
THE SYLOW THEOREMS

1. Group Actions

An action of a group G on a set S is a map

G× S −→ S, (g, x) 7−→ gx

such that
• The action is associative,

(gg̃)x = g(g̃x) for all g, g̃ ∈ G and x ∈ S.

• The group identity element acts trivially,

1Gx = x for all x ∈ S.

Some examples:
• Every group G acts on itself by left-translation,

G×G −→ G, (g, g̃) 7−→ gg̃.

• Let G be a group and let H be subgroup, not necessarily normal. Then G
acts on the coset space G/H by left-translation,

G×G/H −→ G/H, (g, g̃H) 7−→ gg̃H.

This example specializes to the previous one when H is trivial.
• Every group G acts on itself by left-conjugation

G×G −→ G, (g, g̃) 7−→ gg̃g−1.

• Every group G acts on the set of its subgroups by left-conjugation,

G× {subgroups} −→ {subgroups}, (g,H) 7−→ gHg−1.

• The symmetric group G = Sn by definition acts on the set S = {1, 2, · · · , n}.
However, a little care is required here, since to make the action obey the
associative rule we must compose permutations from right to left.

• The dihedral symmetry group Dn of the regular n-gon in the plane acts on
the set of vertices of the n-gon, and it acts on the set of edges of the n-gon,
and it acts on the set of flags of the solid, where a flag is a pair

(vertex, edge)

such that the vertex lies in the edge.
• Let G be a rotation group of a Platonic solid. Then G acts on the set of

vertices of the solid, and G acts on the set of edges of the solid, and G acts
on the set of faces of the solid, and G acts on the set of flags

(vertex, edge, face), vertex ⊂ edge ⊂ face

of the solid.
• Let V be any vector space over a field k. The group of k-linear automor-

phisms of V acts on V .
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Let a group G act on a set S. Define a binary relation ∼G on S,

x ∼G x̃ if x̃ = gx for some g ∈ G}.

Immediately, ∼G is an equivalence relation. Thus it partitions S into mutually
disjoint orbits,

S =
⊔
Ox, Ox = {gx : g ∈ G}.

Consequently we have a counting formula

|S| =
∑
|Ox|, sum over disjoint orbits.

Each set-element x ∈ S has a corresponding isotropy subgroup in G,

Gx = {g ∈ G : gx = x}.

Isotropy subgroups need not be normal but the conjugate of one isotropy subgroup
is another,

gGxg−1 = Ggx.

Each isotropy coset gGx takes x to gx, and distinct cosets gGx and g̃Gx take x to
distinct values. Thus we have the orbit–stabilizer formula,

|Ox| = |G/Gx|,

and the counting formula becomes

|S| =
∑
Ox

|G/Gx|, sum over disjoint orbits.

2. A Preliminary Abelian Group Lemma

Lemma 2.1 (Cauchy). Let G be a finite abelian group, and let p | |G| where p is
prime. Then G contains an element—and therefore a subgroup—of order p.

The lemma is immediate granting the structure theorem for finite abelian groups,
but we prove it from first principles.

Proof. If G contains an element whose order is a multiple of p then we are done.
So suppose that G contains no such element, and let

n = lcm{order of g : g ∈ G}.

Thus p - n. We will show that

|G| | nk for some k.

To see this, take any b 6= 1 in G, and note that 〈b〉 is a proper subgroup of G since
p - |〈b〉| but p | |G|. On the other hand, |〈b〉| | n. In the quotient group G/〈b〉
we also have (g〈b〉)n = 1 for all elements g〈b〉, and so the lcm of the orders of the
elements of G/〈b〉 divides n. Now by induction on the group order, |G/〈b〉| | nk−1

for some k, i.e., |G|/|〈b〉| | nk−1 for some k, and thus

|G| | |〈b〉|nk−1 | nk.

The display contradicts the fact that p | |G|, and so the supposition that G has no
element whose order is a multiple of p is untenable. �
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3. Sylow Theorems: the Existence Theorem

Let a finite group G act on itself by conjugation,

g(g̃) = gg̃g−1, g, g̃ ∈ G.

Then the counting formula becomes the class formula,

|G| = |Z(G)|+
∑
|Ox|>1

[G : Gx],

where the sum is over non-singleton conjugacy classes in G and the isotropy sub-
group Gx is the normalizing subgroup of x,

Gx = {g ∈ G : gxg−1 = x}.

When the conjugacy class of x is a non-singleton, Gx is a proper subgroup of G.

Also, if G acts on a subset S of its subgroups H by conjugation then the class
formula becomes

|S| =
∑
OH

[G : GH ],

where now the isotropy subgroup GH is the normalizing subgroup of the sub-
group H,

GH = {g ∈ G : gHg−1 = H}.

Definition 3.1. Let G be a finite group, and let p | |G| where p is prime. Then a
p-Sylow subgroup of G is a subgroup of order pn where pn ‖ |G|.

Theorem 3.2. Let G be a finite group, and let p | |G| where p is prime. Then
there exists a p-Sylow subgroup of G.

Proof. The proof is by induction on the order of G. The base case where |G| = p
is clear. If G contains a subgroup H whose index in G is coprime to p then we are
done by induction. So assume that p | [G : H] for every proper subgroup H of G.

Let G act on itself by conjugation,

(g, x) 7−→ gxg−1.

As above, the class formula is

|G| = |Z(G)|+
∑
|Ox|>1

[G : Gx].

In the sum, since |Ox| > 1 for each x, also Gx is a proper subgroup of G for each x.
Thus, counting modulo p shows that p | |Z(G)|. By the preliminary abelian group
lemma, there exists some a ∈ Z(G) having order p. The order-p subgroup 〈a〉 is
normal in G since a is central. Because pn−1 ‖ |G/〈a〉|, induction gives a p-Sylow
subgroup K̃ of G/〈a〉. Let

K = f−1(K̃) where f : G −→ G/〈a〉 is the canonical map.

Since the canonical map is p-to-1, it follows that K is a p-Sylow subgroup of G. �



4 THE SYLOW THEOREMS

4. Sylow Theorems: the Further Results

Definition 4.1. Let G be a finite group, and let p | |G| where p is prime. Then a
p-subgroup of G is a subgroup of order pn where pn | |G|.

Theorem 4.2. Let G be a finite group.
(1) Every p-subgroup of G is contained in a p-Sylow subgroup.
(2) All p-Sylow subgroups of G are conjugate.
(3) The number of p-Sylow subgroups is 1 modulo p and divides |G|.

Proof. Let S denote the set of p-Sylow subgroups of G, a nonempty set by the
previous theorem. Let G act on S by conjugation. Let P denote some p-Sylow
subgroup of G, let So denote its orbit, and let GP denote the normalizer of P .
Since GP contains P ,

|So| = [G : GP ] is coprime to p.

To prove (1), let H be a nontrivial p-subgroup of G. Then H acts by conjugation
on So, and

|So| =
∑
P ′

[H : HP ′ ],

summing over one p-Sylow subgroup from each H-suborbit of the G-orbit of the p-
Sylow subgroup P . Since |So| is coprime to p and each [H : HP ′ ] is a p-power, some
suborbit is a singleton. That is, H ⊂ GP ′ for some P ′, making HP ′ a subgroup
of G. Also, P ′ is normal in HP ′, and so the second isomorphism theorem of group
theory gives

HP ′/P ′ ∼= H/(H ∩ P ′).
The quotient group on the left side of the display has order coprime to p because
P ′ is a p-Sylow subgroup, while the quotient group on the right side has p-power
order because H is a p-subgroup. Thus both quotient groups are trivial. That is,
H ⊂ P ′, i.e., H is contained in a p-Sylow subgroup as desired.

To prove (2), let H in the proof of (1) be any p-Sylow subgroup. The proof of (1)
shows that H is a subgroup of a conjugate of P , and so H is the entire conjugate
of P since their orders are equal. Note that now we have So = S.

To prove (3), recall that S is the set of p-Sylow subgroups of G, so that |S|
is the number of p-Sylow subgroups. Let the p-Sylow subgroup P act on S by
conjugation. To show that |S| = 1 mod p, write

|S| =
∑
P ′

[P : PP ′ ],

summing over one P ′ from each P -orbit. Each term in the sum is 1 or a p-power.
The P -suborbit of {P} is itself, so one term in the sum is 1. Any other p-Sylow
subgroup P ′ 6= P has a nontrivial orbit, for otherwise P normalizes P ′, making
PP ′ a subgroup of G whose order is divisible by too high a power of p. Hence the
rest of the terms in the sum are nontrivial p-powers. Thus |S| = 1 mod p.

As for the last statement, the equality displayed at the beginning of the proof is
now

|S| = [G : GP ],
and the right side divides |G|. �

The proofs of Theorem 3.2 and Theorem 4.2 are a tour de force for group actions.


