example on the midterm is that the map

SL2(Z/pe+1Z) −→ SL2(Z/peZ)

is a surjective group homomorphism. It is a group homomorphism because in the
successive containments

pe+1Z ⊂ peZ ⊂ Z,

pe+1Z is an ideal of Z and a subring of peZ, which in turn is an ideal of Z, so that
the third ring isomorphism theorem gives

(Z/pe+1Z)/(peZ/pe+1Z) ≈ Z/peZ, (n + pe+1Z) + peZ 7−→ n + peZ,

Consequently the following diagram of ring homomorphisms commutes:

Z

uukkkkkkkkkkkkkkkk

))RRRRRRRRRRRRRRRR

Z/pe+1Z // (Z/pe+1Z)/(peZ/pe+1Z) // Z/peZ.

It follows that the following diagram of group homomorphisms commutes:

SL2(Z)

wwppppppppppp

&&MMMMMMMMMMM

SL2(Z/pe+1Z) // SL2(Z/peZ).

Because the diagram commutes and the right diagonal map surjects (by exercise 2
on the midterm), the map across the bottom surjects.

In a similar vein, the Sun-Ze ring isomorphism

Z/NZ ∼−→
∏

pe‖N

Z/peZ

underlies a ring isomorphism

M2(Z/NZ) ∼−→ M2

( ∏
pe‖N

Z/peZ
)
,

and then further identifying matrices of vectors with vectors of matrices gives

M2(Z/NZ) ∼−→
∏

pe‖N

M2(Z/peZ).
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The ring isomorphism restricts to an isomorphism of multiplicative groups,

GL2(Z/NZ) ∼−→
∏

pe‖N

GL2(Z/peZ)

that further specializes to a smaller group isomorphism

SL2(Z/NZ) ∼−→
∏

pe‖N

SL2(Z/peZ).


