THE SYLOW THEOREMS

1. GROUP ACTIONS
An action of a group G on a set S is a map
GxS— S, (g9,2)— gz
such that
e The action is associative,
(99)r = g(gz) forall g,g € Gand z € S.
e The group identity element acts trivially,

lgx=a forallx € S.

Some examples:

e Every group G acts on itself by left-translation,
GXG_}G? (gag)}—>g§

e Let G be a group and let H be subgroup, not necessarily normal. Then G
acts on the coset space G/H by left-translation,

This example specializes to the previous one when H is trivial.
e Every group G acts on itself by left-conjugation

GxG—G, (9,9 — gdg "

e Every group G acts on the set of its subgroups by left-conjugation,
G x {subgroups} — {subgroups}, (g, H)+— gHg .

e The symmetric group G = S,, by definition acts on theset S = {1,2,--- ;n}.
However, a little care is required here, since to make the action obey the
associative rule we must compose permutations from right to left.

e The dihedral symmetry group D,, of the regular n-gon in the plane acts on
the set of vertices of the n-gon, and it acts on the set of edges of the n-gon,
and it acts on the set of flags of the solid, where a flag is a pair

(vertex, edge)

such that the vertex lies in the edge.

e Let GG be a rotation group of a Platonic solid. Then G acts on the set of
vertices of the solid, and G acts on the set of edges of the solid, and G acts
on the set of faces of the solid, and G acts on the set of flags

(vertex, edge, face), vertex C edge C face

of the solid.
e Let V be any vector space over a field k. The group of k-linear automor-
phisms of V' acts on V.
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Let a group G act on a set S. Define a binary relation ~g on S,
x~g & if &= gx for some g € G}.

Immediately, ~¢ is an equivalence relation. Thus it partitions S into mutually
disjoint orbits,

S=| 0., O.={gz:geG}.
Consequently we have a counting formula
|S] = Z |O.], sum over disjoint orbits.
Each set-element x € S has a corresponding isotropy subgroup in G,
G,={9€G:gx =z}

Isotropy subgroups need not be normal but the conjugate of one isotropy subgroup
is another,

ngg_l = Gg:c-

Each isotropy coset gG, takes x to gz, and distinct cosets ¢G, and gG, take x to
distinct values. Thus we have the orbit—stabilizer formula,

|Ow| = |G/Gw|7
and the counting formula becomes

|S| = Z |G/G,|, sum over disjoint orbits.
Oy

2. A PRELIMINARY ABELIAN GROUP LEMMA

Lemma 2.1 (Cauchy). Let G be a finite abelian group, and let p | |G| where p is
prime. Then G contains an element—and therefore a subgroup—of order p.

The lemma is immediate granting the structure theorem for finite abelian groups,
but we prove it from first principles.

Proof. If G contains an element whose order is a multiple of p then we are done.
So suppose that G contains no such element, and let

n = lem{order of g : g € G}.
Thus p t n. We will show that

|G| | n*  for some k.

To see this, take any b # 1 in GG, and note that (b) is a proper subgroup of G since
p {1 |(b)| but p | |G|. On the other hand, |(b)| | n. In the quotient group G/(b)
we also have (g(b))™ = 1 for all elements g(b), and so the lem of the orders of the
elements of G/(b) divides n. Now by induction on the group order, |G/(b)| | n*~*
for some k, i.e., |G|/|(b)| | n*~! for some k, and thus

IGI | [(b)| n* " | n.

The display contradicts the fact that p | |G|, and so the supposition that G has no
element whose order is a multiple of p is untenable. O
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3. SYLOw THEOREMS: THE EXISTENCE THEOREM

Let a finite group G act on itself by conjugation,

9(9) =939"", 9,5€G.

Then the counting formula becomes the class formula,

Gl=12(G)|+ Y 1G:Gal,

|Oz]>1

where the sum is over non-singleton conjugacy classes in G and the isotropy sub-
group G is the normalizing subgroup of z,

G,={geG:grg ' =2z}
When the conjugacy class of z is a non-singleton, GG, is a proper subgroup of G.

Also, if G acts on a subset S of its subgroups H by conjugation then the class
formula becomes

S| =>"[G: Gul,
On
where now the isotropy subgroup Gy is the normalizing subgroup of the sub-
group H,
Gu={9eG:gHg ' = H}.

Definition 3.1. Let G be a finite group, and let p | |G| where p is prime. Then a
p-Sylow subgroup of G is a subgroup of order p™ where p™ || |G].

Theorem 3.2. Let G be a finite group, and let p | |G| where p is prime. Then
there exists a p-Sylow subgroup of G.

Proof. The proof is by induction on the order of G. The base case where |G| = p

is clear. If G contains a subgroup H whose index in G is coprime to p then we are

done by induction. So assume that p | [G : H| for every proper subgroup H of G.
Let G act on itself by conjugation,

(9,2) — gzg™".

As above, the class formula is
Gl=12(G)|+ Y 1G:Gal.
|Oz]|>1

In the sum, since |O,| > 1 for each x, also G, is a proper subgroup of G for each .
Thus, counting modulo p shows that p | |Z(G)|. By the preliminary abelian group
lemma, there exists some a € Z(G) having order p. The order-p subgroup (a) is
normal in G since a is central. Because p"~!|||G/{a)|, induction gives a p-Sylow

subgroup K of G/{a). Let
K = f~(K) where f:G — G/(a) is the canonical map.

Since the canonical map is p-to-1, it follows that K is a p-Sylow subgroup of G. O
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4. SYLOw THEOREMS: THE FURTHER RESULTS

Definition 4.1. Let G be a finite group, and let p | |G| where p is prime. Then a
p-subgroup of G is a subgroup of order p™ where p™ | |G].

Theorem 4.2. Let G be a finite group.
(1) Every p-subgroup of G is contained in a p-Sylow subgroup.
(2) All p-Sylow subgroups of G are conjugate.
(3) The number of p-Sylow subgroups is 1 modulo p and divides |G)|.

Proof. Let S denote the set of p-Sylow subgroups of GG, a nonempty set by the
previous theorem. Let G act on S by conjugation. Let P denote some p-Sylow
subgroup of G, let S, denote its orbit, and let Gp denote the normalizer of P.
Since Gp contains P,

|So| = [G : Gp] is coprime to p.

To prove (1), let H be a nontrivial p-subgroup of G. Then H acts by conjugation

on S,, and
|Sol =Y [H : Hpr,
I
summing over one p-Sylow subgroup from each H-suborbit of the G-orbit of the p-
Sylow subgroup P. Since |S,]| is coprime to p and each [H : Hp:] is a p-power, some
suborbit is a singleton. That is, H C Gps for some P’, making HP’' a subgroup
of G. Also, P’ is normal in HP’, and so the second isomorphism theorem of group
theory gives
HP'/P'>~ H/(HNP).

The quotient group on the left side of the display has order coprime to p because
P’ is a p-Sylow subgroup, while the quotient group on the right side has p-power
order because H is a p-subgroup. Thus both quotient groups are trivial. That is,
H C P, ie., H is contained in a p-Sylow subgroup as desired.

To prove (2), let H in the proof of (1) be any p-Sylow subgroup. The proof of (1)
shows that H is a subgroup of a conjugate of P, and so H is the entire conjugate
of P since their orders are equal. Note that now we have S, = S.

To prove (3), recall that S is the set of p-Sylow subgroups of G, so that |S]|
is the number of p-Sylow subgroups. Let the p-Sylow subgroup P act on S by
conjugation. To show that |S| = 1 mod p, write

1= S1P: P,
I

summing over one P’ from each P-orbit. Each term in the sum is 1 or a p-power.
The P-suborbit of {P} is itself, so one term in the sum is 1. Any other p-Sylow
subgroup P’ # P has a nontrivial orbit, for otherwise P normalizes P’, making
PP’ a subgroup of G whose order is divisible by too high a power of p. Hence the
rest of the terms in the sum are nontrivial p-powers. Thus |S| = 1 mod p.

As for the last statement, the equality displayed at the beginning of the proof is
now

1= (G : Grl,

and the right side divides |G]. O

The proofs of Theorem 3.2 and Theorem 4.2 are a tour de force for group actions.



