THEORY OF FUNCTIONS

1. INTRODUCTION
2. LocAL ANALYSIS OF ANALYTIC FUNCTIONS

Theorem 2.1 (Local Mapping Theorem). Suppose f is analytic at zo and that
f(z) —wo has a zero of order n at zg. Then for all sufficiently small € > 0 there
exists 6 > 0 such that for all w € N(wo;d) \ {wo}, the equation f(z) = w has n
distinct roots in N(zo;€). In other words, f is n—to—1 near zg.

Proof. Since f is not identically wy, the wo—points of f are isolated, hence in some
N (zp;2¢), f takes the value wpy only at zg. Let 4 = {2z : |z — 20| = &}, traversed
once counterclockwise, and let I' = fo~. Then n = 1/27i f7 F1(O)dC/(f(C) —wo) =
1/2mi [ d€/(& — wo) = F(wo), where F(w) = 1/2mi [.d¢/(§ — w). Since f # wo
on 4, wy ¢ I, so some N (wp; 29) does not intersect I, hence some N (wg, §) has all
points at least distance & from I'.

F' is continuous at wqy. Proof: By the standard estimate and a little algebra, for
w € N(wo;9),

1 |w — wo|d€] |w — wo|length(T)
F(w) — F(wg)| < —/ < ,
P = Fl s 5r | e wie - wo) 2
so if also w € N (wp; 2m62 /length(T")) then |F(w) — F(wp)| < &.

Since F'(w) is the number of w—points of f inside 4, F' is integer—valued and
(by the claim) continuous at wg. By uniqueness, F' must be the constant function
F(w) = n on N(wp;9), i.e., f(#) = w has n solutions for w € N(wp;d). These

solutions are distinct because since the zeros of f’ are isolated, we may take ¢ also
small enough that f/(z) # 0 in N(zo;¢) \ {20} O

A corollary is

Theorem 2.2 (Open Mapping Theorem). Suppose f is analylic, nonconstant.
Then f maps open sets to open sets, and at zo such that f'(z9) # 0, f is a local
homeomorphism.

Proof. Open mapping: Say S is some open set in the domain of f and wg € f(S),
ie, wyg = f(zo) for some zp € S. Then for all small e, N(zp;¢) C S, and for
sufficiently small €, some N(wg;d) C f(N(z0;¢) C f(S). This shows that f(5) is
open.

Local homeomorphism: If n = 1 in the local mapping theorem, f gives a bijection
between N(wg;d) and f~1(N(wp;d)). f~! is continuous by the open set property
of f. 0

(In fact, f~! is also analytic. See Knopp, p.136.)
Note how this reproves the maximum principle more convincingly: analytic f
maps blobs to blobs, so |f| can’t take a maximum on a blob.
To make all this explicit: Near zg, f(2) — wo = (z — 20)"¢g(z), where g(zo) # 0,
hence g(z) # 0 for z near zy by continuity. So we can take an n'" root of g(z)
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near zg, call it h(z). Thus w — wo = f(2) —wo = ((z — 20)h(2))"* = ¢, where
¢ = k(2) = (2 — 20)h(2), a homeomorphism near zy. Thus the general map f is
locally a translation of a homeomorphism followed by an n** power.

3. BEHAVIOR AT INFINITY

If f is analytic on C except for finitely many singularities then f is analytic on
{|z| > p} for some positive p. Define

9:{¢C:0<[<1/p} —C,  g(Q) = F(1/Q).

Then g has an isolated singularity at 0. The nature of the singularity of f at oo is
defined to be the nature of the singularity of g at 0. For example, a polynomial of
degree n has a singularity of degree n at oo since in this case

9(¢) =p(1/¢) = Zam k.

More generally, a rational function
pn(2)

f(z) =
am(2)
has order m — n at infinity, giving the pleasant relation

Z ord.(f) =0.

ceCUx0

, deg(p) = n, deg(q) =m

An entire transcendental function f has an essential singularity at oco since

g( ) 1/C ZanC "

And the principal part of any Laurent expansion has a removable singularity at co.
(This finishes exercise 5(a); in 5(b) the singularity at oo is not isolated since g(¢) =
f(1/¢) isn’t analytic in any punctured disk about 0.)

What’s going on here is that the Riemann sphere, while globally distinct from C,
is indistinguishable from C in the small. To study a function at oo, we use the
mapping

Z — 1/2(311(

to take a neighborhood of co homeomorphically to a neighborhood of 0, since we
understand how to analyze singularities at 0. The notion we are tiptoeing around
here is that of a manifold, loosely a topological space that looks Euclidean in the
small. More generally than studying functions at infinity, if f has a nonisolated
singularity at ¢ and some mapping ¢ takes a neighborhood of a point p € C
analytically and homeomorphically to a neighborhood of ¢, then the singularity
of f at c is of the same type as the singularity of f o ¢ at p. Proving this is an
exercise in manipulating Laurent series that cites the yet-unproven fact that

o) —c=b1(C—p)+--- (where by #0) for ¢ nearZ p.
Changing variables like this makes exercise 5(c) easy at z = 1/n where n is a
nonzero integer. Let z = 1/(¢ +n) (so ( = 1/z —n) to study sin(w/z) at 1/n by
studying sin (¢ + nm) at 0. The singularity at 0 is nonisolated.
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4. MORE FUNCTION-THEORETIC RESULTS

With the results here, a more general version of Casorati-Weierstrass is easy.

Theorem 4.1 (Casorati-Weierstrass Theorem, version 2). If f has an essential
singularity at oo then for any R > 0, the set

{F(2) : 2| > R}

is dense in C.

Proof. Consider the Laurent expansion

o0
flz) = Z anz™, for large |z|.
n=—oo
This breaks into a principal part and an entire transcendental function. The prin-
cipal part has absolute value less than /2 for |z| large enough, while the entire
transcendental function gets within £/2 of any ¢ € C for infinitely many large |z|
by the previous version of Casorati-Weierstrass. The result follows. (|

There is nothing special about infinity, actually. The final version of Casorati-
Weierstrass is
Theorem 4.2 (Casorati-Weierstras Theorem version 3). If f has an essential
singularity at ¢ € CU oo then for any neighborhood N of c, the set

FIN\Ac})

is dense in C.

Proof. The result is already established if ¢ = co. Ifc € C instead then let g(z) =
f(z+ ¢), which has an essential singularity at 0, and then let h(z) = g(1/z), which
has an essential singularity at co. Since h takes large inputs to a dense set of
outputs, g takes inputs near 0 to a dense set of outputs, and so f takes inputs
near c¢ to a dense set of outputs. (I

The summary theorem about singularities is called
Theorem 4.3 (Riemann’s Theorem). Let f have an isolated singularity at the
point c € CUoo. The singularity is
e removable if and only if f is bounded near c,
e a pole if and only if |f(2)| — +o00 as z — ¢,
e essential if and only if f behaves in any other fashion.
What makes this theorem satisfying is that it perfectly matches up the various
series-based descriptions of f about ¢ with the various behavioral (i.e., function-
theoretic) descriptions of f near c.

Proof. Consider the Laurent series of f about c. If ¢ € C, the Laurent series is

oo

f)= ) anlz=9)",

n=—oo

while if ¢ = oo then the Laurent series is
f(Z) = angn, C = 1/2 and bn = Q_p.

If the singularity at ¢ is removable than a, = 0 (or b, = 0) for all n < 0, and so
f(z) = ap (or by) as z — c.
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If the singularity at ¢ is a pole of order N > 0 then f(2) = a(_n)(z — )"V (1 +
acnin(z—c)+...) or f(2) = bn¢ V(1 +b_yi1)¢ + -..), which goes to oo
as z —cor ( — 0.

If the singularity is essential then f is neither bounded nor uniformly large, by
the Casorati-Weierstrass theorem. Thus the three implications = are proved.
And since the three behaviors are exclusive and exhaustive, the three implications
<= follow. (|



