
THE RADIUS OF CONVERGENCE FORMULA

Every complex power series,

f(z) =

∞∑
n=0

an(z − c)n,

has a radius of convergence, nonnegative-real or infinite,

R = R(f) ∈ [0,+∞],

that describes the convergence of the series, as follows.

f(z) converges absolutely on the open disk of radius R about c,
and this convergence is uniform on compacta, but f(z) diverges if
|z − c| > R.

The radius of convergence has an explicit formula (notation to be explained below):

R =
1

lim sup n
√
|an|

1. Limit Superior and Limit Inferior of a Real Sequence

Let a real sequence {xn} be given.
The sequence {xn} may have no limit, but it always has a limit superior and a

limit inferior (also called its upper and lower limits), denoted

lim supxn and lim inf xn.

Each of these can assume an extended real value +∞ or −∞. The notation
lim supxn literally means

lim
n→∞

{
sup
m≥n

xm

}
(note that this is the limit of a monotonically decreasing sequence), but this defi-
nition is cumbersome and shouldn’t be parsed literally while one is in the middle
of computing. The idea is that the upper limit is the largest limit of a subsequence
of {xn}, and similarly for the lower limit.

The condition that a real sequence {xn} essentially precedes a real number r is
written and defined as follows,

{xn} ≺ r if xn < r for all but finitely many n.

The complementary condition, that {xn} does not essentially precede r, is

{xn} 6≺ r if r ≤ xn for infinitely many n.

Note that if {xn} doesn’t essentially precede r, it doesn’t follow that {xn} essentially
exceeds r; here the definition of essentially exceeds is left unwritten but it should
be understood. Two basic observations to be made are as follows.

• If {xn} ≺ r then {xn} ≺ [r,+∞).
• If {xn} 6≺ r then {xn} 6≺ (−∞, r].
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Thus, for a given real sequence {xn}, introducing the sets

A = {r ∈ R : {xn} 6≺ r}, B = {r ∈ R : {xn} ≺ r},
we have R = AtB with a < b for all a ∈ A and b ∈ B, and so exactly one of three
possibilities holds in consequence:

• A = R and B = ∅, i.e., {xn} 6≺ r for all r ∈ R. This means that for each
real number r, we have r ≤ xn for infinitely many n. In some sense, a
subsequence of {xn} converges to +∞. This condition is written

lim supxn = +∞.
• A = ∅ and B = R, i.e., {xn} ≺ r for all r ∈ R. This means that for each

real number r, we have xn < r for all but finitely many n. In some sense,
{xn} converges to −∞ and no subsequence of {xn} converges to any real
value or to +∞. This condition is written

lim supxn = −∞.
• A and B are nonempty. In this case, the least upper bound L of A is also

the greatest lower bound of B, and a subsequence of {xn} converges to L,
and no subsequence of {xn} converges to any real value greater than L or
to +∞. This condition is written

lim supxn = L.

The bound L is the limit superior or upper limit of {xn}.
So when lim supxn is finite, its characterizing properties are as follows:

(1) If lim supxn < r then xn < r for all but finitely many n.
(2) If r < lim supxn then r ≤ xn for infinitely many n.

Suitable adjustments need to be made for the infinite cases. If lim supxn = −∞,
then condition (1) becomes:

(1′) If r ∈ R then xn < r for all but finitely many n,

while condition (2) becomes irrelevant. If lim supxn = +∞, then condition (1)
becomes irrelevant and condition (2) becomes:

(2′) If r ∈ R then r ≤ xn for infinitely many n.

The limit inferior can be handled similarly, or it can be defined as

lim inf xn = − lim sup (−xn).

An exercise to familiarize oneself with these ideas is to show that for real se-
quences {xn} and {yn},

lim inf xn + lim inf yn ≤ lim inf(xn + yn)

≤ lim sup(xn + yn) ≤ lim supxn + lim sup yn,

excepting the undefined case +∞−∞. Also, one should get a feel for when the
various “≤” signs are equality or strict inequality. For example, for the last in-
equality, there is nothing to prove unless lim sup xn and lim sup yn are both finite
and lim sup(xn + yn) 6= −∞. Let Bx denote the set B from above for the sequence
{xn}, and similarly for By and Bx+y. Thus Bx and By are nonempty and bounded
below with greatest lower bounds lim sup xn and lim sup yn, and the set Bx+y is
not all of R, so if it is nonempty then it is bounded below with greatest lower bound
lim sup(xn + yn). Consider any r ∈ Bx and s ∈ By. Because xn < r for all but



THE RADIUS OF CONVERGENCE FORMULA 3

finitely many n, and yn < s for all but finitely many n, also xn + yn < r + s for
all but finitely many n. That is, r + s ∈ Bx+y. In particular Bx+y is nonempty,
and now lim sup(xn + yn) = inf Bx+y ≤ r + s. Take infima over r and s to get
lim sup(xn + yn) ≤ lim sup xn + lim sup yn, the desired inequality.

Another exercise is that if {xn} and {yn} are nonnegative real sequences, and
limxn exists and is positive, then lim sup(xnyn) = limxn · lim sup yn.

2. Radius of Convergence

Reiterating the main result to be shown in this writeup, any given complex power
series,

f(z) =

∞∑
n=0

an(z − c)n,

has a radius of convergence,

R =
1

lim sup n
√
|an|

.

Again, the result is that f(z) converges absolutely on the open disk of radius R
about c, and this convergence is uniform on compacta, but f(z) diverges if |z−c| >
R. We now establish this.

We may take c = 0. Suppose first that R is finite. Let K be a nonempty compact
subset of the open disk of radius R. (Thus we are also assuming that R > 0, because

otherwise there is no such K, and so we are assuming that lim sup n
√
|an| is finite.)

Then a maximum value of |z| exists as z varies through K, and this maximum value
is strictly less than R. That is, for some r with 0 < r < 1,

|z| ≤ r2R for all z ∈ K.

Note that the quantity 1/(rR) is greater than 1/R = lim sup n
√
|an|, and so the

characterizing property (1) of lim sup shows that

n
√
|an| ≤

1

rR
for all n at least some N.

It follows that

|anzn| ≤
1

(rR)n
(r2R)n = rn for all n at least N.

This shows that the power series f(z) =
∑

n anz
n converges absolutely, by compar-

ison with the geometric series
∑

n r
n. Because the geometric sum converges at a

rate that depends only on r, the convergence is uniform over the compact subset K
of z-values with which we are working.

If instead R = +∞, then let K be any compact subset of C. There is some
positive number d such that

|z| ≤ d for all z ∈ K.

Now lim sup n
√
|an| = 0, and so by the characterizing property (1) of lim sup,

n
√
|an| ≤

1

2d
for all n at least some N.

Therefore

|anzn| ≤
1

(2d)n
dk =

1

2n
for all n ≥ N.
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Again the power series f(z) =
∑

n anz
n converges absolutely, by comparison with

the geometric series
∑

n 1/2n. And again, the convergence is uniform over the
compact subset K of z-values with which we are working.

On the other hand, suppose that 0 < R < ∞ and that |z| > R. Then, because
1/|z| < 1/R, the characterizing property (2) of lim sup gives

1

|z|
≤ n
√
|an| for infinitely many n.

It follows that

1 ≤ |anzn| for infinitely many n,

and so f(z) diverges by the nth term test.

If R = 0 then lim sup n
√
|an| = +∞, and so for any fixed nonzero z the con-

dition 1/|z| ≤ n
√
|an| holds for infinitely many n by the alternate characterizing

property (2′). Again 1 ≤ |anzn| for infinitely many n and so f(z) diverges.

3. Comments

In examples, either the ratio test or the formula

R = lim

∣∣∣∣ anan+1

∣∣∣∣ if the limit exists

will often be easier to use than the lim sup formula for the radius of convergence.
But the point is that for the ratio test or the displayed formula to give the answer,
a certain limit must exist in the first place, whereas the lim sup formula always
works, making it handy for general arguments.

The radius expressions 1/ lim sup n
√
|an| and lim |an/an+1| in this handout are

the reciprocals of the usual expressions from the root test and the ratio test of
calculus,

lim sup n
√
|an| and lim

∣∣∣∣an+1

an

∣∣∣∣ .
The reason that the formulas turn upside down is that the absolute terms of our
power series are not |an| but rather |anzn| (again taking c = 0). Thus the relevant
root test and ratio test conditions are

lim sup n
√
|an| |z| < 1 and lim

∣∣∣∣an+1

an

∣∣∣∣ |z| < 1,

and solving for |z| indeed inverts the usual formulas,

|z| < 1

lim sup n
√
|an|

and |z| < lim

∣∣∣∣ anan+1

∣∣∣∣ .
The second exercise given at the end of section 1 shows that the termwise de-

rivative of a power series has the same radius of convergence as the power series.
Indeed, we may multiply the termwise derivative by z with no effect on the radius
of convergence, and the resulting coefficients are nan, and so lim sup n

√
|nan| =

lim n
√
n · lim sup n

√
|an| = lim sup n

√
|an|; the well known fact that lim n

√
n = 1 is

quickly shown by setting n
√
n = 1 + εn, so that n = (1 + εn)n >

(
n
2

)
ε2n and thus

εn ≤
√
n/
(
n
2

)
∼ 1/

√
n→ 0.
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4. Continuity

Abel’s elementary proof that complex power series are termwise differentiable
in their disk of convergence incidentally shows that they are continuous there as
well. However, less elementary proofs, e.g., using Cauchy’s integral representation
formula, or the Fundamental Theorem of Calculus, tacitly use the continuity. The
continuity is a consequence of the uniform convergence of a power series on com-
pact subsets of its disk of convergence. Indeed, let a sequence {ϕn} : X −→ C
of complex-valued functions on any subset X of C converge uniformly to a limit
function ϕ : X −→ C. Thus, given ε > 0, there exists some N such that
|ϕ(x)−ϕN (x)| < ε for all x ∈ X. For any given z ∈ X, there exists δN (z) > 0 such
that also |ϕN (z′)− ϕN (z)| < ε for all z′ ∈ X such that |z′ − z| < δN . Thus, for all
z′ ∈ X such that |z′ − z| < δN (z),

|ϕ(z′)− ϕ(z)| ≤ |ϕ(z′)− ϕN (z′)|+ |ϕN (z′)− ϕN (z)|+ |ϕN (z)− ϕ(z)| < 3ε.

Especially, ϕ can be a complex power series and {ϕn} the sequence of its trunca-
tions. For any point z in its disk D of convergence, and any small closed disk X
about z in D, the convergence of {ϕn} to ϕ on X is uniform, and so the argument
applies to show that ϕ is continuous at z.


