
THEORY OF FUNCTIONS

1. Introduction

2. Local Analysis of Analytic Functions

Theorem 2.1 (Local Mapping Theorem). Suppose f is analytic at z0 and that
f(z) − w0 has a zero of order n at z0. Then for all sufficiently small ε > 0 there
exists δ > 0 such that for all w ∈ N(w0; δ) \ {w0}, the equation f(z) = w has n
distinct roots in N(z0; ε). In other words, f is n–to–1 near z0.

Proof. Since f is not identically w0, the w0–points of f are isolated, hence in some
N(z0; 2ε), f takes the value w0 only at z0. Let γ̂ = {z : |z − z0| = ε}, traversed
once counterclockwise, and let Γ = f ◦γ. Then n = 1/2πi

∫
γ
f ′(ζ)dζ/(f(ζ)−w0) =

1/2πi
∫

Γ
dξ/(ξ − w0) = F (w0), where F (w) = 1/2πi

∫
Γ
dξ/(ξ − w). Since f 6= w0

on γ̂, w0 /∈ Γ̂, so some N(w0; 2δ) does not intersect Γ̂, hence some N(w0, δ) has all
points at least distance δ from Γ̂.
F is continuous at w0. Proof: By the standard estimate and a little algebra, for

w ∈ N(w0; δ),

|F (w)− F (w0)| ≤ 1
2π

∫
Γ

|w − w0||dξ|
(ξ − w)(ξ − w0)

≤ |w − w0|length(Γ)
δ2

,

so if also w ∈ N(w0; 2πδ2/length(Γ)) then |F (w)− F (w0)| < ε.
Since F (w) is the number of w–points of f inside γ̂, F is integer–valued and

(by the claim) continuous at w0. By uniqueness, F must be the constant function
F (w) = n on N(w0; δ), i.e., f(z) = w has n solutions for w ∈ N(w0; δ). These
solutions are distinct because since the zeros of f ′ are isolated, we may take ε also
small enough that f ′(z) 6= 0 in N(z0; ε) \ {z0}. �

A corollary is
Theorem 2.2 (Open Mapping Theorem). Suppose f is analytic, nonconstant.
Then f maps open sets to open sets, and at z0 such that f ′(z0) 6= 0, f is a local
homeomorphism.

Proof. Open mapping: Say S is some open set in the domain of f and w0 ∈ f(S),
i.e., w0 = f(z0) for some z0 ∈ S. Then for all small ε, N(z0; ε) ⊂ S, and for
sufficiently small ε, some N(w0; δ) ⊂ f(N(z0; ε) ⊂ f(S). This shows that f(S) is
open.

Local homeomorphism: If n = 1 in the local mapping theorem, f gives a bijection
between N(w0; δ) and f−1(N(w0; δ)). f−1 is continuous by the open set property
of f . �

(In fact, f−1 is also analytic. See Knopp, p.136.)
Note how this reproves the maximum principle more convincingly: analytic f

maps blobs to blobs, so |f | can’t take a maximum on a blob.
To make all this explicit: Near z0, f(z)− w0 = (z − z0)ng(z), where g(z0) 6= 0,

hence g(z) 6= 0 for z near z0 by continuity. So we can take an nth root of g(z)
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near z0, call it h(z). Thus w − w0 = f(z) − w0 = ((z − z0)h(z))n = ζn, where
ζ = k(z) = (z − z0)h(z), a homeomorphism near z0. Thus the general map f is
locally a translation of a homeomorphism followed by an nth power.

3. Behavior at infinity

If f is analytic on C except for finitely many singularities then f is analytic on
{|z| > ρ} for some positive ρ. Define

g : {ζ : 0 < |ζ| < 1/ρ} −→ C, g(ζ) = f(1/ζ).

Then g has an isolated singularity at 0. The nature of the singularity of f at ∞ is
defined to be the nature of the singularity of g at 0. For example, a polynomial of
degree n has a singularity of degree n at ∞ since in this case

g(ζ) = p(1/ζ) =
n∑
k=0

akζ
−k.

More generally, a rational function

f(z) =
pn(z)
qm(z)

, deg(p) = n, deg(q) = m

has order m− n at infinity, giving the pleasant relation∑
c∈C∪∞

ordc(f) = 0.

An entire transcendental function f has an essential singularity at ∞ since

g(ζ) = f(1/ζ) =
∞∑
n=0

anζ
−n.

And the principal part of any Laurent expansion has a removable singularity at∞.
(This finishes exercise 5(a); in 5(b) the singularity at∞ is not isolated since g(ζ) =
f(1/ζ) isn’t analytic in any punctured disk about 0.)

What’s going on here is that the Riemann sphere, while globally distinct from C,
is indistinguishable from C in the small. To study a function at ∞, we use the
mapping

z 7−→ 1/z call= ζ

to take a neighborhood of ∞ homeomorphically to a neighborhood of 0, since we
understand how to analyze singularities at 0. The notion we are tiptoeing around
here is that of a manifold, loosely a topological space that looks Euclidean in the
small. More generally than studying functions at infinity, if f has a nonisolated
singularity at c and some mapping ϕ takes a neighborhood of a point p ∈ C
analytically and homeomorphically to a neighborhood of c, then the singularity
of f at c is of the same type as the singularity of f ◦ ϕ at p. Proving this is an
exercise in manipulating Laurent series that cites the yet-unproven fact that

ϕ(ζ)− c = b1(ζ − p) + · · · (where b1 6= 0) for ζ nearZ p.

Changing variables like this makes exercise 5(c) easy at z = 1/n where n is a
nonzero integer. Let z = 1/(ζ + n) (so ζ = 1/z − n) to study sin(π/z) at 1/n by
studying sinπ(ζ + nπ) at 0. The singularity at 0 is nonisolated.
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4. More Function-Theoretic results

With the results here, a more general version of Casorati-Weierstrass is easy.
Theorem 4.1 (Casorati–Weierstrass Theorem, version 2). If f has an essential
singularity at ∞ then for any R > 0, the set

{f(z) : |z| > R}
is dense in C.

Proof. Consider the Laurent expansion

f(z) =
∞∑

n=−∞
anz

n, for large |z|.

This breaks into a principal part and an entire transcendental function. The prin-
cipal part has absolute value less than ε/2 for |z| large enough, while the entire
transcendental function gets within ε/2 of any c ∈ C for infinitely many large |z|
by the previous version of Casorati-Weierstrass. The result follows. �

There is nothing special about infinity, actually. The final version of Casorati-
Weierstrass is
Theorem 4.2 (Casorati–Weierstras Theorem version 3). If f has an essential
singularity at c ∈ C ∪∞ then for any neighborhood N of c, the set

f(N \ {c})
is dense in C.

Proof. The result is already established if c = ∞. Ifc ∈ C instead then let g(z) =
f(z + c), which has an essential singularity at 0, and then let h(z) = g(1/z), which
has an essential singularity at ∞. Since h takes large inputs to a dense set of
outputs, g takes inputs near 0 to a dense set of outputs, and so f takes inputs
near c to a dense set of outputs. �

The summary theorem about singularities is called
Theorem 4.3 (Riemann’s Theorem). Let f have an isolated singularity at the
point c ∈ C ∪∞. The singularity is

• removable if and only if f is bounded near c,
• a pole if and only if |f(z)| → +∞ as z → c,
• essential if and only if f behaves in any other fashion.

What makes this theorem satisfying is that it perfectly matches up the various
series-based descriptions of f about c with the various behavioral (i.e., function-
theoretic) descriptions of f near c.

Proof. Consider the Laurent series of f about c. If c ∈ C, the Laurent series is

f(z) =
∞∑

n=−∞
an(z − c)n,

while if c =∞ then the Laurent series is

f(z) =
∑

bnζ
n, ζ = 1/z and bn = a−n.

If the singularity at c is removable than an = 0 (or bn = 0) for all n < 0, and so
f(z)→ a0 (or b0) as z → c.
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If the singularity at c is a pole of order N > 0 then f(z) = a(−N)(z − c)−N (1 +
a(−N+1)(z − c) + . . . ) or f(z) = b(−N)ζ

−N (1 + b(−N+1)ζ + . . . ), which goes to ∞
as z → c or ζ → 0.

If the singularity is essential then f is neither bounded nor uniformly large, by
the Casorati-Weierstrass theorem. Thus the three implications =⇒ are proved.
And since the three behaviors are exclusive and exhaustive, the three implications
⇐= follow. �


