
ALGEBRAIC STRUCTURE AND GENERATIVE
DIFFERENTIATION RULES

Introduction

The thesis of this writeup is that
Algebraic structure clarifies the basic properties of the derivative.

Here are two examples of arguments that warrant being clarified.
• Proving the product rule for derivatives relies on the little trick of inserting

two terms that add to 0,

(f · g)(a+ h)− (f · g)(a) = f(a+ h)g(a+ h)− f(a)g(a+ h)

+ f(a)g(a+ h)− f(a)g(a),

and then one needs to have in place—or to stop and establish—the fact
that differentiability implies continuity. Proving the product rule this way
can teach students that mathematics is esoteric and fragile, a paralyzing
idea in the long run.
• Similarly but worse, proving the chain rule inevitably runs into problems.

The corresponding trick of inserting two terms that multiply to 1 gives
something along the lines of

∆z
∆x

=
∆z
∆y
· ∆y

∆x
,

but a complete argument must handle circumstances where ∆y = 0 in some
other way while being sure to cover all possibilities. The proof that one sees
in a calculus course tends to be incomplete, or cluttered and unpersuasive.
It can leave even strong students with the impression that mathematics
quickly becomes confusingly complicated, so that the best thing is to place
one’s faith in authority figures and rituals.

One idea of this writeup is that to establish generative rules for differentiation,
i.e., rules that produce new derivatives from given derivatives rather than establish
any particular derivative from scratch, the traditional definition of the derivative,

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

,

is an awkward tool: it is a computational formula that says what the derivative is
but does not say what the derivative does. By contrast, the derivative is uniquely
determined by a characterizing property,

f(a+ h) = f(a) + f ′(a)h+ o(h) (notation to be explained below),

which precisely describes how it behaves. This writeup will argue that the charac-
terizing property is the right tool for proving generative derivative rules. Indeed,
the proofs of the product rule and the chain rule become purely mechanical, with
no tricks to remember and with no subtleties. This writeup will also argue that the
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characterizing property of the derivative is actually closer to our intuition than the
usual limit definition.

Along with the utility of working with a characterizing property, the second
idea running through this writeup brings us back to its thesis. The characterizing
property of the derivative uses Landau’s so-called little-oh notation, and once the
Landau notation is in place, its properties are assertions about algebraic structure.
Specifically the structure-type in question is called an algebra, a sort of hybrid of
a vector space and a ring. We will see that after some normalizing reductions,
generative differentiation results such as the product rule and the chain rule do
little more than rephrase the structural assertions.

A person might reasonably wonder why these ideas are not commonplace if they
are so handy. One answer is that the typical calculus course can not assume that
the students are comfortable with algebraic structure, while a typical first semester
algebra course does not demonstrate its concepts in a serious environment such as
calculus. A second answer is that in fact everybody does know these ideas, provided
that we interpret everybody and knows appropriately: any graduate-level course in
manifold theory or algebraic geometry will introduce many of the ideas here, and
then revisiting calculus in light of the ideas is a routine exercise. However, since
there is no mathematical cachét in revisiting ideas for the sake of clarifying them,
the improved understanding that the revised viewpoint gives may go unnoticed.

Section 1 below explains that while the functions defined about 0 form only a set,
a natural equivalence relation on the functions gives the resulting set of equivalence
classes the structure of a vector space: the equivalence classes can be added and
scaled. These equivalence classes are called germs of functions because a class
describes its constituent functions only locally.

Section 2 introduces the Landau notation, whose simplest cases already capture
familiar ideas of boundedness and continuity. Section 3 establishes basic properties
of the Landau notation as assertions about algebraic structure.

Section 4 redefines the derivative by its characterizing property and then shows
that the characterizing property is equivalent to the usual definition of the derivative
as a limit. Section 5 establishes basic differentiation rules using the characterizing
property rather than the limit definition. Finally, sections 6 and 7 give the in-
cisive proofs of the product rule and the chain rule. Each proof reduces its rule
to a normalized case and then proves the normalized case with the characterizing
property.

1. A Vector Space Whose Elements Are Not Quite Functions

Consider any real number a ∈ R. A neighborhood of a is an open set in R
containing a. We want to study local properties of real-valued functions defined
about a, meaning that any such function is defined on some neighborhood of a,
but the properties don’t depend on the function-behavior on any particular neigh-
borhood, even though they do depend on more than just the function-value at a
itself.

If the function f : Ua −→ R is defined on a neighborhood of a then its translate

fo : U −→ R, U = Ua − a, fo(h) = f(a+ h),

is defined on the neighborhood U of 0, and the local properties of fo at 0 are
precisely the local properties of f at a. Thus from now on we freely take a = 0.
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That is, the set of functions that we care about is

F = {f : Uf −→ R | Uf is a neighborhood of 0}.
As algebraists we are interested not in sets but in structures. The formulas that

should give F a vector space structure are obvious,

(f + g)(x) = f(x) + g(x),

(kf)(x) = k f(x).

However, the first formula is problematic because two functions f, g ∈ F need not
have the same domain. Their sum f + g is defined only on Uf ∩Ug. On the bright
side, Uf ∩ Ug is still a neighborhood of 0.

Although we could redefine F to require that all functions are defined on a
common neighborhood U = UF of 0, this idea misses the goal of discussing function-
properties that are local at 0. We could work with pairs (f, U) and rules such
as (f, U) + (g, V ) = (f + g, U ∩ V ), but expressly dragging the domains around
and manipulating them would be cumbersome. Still, shrinking function-domains
whenever desirable or necessary is indeed the right idea, and so we would like
machinery that does so automatically and tacitly. Thus, define an equivalence
relation on F ,

g ∼ f if g = f on some neighborhood Uf,g of 0.

An equivalence class is called a germ. The germ of a function f specifies more
than f(0) and yet does not specify f at any point other than 0, much less on any
neighborhood of 0. The germ of a function f is denoted [f ], but we will simply let
representatives denote equivalence classes.

The vector space formulas from above are sensible at the level of germs. That
is, if f̃ ∼ f and g̃ ∼ g, so that f̃ = f on some Uf,f̃ and g̃ = g on some Ug,g̃, then
also f̃ + g̃ = f + g on Uf,f̃ ∩ Ug,g̃ and kf̃ = kf on Uf,f̃ , and so f̃ + g̃ ∼ f + g

and kf̃ ∼ kf . Thus we now have an algebraic structure rather than a set, the
vector space of germs of functions at 0,

(G,+, ·) where G = F/ ∼ .

2. Landau Notation

We will study substructures of G by first describing subsets of F , i.e., by de-
scribing particular types of functions defined about 0. This section introduces the
relevant notation. The single definition to follow captures several standard ideas
and in fact improves upon them.

Definition 2.1 (O(hα) and o(hα)). Let α ∈ R≥0 be a nonnegative real number.
Consider a function f : U −→ R where U is a neighborhood of 0. Then:

• f is an O(hα)-function if there exist c, δ ∈ R+ such that for all h ∈ U ,

|h| ≤ δ =⇒ |f(h)| ≤ c|h|α.
The set of O(hα)-functions is itself denoted O(hα).

• f is an o(hα)-function if for every d ∈ R+ there exists some εd ∈ R+ such
that for all h ∈ U ,

|h| ≤ εd =⇒ |f(h)| ≤ d|h|α.
The set of o(hα)-functions is itself denoted o(hα).
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The notations O(hα) and o(hα) are a bit sloppy in that strictly speaking the
quantity hα is defined for negative h only if the nonnegative real number α is an
integer. Writing O(|h|α) and o(|h|α) would be better, but the absolute value signs
can be tacitly understood, and in any case our primary concern here is with α = 0
and α = 1.

For α = 0, the definition of an O(1)-function says that for some envelope deter-
mined by the lines of height ±c where c ∈ R+, the graph of the function lies inside
the envelope if we look in a narrow enough vertical strip. That is, an O(1)-function
is bounded near the origin. For example, any constant function is an O(1)-function.
An O(1)-function need not take 0 to 0, but this situation is exceptional: every
O(hα)-function where α > 0 and every o(hα)-function where α ≥ 0 does take 0
to 0.

Again for α = 0, the definition of an o(1)-function says that given any envelope
determined by the lines of height ±d where d ∈ R+, the graph of the function
lies inside the envelope if we look in a narrow enough vertical strip. The required
narrowness can change if the envelope changes. For example, the function f(h) = h
is an o(1)-function (with εd = d for any d ∈ R+), but the only constant o(1)-function
is the zero function. We will see below that the o(1)-functions are precisely the
functions that take 0 to 0 and are continuous at 0.

For α = 1, the definition of an O(h)-function says that for some envelope de-
termined by the lines of slope ±c where c ∈ R+, the graph of the function lies
inside the envelope if we look in a narrow enough vertical strip. For example, any
function f(h) = kh where k ∈ R is an O(h)-function. The function f(h) = |h|1/2 is
an o(1)-function but not an O(h)-function.

Again for α = 1, the definition of an o(h)-function says that given any envelope
determined by the lines of slope ±d where d ∈ R+, the graph of the function
lies inside the envelope if we look in a narrow enough vertical strip. The required
narrowness can change if the envelope changes. For example, the function f(h) = h2

is an o(h)-function (with εd = d for any d ∈ R+), but the function f(h) = kh
where k ∈ R is an o(h)-function only for k = 0.

The containment relations among the functions of sub-linear decay, of linear
decay, and of sub-constant decay are

o(h) ⊂ O(h) ⊂ o(1),

and more generally,

o(hα) ⊂ O(hα) ⊂ o(hβ) (α > β ≥ 0).

The reader may be wondering about the weak inequalities such as |f(h)| ≤ c|h|α
in Definition 2.1, rather than the corresponding strict inequalities that would look
more similar to epsilon-delta type inequalities from calculus. For O(1)-functions
there is no difference: certainly the strict inequality implies the weak one, and
if the weak inequality holds for c then the strict one holds for 2c. There is no
difference for o(1)-functions either. But for α > 0 the weak inequality is essential
to the definition of O(hα)-functions and of o(hα)-functions, since for h = 0 the
strict inequality is impossible while the weak inequality says that f(0) = 0. On the
other hand, the inequalities in the usual epsilon-delta definitions from calculus can
be weak rather than strict with no effect on the outcome. We will freely use this
fact without comment from now on.
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We end this section with the promised characterization of o(1)-functions.

Proposition 2.2 (Sub-Constant Decay and Continuity). Consider a function f :
U −→ R where U is a neighborhood of 0. Then f is an o(1)-function if and only if
f(0) = 0 and f is continuous at 0.

The proposition is clear geometrically in light of the interpretation of an o(1)-
function as having sub-constant decay. The issues in play are symbolic. In many
calculus courses the definition of continuity at a point involves verifying three con-
ditions: the function takes a value at the point, the function has a limit as its inputs
approach the point, and the limit equals the value. The proposition says that the
o(1)-definition encodes all three conditions.

Proof. Suppose that f : U −→ R satisifes limh→0 f(h) = 0. Then given any d ∈ R+

we have a corresponding εd ∈ R+ such that for all h ∈ U ,

0 < |h| ≤ εd =⇒ |f(h)| ≤ d.
If also f(0) = 0 then in fact given d we have εd such that for all h,

|h| ≤ εd =⇒ |f(h)| ≤ d,
i.e., f is an o(1)-function. For the converse, the previous inequality implies the one
before it, and f(0) = 0 for an o(1)-function f because |f(0)| ≤ d for any d ∈ R+. �

3. Landau Notation and Algebraic Structure

For any α ≥ 0, the property of being an O(hα)-function is local, and so it holds
across ∼-equivalence classes in the set F from section 1. That is, either all functions
in an equivalence class are O(hα)-functions or none of them is. The same result
holds with o(hα) in place of O(hα). To rephrase, the O(hα) property and the o(hα)
property both descend to germs.

For any α ≥ 0, if f : U −→ R and g : V −→ R are O(hα)-functions then so again
is f + g : U ∩ V −→ R and so is kf : U −→ R for any k ∈ R; if f and g are o(hα)-
functions then so again are f + g and kf for any k. That is, working at the level
of germs rather than functions to take into account shrinking function-domains as
necessary,

O(hα)/∼ and o(hα)/∼ form vector spaces for all α ≥ 0.

Let f : U −→ R and g : V −→ R be o(1)-functions. For some d ∈ R+ we
have [−d, d] ∈ V and thus the composition g ◦ f is defined on (−εf,d, εf,d) ∩ U .
Composition of o(1)-functions clearly descends to germs. Since

o(hα) ⊂ O(hα) ⊂ o(1) (α > 0),

the results of this paragraph apply to o(hα)-functions for all α ≥ 0 and to O(hα)-
functions for all α > 0. The one exception is that composition is not generally
sensible in O(1).

However, the fact that a composition of two functions of some given type is
defined does not imply that it again has the same type. Indeed, one finds that
if f, g ∈ O(hα) where α > 0 then their composition, after suitably shrinking the
domain of f , need lie only in O(hα

2
). Loosely the calculation is that for small

enough h,

|(g ◦ f)(h)| = |g(f(h))| ≤ cg|f(h)|α ≤ cg(cf |h|α)α = cgc
α
f |h|α

2
.
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Thus O(hα) is closed under composition only when O(hα
2
) ⊂ O(hα), i.e., only

when α2 ≥ α, i.e., only when α ≥ 1. A similar argument holds for o(hα), except
that now also α = 0 is allowed, so that o(1) is closed under composition along with
o(hα) for α ≥ 1.

Thus the vector spaces O(hα)/ ∼ and o(hα)/ ∼ for α ≥ 1, along with the
vector space o(1)/∼, carry the additional operation of composition. That is, these
vector spaces also form rings, the rings being noncommutative and only O(h)/∼
and o(1)/∼ containing a multiplicative identity. As structures that carry addition,
scalar multiplication, and multiplication, O(hα)/∼ and o(hα)/∼ for α ≥ 1, and
o(1)/∼, form algebras.

The following algebraic result will turn out to be the crux of the chain rule for
derivatives.

Proposition 3.1. o(h)/∼ is a two-sided ideal of O(h)/∼.

Proof. Let f : U −→ R be an O(h)-function, and let g : V −→ R be an o(h)-
function. Thus we have c and δ, and for any d ∈ R+ we have εd. In what follows,
shrink the domain of f or the domain of g as necessary for the relevant composition
to be defined.

First we show that g ◦f is an o(h)-function. The idea is that for small enough h,
also |f(h)| ≤ c|h| is small, and so |g(f(h))| ≤ d̃|f(h)| ≤ d̃c|h| for any d̃ ∈ R+, and
we can make d̃c as small as we want by suitable choice of d̃. For the quantitative
argument, let d ∈ R+ be given. Define

d̃ = d/c and ρd = min{εd̃/c, δ}.

Then for all h ∈ U ,

|h| ≤ ρd =⇒ |f(h)| ≤ c|h| ≤ εd̃ since |h| ≤ δ and |h| ≤ εd̃/c

=⇒ |g(f(h))| ≤ d̃|f(h)| ≤ d̃c|h| since |f(h)| ≤ εd̃ and |f(h)| ≤ c|h|

=⇒ |g(f(h))| ≤ d|h| since d̃c = d.

Second we show that f ◦ g is an o(h)-function. The idea is that for any d̃ ∈ R+,
for small enough h, also |g(h)| ≤ d̃|h| is small, and so |f(g(h))| ≤ c|g(h)| ≤ cd̃|h|,
and we can make cd̃ as small as we want by suitable choice of d̃. For the quantitative
argument, let d ∈ R+ be given. Define

d̃ = d/c and ρd = min{εd̃, δ/d̃}.

Then for all h ∈ U ,

|h| ≤ ρd =⇒ |g(h)| ≤ d̃|h| ≤ δ since |h| ≤ εd̃ and |h| ≤ δ/d̃

=⇒ |f(g(h))| ≤ c|g(h)| ≤ cd̃|h| since |g(h)| ≤ δ and |g(h)| ≤ d̃|h|

=⇒ |f(g(h))| ≤ d|h| since cd̃ = d.

�

The proof just given is the most quantifier-intensive work in this body of ideas.
The reader who wants to practice this sort of thing could similarly quantify the
earlier informal arguments that the composition of O(hα)-germs is O(hα

2
) for α > 0

and similarly for o(hα)-germs and α ≥ 0. However, in a calculus course, everything
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could be done much more digestibly by not quantifying for small enough h and by
downplaying the need to work at the level of germs rather than functions.

From now on, a symbol-string such as O(h) can denote either a set of functions
or the corresponding algebra of germs, no longer expressly showing the quotient-by-
∼ in the notation. Furthermore, following standard usage, a symbol such as O(h)
also can denote one particular-but-unspecified O(h)-function. When the notation
connotes a particular function, the equality sign is not symmetric. For example,
the assertion h2 = o(h), meaning that h2 is an o(h)-function, is true, but the
assertion o(h) = h2, meaning that any o(h)-function must be h2, is false. For
another example, the notation O(h) = o(1), meaning that any O(h)-function is
also an o(1)-function, is true, but the assertion o(1) = O(h), meaning that any
o(1)-function is also an O(h)-function, is false.

4. Differentiability in Terms of a Characterizing Property

Let a be a real number. Let f : Ua −→ R be a function defined on a neighborhood
of a. Usually the condition that f is differentiable at a with derivative f ′(a) = r is
taken to be

lim
h→0

f(a+ h)− f(a)
h

= r.

We claim that an equivalent condition is the characterizing property

f(a+ h) = f(a) + rh+ o(h) .

Both the usual definition and the characterizing property are obviously sensible at
the level of germs.

Although a is arbitrary, letting U = Ua−a (a neighborhood of 0) and replacing f
by

fo : U −→ R, fo(h) = f(a+ h)− f(a)
quickly normalizes the situation to a = 0 and f(0) = 0, i.e., to germs that take 0
to 0. That is (exercise),

f is differentiable at a with derivative f ′(a) = r if and only if fo is
differentiable at 0 with the same derivative f ′o(0) = r.

For the remainder of this section and for the next section, we freely make the
normalizing assumptions. The general arguments are no different other than a few
more terms cluttering up the formulas.

Normalized, the two properties that we claim to be equivalent are the limit of
difference-quotients definition,

lim
h→0

f(h)
h

= r,

and the characterizing property,

f(h) = rh+ o(h).

The characterizing property says that the line rh approximates f(h) sub-linearly for
small h, and we will see easily in the next section that such a close approximation
can hold for only one value of r. That is, the property characterizes r as the slope of
an existing, unique sub-linearly-approximating line to the graph of f at the origin.
In other words, r satisfies what is obviously the natural definition of the tangent
slope. By contrast, the usual calculus-class notion of the tangent slope as the limit
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of secant slopes is artificial as a definition—making it the definition only short-
circuits any discussion of why it is giving the right thing—although it is useful as
a computing mechanism.

To see that the two conditions defining the derivative are equivalent, rewrite the
first condition as

lim
h→0

f(h)− rh
h

= 0.

This condition is that given any d ∈ R+ there exists some εd ∈ R+ such that for
all h ∈ U ,

0 < |h| ≤ εd =⇒
∣∣∣∣f(h)− rh

h

∣∣∣∣ ≤ d.
An equivalent condition is that for all h ∈ U ,

0 < |h| ≤ εd =⇒ |f(h)− rh| ≤ d|h|.

However, the inequality in the right side of the previous display holds for h = 0 as
well. Thus the condition need not exclude h = 0: equivalently, for all h ∈ U ,

|h| ≤ εd =⇒ |f(h)− rh| ≤ d|h|.

This last condition is precisely that f(h)− rh = o(h).

In avoiding division, and thus avoiding the need to exclude h = 0, the o(h)-
characterization of the derivative is tidier than the definition of the derivative as a
limit. The tidy o(h)-characterization of the derivative is what allows the pending
proofs of the product rule and the chain rule to be neater than is possible with
the usual set-up. But first, as a warm-up, we use the o(h)-characterization of the
derivative to establish some basic rules.

5. Basic Differentiation Rules Via the Characterizing Property

Let f be a germ that takes 0 to 0, and suppose that f is differentiable at 0 with
derivative f ′(0) = r, i.e.,

f(h) = rh+ o(h).

• We show that f is continuous at 0. By Proposition 2.2, since f(0) = 0
the assertion rephrases as f ∈ o(1). The result is immediate thanks to the
containments o(h) ⊂ O(h) ⊂ o(1) and the closure of o(1) under addition at
the level of germs,

f(h) = rh+ o(h) = O(h) + o(h) = o(1).

• We show that the derivative of f at 0 is unique. The result is immediate
because the only function kh in o(h) is the zero function. Specifically, if

f(h) = rh+ o(h) and f(h) = r′h+ o(h),

then subtracting the two conditions gives (r− r′)h = o(h), and thus r′ = r.
• Keeping f as above, suppose also that similarly g is a germ that takes 0

to 0 and is differentiable at 0 with derivative g′(0) = s. We show that

f + g is differentiable at 0 with derivative (f + g)′(0) = r + s.

The issue is simply that o(h) is closed under addition at the level of germs,

(f + g)(h) = f(h) + g(h) = rh+ o(h) + sh+ o(h) = (r + s)h+ o(h).
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• Also, take any constant k ∈ R. We show that that

kf : U −→ R is differentiable at 0 with derivative (kf)′(0) = kr.

The issue is simply that o(h) is closed under scalar multiplication at the
level of germs,

(kf)(h) = k(f(h)) = k(rh+ o(h)) = krh+ o(h).

6. The Product Rule Via the Characterizing Property

The product rule,

(fg)′(a) = f(a)g′(a) + f ′(a)g(a),

refers to the values f(a) and g(a) along with the derivatives f ′(a) and g′(a). We
are assuming that f, g : Ua −→ R are differentiable at a. We begin by normalizing
the situation to a = 0, f(0) = g(0) = 0.

As usual, define U = Ua − a and define

fo : U −→ R, fo(h) = f(a+ h)− f(a),

so that fo(0) = 0. We have seen that f ′o(0) exists and equals f ′(a). An identical
discussion holds with g in place of f . For any point h ∈ U , compute (using the fact
that g′(a) = g′o(0) and f ′(a) = f ′o(0) for the last equality)

(f · g)(a+ h)− (f · g)(a)−
(
f(a)g′(a) + f ′(a)g(a)

)
h

=
(
fo(h) + f(a)

)(
go(h) + g(a)

)
− f(a)g(a)− f(a)g′(a)h− f ′(a)g(a)h

= (fo · go)(h) + f(a)
(
go(h)− g′(a)h

)
+ g(a)

(
fo(h)− f ′(a)h

)
= (fo · go)(h) + o(h).

Thus the product rule reduces to showing that (fo · go)(h) = o(h). To rephrase, we
need to show that the product of differentiable germs that take 0 to 0 is o(h). The
argument is the first payoff of this writeup:

Given germs f and g that take 0 to 0 such that for some r and s,

f(h) = rh+ o(h) and g(h) = sh+ o(h),

we want to show that

(f · g)(h) = o(h).

Compute that

f(h)g(h) = (rh+ o(h))(sh+ o(h)) = rsh2 + rh o(h) + sh o(h) + o(h) o(h).

Each term is readily seen to be o(h), and hence so is their sum.
Of course the characterizing property also works in the original coordinates, but

then the clutter until many terms inevitably cancel obscures the main point that
the product of differentiable scalar-valued germs is small. Realizing that the local
result (fo · go)′(0) = 0 (with no assumption that f ′o(0) = 0 or g′o(0) = 0) gives the
full product rule clarifies that the usual proof intermixes normalizing and analysis.
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7. The Chain Rule Via the Characterizing Property

We have f : Ua −→ R differentiable at a and g : Vf(a) −→ R differentiable
at f(a). Let r = f ′(a) and let s = g′(f(a)). Thus we have the conditions

f(a+ h) = f(a) + rh+ o(h),

g(f(a) + k) = g(f(a)) + sk + o(k).

We may assume that f(Ua) ⊂ Vf(a), so that the composition g ◦ f is defined. To
show that it is differentiable at a with derivative sr, compute that

g(f(a+ h)) = g(f(a) + rh+ o(h)) by the first condition

= g(f(a)) + srh+ s o(h) + o(rh+ o(h)) by the second.

But s o(h) = O(o(h)) and o(rh+ o(h)) = o(O(h)), so we have

(g ◦ f)(a+ h) = (g ◦ f)(a) + srh+O(o(h)) + o(O(h)).

The ideal properties O(o(h)) = o(h) and o(O(h)) = o(h) complete the proof,

(g ◦ f)(a+ h) = (g ◦ f)(a) + srh+ o(h).

Closing Comments

Admittedly, a graceful proof of the one-variable chain rule is underwhelming
if it requires so much environmental set-up. Still, the environment is worthwhile
in its own right because the Landau notation is ubiquitous in mathematics, and
the environment adds substance to an algebra class because the Landau notation
specifies non-toy algebraic structures. But also, the ideas in this writeup scale
essentially verbatim to multivariable calculus (exercise), where they are essential.
The multivariable derivative must be defined by a characterizing property since
no difference-quotient definition is possible. And the multivariable chain rule for
derivatives is complicated in coordinates, so that its neat intrinsic form—identical
symbolically to the one-variable case—can not be intuitive at the level of coordinate-
dependent formulas.

Multivariable versions of the chain rule proof just given are found in many texts,
but seldom phrased entirely in the Landau notation. Instead, the exposition may
rely on two preparatory results of different flavors and then carry out a two-part
calculation with estimating bounds. The process, seemingly piecemeal and hetero-
geneous, long frustrated me as a teacher. It leaves even strong students with the
impression that the chain rule is complicated and that mathematics sprawls. With
the Landau notation, the two preparatory results phrase uniformly as the facts
that rh = O(h) and that a differentiable function is O(h) in local coordinates, and
the two-part calculation is simply the algebraic fact that o(h) is a two-sided ideal
of O(h). The gain in clarity and brevity for little startup cost feels real to me. With
these ideas in mind, it is striking to glance over versions of the proof, sometimes
several pages long, and see the underlying simplicity.


