ANALYSIS OF SMALL GROUPS

1. Bic ENOUGH SUBGROUPS ARE NORMAL

Proposition 1.1. Let G be a finite group, and let q be the smallest prime divisor
of |G|. Let N C G be a subgroup of index q. Then N is a normal subgroup of G.

Proof. The group G acts on the coset space G/N by left translation, giving a map
from G to the symmetric group on ¢ letters,

G — Aut(G/N) ~ S,.

Let K denote the kernel of the map. Clearly K C N since each ¢ € K must in
particular left translate N back to itself. Thus, since ¢ is the smallest prime divisor
of |G,

q=|G/N|||G/K|=q- (product of primes p > q).
On the other hand, the first isomorphism theorem says that G/K is isomorphic to
the image of G in Sy, a subgroup of ;. Thus |G/K]| | ¢!, so that

|G/K| = q - (product of primes p < q).

Comparing the two displays shows that |G/N| = |G/K]|, and so the contain-
ment K C N now gives K = N. Thus N is normal because it is a kernel.
|

2. SEMIDIRECT PRODUCTS

First we discuss what it means for a given group to be a semidirect product of
two of its subgroups.

Let G be a group, let K be a normal subgroup, and let @ be a complementary
subgroup. That is,

G=KQ, K<G, KnNnQ@=1g.
Define a map
0:Q — Aut(K), q+— (og: k> qkq_l).

Thus o4y = o400y for all ¢,¢ € Q, ie., o is a homomorphism. And of course
oq(kk') = 04(k)o,(K') for all k, k' € K since conjugation is an inner automorphism.

Then the group-operation of G is

kq- kG =kq-kqg' - qd = koy(k) - qd.
This group structure describes G as a semidirect product of K and ). The
notation is
G =K x, Q.

When @ acts trivially on K by conjugation, i.e., when all elements of K and () com-
mute, the semidirect product is simply the direct product. Regardless of whether
the semidirect product is direct, we have a short exact sequence

1 —K—G—Q—1,
1
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where the first map is inclusion and the second is kq — ¢. Furthermore, the
sequence splits, in that the composite @ — G — @, where the first map is
inclusion, is the identity. The short exact sequence makes clear that K is so-named
because it is the kernel group in the sequence, and similarly @ is so-named because
it is the quotient group.

Second we discuss ingredients that suffice to construct a semidirect product.
Suppose that we have the data
e a group K,

e a group @,
e a homomorphism o : Q — Aut(K).

Define the following operation on the set G = K x Q:
(kv q)(klv ql) = (kO'q(k/), qq/)~
Note that the operation does not assume any sort of product between elements

of K and elements of ().
The operation is associative,

(k) (K, q") - (K", q") =

/

(kog(K'),qq') - (K",q")
= (kog(k")oqq (K"), (ad')d")
= (kog(K'oy (k")) a(d'q"))
= (k,q) - (K'og(k"),d'q")

(k,q) - (K, q) (K", q")).

ko,

The identity is (1, 1g),
(k:a)(1x: 1@) = (kog(1k), ql) = (K, 9),
(1x, 1) (K, @) = (1x014(F), 109) = (K, ).
And the inverse of (k,q) is (0,1 (k™%),q71),
(k,q) (01 (K71, g7 ") = (kog(og-+ (k1)) qq7") = (1x. 1o),
(0g-1(k7), a7 ) (K, q) = (04-1 (k" )og-1(k), a7 q) = (1x, 1q)-
Thus G is a group.

If we identify K with its embedded image K x 1¢g in G and similarly identify @
with 1x X @ in G then the group operation becomes the semidirect product law,

kq-kq =kog(k')ad,
and K is normal,

(*7 q)(k:, 1Q)(*7 Q)_l = (*7 q)(k’ 1Q)(*7 q_l) = (*7 1Q)'
Thus the data K, @, and o give a semidirect product construction G = K X, @
without assuming that K and @ are subgroups of a common group.

3. GROUPS OF ORDER p?

Let |G| = p? where p is prime, and let G act on itself by conjugation. The class

formula gives
@)+ p*/Gal-
O-’D
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The sum is a multiple of p, and hence so is | Z(G)|. We are done unless |Z(G)| = p.
In this case, consider a noncentral element g. Its isotropy group contains Z(QG)
and g, making it all of G. This contradicts the noncentrality of g. Thus |Z(G)| = p?,
ie, Z(G) =G, i.e, G is abelian.

4. METACYCLIC GROUPS OF ORDER pgq

Let p and g be primes with ¢ > p. We seek nonabelian groups G of order pgq.
Any ¢-Sylow subgroup of G,
K={l,a,---,a% '},
is big enough to be normal. Thus, letting a p-Sylow subgroup be
Q= {va’ t 7bp71}a

we have
G=KQ, K<xG, KnQ=1g.
That is, G is a semidirect product of K and ). The only question is how @ acts
on K by conjugation.
The automorphisms of K are

a+— a® for any nonzero e € Z/qZ,

and the composition of a — a® and a — a’ is a — af. That is,
Auwt(K) ~ (Z/qZ)*.
Elementary number theory (see below) shows that there is at least one generator g
modulo ¢ such that
{1,9,6% ¢% -, 972} gives all the values 1,2,3,--- ,¢ — 1 modulo q.

That is, g9~ ! = 1 mod ¢ is the first positive power of ¢ that equals 1 modulo g, so
that

Aut(K) is cyclic of order g — 1.
Therefore, there are nontrivial maps ¢ : @ — Aut(K) if and only if p | ¢ — 1. In
this case, the unique order p subgroup of Aut(K) is isomorphic to

{1,gla=V/p g2a=1/p gp=1a=1)/py
whose nontrivial elements are precisely the values i € Z/gZ such that ¢ # 1 but
i? = 1. Thus the nontrivial maps @ — Aut(K) are
br— (a»—> ai) , 17# 1modgq but ¥ = 1modgq.
In sum, nonabelian groups of order pq exist only for p | ¢ — 1, in which case they
are
<a,b la? =b" =1, bab™* = ai> where ¢ # 1mod ¢ but ¥ = 1modgq.

Especially, if p = 2 then the only possibility is i = —1 mod ¢, giving the dihedral
group Dy.

For a given p and ¢ with p | ¢ — 1, different values of i give isomorphic groups.
To see this, first note that any two such values ¢ and ¢’ satisfy

i'’ =i®modq for some e € {1,---,p—1}.
Now let b = b°. Then the relations a? = b? = 1, bab~! = a* become

’

al =" =1, bab~' =a*.
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To see where the last relation comes from, compute
bab=¢ =" - bab b7
— beflaibf(efl)

_ (be—lab—(e—l))i
_ (be—2ab—(e—2))(i2)

=al),
Since b? = 1, this same calculation with p in place of e shows again why we need
¥ = 1mod ¢, forcing p to divide ¢ — 1.

In general, any semidirect product K x, @ where K and @ are cyclic (not
necessarily of prime order) is called metacyclic.

4.1. A Brief Excursion into Elementary Number Theory. We have cited
the following result.

Proposition 4.1. Let g be prime. Then (Z/qZ)* is cyclic, with p(q—1) generators.

An elementary proof is possible, and indeed it is standard. But we have the tools
in hand to give a more sophisticated argument. First of all, if (Z/qZ)* is cyclic
then our analysis of cyclic groups has already shown that it has (¢ —1) generators.
So only the cyclicity is in question.

The proof begins with the observation that a polynomial over a field can not
have more roots than its degree.

Lemma 4.2. Let k be a field. Let the polynomial f € k[X] have degree d > 1.
Then f has at most d roots in k.

Naturally, the field that we have in mind here is k = Z/qZ.
The lemma does require that k£ be a field, not merely a ring. For example, the
quadratics polynomial X2 — 1 over the ring Z/247 has eight roots,

{1,5,7,11,13,17,19,23} = (Z/247)* .
Proof. If f has no roots then we are done. Otherwise let a € k be a root. The
polynomial division algorithm gives
f(X)=qX)(X —a)+7r(X), deg(r)<lorr=0.

(Here the quotient polynomial ¢(X) is unrelated to the prime ¢ in the ambient
discussion.) Thus 7(X) is a constant. Substitute a for X to see that in fact r = 0,
and so f(X) = ¢(X)(X — a). By induction, ¢ has at most d — 1 roots in k and we
are done. O

Now, since (Z/qZ)* is a finite abelian group, it takes the form
The additive description of the group shows that the equation dp X = 0 is solved
by all dids - - - di, group elements. Multiplicatively, the polynomial

X% —1 € (Z/qZ)[X]

has dids - - - di, roots. Thus k =1 and so (Z/qZ)* is cyclic.
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5. GROUPS OF ORDER 8

Let G be a nonabelian group of order 8. Then G must contain a subgroup (a) of
order 4 but no element of order 8. The subgroup (a) is big enough to be normal.

Suppose that G has no other subgroup of order 4. Consider an element b that
does not lie in the subgroup generated by a. Then we have (since G is not abelian)

a*=0v*=1, ba=ad’.
The displayed conditions describe the dihedral group

Otherwise G has a second subgroup (b) of order 4. The left cosets of (a) are
itself and b{a), so that b2 € (a). Thus a? = b*>. Now we have

ad=v*=1, a>=10b> ba=a’b,
and so
G = {1,a,a?,a®b,ab,a’b,a*b}.
To understand the group better, let
¢ = ab.

Then
2 =ab-ab=a*h? = b = d?,

so that, since ¢! = b3a® = ab® = a’b,

ab =c, ba = a®b = cfl,
be = bab = a®b? = a, ch=ab®=a®=a"",
ca = aba = b, ac=a’b=0%=b"1.

We see that the G is the group of Hamiltonian quaternions.

6. GROUPS OF ORDER 12

Consider a nonabelian group G of order 12.
Let K = {1,a,a®} be a 3-Sylow subgroup, so that |G/K| = 4. The left-
translation action of G on the coset space G/K gives a homomorphism
0:G— Auwt(G/K) = Sy, gr— (04: 7K — gvK).
(Note that Aut(G/K) is a group even though G/K may not be.) The kernel of o

is a subgroup of K since for any g in the kernel we must have gK = K.

If o has trivial kernel then (Recall that A,, is the unique index-2
subgroup of S;,. Indeed, if H C S,, doesn’t contain some 3-cycle then there are at
least three cosets. So an index-2 subgroup contains all 3-cycles, making it A,,.)

Otherwise, the kernel of ¢ is K, making K a normal subgroup of G. Let @ be a
2-Sylow subgroup of G. Since

G=KQ, K<G, KnQ-=Ilg,

G is a semidirect product of K and ). The only question is how ) acts on the
generator a of K by conjugation.
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The order-4 group @ is abelian. If its isomorphism type is Cy x C5 then it takes
the form Q = {1,b,c,bc} where b> = ¢> = 1 and cb = be. In this case, the only
nontrivial action of @ on K is, up to relabeling,

bab=a, cac=a>,

and so

G = {a,b,cla® =b>=c* =1, ba = ab, cb=bec, ca = a’c).
Here the element ab has order 6, and its inverse is b, and its conjugate under the
order 2 element c is its inverse,

On the other hand, if the isomorphism type of @ is Cy then Q = {1,b,b% b}.
In this case, the only nontrivial action of Q on K is bab~!' = a2, and so

G = (a,b|a® =b* =1, ba = a®b).
Alternatively, let @ = ab®. Then also
G =(a,bla® =1, v¥* = a3, ba = a°b).

We don’t yet know that such a group exists, but in fact it manifests itself as a
subgroup of the cartesian product Ss x Cly, specifically the subgroup generated by

a=((123),¢%), b=1((12),9), where g generates Cj.

cabe = a®b.



