THE WEIERSTRASS/HADAMARD FACTORIZATION OF AN
ENTIRE FUNCTION

These notes are drawn closely from chapter 5 of Princeton Lectures in Anal-
ysis II: Complex Analysis by Stein and Shakarchi.

Let f: C — C be nonzero and entire, with infinitely many roots, vanishing to
order m > 0 at 0. The nonzero roots of f, with repetition for multiplicity, form a
sequence {a,} such that lim, |a,| = co. For an initial product form that attempts
to factor f, first define

EO(C) =1- Cv

an entire function of ¢ that vanishes only for { = 1 and goes to 1 as ( goes to 0.
Thus Fy(z/ay,) vanishes only at z = a,,, and for fixed z it goes to 1 as n goes to co.
Then define

::18

po=) = =™ [ Bolz/an) = = [] (1~ 2/an).

n=1

However, this product need not even converge, much less converge to an entire
function that matches the roots of f. We will see that a sufficient condition for
such convergence is that > - 1/|a,| converges, but this condition fails unless
the a,, are sparse enough.

Recall that log(1 —¢) = — > 72 i1 j (pr1nc1pal branch) for [{] < 1, and so ex-

(J
ponentiating gives (1 — ()e 27=1% =1 for such (. For any nonnegative integer k
generalize Fy to the k-truncation of this expression of 1,

S
Ep(¢) = (1= Qe 2 a i,

again an entire function of ¢ that vanishes only for ( = 1. Because

Ly w41
Bi(Q) = e > T A L= Gy

for |¢| < 1,

Ei(¢) goes to 1 more quickly for larger k as ¢ goes to 0; this approximation will be
made more precise below. Again Ey(z/ay,) vanishes only at z = a,,, and so for any
nonnegative integer sequence {k, },>1 the expression

i (Z/an)z_,’_ +(Z/an)kn

Pikay (2 —ZmHEkn (z/an) = Hl—Z/an O R

might be an entire function having the roots as f. This py, } improves on pg
because for large enough n to make z/a, small, its multiplicands Ej, (z/a,) can
be made as close to 1 as desired by choosing larger k,, and we will see that in
particular the sequence {k,} = {n} makes py, ; converge to an entire function
with the same roots as f.

Once we know that some py;, ) is entire with the same roots as f, their quotient
f/P{k, defines an entire function that never vanishes. As will be reviewed, the

1



2 THE WEIERSTRASS/HADAMARD FACTORIZATION OF AN ENTIRE FUNCTION

quotient therefore takes the form e¥ with g entire. Thus the factorization of f is

f(Z) = 9 H En(z/an)

n=1

So far, these ideas are due to Weierstrass. Hadamard added to them, as follows.
If f has finite order, meaning that for some positive constants A, B, and p it
satisfies a growth bound

|f(2)] < AeBF" for all z,

then its roots are sparse; specifically, >~ |a, |~ converges if s > p. We will see
that in consequence of this, letting k = | p|, the Weierstrass factorization improves
to

flz) = e9(2) ym H Ey(z/ay),

n=1

now with nth multiplicand Ej(z/a,) rather than E,,(z/a,). That is, the conver-

(z/an)
gence factors eXi=1 5™ all have equal length k£ according to p. In practical

examples k is often small, e.g., 0 or 1. A second consequence of the sparseness of
the roots is that

g(z) is a polynomial of degree at most k,

as we will also see.
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Part 1. Weierstrass Factorization of an Entire Function
1. ESTIMATE OF E}, — 1

Let k be a nonnegative integer. Recall the definition
¢ ¢ ¢*
BL(Q) = (1= Qe T v
For k = 0 we have Ep(() = 1 — ¢ and so |Ep(¢) — 1| = [¢] for all ( € C. We
generalize this to an estimate of |E)(¢) — 1| for any k, though now with a condition
on (. The argument will show how the factor eS+¢*/2+¢%/3+4¢"/k hrings By (¢)
closer to 1 for larger k when ( is small.
Suppose through this paragraph that |¢| < 1/2; here the 1/2 could be any
positive r < 1 with no essential change to the argument to follow, but we use 1/2
for definiteness. Then

1— C — e]og(l—() — G_C_ 2

s ok k1
3Tk

T k41T

)

and so, because Ex(¢) = (1 — C)e<+<2/2+<3/3+”'+ck/k, we have
k+1 k+2
Ek(() —e k+1 k+2

which certainly goes to 1 as k grows. Loosely, taking the linear approximation of
the exponential series and then keeping only its lowest-order term after the constant
terms cancel,

Ex(¢) =e” where w=wi(() = ~557 — 553 —

Because |¢| < 1/2,

— 1
ol [ D 7 55 =200+,
j=0

and in particular |w| < 1, even for k = 0. This gives |w|’ < |w| for all j > 1, and
therefore

0 7
B(Q) =1 =" —1] < Y '“;,' < (e~ Dlul.
=1 7

Together the previous two displays give our desired estimate, improving the ap-
k+1
proximation Ey(¢) — 1 ~ —% to a rigorous bound,

(1) |Ee(¢) — 1] < 2(e — 1)|¢IFTif [¢] < 1/2.

2. INFINITE PRODUCT CONVERGENCE CRITERION

Let {z,} be a complex sequence, with z, # —1 for all n. We show:

oo oo
If Z |zn| converges then H(l + z,,) converges in C* and can be rearranged.

n=1 n=1
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Begin by noting that all but finitely many z, satisfy |z,| < 1/2. We freely
work only with these z,,, for which, using the power series of the principal branch
—m < arg(l + z) < 7 of log(1 + 2) for z in the open unit disk,

[log(1 4 2zn)| = |2n(1 — 2n/2 + 20 /3 + - -+ )| < 2|zn].

Thus the sequence {anzl log(1 + zn)} of partial sums of Y >~ log(1 + 2,,) con-
verges absolutely, and so it converges and can be rearranged. Consequently, because
the complex exponential function is continuous, convergence and rearrangeability
also hold for the sequence

N N
{ezfj:llog(urzn)} _ {H 610g(1+zn)} _ {H(l n Zn)} '

n=1 n=1

This is the sequence of partial products of [] " (1 + z,), and the convergence
criterion is established. The argument has shown further that [[ 2 (1 + z,) is
nonzero under the hypotheses on {z, }, because it is e2n=1108(1+2n) The argument
has made no claim that ) log(1 + z,) and log [], (1 + z,) are equal.

Theorem 2.1. Let Q be domain in C. Let {p,} be a sequence of analytic functions
on Q. Suppose that:

For every compact K in Q
there is a summable sequence {x,} = {x,(K)} in R>o such that
lon(2)| < @y for all n, uniformly over z € K.

Then the product p(z) = T[,—,(1 + ¢n(2)) is analytic on Q, and its roots are
precisely the values z € Q such that 1 + ¢, (2) = 0 for some n.

Indeed, the partial products of p(z) are analytic on 2. For any compact K in 2
the bound |, (2)| < z, for all n uniformly over K combines with the argument
just given to establish that p(z) converges uniformly on K. Because p(z) on ) has
analytic partial products and converges uniformly on compacta it is analytic, by the
Weierstrass theorem. For any z € K such that 1+ ¢, (z) # 0 for all n, the argument
just given, with {¢,(2)} in place of {2, }, establishes that [] 7, (1 + ¢, (2)) # 0.

Example 1. Let a sequence {a,} of nonzero complex numbers be given such
that

lim |a,| = oco.
n—oo
Let
on(z) = Ep(z/a,) — 1 for each n.

Given any compact K in C, there exists n, € Z>¢ such that |z/a,| < 1/2 for
all n > n,, uniformly over z € K. Let

— Sup.ecx |<Pn(2)| for n < No
"Tle-n/2r fornzn,.

Thus, using (1) from the end of the previous section,
lon(2)] = |En(z/an) — 1| < 2(e — 1)|2/an|" ™ <z, foralln>n,and z € K,

and certainly |¢n(2)] <z, for all n < n, and z € K. Because {x,} is summable,
this shows that the product [[,~, E,(z/a,) is entire with roots {a,}.
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Example 2. Let a sequence {a,} of nonzero complex numbers be given such
that

oo
E |an\_k_1 converges for some nonnegative integer k.
n=1

This is a stronger hypothesis than in the previous example. Let
on(2) = Ex(z/an) —1 for each n,

here with Ej rather than F, as in the previous example. Given any compact K
in C, there exists ¢ > 0 such that 2(e — 1)|z|¥*! < ¢ for all z € K, and there exists
Ne € Z>o such that |z/a,| < 1/2 for all n > n,. Let

o )SUPzek lon(2)] for n < n,
" c/lay |+ for n > n,.

Thus, again using (1),
lon(2)| = | Ex(z/an) — 1] < 2(e — 1)|z/an|*T! <z, foralln>mn,and z € K,

and certainly |p,(z)| < z, for all n < n, and z € K. Because {z,} is summable,
this shows that the product [],~, Ex(z/ay) is entire with roots {a,}. Especially,

o0 o0
if Z 1/]an| converges then H(l — z/ay) is entire with roots {a,},

n=1 n=1

o0 o0
if Z 1/|an|* converges then H (1 — z/ay)e*/* is entire with roots {ay,}.
n=1 n=1

Example 3. (The Euler—Riemann zeta function; this example is not necessary
for the present writeup.) Let Q be the right half plane Re(s) > 1; the variable
name s rather than z is standard in this context. Let

l-p ) t=1=QQ—-p*)"'p~* ifnisa primep
‘Pn(s) = .
0 otherwise.

Let K be a compact subset of Q. There exists some ¢ > 1 such that Re(s) > o
on K. Let

{zn} ={2n"7}.

Forallm > 1 and s € K, noting that [1—p~*| > 1—|p~*|=1-p 7 >1-2"1 =1/2
and so |(1—p~*)71| <2,

on(s)] (1—p~*)"'p~%| <2p=° ==z, ifnisaprimep
S =
on 0<z, otherwise.

Because {z,,} is summable, this shows that the product expression [[ (1 — p~®)~ !
of the Euler-Riemann zeta function ((s) is analytic and never zero on Re(s) > 1,
with no reference to it equaling the sum Zle n=%.
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3. A NON-VANISHING ANALYTIC FUNCTION IS AN EXPONENTIAL

We show: If Q is a simply connected region, and if f : Q — C is analytic and
never vanishes, then f takes the form e9 for some analytic g on €.

The argument is constructive. Let a be a point of €2, and take any value
of log(f(a)). Introduce

P AL
9(z) =log(f(a)) + e 1O

well defined because 2 is simply connected. Then ¢'(z) = f/(2)/f(z), and so

(f(2)e™9E) = (f'(2) = f(2) - F(2)/ f(2))eP) = 0.
Also f(a)e™9(® =1, and therefore f = 9.
Especially, if the product p(z) = 2™ [],, Ex, (2/ax) is entire and has the same
roots as f(z), then f(z) = e9*)p(z) for some entire g.

4. WEIERSTRASS PRODUCT

Let f be nonzero entire and have nonzero roots {a,}. These roots satisfy the
condition lim,, |a,| = oo, and so the first example at the end of section 2 shows
that the product p(z) = 2™ [[ ., E.(z/ay) converges to an entire function having
the same roots as f. Section 3 therefore gives the Weierstrass factorization of f,

oo
flz) = e9(2) H E,.(z/ay).
n=1
Here the convergence factor of F,, gets longer as n grows, and all that we know
about ¢ is that it is entire.

Part 2. Hadamard Factorization of a Finite-Order Entire Function

Let f be a nonzero entire function of finite order at most p > 0, meaning that
for some positive constants A and B it satisfies a growth bound

If(2)] < AP for all z.

Here the condition for all z can be replaced by for all z such that |z| > R for some R.
The actual order of f is the infimum of all such p; for example, if | f(z)| < Ael*I™ =l
but |f(z)| £ Ael*l, or if |f(2)| < p(|z|)e!*! for some polynomial p but |f(z)| £ Ael?l,
then still f has order 1. If f has finite order p; and similarly for g then fg has
finite order max{p¢, py}.

Let f have order m € Z>o at 0. Let {a,} be the nonzero roots of f, with
multiplicity, so that |a,| — co. For any r > 0, let n(r) = ny(r) denote the number
of nonzero roots a,, of f such that |a,| < r. The terminology f, p, m, {a,}, nis in
effect for the rest of this writeup. We note that if f is entire with a root of order m
at 0, then f has order at most p if and only if f/2™ has order at most p.

5. SPARSENESS OF ROOTS: STATEMENT
To prepare for Hadamard’s factorization theorem, our first main goal is as follows.

Theorem 5.1. Let f, p, {an}, and n be as just above. Then
(1) n(r) < C|r|* for all large enough .
(2) So02 |an| ™% converges for all s > p.
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The main result needed to prove the theorem is a variant of Jensen’s formula,
to be established next.

6. JENSEN’S FORMULA

For R > 0 and ¢ analytic on the closed complex ball Br, where (0) # 0
and ¢ # 0 on the boundary circle Cg, letting the finitely many roots of ¢ be
denoted {a,} with repetition for multiplicity,

27
(J1) In |¢(0) |—Zl MJF—/ In |p(Re)| df.
6=0

The proof begins with two reductions:

e The formula for general R follows from the formula for R = 1.

e The formula for a product ;s follows from the formula for ¢; and for ¢s.

e The decomposition ¢(z) = @o(2)[],(z — an), where ,(z) is the analytic
extension of ¢(2)/[[,,(z — an), reduces the formula for R = 1 to two cases,
where ¢ has no roots and where ¢(2) = z — a4.

If ¢ on B; has no roots then it takes the form ¢ = e9, as discussed above. Let

g = u+ v with v and v harmonic conjugates, so that || = e* and thus In|p| = u.
The mean value property of harmonic functions gives

1 2m ) 1 2m )
In|e(0)| = u(0) = o /9_0 u(e?)dd = %/9 In |p(e?)| df.

=0
If o(z) = z — a1 with |a1]| < 1 then the desired formula reduces to

2m
/ In e —ay]dd = 0.
0=0

Because In |e?? — a;| = In|1 — e7%q,|, and then we may replace § by —@ in the

integral, this is
2w )
/ In|1—ae | do = 0.
6=0
Similarly to the first case, the function f(z) = 1 — a;2 takes the form e9 on By,
where g = u + v, and so again the integral is a mean value integral for u. But this
time 4(0) = 0 because ¢(0) = 1, and so the integral is 0 as desired.

A variant of Jensen’s formula is as follows.
R 2
d 1 )
(J2) In |o(0)] = —/ n @)%+ L [ 1 jp(Re?) a6,
z=0 €T 27 Jo—o
This follows from Jensen’s formula (J1) if we can establish the equality

R
dz |an]
— = E In =nd
~/z 11(1') T ” . R ’

in which n = n,,. This equality reduces to the case R = 1. Define 7, (z) to be 1 if
x > |a,| and 0 otherwise, so that n(xz) = >, n,(x), and compute,

1 1 1
dx / dx / dx
— n(r)— = — M(T)— = — — = In|ay|.
/Q:ZO ( ) r ; z=0 ( ) x ; =lan| ¥ ; | |
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7. SPARSENESS OF ROOTS: PROOF

We prove part (1) of Theorem 5.1. Partially reiterating the theorem’s hypotheses,
the nonzero entire function f has finite order at most p and root-counting function n,
and we want to show that

n(r) < Cr” for some C € Ry and all large enough r.

It suffices to prove this in the case f(0) # 0. For any r € Ry, let R = 2r, so that

fTR dz/xz = In2. Then, using the variant Jensen’s formula (J2) for the last step in
the next computation,

R R 27
dx dz 1 0
= — < _— = — g — .
n(r)In2 n(r)/r P /0 n(x) i =l In|f(Re")|dd — In|f(0)]
Consequently,

n(r) < Cir” + Cy  for some Cy € Ryg and Cy € R, for all r € Ry,

and the result follows.

We prove part (2) of Theorem 5.1. Recall that the nonzero roots of f are {a,}.
We show that >, |a,|™® converges if s > p. Indeed, we now have n(r) < Cr? for
all r > 27 for some nonnegative integer j,. Compute,

Do lanl = i Yo laal™ Z (271277 <CZQ<J+1>P s,

[an|>270 J=Jo 20 <|an|<2i+1 J=Jo J=Jo

The last sum is 27 Z (2” $)J, which converges because s > p.

8. HADAMARD PRODUCT, PART 1

Let f be nonzero entire of finite order at most p > 0. Consider the nonnegative
integer

k=lpl,

so that £ < p < k+ 1. As just shown, the nonzero roots {a,} are such that
>oo2 ) lan| "1 converges, and so the second example at the end of section 2 shows
that the product 2™ [[°, Ex(z/a,) converges to an entire function having the
same roots as f. Section 3 therefore gives the Hadamard factorization of f,

f(z) =e9@zm H Ei(z/ap).

Here all the terms Ey(z/a,) have convergence factors of the same length. The
remaining work is to analyze g(z). This is more technical.

9. LOWER BOUND

Freely ignoring any root of f at 0, to show that g is a low degree polynomial
we must bound the quotient f(z)/[[,—, Ex(z/a,) from above, and this requires
bounding the product []°7, Ex(z/a,) from below.

Again with f having finite order at most p and with k = |p], consider any s
such that p < s < k+ 1. Thus s > k. Consider any z € C. We want to show that
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subject to a condition on z to be specified, [[2; Ex(z/ay) is bounded from below
as follows,

> ¢~z

11 Ex(z/an)

For the infinitely many values n such that |z/a,| < 1/2, we have shown in sec-
tion 1 that Ey(z/an) = € where w = — 3"+, 1 (2/an)? /j and so |w| < 2|z/a,[*+1.
Because |e®| > e~ "],

[Bi(z/an)] 2 e 2ol = gmlefanl 1l 5 o=/l ol

Thus, because Y >, |an| ™ converges,

H Ex(z/an)| > e_c‘z‘s,

nilz/an|<1/2

with ¢ =257% 3" |a,|~*.

For the finite many values n such that |z/a,| > 1/2,
k i
Bl /o)l = 11— 2fan] o500 ),
and, again because |e*| > e~/ and noting that |2z/a,| > 1, the exponential term
satisfies
XS (#/an) [| > o= S 22/anl?/(2T)] 5 pmelal® 5 omelal

with ¢ = k2¥/a¥. So in order to show the condition |[[°7, Ex(z/ay,)| > e <FI"
only the non-exponential terms remain, and we need to show that

H 11— z/an| > e ",
n:z/an|[>1/2

However, this is not guaranteed until we add a condition on z. For each positive
integer n, let B, denote the open ball about a,, of radius |an|_k_1. We stipulate
that z lie outside J,, B. For such z,

1= 2/an| = |2 = anl/lan] > |an| 772 > (2]2]) 7"
Take € > 0 such that s — & > p, and thus n(2|z|) < c|z|*~¢ for large z. Thus,
[T - 2/aul 2 @) 2@ 2 (2fz) =,
n:lz/an|>1/2
and the desired result follows,
[T 11— 2/an] > emclel ™ mele > c=cel’,
n:|z/an|>1/2

For each positive integer n, again let B,, denote the open ball about a,, of ra-
dius |a,|7%71, let A,, denote the open annulus generated by rotating B,, around 0,
and let I,, denote the intersection of A, with R-(. For all large integers IV, the
interval [N, N + 1) contains a point r disjoint from (J,, I,,, and so the circle C, is
disjoint from (J,, An, therefore disjoint from (J,, B,. Thus there is a sequence of
positive values r that goes to oo such that each circle C, is disjoint from J,, By.
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10. AN ENTIRE FUNCTION WITH POLYNOMIAL-GROWTH REAL PART IS A
POLYNOMIAL

We show: Let g = u + v be entire and satisfy u(re’?) < Or® for a sequence of
positive values r that goes to oo, with s > 0. Then g is a polynomial of degree at
most s.

Because u is bounded only from one side, as compared to a bound on |u|, much
less on |g|, the proof is more than simply Cauchy’s bound. Take any r as just
described and any integer n > s. Cauchy’s formula gives

SO L)
= (re )7
6

! 2mi Jo_g (rei®)ntl

which is to say,

(0 T
g ( ) _ / g(,relé))e—m,é‘ de.
n! 2mr™ Jo—o

Also, Cauchy’s theorem gives f;;rog(rew)ei("_l)e d(re??) = 0, and it follows that
/. 92;70 g(re?)em? dg = 0, from which by complex conjugation,

1 2m . .
0= / §(r‘ew)eﬂm9 de.
0

2mr™ Jo—o

The previous two displayed equations combine to give, recalling that ¢ = u + v
and so g + g = 2u,
() (0 1 2m , ,
g ( ) - u(,rew)e—me d¢97
n! T Jo—o

or, recalling that u(re’?) < Cr® and noting that because Cr® is independent of
and f;:o e"m0dh =0,
() (0 1 2m . .
_g ( ) - (C’I"s _ u(,rew))efzne dt9,

n! " Jo—o

from which, because Cr* — u(re?) > 0 for all 6,
(n) 1 2m 4
7‘9 '(O)| < —/ (Cre — u(rew)) df = 2Cr*™" — 2u(0)r—".
n! Tr™ Jo—o

Let 7 grow to show that ¢(™ (0) = 0. Thus the entire function

z" forall zeC

is a polynomial of degree at most s, as claimed.

11. HADAMARD PRODUCT, PART 2

Our nonzero entire function f has finite order at most p, has a root of order m > 0
at 0, and has nonzero roots {a,}. As before, let

k=lrl,
and consider any s such that
p<s<k+1.
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Already we have
f(z) =92 T Ex(z/an).

n=1
Now we show that g is a polynomial of degree at most k.
For a sequence of positive values r that goes to co, we have

> e o= if 2 =7,

H Ey(z/an)
n=1

from which certainly

> e = if 2] =

zm H Ey(z/ay)
n=1

Consequently, with g = u + iv, because also |f(z)| < AeBl#”,
) = |e9()| < APl Helal” < (I if o = o,
which is to say,
u(re?) < Ors.
As just shown, g(z) is a polynomial of degree at most s, hence degree at most |s|,
which is to say degree at most k.

Part 3. Examples
12. THE EULER—RIEMANN ZETA FUNCTION

We establish Hadamard’s product formula

_ _ _a+bs 5 —s/2n _ s s/
(s—=1)(s)=¢ H(1—|—2n)e H(l p)e P, seC.

n>1 P
Here p runs through the nontrivial zeros of the zeta function, those lying in the
critical strip 0 < Re(s) < 1. Although the values of a and b aren’t particularly
important, they are a = —log2 and b = ¢’(0)/¢(0) — 1 = log 27 — 1.

The function
chtirc(s) - 5(]- - S)Tris/z]-—‘(s/Q)C(s)v s € C

extends from an analytic function on the right half plane Re(s) > 1 to an entire
function, and the extension is symmetric about the vertical line Re(s) = 1/2, i.e.,
it is invariant under the replacing s by 1 — s.
Let s = o +it. For 0 > 1/2, we have upper bounds of the four constituents s,
77%/2, T'(s), and (1 — 5)C(s) of Zentire(s), as follows:
e |s| < elfl for large s.
° |,/Tfs/2| _ 7.[.70'/2 < 71_71/4'
e [I'(s/2)| <T'(0/2), and by Stirling’s formula this is asymptotically at most
Ae®™7 in turn at most Aels!™m sl
e Some analysis shows that after extending ((s) — 1/(s — 1) leftward from
o >1to o >0, wehave |((s) —1/(s — 1)| <((3/2)|s] for o > 1/2, and so
(5= 1)C(s)| < 1+C(3/2ls(s — 1) < 1+ C(3/2)[sl([s] +1) for & > 1/2; from
this, certainly |(1 — s)((s)| < el*l for large s with Re(s) > 1/2.
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Altogether these give the upper bound

| Zentive (5)] < AeBlslnlsl - Re(s) > 1/2.
And because |1 — s| ~ |s|, the symmetry of Zentive(s) gives

| Zentive (5)] < AeBlslnlsl - Re(s) < 1/2.

Altogether Zgptire(s) has order at most 1, and therefore it has a Hadamard product
expansion

s(1—8)n /2T (s/2)¢(s) = b H (1 — S) e’P, seC.
p
P
But also the reciprocal gamma function has a well known product expansion, in
which ~ denotes the Euler-Mascheroni constant,

1/T(s) =€"’s H (1 + %) e/, seC.
n>1

Such a product expression, though with e® +¥'s rather than €%, follows from the
estimate |1/T(s)| < AePlslmIsl (see Stein and Shakarchi, Theorem 6.1.6, page 165).
Divide the penultimate display by —s7m~%/2T'(s/2) and use the previous display to
get, with new a and b, the claimed result,

(s —1)¢(s) = eatbs H (1 + %) 6_5/2"1;[ (1 — s) e’/P, seC.

n>1 P
13. THE SINE FUNCTION

One readily shows that the sine function has order 1, and so for some b € C,
2
: _ bz z
sin(mrz) = e”*mz H (1 - 712> .
n>1

We show that b = 0. Indeed, write the previous display as

sin(7z) b 22

i S N 2 1- 2

Tz ¢ H ( n2> ’
n>1
with the left side continued analytically to 1 at z = 0. This says that for small z,
1+ o0(z) = (1+bz+4 0(2)) (14 o(2)) =1+bz+ o(2),

from which b = 0. As an exercise, tracking z2-terms as well shows that ((2) = 72/6.
In fact, an elementary formula for ((2d) where d = 1,2,3,... can be extracted
from the Taylor series expansion and the product expansion of sin(7z)/(wz). This
is unsurprising in light of a well known method to obtain ((2d) from the sum
expansion of 7 cot(mz), the logarithmic derivative of sin(7z).



