
ANALYSIS OF SMALL GROUPS

1. Big Enough Subgroups are Normal

Proposition 1.1. Let G be a finite group, and let q be the smallest prime divisor
of |G|. Let N ⊂ G be a subgroup of index q. Then N is a normal subgroup of G.

Proof. The group G acts on the coset space G/N by left translation, giving a map
from G to the symmetric group on q letters,

G −→ Aut(G/N) ≈ Sq.

Let K denote the kernel of the map. Clearly K ⊂ N since each g ∈ K must in
particular left translate N back to itself. Thus, since q is the smallest prime divisor
of |G|,

q = |G/N | | |G/K| = q · (product of primes p ≥ q).
On the other hand, the first isomorphism theorem says that G/K is isomorphic to
the image of G in Sq, a subgroup of Sq. Thus |G/K| | q!, so that

|G/K| = q · (product of primes p < q).

Comparing the two displays shows that |G/N | = |G/K|, and so the contain-
ment K ⊂ N now gives K = N . Thus N is normal because it is a kernel.

�

2. Semidirect Products

First we discuss what it means for a given group to be a semidirect product of
two of its subgroups.

Let G be a group, let K be a normal subgroup, and let Q be a complementary
subgroup. That is,

G = KQ, K CG, K ∩Q = 1G.

Define a map
σ : Q −→ Aut(K), q 7−→

(
σq : k 7→ qkq−1

)
.

Thus σqq′ = σq ◦ σq′ for all q, q′ ∈ Q, i.e., σ is a homomorphism. And of course
σq(kk′) = σq(k)σq(k′) for all k, k′ ∈ K since conjugation is an inner automorphism.

Then the group-operation of G is

kq · k̃q̃ = kq · k̃q−1 · qq̃ = kσq(k̃) · qq̃.

This group structure describes G as a semidirect product of K and Q. The
notation is

G = K ×σ Q.
When Q acts trivially on K by conjugation, i.e., when all elements of K and Q com-
mute, the semidirect product is simply the direct product. Regardless of whether
the semidirect product is direct, we have a short exact sequence

1 −→ K −→ G −→ Q −→ 1,
1
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where the first map is inclusion and the second is kq 7→ q. Furthermore, the
sequence splits, in that the composite Q −→ G −→ Q, where the first map is
inclusion, is the identity. The short exact sequence makes clear that K is so-named
because it is the kernel group in the sequence, and similarly Q is so-named because
it is the quotient group.

Second we discuss ingredients that suffice to construct a semidirect product.
Suppose that we have the data
• a group K,
• a group Q,
• a homomorphism σ : Q −→ Aut(K).

Define the following operation on the set G = K ×Q:

(k, q)(k′, q′) = (kσq(k′), qq′).

Note that the operation does not assume any sort of product between elements
of K and elements of Q.

The operation is associative,

((k, q)(k′, q′)) · (k′′, q′′) = (kσq(k′), qq′) · (k′′, q′′)
= (kσq(k′)σqq′(k′′), (qq′)q′′)

= (kσq(k′σq′(k′′)), q(q′q′′))

= (k, q) · (k′σq′(k′′), q′q′′)
= (k, q) · ((k′, q′)(k′′, q′′)).

The identity is (1K , 1Q),

(k, q)(1K , 1Q) = (kσq(1K), q1Q) = (k, q),

(1K , 1Q)(k, q) = (1Kσ1Q
(k), 1Qq) = (k, q).

And the inverse of (k, q) is (σq−1(k−1), q−1),

(k, q)(σq−1(k−1), q−1) = (kσq(σq−1(k−1)), qq−1) = (1K , 1Q),

(σq−1(k−1), q−1)(k, q) = (σq−1(k−1)σq−1(k), q−1q) = (1K , 1Q).

Thus G is a group.
If we identify K with its embedded image K × 1Q in G and similarly identify Q

with 1K ×Q in G then the group operation becomes the semidirect product law,

kq · k′q′ = kσq(k′)qq′,

and K is normal,

(∗, q)(k, 1Q)(∗, q)−1 = (∗, q)(k, 1Q)(∗, q−1) = (∗, 1Q).

Thus the data K, Q, and σ give a semidirect product construction G = K ×σ Q
without assuming that K and Q are subgroups of a common group.

3. Groups of Order p2

Let |G| = p2 where p is prime, and let G act on itself by conjugation. The class
formula gives

p2 = |Z(G)|+
∑
Ox

p2/|Gx|.



ANALYSIS OF SMALL GROUPS 3

The sum is a multiple of p, and hence so is |Z(G)|. We are done unless |Z(G)| = p.
In this case, consider a noncentral element g. Its isotropy group contains Z(G)
and g, making it all of G. This contradicts the noncentrality of g. Thus |Z(G)| = p2,
i.e., Z(G) = G, i.e., G is abelian.

4. Metacyclic Groups of Order pq

Let p and q be primes with q > p. We seek nonabelian groups G of order pq.
Any q-Sylow subgroup of G,

K = {1, a, · · · , aq−1},
is big enough to be normal. Thus, letting a p-Sylow subgroup be

Q = {1, b, · · · , bp−1},
we have

G = KQ, K CG, K ∩Q = 1G.
That is, G is a semidirect product of K and Q. The only question is how Q acts
on K by conjugation.

The automorphisms of K are

a 7−→ ae for any nonzero e ∈ Z/qZ,
and the composition of a 7→ ae and a 7→ af is a 7→ aef . That is,

Aut(K) ≈ (Z/qZ)×.

Elementary number theory (see below) shows that there is at least one generator g
modulo q such that

{1, g, g2, g3, · · · , gq−2} gives all the values 1, 2, 3, · · · , q − 1 modulo q.

That is, gq−1 = 1 mod q is the first positive power of g that equals 1 modulo q, so
that

Aut(K) is cyclic of order q − 1.
Therefore, there are nontrivial maps σ : Q −→ Aut(K) if and only if p | q − 1. In
this case, the unique order p subgroup of Aut(K) is isomorphic to

{1, g(q−1)/p, g2(q−1)/p, g(p−1)(q−1)/p},
whose nontrivial elements are precisely the values i ∈ Z/qZ such that i 6= 1 but
ip = 1. Thus the nontrivial maps Q −→ Aut(K) are

b 7−→
(
a 7→ ai

)
, i 6= 1 mod q but ip = 1 mod q.

In sum, nonabelian groups of order pq exist only for p | q − 1, in which case they
are 〈

a, b | aq = bp = 1, bab−1 = ai
〉

where i 6= 1 mod q but ip = 1 mod q.

Especially, if p = 2 then the only possibility is i = −1 mod q, giving the dihedral
group Dq.

For a given p and q with p | q − 1, different values of i give isomorphic groups.
To see this, first note that any two such values i and i′ satisfy

i′ = ie mod q for some e ∈ {1, · · · , p− 1}.

Now let b̃ = be. Then the relations aq = bp = 1, bab−1 = ai become

aq = b̃p = 1, b̃ab̃−1 = ai
′
.
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To see where the last relation comes from, compute

beab−e = be−1 · bab−1 · b−(e−1)

= be−1aib−(e−1)

= (be−1ab−(e−1))i

= (be−2ab−(e−2))(i
2)

= · · ·

= a(ie).

Since bp = 1, this same calculation with p in place of e shows again why we need
ip = 1 mod q, forcing p to divide q − 1.

In general, any semidirect product K ×σ Q where K and Q are cyclic (not
necessarily of prime order) is called metacyclic.

4.1. A Brief Excursion into Elementary Number Theory. We have cited
the following result.

Proposition 4.1. Let q be prime. Then (Z/qZ)× is cyclic, with ϕ(q−1) generators.

An elementary proof is possible, and indeed it is standard. But we have the tools
in hand to give a more sophisticated argument. First of all, if (Z/qZ)× is cyclic
then our analysis of cyclic groups has already shown that it has ϕ(q−1) generators.
So only the cyclicity is in question.

The proof begins with the observation that a polynomial over a field can not
have more roots than its degree.

Lemma 4.2. Let k be a field. Let the polynomial f ∈ k[X] have degree d ≥ 1.
Then f has at most d roots in k.

Naturally, the field that we have in mind here is k = Z/qZ.
The lemma does require that k be a field, not merely a ring. For example, the

quadratics polynomial X2 − 1 over the ring Z/24Z has eight roots,

{1, 5, 7, 11, 13, 17, 19, 23} = (Z/24Z)×.

Proof. If f has no roots then we are done. Otherwise let a ∈ k be a root. The
polynomial division algorithm gives

f(X) = q(X)(X − a) + r(X), deg(r) < 1 or r = 0.

(Here the quotient polynomial q(X) is unrelated to the prime q in the ambient
discussion.) Thus r(X) is a constant. Substitute a for X to see that in fact r = 0,
and so f(X) = q(X)(X − a). By induction, q has at most d− 1 roots in k and we
are done. �

Now, since (Z/qZ)× is a finite abelian group, it takes the form

(Z/qZ)× ≈ Z/d1Z⊕ Z/d2Z⊕ · · · ⊕ Z/dkZ, 1 < d1 | d2 | · · · | dk.
The additive description of the group shows that the equation dkX = 0 is solved
by all d1d2 · · · dk group elements. Multiplicatively, the polynomial

Xdk − 1 ∈ (Z/qZ)[X]

has d1d2 · · · dk roots. Thus k = 1 and so (Z/qZ)× is cyclic.
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5. Groups of Order 8

Let G be a nonabelian group of order 8. Then G must contain a subgroup 〈a〉 of
order 4 but no element of order 8. The subgroup 〈a〉 is big enough to be normal.

Suppose that G has no other subgroup of order 4. Consider an element b that
does not lie in the subgroup generated by a. Then we have (since G is not abelian)

a4 = b2 = 1, ba = a3b.

The displayed conditions describe the dihedral group D4.

Otherwise G has a second subgroup 〈b〉 of order 4. The left cosets of 〈a〉 are
itself and b〈a〉, so that b2 ∈ 〈a〉. Thus a2 = b2. Now we have

a4 = b4 = 1, a2 = b2, ba = a3b,

and so
G = {1, a, a2, a3, b, ab, a2b, a3b}.

To understand the group better, let

c = ab.

Then
c2 = ab · ab = a4b2 = b2 = a2,

so that, since c−1 = b3a3 = ab3 = a3b,

ab = c, ba = a3b = c−1,

bc = bab = a3b2 = a, cb = ab2 = a3 = a−1,

ca = aba = b, ac = a2b = b3 = b−1.

We see that the G is the group of Hamiltonian quaternions.

6. Groups of Order 12

Consider a nonabelian group G of order 12.
Let K = {1, a, a2} be a 3-Sylow subgroup, so that |G/K| = 4. The left-

translation action of G on the coset space G/K gives a homomorphism

σ : G −→ Aut(G/K) ≈ S4, g 7−→ (σg : γK 7→ gγK).

(Note that Aut(G/K) is a group even though G/K may not be.) The kernel of σ
is a subgroup of K since for any g in the kernel we must have gK = K.

If σ has trivial kernel then G = A4. (Recall that An is the unique index-2
subgroup of Sn. Indeed, if H ⊂ Sn doesn’t contain some 3-cycle then there are at
least three cosets. So an index-2 subgroup contains all 3-cycles, making it An.)

Otherwise, the kernel of σ is K, making K a normal subgroup of G. Let Q be a
2-Sylow subgroup of G. Since

G = KQ, K CG, K ∩Q = 1G,

G is a semidirect product of K and Q. The only question is how Q acts on the
generator a of K by conjugation.
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The order-4 group Q is abelian. If its isomorphism type is C2×C2 then it takes
the form Q = {1, b, c, bc} where b2 = c2 = 1 and cb = bc. In this case, the only
nontrivial action of Q on K is, up to relabeling,

bab = a, cac = a2,

and so
G = 〈a, b, c | a3 = b2 = c2 = 1, ba = ab, cb = bc, ca = a2c〉.

Here the element ab has order 6, and its inverse is a2b, and its conjugate under the
order 2 element c is its inverse,

cabc = a2b.

Thus G = D6.

On the other hand, if the isomorphism type of Q is C4 then Q = {1, b, b2, b3}.
In this case, the only nontrivial action of Q on K is bab−1 = a2, and so

G = 〈a, b | a3 = b4 = 1, ba = a2b〉.
Alternatively, let ã = ab2. Then also

G = 〈ã, b | ã6 = 1, b2 = ã3, bã = ã5b〉.
We don’t yet know that such a group exists, but in fact it manifests itself as a
subgroup of the cartesian product S3 × C4, specifically the subgroup generated by

ã = ((1 2 3), g2), b = ((1 2), g), where g generates C4.


