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1. The Fourier transform and the inverse Fourier transform

Let n be a positive integer. Consider functions

f, g : Rn −→ C,
and consider the bilinear, symmetric function

ψ : Rn × Rn −→ C×, ψ(x, ξ) = exp(i x · ξ),
an additive character in each of its arguments. Introduce a constant and a rescaled
measure on Rn,

c = (2π)−n/2, µc = cµ (where µ is the usual measure),

so that dcx = cdx, dcξ = cdξ, and so on. The Fourier transform of f is

Ff : Rn −→ C, Ff(ξ) =

∫
x∈Rn

f(x)ψ(x, ξ) dcx

and the inverse Fourier transform of g is

F−1g : Rn −→ C, F−1g(x) =

∫
ξ∈Rn

g(ξ)ψ(x, ξ) dcξ,

provided that the integrals exist. Here we think of x as a physical space variable and
of ξ as a frequency space variable, so that the Fourier transform takes physical space
functions to frequency space functions, and the inverse Fourier transform conversely,
but we don’t always hold to this. Because F−1g(x) = Fg(−x), properties of the
Fourier transform extend instantly to the inverse Fourier transform, and so the
details of the discussion to follow are limited to the Fourier transform. The inverse
Fourier transform is exactly the Fourier transform for even functions.
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Working now with one variable, the Gaussian function γ(x) = e−x
2/2 is its own

Fourier transform. Indeed, it satisfies the differential equation γ′(x) = −xγ(x)
and the initial condition γ(0) = 1. Its Fourier transform Fγ satisfies the same
differential equation, as is shown by differentiating under the integral sign and then
recognizing −xγ(x) as γ′(x) and then integrating by parts,

(Fγ)′(ξ) =

∫
R
γ(x)

∂

∂ξ
ψξ(x)dcx =

∫ ∞
x=−∞

(−ix)γ(x)ψξ(x)dcx

= i

∫ ∞
x=−∞

d

dx
γ(x)ψξ(x)dcx = −i

∫ ∞
x=−∞

γ(x)
∂

∂x
ψξ(x)dcx

= −ξ
∫ ∞
x=−∞

γ(x)ψξ(x)dcx = −ξFγ(ξ).

Also (Fγ)(0) =
∫
R γ(x)dcx = 1, which is to say that Fγ satisfies the same initial

condition as γ as well. Thus Fγ = γ. Because the Gaussian function is even, also
F−1γ = γ.

2. A heuristic argument for Fourier inversion

By analogy to familiar symbol-patterns from the context of finite-dimensional
vector spaces or Hilbert space, it is natural to think of the Fourier transform of f
at ξ as the inner product of f and the frequency-ξ oscillation ψξ(x) = ψ(x, ξ),

Ff(ξ) =

∫
x∈Rn

f(x)ψξ(x) dcx = 〈f, ψξ〉.

And then it is natural to think of the inverse Fourier transform of the Fourier
transform as a synthesis of these coefficient inner products against the relevant
oscillations,

F−1Ff(x) =

∫
ξ∈Rn

〈f, ψξ〉ψξ(x) dcξ.

And so our experience suggests that the process should recover the original function,

F−1Ff = f.

But this reasoning is only suggestive until we find some mathematical framework
where it is meaningful and correct.

3. Schwartz functions, first statement of Fourier inversion

Fourier analysis shows that

• The smoother f is, the faster Ff decays. Specifically, if all the partial
derivatives of f up to some order k exist and are absolutely integrable,
then Ff(ξ) decreases at least as quickly as |ξ|−k as |ξ| → ∞. The relevant
formula here comes from integration by parts,

Ff(ξ) = (iξ)−α
∫
Rn

f (α)(x)ψξ(x) dcx, α = (α1, . . . , αn),

in which (iξ)−α abbreviates
∏
i(iξi)

−αi .
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• The faster f decays, the smoother Ff is. Specifically, if f(x) decreases at
least as quickly as |x|−k as |x| → ∞ then Ff has continuous, bounded
derivatives up to order k − n − 1. The relevant formula here comes from
differentiation under the integral sign,

(Ff)(α)(ξ) =

∫
Rn

(−ix)αf(x)ψξ(x) dcx, α = (α1, . . . , αn).

These relations between smoothness and decay are asymmetric in several ways.
The class of Schwartz functions is designed to render the asymmetries irrelevant,

so that the functions in question should behave well under Fourier analysis. A
Schwartz function on Rn is an infinitely smooth function all of whose derivatives
(including itself) decay rapidly. That is, a Schwartz function is a function

ϕ : Rn −→ C

such that

• ϕ is a C∞-function.
• For k ∈ Z≥0 and each d ∈ Z≥1, |ϕ(k)(x)| ≤ |x|−d for all large enough |x|.

So the Schwartz functions are the collection of functions from Rn to C that decay
and are preserved under multiplication by the components xi of their input vectors x
and are preserved under differentiation. The Fourier transform and the inverse
Fourier transform of a Schwartz function are again Schwartz functions. The Fourier
inversion formula is

F−1Fϕ = ϕ for Schwartz functions ϕ.

Granting this formula, it follows that also

FF−1ϕ = ϕ for Schwartz functions ϕ.

Indeed, define the operator (Mϕ)(x) = ϕ(−x). Then M2 = id and short calcula-
tions show that

FM = F−1, F−1M = F , MF = F−1, MF−1 = F .

Thus FF−1 = FMMF−1 = F−1F = id.
Incidentally, Fourier inversion and the formulas in the previous display show that

F2 = M and so F4 = id. Thus the operator 1+F+F2 +F3 is F-invariant, i.e., for
any Schwartz function ϕ, the resulting function (1+F+F2+F3)ϕ is its own Fourier
transform. The Gaussian is emphatically not the only such function. For a specific
example, going back to Hecke, let p be any harmonic homogeneous polynomial of
degree d and let ϕ be the Gaussian; then (not at all trivially) F(pϕ) = i−dpϕ,
giving pϕ again if d is a multiple of 4. More generally, because F4 = id the only
eigenvalues of F are {±1,±i}, and the operator decomposition

4 id = id + F + F2 + F3

+ id−F + F2 −F3

+ id− iF − F2 + iF3

+ id + iF − F2 − iF3

shows how to decompose any Schwartz function into a sum of functions in the
eigenspaces. For more on these topics, see
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http://www.math.umn.edu/~garrett/m/number_theory/Notes_2011-12.

pdf

and

http://www.math.umn.edu/~garrett/m/number_theory/overheads/

noth-03-26-2012.pdf

4. Consequence of Fourier inversion: L2-isometry

The bilinear inner product on the space of Schwartz functions is

〈f, g〉 =

∫
Rn

f · g.

The Fourier transform is self-adjoint with respect to this inner product. That is,
for Schwartz functions f and g,

〈Ff, g〉 =

∫
Rn

(Ff · g)(x) dx =

∫
Rn

∫
Rn

f(y)ψ(x, y) dcy g(x) dx

=

∫
Rn

f(y)

∫
Rn

ψ(x, y)g(x) dcxdy =

∫
Rn

(f · Fg)(y) dy = 〈f,Fg〉,

with the equality of iterated integrals holding via Fubini’s Theorem because the
integrand decreases rapidly in both directions. In particular, given a Schwartz
function ϕ, note that Fϕ = F−1ϕ and compute that consequently,

〈Fϕ,Fϕ〉 = 〈ϕ,FF−1ϕ〉 = 〈ϕ,ϕ〉,

or

|Fϕ|2L2 = |ϕ|2L2 (equality of squared L2-norms).

That is, the self-adjointness of the Fourier transform and Fourier inversion quickly
show that the Fourier transform is an L2-isometry of the Schwartz space.

Here we used the bilinear inner product rather than the sesquilinear L2 inner
product 〈f, g〉 =

∫
Rn fg on the space of Schwartz functions because the former

dovetails with distribution theory, as we will see later in this writeup. The argument
has shown that the Fourier transform acts unitarily with respect to the L2 inner
product.

5. Reduction to the case x = 0

To establish Fourier inversion we need to show that for any Schwartz function ϕ
and for any point x ∈ Rn,

F−1Fϕ(x) = ϕ(x).

However, Fourier inversion reduces to the normalized case x = 0 as follows. For
any x ∈ Rn, introduce the x-translation operator,

Tx : {Schwartz functions} −→ {Schwartz functions}, Txφ(y) = φ(x+ y),

and recall the frequency-x oscillation function,

ψx : Rn −→ C, ψx(ξ) = ψ(x, ξ) = exp(i x · ξ).

Then we have the two identities (exercise){
TxF−1φ = F−1(ψxφ)

ψxFφ = FTxφ

}
for Schwartz functions φ.
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Compute, using the two identities,

(F−1Fϕ)(x) = (TxF−1Fϕ)(0)

=
(
F−1(ψxFϕ)

)
(0) by the first identity

= (F−1FTxϕ)(0) by the second identity

= (Txϕ)(0) granting Fourier inversion at 0

= ϕ(x).

So indeed we may take x = 0.

6. A second heuristic argument

Formally, we would like to establish Fourier inversion at 0 as follows:

F−1Fϕ(0) =

∫
ξ

Fϕ(ξ) dcξ

=

∫
ξ

∫
x

ϕ(x)ψ(x, ξ) dcxdcξ

=

∫
x

ϕ(x) c2
∫
ξ

ψ(x, ξ) dξ dx

=

∫
x

ϕ(x)δ(x) dx (Dirac delta)

= ϕ(0).

But this calculation poses several problems. The double integral∫∫
(x,ξ)∈R2n

ϕ(x)ψ(x, ξ) dµ(x, ξ)

is not absolutely convergent (the integrand has absolute value |ϕ(x)|), and so in-
terchanging the iterated integrals is unjustified. Furthermore, the integral∫

ξ

ψ(x, ξ) dξ

diverges classically. The ideas that after multiplying it by c2 for some reason, it
converges to the Dirac delta function δ(x) and that integrating ϕ(x)δ(x) gives ϕ(0)
are sensible only in the context of distribution theory.

7. The dilated Gaussian and its Fourier transform

The just-mentioned problems are circumvented by the Gaussian trick . It requires
the Fourier transform of the n-dimensional dilated Gaussian function. To begin,
recall that the one-dimensional Gaussian function,

γ : R −→ R, γ(x) = e−x
2/2,

is its own Fourier transform under our rescaled measure. (Here is a benefit of
the rescaling, because this normalized Gaussian has derivative γ′(x) = −xγ(x),
as compared to some scalar multiple of −xγ(x).) It follows easily that so is the
n-dimensional Gaussian,

g : Rn −→ R, g(x) = e−|x|
2/2.
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A small calculation gives the Fourier transform of a general dilation. Given a
function f : Rn −→ C and given t > 0, the t-dilation of f is the function

ft : Rn −→ C, ft(x) = f(tx).

Compute that

Fft(ξ) =

∫
x∈Rn

ft(x)ψ(x, ξ) dcx

=

∫
x∈Rn

f(tx)ψ(tx, ξ/t) dc(tx)/tn = t−n(Ff)t−1(ξ).

That is, Fft = t−n(Ff)t−1 . Now consider a dilated Gaussian function for any
t > 0,

g√t : Rn −→ C, g√t(x) = e−t|x|
2/2.

This is very wide for small positive t, taking values close to 1 near 0. Its Fourier
transform is Fg√t = t−n/2g1/

√
t, or, introducing a new function-name,

Fg√t(ξ) = φt(ξ) where φt(x) = t−n/2e−|x|
2/(2t).

The function φt is an approximate identity , meaning that

(1) φt(x) ≥ 0 for all x,
(2)

∫
x
φt(x) dcx = 1,

(3) Given any ε > 0 and any δ > 0, we have
∫
|x|≥δ φt(x) dcx < ε if t is close

enough to 0. That is, φt becomes a tall narrow pulse as t→ 0.

To summarize, the utility of the dilated Gaussian is that

• Both g√t and Fg√t decay rapidly for each t > 0, so that multiplying some
other function by either of them will dampen the other function.
• Because g√t is a dilated Gaussian, if t→ 0 then g√t approaches the constant

function 1 pointwise (despite always decaying rapidly far from the origin)
and so the product of some other function and g√t approaches the other
function.
• Because the Fourier transform Fg√t = φt is an approximate identity, if
t → 0 then φt becomes a tall narrow pulse and so some other function
times φt is a weighted average of the other function with the weighting
concentrated closely about the origin.

8. Analysis proof of Fourier inversion

Recall that the second heuristic argument for Fourier inversion ran up against
the absolutely divergent double integral∫∫

(x,ξ)∈R2n

ϕ(x)ψ(x, ξ) dcµ(x, ξ),

where dcµ(x, ξ) = dcx dcξ. Consider instead a similar double integral but with its
integrand dampened by the t-dilated Gaussian function g√t,∫∫

(x,ξ)∈R2n

ϕ(x)g√t(ξ)ψ(x, ξ) dcµ(x, ξ).
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Now the integral is absolutely convergent thanks to the rapid decay of the Gaussian,
and so the two corresponding iterated integrals exist and are equal. One such
iterated integral is

At =

∫
ξ

∫
x

ϕ(x)ψ(x, ξ) dcx g√t(ξ) dcξ =

∫
ξ

Fϕ(ξ)g√t(ξ) dcξ,

and the other is

Bt =

∫
x

ϕ(x)

∫
ξ

g√t(ξ)ψ(x, ξ) dcξ dcx =

∫
x

ϕ(x)Fg√t(x) dcx =

∫
x

ϕ(x)φt(x) dcx.

For the first integral, we have by the Dominated Convergence Theorem that because
g√t → 1 pointwise as t → 0 (or, without the Dominated Convergence Theorem,
because g√t → 1 uniformly on compacta as t→ 0 and Fϕ is bounded and absolutely
integrable),

At =

∫
ξ

Fϕ(ξ)g√t(ξ) dcξ
t→0−→

∫
ξ

Fϕ(ξ) dcξ = F−1Fϕ(0).

For the second integral, a standard argument (that manages the relevant issues
by breaking the calculation into three pieces) says that as a special case of the
Approximate Identity Theorem,

Bt =

∫
x

ϕ(x)φt(x) dcx
t→0−→ ϕ(0).

But At = Bt for all t > 0, and so the limits of At and Bt as t→ 0 are equal. Thus
we have the Fourier inversion formula at 0,

F−1Fϕ(0) = ϕ(0) for Schwartz functions ϕ.

As explained above, general Fourier inversion for Schwartz functions follows.

9. Calculus proof of Fourier inversion

A second argument, which I learned from the book by Richards and Youn, is
technically easier and very pretty. The argument relies on one further reduction,
and calculus, and the fact that the Fourier transform converts multiplication to
differentiation.

As before, to prove that

F−1Fϕ = ϕ for Schwartz functions ϕ

we need only prove that

(F−1Fϕ)(0) = ϕ(0) for Schwartz functions ϕ.

Now we reduce the problem further. Let ϕ be any Schwartz function, and again let g
be the Gaussian function, its own Fourier transform and inverse Fourier transform,
with g(0) = 1. From these properties of g,

(F−1Fϕ)(0)− ϕ(0) = F−1F(ϕ− ϕ(0)g)(0).

We want to show that the left side of the previous display is 0, for which it suffices
to show that the right side is 0. Because ϕ − ϕ(0)g vanishes at 0, the problem is
thus reduced to proving that

(F−1Ff)(0) = 0 for Schwartz functions f that vanish at 0.
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Because Schwartz functions are not preserved under vertical translation, this reduc-
tion to the case f(0) = 0 requires a little more artfulness than merely subtracting
off ϕ(0) from ϕ as can be done for functions on the compact domain Rn/Zn, but
the idea is essentially the same.

For any Schwartz function f such that f(0) = 0, define for j = 1, . . . , n,

ϕj : Rn −→ C, ϕj(x) =

∫ 1

t=0

Djf(xt) dt.

Because f(0) = 0, the fundamental theorem of calculus gives

f(x) = f(x)− f(0) = f(xt)
∣∣1
t=0

=

∫ 1

t=0

d

dt
f(xt) dt,

and the chain rule gives

d

dt
f(xt) =

n∑
j=1

Djf(xt)xj ,

so we have f(x) =
∑n
j=1 xj

∫ 1

t=0
Djf(xt) dt, and by the definition of the functions ϕj

this is

f(x) =

n∑
j=1

xjϕj(x).

Each function ϕj is smooth because f is smooth. This is just differentiation under
the integral sign: for any L = (`1, . . . , `m) with each `i in {1, . . . , n},

DLϕj(x) =

∫ 1

t=0

Dj,Lf(xt) dt.

Also we could show that ϕj decays as x grows because Djf decays, but we do not
need this. More importantly, for n > 1 the ϕj need not be Schwartz even though
f is Schwartz. As a simple example of a smooth function f all of whose derivatives
decay without any of them decaying rapidly, let f : R −→ R be a smooth blend
of 1/x for |x| large and a constant function for |x| small.

Now take n = 1. In this case, ϕ is Schwartz because f is Schwartz, as follows.
Because f(x) = xϕ(x), the quotient f(x)/x extends smoothly to f ′(0) = ϕ(0)
at x = 0, and this quotient and its derivatives clearly inherit rapid decay from f(x)
and its derivatives. With ϕ known to be Schwartz, the Fourier inversion argument
for n = 1 begins with the result, left to the reader as a quick calculation, that the
Fourier transform converts multiplication to differentiation,

(Ff)(ξ) = (Fxϕ)(ξ) = i(Fϕ)′(ξ).

Thus, as desired,

(F−1Ff)(0) =

∫
ξ∈R
Ff(ξ) dcξ = i

∫
ξ∈R

(Fϕ)′(ξ) dcξ = i(Fϕ)
∣∣∣∞
−∞

= 0.

For n > 1, this Fourier inversion proof requires one more idea. In the decompo-
sition

f(x) =

n∑
j=1

xjϕj(x),
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each ϕj(x) is smooth but it and its derivatives needn’t decay rapidly. In a second
decomposition,

f(x) =

n∑
j=1

xj · xjf(x)/|x|2,

each xjf(x)/|x|2 needn’t be smooth at 0 but it and its derivatives inherit rapid
decay from f(x). Proving Fourier inversion blends these two decompositions in a
way that retains the asset of each and suppresses its deficiency. Let χ : Rn −→ C
be a smooth function whose support is compact and contains 0 as an interior point.
Define modified versions of the functions ϕj for j = 1, . . . , n as follows,

ϕ̃j(x) = χ(x)ϕj(x) + (1− χ(x))xjf(x)/|x|2.
These functions are Schwartz, and we have the same decomposition of f as with
the original functions ϕj ,

f(x) = χ(x)f(x) + (1− χ(x))f(x)

= χ(x)

n∑
j=1

xjϕj(x) + (1− χ(x))

n∑
j=1

x2
jf(x)/|x|2

=

n∑
j=1

xj
(
χ(x)ϕj(x) + (1− χ(x))xjf(x)/|x|2

)
=

n∑
j=1

xjϕ̃j(x).

From here the Fourier inversion argument for n > 1 is the same as for n = 1,

(Ff)(ξ) = (F
n∑
j=1

xjϕ̃j)(ξ) = i

n∑
j=1

Dj(F ϕ̃j)(ξ),

and thus

(F−1Ff)(0) =

∫
ξ∈Rn

Ff(ξ) dcξ = i

n∑
j=1

∫
ξ∈Rn

Dj(F ϕ̃)(ξ) dcξ,

and each integral is 0 by integrating first in the jth direction.

10. Fourier inversion for tempered distributions

Now we discuss Fourier inversion in the broader environment S∗ of tempered
distributions, the space of continuous linear functionals on the space S of Schwartz
functions. The Fourier transform on S∗ is defined by an adjoint-like characterizing
property,

〈Ff, ϕ〉 = 〈f,Fϕ〉 for all f ∈ S∗ and ϕ ∈ S.
This is the only possible definition compatible with with viewing S as a subspace
of S∗, because if both f and ϕ are Schwartz functions then, as already noted above,

〈Ff, ϕ〉 =

∫
Rn

Ff · ϕ =

∫
Rn

f · Fϕ = 〈f,Fϕ〉.

Also, the definition of the Fourier transform on S∗ immediately extends Fourier
inversion to S∗, because for all f ∈ S∗ and ϕ ∈ S,

〈F−1Ff, ϕ〉 = 〈Ff,F−1ϕ〉 = 〈f,FF−1ϕ〉 = 〈f, ϕ〉,
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so that

F−1Ff = f for tempered distributions f.

11. The encoding identity

Fourier inversion is encoded concisely as one particular equality of tempered
distributions,

F1 = δ.

Here 1 is the constant function 1 viewed as a tempered distribution,

〈1, ϕ〉 =

∫
x∈Rn

ϕ(x) dx for Schwartz functions ϕ,

and δ is the Dirac delta distribution,

〈δ, ϕ〉 = ϕ(0) for Schwartz functions ϕ.

Thus a small point here is that although 1 is a classical function, its Fourier trans-
form is not.

We know that general Fourier inversion for Schwartz functions follows from
Fourier inversion for Schwartz functions at 0. To see that Fourier inversion for
Schwartz functions at 0 is precisely the content of the boxed identity, compute for
any Schwartz function ϕ, that on the one hand

〈F1, ϕ〉 = 〈1,Fϕ〉 = F−1Fϕ(0),

while on the other hand

〈δ, ϕ〉 = ϕ(0).

The left sides are equal if and only if the right sides are equal. That is, the identity
F1 = δ is equivalent to Fourier inversion for Schwartz functions at 0.

12. An example

We now freely view functions of moderate growth as tempered distributions, so
that Fourier inversion applies to them. Consider any x ∈ R>0, ξ ∈ R, and s ∈ R>1.
We show that ∫ ∞

y=−∞

eiξy

(x+ iy)s
dy =

{
2π

Γ(s)e
−xξξs−1 if ξ > 0,

0 if ξ ≤ 0.

The idea is to recognize the integral as the inverse Fourier transform (F−1fx)(ξ)
where fx(y) = (2π)1/2/(x+ iy)s. So we are done by Fourier inversion if fx(y) is in
turn the Fourier transform of the function on the right side of the previous display.

To obtain fx(y) as a Fourier transform, start from the gamma function, replacing
ξ by xξ in the integral to get a variant expression of the gamma integral that
incorporates x,

Γ(s) =

∫ ∞
ξ=0

e−ξξs
dξ

ξ
= xs

∫ ∞
ξ=0

e−xξξs
dξ

ξ
.

The uniqueness theorem from complex analysis says that this formula extends from
the open half-line of positive x-values to the open half-plane of complex numbers
x+ iy with x positive. That is, for any y ∈ R,

Γ(s) = (x+ iy)s
∫ ∞
ξ=0

e−(x+iy)ξξs
dξ

ξ
.



FOURIER INVERSION 11

This is

Γ(s) = (x+ iy)s
∫ ∞
ξ=0

e−iyξ · e−xξξs−1 dξ.

That is, if we introduce a function of a variable ξ ∈ R,

ϕx(ξ) =

{
e−xξξs−1 if ξ > 0,

0 if ξ ≤ 0,

then, recalling the definition fx(y) = (2π)1/2/(x+ iy)s, we have

fx(y) =
2π

Γ(s)
(Fϕx)(y), y ∈ R.

This gives the asserted value of the integral at the beginning of the section.
An n-variable version of this integral goes back at least to Siegel, requiring essen-

tially nothing more than the method here and a standard device called completing
the square for a positive definite quadratic form. See the online writeup by Paul
Garrett,

http://www.math.umn.edu/~garrett/m/v/siegel_integral.pdf,

my source for the one-variable treatment here.

13. Ending comments

We end with some comments of what to make of the encoding identity F1 = δ.

One comment amplifies a remark from the beginning of the writeup. In physical
terms, the equality says that the constant function 1 is built entirely from the
oscillation of frequency zero, i.e., itself. Thinking in these terms tacitly takes
Fourier inversion for granted in some unspecified mathematical environment. The
correct environmental formulation is that Fourier inversion encodes the synthesis of
tempered distributions from oscillations, the oscillations and coefficient “functions”
themselves being tempered distributions.

Another point of view is that the equality assigns a distributional value to a
divergent integral,

c2
∫
ξ∈Rn

eix·ξ dξ = δ(x) for all x ∈ Rn.

This idea is consonant with the observation that although the distribution 1 is a
classical function, its Fourier transform δ is not. (The Fourier transform of any
Schwartz function is again a Schwartz function, but the constant function 1 is not
Schwartz.)

A similar-looking identity of distributions,

Fδ = 1,

is immediate. Indeed, for any Schwartz function ϕ,

〈Fδ, ϕ〉 = 〈δ,Fϕ〉 = Fϕ(0) = 〈1, ϕ〉.

However, getting from the trivial identity Fδ = 1 to the encoding identity F1 = δ
is yet again a matter of Fourier inversion.
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Returning to the dampened Gaussian function, assuming that its rapid decay
allows us to pass a limit through a Fourier transform, its other two properties then
quickly establish the encoding identity,

F1 = F lim
t→0

g√t because g√t → 1 as t→ 0

= lim
t→0
Fg√t

= δ because Fg√t = φt is an approximate identity.

But justifying this calculation is not trivial.


