
MATH 311: COMPLEX ANALYSIS — CONFORMAL MAPPINGS

LECTURE

1. Introduction

Let D denote the unit disk and let ∂D denote its boundary circle. Consider a
piecewise continuous function on the boundary circle,

ϕ : ∂D −→ R, ϕ(z) =

{
0 if Re(z) ≥ 0,

1 if Re(z) < 0.

A special case of Dirichlet’s Problem is as follows: Find a harmonic function

h : D −→ R

that extends continuously to ϕ on ∂D except for the points where ϕ itself is discon-
tinuous.

Here is a solution to the problem. We assert without proof for now that the
function

f(z) =
z + i

iz + 1

takes the disk D to the upper half plane H = {z : Im(z) > 0}, and furthermore f
takes the right half of the boundary circle ∂D to the positive real axis and f takes
the left half of ∂D to the negative real axis. We soon will study a class of functions
having the same form as f , so for now we may take the properties of f for granted.

Next consider a branch of the complex logarithm function defined off zero and
the negative imaginary axis and taking the argument on the region that remains
to lie in (−π/2, 3π/2),

log : C− {iy : y ≤ 0} −→ {z ∈ C : −π/2 < arg(z) < 3π/2}.

This branch of log includes in its domain the upper half plane and the punctured
real axis. Its imaginary part is

h̃ : C− {iy : y ≤ 0} −→ (−π/2, 3π/2).

As the imaginary part of an analytic function, h̃ is harmonic. And h̃ = 0 on the
positive real axis, while h̃ = π on the negative real axis. Thus the composition

h =
1

π
h̃ ◦ f : D ∪ ∂D − {±i} −→ R

is the imaginary part of the analytic function (1/π) log ◦f on D, and it takes the
desired values 0 on the left half of ∂D and 1 on the right half. In sum, h solves our
particular case of Dirichlet’s Problem.

The key ingredient in the solution was the function f that took the disk to the
upper half plane, also taking the two halves of the boundary circle to two convenient
segments of the real axis and thus making the problem easy to solve. This f is an
example of a conformal mapping .
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2. Definition and Characterization

Definition 2.1. Let Ω ⊂ R2 be a region, and let

f : Ω −→ R2

be a C1-mapping. That is, f(x, y) = u(x, y) + iv(x, y) where u, v : Ω −→ R have
continuous partial derivatives.

Let (x0, y0) be any point of Ω. Then f is conformal at (x0, y0) if there exist
numbers

r ∈ R+, θ ∈ [0, 2π)

such that the following condition holds: For any differentiable curve in the region
and passing through the point,

γ : I −→ Ω, γ(0) = (x0, y0),

we have

|(f ◦ γ)′(0)| = r · |γ′(0)|, arg((f ◦ γ)′(0)) = θ + arg(γ′(0)).

Finally, f is conformal if it is conformal at each point of Ω.

That is, when any differentiable curve through (x0, y0) is passed through f , its
tangent vector at (x0, y0) is stretched by a factor r and rotated through an angle θ,
where r and θ are independent of the curve. A conformal map scales and rotates all
tangent vectors at a point uniformly, independently of their lengths or directions..

As always, we may identify R2 with C and view the previous definition as apply-
ing to complex-valued functions on complex domains. The next proposition shows
the advantage of doing so: in complex analytic terms, conformality is nothing new
— it is simply differentiability.

Proposition 2.2. Let Ω ⊂ C be a region, and let

f : Ω −→ C

be a C1 as a mapping to R2. Let z0 be any point of Ω. Then f is conformal at z0
if and only if f is complex-differentiable at z0 and f ′(z0) 6= 0.

Proof. Because f is C1 on Ω, it is vector-differentiable on Ω. Its derivative matrix
f ′(zo) at zo is two-by-two with real entries. For any curve γ as in the previous
definition,

(f ◦ γ)′(0) = f ′(zo)γ
′(0).

The condition for f ′(zo) to be a positive dilation of a rotation of γ′(0) for all
nonzero γ′(0) is the condition

f ′(zo) = r

[
cos θ − sin θ
sin θ cos θ

]
for some r ∈ R+ and θ ∈ [0, 2π).

This is the condition

f ′(zo) =

[
a −b
b a

]
for some a, b ∈ R, not both zero,

which is the condition that f be complex-differentiable at zo with f ′(zo) 6= 0. �
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For example, the exponential function is conformal on all of C. Every nth power
function is conformal except at 0. Every branch of the complex logarithm or of any
nth root function is conformal on its domain (which cannot include branch points).
A separate writeup shows that stereographic projection is conformal, although the
writeup is using a more general idea of conformality than we have in play here.

It may worth distinguishing explicitly between the round sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

and the Riemann sphere

Ĉ = C ∪ {∞}.
Topologically, the Riemann sphere is the one-point compactification of the complex
plane. Analytically, it is a compact Riemann surface, meaning a connected one-

dimensional complex manifold. The local coordinate function at a point c ∈ Ĉ
is {

ϕc : Ĉ− {∞} −→ C, ϕc(z) = z − c if c ∈ C,
ϕ∞ : Ĉ− {0} −→ C, ϕ∞(z) = 1/z if c =∞.

(Here 1/∞ is understood to mean 0.) Geometrically, the Riemann sphere is the
complex plane augmented with one more point conceptually infinitely far away in
all directions. Algebraically, it is the complex projective line, to be mentioned again
soon.

3. Fractional Linear Transformations

Consider any invertible 2-by-2 matrix with complex entries,[
a b
c d

]
, a, b, c, d ∈ C, ad− bc 6= 0.

This matrix acts on the Riemann sphere as follows:

[
a b
c d

]
(z) =



az + b

cz + d
if z 6=∞ and cz + d 6= 0,

a

c
if z =∞ and c 6= 0,

∞ if z 6=∞ and cz + d = 0,

∞ if z =∞ and c = 0,

or more succinctly as the generic case, with the other cases being tacit,[
a b
c d

]
(z) =

az + b

cz + d
.

The action is associative, meaning that for all suitable pairs of matrices and all
points z of the Riemann sphere,[

a b
c d

]([
a′ b′

c′ d′

]
(z)

)
=

([
a b
c d

] [
a′ b′

c′ d′

])
(z).

As matters stand, verifying this associativity requires checking eight cases. Most
people just check the case not involving the point ∞ anywhere and then take the
other cases for granted. A separate writeup shows how to think about the problem
in more conceptual terms. One key idea in the writeup is that in algebraic contexts,
we emphatically should think of the Riemann sphere as the complex projective line.
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4. Fractional Linear Transformations are Conformal

Again consider any invertible 2-by-2 matrix with complex entries,[
a b
c d

]
, a, b, c, d ∈ C, ad− bc 6= 0.

Let z0 be a point of the Riemann sphere. If z0 6=∞ and cz0 + d 6= 0 then compute
the derivative(

az + b

cz + d

)′ ∣∣∣∣
z=z0

=
a(cz + d)− (az + b)c

(cz + d)2

∣∣∣∣
z=z0

=
ad− bc

(cz0 + d)2
6= 0.

Thus the mapping defined by the matrix is conformal at z0. If z0 = ∞ and c 6= 0
then the calculation needs to work instead with inputs in the appropriate local
coordinate system,(

az + b

cz + d

)′ ∣∣∣∣
z=∞

=

(
a/ζ + b

c/ζ + d

)′ ∣∣∣∣
ζ=0

=

(
bζ + a

dζ + c

)′ ∣∣∣∣
ζ=0

=
bc− ad
c2

6= 0.

On the other hand, if z0 6= ∞ and cz0 + d = 0 then the calculation needs to work
with outputs in the appropriate local coordinate system,(

cz + d

az + b

)′ ∣∣∣∣
z=z0

=
bc− ad

(az0 + b)2
6= 0.

Here we know that az0+b 6= 0 because already cz0+d = 0, so that if also az0+b = 0
then the matrix equation [

a b
c d

] [
z0
1

]
=

[
0
0

]
makes the assumed condition ad− bc 6= 0 impossible. Finally, if z0 =∞ and c = 0
then the calculation needs to work with inputs and outputs both in the appropriate
local coordinate system,(

az + b

d

)′ ∣∣∣∣
z=∞

=

(
d

a/ζ + b

)′ ∣∣∣∣
ζ=0

=

(
dζ

bζ + a

)′ ∣∣∣∣
ζ=0

=
da

a2
=
d

a
6= 0.

Here we know that a and d are nonzero by the assumed conditions ad − bc 6= 0
and c = 0. In sum, the fractional linear transformation defined by the matrix is
conformal everywhere on the Riemann sphere, including the points of infinite input
or output.

5. A Fact About Fractional Linear Transformations

Fractional linear transformations take circles to circles, where the notion of circles
in the Riemann sphere encompasses lines, viewed as circles through ∞. This fact
is shown conceptually in a separate writeup.

Here is a more computational demonstration of the same fact. Consider any
2-by-2 complex matrix with nonzero determinant, viewed as a fractional linear
transformation,

g =

[
a b
c d

]
, a, b, c, d ∈ C, ad− bc 6= 0.
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If c = 0 then g is an affine transformation, g : z 7→ (a/d)z + (b/d). Otherwise, let
∆ = ad− bc and compute that

g = pwn, p =

[
∆/c a

0 c

]
, w =

[
0 −1
1 0

]
, n =

[
1 d/c
0 1

]
,

showing that g is the composition of a translation, the negative-reciprocal map, and
an affine transformation. It follows from this discussion that if affine fractional lin-
ear transformations and the negative-reciprocal fractional linear transformation w
take circles to circles, then all fractional linear transformations do so.

The equation of a circle centered at C and having radius R is

|z|2 − 2Re(Cz) + |C|2 −R2 = 0,

or
|z|2 + bz + bz + c = 0, b ∈ C, c ∈ R.

And by a homework problem, the equation of a line is

bz + bz + c = 0, b ∈ C, c ∈ R, b 6= 0.

With these equations in hand, it is not hard to verify that affine fractional linear
transformations take circles to circles and lines to lines, with the negative-reciprocal
fractional linear transformation takes circles through 0 to lines, lines to circles
through 0, and otherwise takes circles to circles.

6. Triple Transitivity

Any nonidentity fractional linear transformation fixes at most two points. In-
deed, the condition for a fixed point z is az + b = z(cz + d), or

cz2 − (a− d)z − b = 0.

This condition is quadratic if c 6= 0 and linear if c = 0 and a 6= d, (but note that
in the linear case, z = ∞ is a fixed point as well). If c = 0 and a = d then the
condition is b = 0, giving no solutions z if b 6= 0 and giving every z-value as a
solution if b = 0. (From the correct perspective, the real issue here is that the
linear transformation has at most two eigenspaces.)

Let z1, z2, z3 be any three distinct points of the Riemann sphere. Consider the
fractional linear transformation

Tz =



z − z2
z − z3

· z1 − z3
z1 − z2

if z1, z2, z3 are finite,

z − z2
z − z3

if z1 =∞,
z1 − z3
z − z3

if z2 =∞,
z − z2
z1 − z2

if z3 =∞.

Then in all cases,
Tz1 = 1, T z2 = 0, T z3 =∞.

If also w1, w2, w3 are three distinct points of the Riemann sphere then a similarly-
defined fractional linear transformation U satisfies

Uw1 = 1, Uw2 = 0, Uw3 =∞.
And therefore, the composition V = U−1T satisfies

V z1 = w1, V z2 = w2, V z3 = w3.
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Thus we can take any three points to any three points. And the fractional linear

transformation V that does so is unique, because if also another one Ṽ does so as

well then the composition V −1 ◦ Ṽ fixes three points, making it the identity.
Returning to the transformation T above, the general value Tz is the cross-ratio

of the four points z, z1, z2, and z3, denoted (z, z1, z2, z3). A homework problem
will show that the cross-ratio is preserved by fractional linear transformations, and
so we can use a fractional linear transformation to take four points to four points
exactly when the two quadruples have the same cross ratio. Also, one can use
the cross ratio to show computationally that fractional linear transformations take
circles to circles.

The formula for reflection in a circle is

ẑ − c =
r2

|z − c|2
(z − c) =

r2

z − c
.

7. Examples of Conformal Maps

• Find a conformal equivalence H ∼−→ D. The fractional linear transforma-
tion

z 7−→ (z, 1, i,−i) =
z − i
z + i

· 1 + i

1− i
= i · z − i

z + i
=

z − i
−iz + 1

=

[
1 −i
−i 1

]
(z)

will do. It suggests itself as the rotation of the round sphere about the
positive x-axis clockwise by π/2; it is the inverse of the map from the disk
to the upper half plane that was used in the initial example of this writeup.
Normalizing to determinant 1, the matrix for the initial example is

m =
1√
2

[
1 i
i 1

]
(the Cayley element),

a unitary matrix (i.e., m∗m = I2). The connection between rotations of the
round sphere and unitary matrices will be explained in another writeup.
• Let α < β be real numbers, and let

A = {z ∈ C : α < arg(z) < β}.
(Since arg is multiple-valued, one applies a smidgeon of common sense
to interpret the previous display. Either choose a suitable branch of arg ,
or interpret the condition to mean that some value of arg(z) lies in the
specified range.) To find a conformal equivalence

A
∼−→ D,

note that the map

z 7−→ (e−iαz)π/(β−α).

is a conformal equivalence A
∼−→ H, and so we are done by the previ-

ous example. The multiply-by-constant map rotates the sector so that
the argument-range becomes (0, β − α), and then the power map opens
the angle to π. The multiply-by-constant map is conformal because it is
differentiable with nonzero derivative everywhere, and the power map is
conformal because it is differentiable with nonzero derivative everywhere
except the origin. On the round sphere, a lune is being spun longitudinally
to begin at zero, and then it is being opened up to the right half-sphere.
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• Let C and C ′ be circles in the plane with two points of intersection z1
and z2, and let Ω be the intersection of their interiors. To find a conformal
equivalence

Ω
∼−→ D,

note that the fractional linear transformation

z 7−→ z − z1
z − z2

takes Ω to a sector, and so we are done the previous example. (Admittedly,
one has to do a little more work here to specify the sector precisely, etc.)
On the round sphere, the region between two circles is being moved to a
lune.
• Let S be any strip in the complex plane. A conformal equivalence

S
∼−→ D

is given by the composition of the map

z 7−→ exp(az + b),

followed by the first example of this section, where the affine map z 7→ az+b
moves the general strip to the specific strip S′ = {z ∈ C : 0 < Im(z) < π}.
The exponential map is differentiable with nonzero derivative, making it
conformal, and any branch of log whose argument-range includes (0, π) will
serve as an inverse. On the round sphere, the strip is the region between
two circles that are parallel at the north pole. The specific strip involves
a longitudinal circle and a circle in the right half-sphere. The exponential
map takes two orthogonal families of circles through the north pole (those
parallel to longitude 0 and those parallel to longitude π/2 to longitudinal
and latitudinal circles.
• Let C and C ′ be circles in the plane with one point of intersection. Let B

be the pincers-shaped region interior to the larger circle and exterior to the
smaller one. To find a conformal equivalence

B
∼−→ D,

note that the line containing the centers of both circles thus intersects the
smaller circle at points a and b, the larger circle at the same a and at a
third point c. The fractional linear transformation

z 7−→ (z, c, b, a)

takes B to the vertical strip {z ∈ C : 0 < Re(z) < 1}, and so we are done by
the previous example. On the round sphere, the pincers are being moved
to pince the north pole.
• Let R = H \D. To fined a conformal equivalence

R −→ H,
the trick is not to think that since R is nearly all of H, all we need to do is
tug a little. The idea, as always, is to think in terms of circles and angles.
Thus the fractional linear transformation

z 7−→ (z, i,−1, 1)

takes R to the first quadrant, and then the squaring map finishes the job.
On the round sphere, the upper right quarter-sphere is being rotated to the
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front right quarter-sphere, about the ray from the origin through (1, 1, 1),
and then the squaring map opens this up to the right half-sphere. One can
see the rotation of the round sphere by noting that the fractional linear
transformation is

z 7−→ z + 1

z − 1
· i− 1

i+ 1
= i

z + 1

z − 1
,

which takes ∞ to i, and so it permutes i, 1, and ∞ cyclically.
• To find a conformal equivalence

C \ (D ∪ R+) −→ H,

note that the square root (where 0 < arg < 2π) reduces this immediately
to the previous problem.
• Find a fractional linear transformation taking the circle {|z| = 4} to the

circle {|z − i| = 1}, taking 4 7→ 0, and taking 0 7→ 2.
Let a = 4 and let b = 0. We need only determine where one more point c

is taken. A natural point to consider is c = −4, since this point lies on the
circle {|z| = 4} and on the line through a and b. By geometry, c 7→ 1 + i.
So if we define the transformations

Tz = (z, 4, 0,−4), Uw = (w, 0, 2, 1 + i)

then the desired map is U−1T . A short (and not entirely pleasant) calcu-
lation with 2-by-2 matrices shows that in fact the map is

z 7−→ −2z + 8

(−1 + 2i)z + 4
.

Another way to solve this problem is by using properties of reflection in
circles. Specifically, if T is a fractional linear transformation, and γ is a
circle, and z is a point, then then the image-point of the reflection through
the circle is the reflection through the image circle of the image-point,

T (ẑγ) = (̂Tz)Tγ .

Returning to the problem, now let γ = {|z| = 4} and let c = ∞ = 0̂γ , so
that T∞ must be the reflection of T0 = 2 through Tγ = {|z− i| = 1}. The
reflection formula gives

2̂Tγ − i =
1

5
(2− i),

and so in fact T∞ = (2 + 4i)/5. Now another matrix calculation finds the
desired fractional linear transformation, and it inevitably is the same as
before.
• Find a fractional linear transformation taking the two nonintersecting cir-

cles {|z−cj | = rj} (j = 1, 2) to concentric circles about the origin of radii 1
and r where r > 1. What is r?

Let the line ` through the centers of the two circles meet the first circles
at the points a and b, the second circle at c and d. Label the points so that
traversing the line from a to b and then onward encounters c before d. We
will map ` to the real axis, taking

a 7−→ 1, b 7−→ −1, c 7−→ −r, d 7−→ r.
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(A slightly subtle point here is that the only way to solve the problem is to
map ` to the real axis.) By a homework problem, there exists a fractional
linear transformation taking one 4-tuple to another exactly when the cross
ratios match,

(a, b, c, d) = (1,−1,−r, r).
That is, the condition is

a− c
a− d

· b− d
b− c

=
1 + r

1− r
· −1− r
−1 + r

=
(1 + r)2

(1− r)2
.

Thus the condition is quadratic in r, taking the form

C(1− r)2 = (1 + r)2, C ∈ R− {0, 1}.

(The cross-ratio C can’t be 1 because it is Ta/Tb where Tz = z−c
z−d , and a

and b are distinct.) One of the roots will be greater than 1, and it is the
solution.

On the round sphere, the problem is to take the region between two
circles to the region between the equator and a line of constant latitude in
the upper hemisphere. The latitude is uniquely determined.

8. Dynamics of Fractional Linear Transformations

View fractional linear transformations as 2-by-2 complex matrices with determi-
nant 1. Given such a matrix m, there is an invertible matrix p such that

p−1mp =

[
λ 0
0 λ−1

]
or p−1mp =

[
±1 1

0 ±1

]
.

Assume that the fractional linear transformation is not the identity mapping.

• In the first case of the display, if λ is real, the transformation is called
hyperbolic. It acts as

z 7−→ λ2z, λ2 = r ∈ R+,

giving a dilation. (If λ2 < 1, the dilation is really a contraction, but
in any case we can exchange λ and λ−1 by exchanging the columns of the
conjugating matrix p.) The transformation moves points outward or inward
along rays from the origin, permuting concentric circles around the origin.
• In the first case of the display, if |λ| = 1, the transformation is called elliptic.

It acts as

z 7−→ λ2z, λ2 = eiθ ∈ {unit circle},
giving a rotation. The transformation moves points along concentric circles
around the origin, permuting rays from the origin.
• In the second case of the display, the transformation is called parabolic. It

acts as

z 7−→ z ± 1,

giving a translation. The transformation moves points along parallel hori-
zontal lines, permuting parallel vertical lines.
• Otherwise the transformation is called loxodromic.

Undoing the change of coordinates and iterating the transformation many times,
we see that
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• A hyperbolic transformation has two fixed points, one attracting and one
repelling. The paths of motion are a family of circles through the two
points. Each iteration of the transformation permutes a second family of
circles orthogonal to the first family.
• An elliptic transformation has two fixed points, neither of them attracting

or repelling. Each iteration of the transformation permutes a family of
circles through the two points. The paths of motion are a second family of
circles orthogonal to the first family.
• A parabolic transformation has one fixed point, attracting in one direction

and repelling in the opposite direction. The paths of motion are a family
of circles through the point. Each iteration of the transformation permutes
a second family of circles through the point, orthogonal to the first.


