FREE MODULES

Throughout, let A be a commutative ring with 1.

1. BASIiCc DEFINITION

Definition 1.1 (Module). An A-module is an abelian group M with a multipli-
cation
Ax M — M, (a,m)r— am

such that for all a,a’ € A and m,m' € M,

a(m +m') = am + am/,

(a+a)ym =am+a'm,

a(a’m) = (aa")m.
The A-module M is unital if
lam=m for allm e M.

The two immediate examples are that any abelian group is a Z-module, and any
vector space over a field k is a k-module.
All modules that we encounter will be unital.

2. MAPPING PROPERTY, UNIQUENESS

Definition 2.1 (Mapping Property of the Free Module). Let S be a set. The free
A-module on S is an A-module M and a map from the set to it,
1:S8S — M,
having the following property: For every map from the set to an A-module,
o: S — X,
there exists a unique A-linear map from the free module to the same module,
d: M — X,

such that ® oi = ¢, i.e., such that the following diagram commutes,

~
~
. ~ &
% ~
~
~

s—>2 3x.

The definition calls for various comments.

e Although 7 and ¢ are set maps, ® is an A-module map. All that is required
for ® to exist as a set map is that ¢ inject, but the issues here are matters
of algebraic structure.

e Given S we do not yet know that the free A-module exists, or that it has
any sort of uniqueness property to justify the definite article the in its name.

e How satisfactorily the mapping property definition explains the word free
depends on one’s experience and intuition.
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2 FREE MODULES

The first point to settle is that any two free A-modules on a set S are naturally
isomorphic. Thus, while we still do need to create a free A-module on S at some
point, the specifics of how we do so are spurious.

Proposition 2.2 (Uniqueness of the Free Module). Let S be a set. Let M and N
be free A-modules on S,

i1:S—M and iy:S — N.

Then there is a unique A-module isomorphism v : M — N such that o i1 = i,
i.e., such that the following diagram commutes,

S

M-————- - N.

Proof. Since M and N are both free A-modules on S, there are unique A-linear
maps
t: M — N such that toi; = io
and
(/' : N — M, such that /' 0iy = 1;.
We want to show that ¢ is an isomorphism.
The composition

Yov:M— M
is an A-linear map such that
((ov)oiy =10 (toir) =1 0ig =1.

The definition says that there is a unique such A-linear map, and certainly the
identity map on M fits the bill. Thus ¢/ o is the identity map on M, and similarly
to( is the identity map on N. The map ¢ is an isomorphism in consequence. [

3. GENERATORS, LINEAR INDEPENDENCE

The next result explicates the sense in which the free A-module on a set S is
free.

Proposition 3.1 (Free Module Generators, Their Independence). Let S be a set
and let i = S —> M be the free A-module on S. Then M is generated by the set
{i(s) : s € 8}. Furthermore, the generators i(s) are linearly independent, meaning
that the only relation

Zasi(s) =0y each as € A, only finitely many as nonzero
ses

s the trivial relation with all as = 0.

The proposition tells us that the free A-module on S, if it exists at all, must
be essentially the finite formal sums ) g ass with all a; € A. The problem here
is that finite formal sum and products as of ring-elements by set-elements are not
strictly legitimate within algebraic formalism. We will work around the problem
soon.
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Proof. Let M, be the A-submodule of M generated by {i(s) : s € S}, let Q =
M/M, be the quotient, and let ¢ : M — @ be the quotient map. Also, let
z:8 — Q and Z : M — @ be the zero maps. Certainly

Zoi =z,
but also, since i(S) C M,,

qoi=z.
Thus the uniqueness statement in the mapping property of the free module gives

q = Z. In other words, M, is all of M.
As for the second statement in the proposition, suppose that

Z asi(s) = 0p each ag € A, only finitely many as nonzero.

seS

Fix § € § and define

1 ifs=3§
bS8 — A, s nEes
0 ifs#s.

Let ® : M — A be the associated A-module homomorphism. Then
a: =Y a.p(s) =Y _as(®oi)(s) = P> asi(s)) = ®(0y) = 04.

Since 35 is arbitrary, the linear combination ) asi(s) is trivial. O

The proposition shows that in particular if the ring A is a field k£ then the free
k-module on S is the k-vector space having basis {i(s) : s € S}. We will use this
fact in the next section.

4. INVARIANCE OF RANK

Although we still don’t have the free A-module on a set S, we use the character-
istic mapping property to show, knowing no specifics about its construction, that
its rank is well defined. The relevant underlying result is the nontrivial fact that
the dimension of a vector space is well defined.

In the ring-with-unit A there exists a maximal ideal J and thus A projects to
the field k = A/J (if A is already a field then J = {0}). To see this, consider a
chain of proper ideals,

JiCJy T
Let J = J; Ji- The fact that J is again an ideal of A is straightforward to verify.
The point is that J C A, and the argument is that if 1 € J then 1 € J; for some j,
contrary to our assumption.

Also, given an ideal J of A, not necessarily maximal, any A-module N that is
annihilated by J can be viewed as an A/J-module because the action

(a+J)n=an

is well defined; and conversely any A/J-module N can be viewed as an A-module
that is annihilated by J by turning the definition around,

an = (a+ J)n.

We use these ideas in the next argument.
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Proposition 4.1 (Invariance of Rank). Suppose that S is finite, and that the free
A-module i : S — M also takes the form j: T — M. Then |S| = |T]|.

Proof. Let J be a maximal proper ideal of A, so that A/.J is a field k. Let
JM = {finite sums Zjama with each j, € J, mq € M},
and consider the quotient and the quotient map
V=M/JM, q: M — V.
The quotient has a k-vector space structure,
(a+ J)(m+JM)=am+ JM,
and it also can be viewed as an A-module that is annihilated by J,
alm+JM) =am+ JM.

Note that the construction of V' has made no reference to either of the maps 7 :
S— M and j: T — M. We claim that

qgoi:S —V

is a free k-module on S. Granting the claim, |S| = dimy V' and similarly |7| =
dimy V, giving |S| = |T| as desired. As mentioned already, the fact that dimy V is
well defined is itself nontrivial.

To prove the claim, consider any map

o:S — W, W a k-vector space.
View W as an A-module that is annihilated by J-multiplication,
aw=(a+J)w, a€A weW.

Then there is a unique A-linear map

UV:M—W, VYoi=¢.
Since multiplication by J annihilates W, we have for all j € J and m € M,

U(jm) = jU(m) = O .

That is, JM C ker(¥), and so there is a map

O:V—W, Pog=1V.
Thus ®o (qoi) = (Pog)oi=Uoi=¢. The definition

O(m+ JM)=¥(m)

combines with the A-linearity of ¥ to show that ® is k-linear, and the argument is
complete. (I
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5. ADDITIVITY OF RANK

Proposition 5.1 (Additivity of Rank). Let S and T be disjoint sets. Suppose that
1:S8S — M and j : T — N are free A-modules. Let iy : M — M @& N and
N : N — M ® N be the linear maps in the characterizing mapping property of

the coproduct M @& N. Define
ipyot onS

:{. ) }:SI_IT—>M69N.
jinojonT

Then k :SUT — M & N is again a free A-module. Thus

rank 4 (M @® N) = rank s (M) + rank 4 (V).
Proof. Since § and T are disjoint, any set—map from ST to an A-module X can
be represented as follows,

S ¢ls X T T
Since i : § — M and j : T —> N are free, there exist unique linear maps
Pp: M — X and @ : N — X that make the following diagram commute,

M N

N v
T N Pv PN, T
v N v J
N x

S dls e bl T
The characterizing mapping property of the coproduct M @ N is that there exist
linear maps iy : M — M@ N and jy : N — M & N such that any pair of linear
maps from M and N to any X factors uniquely through M & N. In particular,
there exists a unique linear ® : M & N — X such that the following diagram
commutes,

ZMM@NJN N
|
o]
4,

T

Consequently, so does the following subdiagram,

M®N

A

The diagram shows a linear ® : M & N — X such that ® o k = ¢.

As for uniqueness, any linear map ® as in the previous diagram gives rise to the
linear maps ® oiy; : M — X and ® o jy : N — X such that ® oip 0i = dls
and ® o jy oj = ¢|7. Thus ®oiy and P o jy are unique since M and N are free,
and then @ is unique by the mapping property of the coproduct.

This proof assumes some construction of the coproduct M @& N. The usual
construction with ordered pairs will do. (I
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6. EXISTENCE

Finally we construct the free A-module on S§. The gadget is a small formalism
to encode the intuitive idea of finite formal A-linear combinations of S.

Proposition 6.1 (Existence of the Free Module). Let S be a set. Then a free
A-module on S exists.

Proof. Let M be the set of functions
f:8§— A, f(s) =0 for all but finitely many s.

The addition and scalar-multiplication of such functions is what it must be,

(f+9)(s)= f(s)+g(s) foralls,

(af)(s) =a(f(s)) for all s.

In particular, for each § € S, define
1 ifs=3,
0 ifs#3.
This f5 is the stand-in for § itself in the algebraic structure M, of course. Thus,
define

fs: S — A, Sl—>{

i:S— M, i(s)=fs.
To show that this is a free module on S, we must verify the desired mapping
property. Thus, consider any map from S to an A-module,

o: S — X.
Define, correspondingly,

O:M— X, ®(f) =) b(s)f(s).

seS
The linearity of ® is straightforward to verify. For example,

O(f +9) =D d(s)(f+9)(s) =D d(s)(f(5) +9(s))

s€S seS

=D (@) f(s) + d(s)g(s) = D_S(s)f(s) + Y ds)g(s)
seS seS sES

= 2(f) + (9)-

And similarly ®(af) = a®(f). Especially, for any 5 € S,
0(i(5) = D(fs) = > b(s)fs(s) = 6(3).

sES
And clearly ® is only possible linear map from M to X such that ®(fs) = ¢(s) for
all s. 0

To repeat, the argument has shown that the intuitive notion of finite formal
A-linear combinations has a precise construction as an A-module with no reference
to undefined terms.



