THEORY OF FUNCTIONS

1. INTRODUCTION

2. LOCAL ANALYSIS OF ANALYTIC FUNCTIONS

Theorem 2.1 (Local Mapping Theorem). Suppose f is analytic at z_0 and that $f(z) - w_0$ has a zero of order n at z_0 . Then for all sufficiently small $\varepsilon > 0$ there exists $\delta > 0$ such that for all $w \in N(w_0; \delta) \setminus \{w_0\}$, the equation f(z) = w has n distinct roots in $N(z_0; \varepsilon)$. In other words, f is n-to-1 near z_0 .

Proof. Since f is not identically w_0 , the w_0 -points of f are isolated, hence in some $N(z_0; 2\varepsilon)$, f takes the value w_0 only at z_0 . Let $\hat{\gamma} = \{z : |z - z_0| = \varepsilon\}$, traversed once counterclockwise, and let $\Gamma = f \circ \gamma$. Then $n = 1/2\pi i \int_{\Gamma} f'(\zeta) d\zeta/(f(\zeta) - w_0) = 1/2\pi i \int_{\Gamma} d\xi/(\xi - w_0) = F(w_0)$, where $F(w) = 1/2\pi i \int_{\Gamma} d\xi/(\xi - w)$. Since $f \neq w_0$ on $\hat{\gamma}, w_0 \notin \hat{\Gamma}$, so some $N(w_0; 2\delta)$ does not intersect $\hat{\Gamma}$, hence some $N(w_0, \delta)$ has all points at least distance δ from $\hat{\Gamma}$.

F is continuous at w_0 . Proof: By the standard estimate and a little algebra, for $w \in N(w_0; \delta)$,

$$|F(w) - F(w_0)| \le \frac{1}{2\pi} \int_{\Gamma} \frac{|w - w_0| |d\xi|}{(\xi - w)(\xi - w_0)} \le \frac{|w - w_0| \text{length}(\Gamma)}{\delta^2}$$

so if also $w \in N(w_0; 2\pi\delta^2/\text{length}(\Gamma))$ then $|F(w) - F(w_0)| < \varepsilon$.

Since F(w) is the number of w-points of f inside $\hat{\gamma}$, F is integer-valued and (by the claim) continuous at w_0 . By uniqueness, F must be the constant function F(w) = n on $N(w_0; \delta)$, i.e., f(z) = w has n solutions for $w \in N(w_0; \delta)$. These solutions are distinct because since the zeros of f' are isolated, we may take ε also small enough that $f'(z) \neq 0$ in $N(z_0; \varepsilon) \setminus \{z_0\}$.

A corollary is

Theorem 2.2 (Open Mapping Theorem). Suppose f is analytic, nonconstant. Then f maps open sets to open sets, and at z_0 such that $f'(z_0) \neq 0$, f is a local homeomorphism.

Proof. Open mapping: Say S is some open set in the domain of f and $w_0 \in f(S)$, i.e., $w_0 = f(z_0)$ for some $z_0 \in S$. Then for all small ε , $N(z_0; \varepsilon) \subset S$, and for sufficiently small ε , some $N(w_0; \delta) \subset f(N(z_0; \varepsilon) \subset f(S))$. This shows that f(S) is open.

Local homeomorphism: If n = 1 in the local mapping theorem, f gives a bijection between $N(w_0; \delta)$ and $f^{-1}(N(w_0; \delta))$. f^{-1} is continuous by the open set property of f.

(In fact, f^{-1} is also analytic. See Knopp, p.136.)

Note how this reproves the maximum principle more convincingly: analytic f maps blobs to blobs, so |f| can't take a maximum on a blob.

To make all this explicit: Near z_0 , $f(z) - w_0 = (z - z_0)^n g(z)$, where $g(z_0) \neq 0$, hence $g(z) \neq 0$ for z near z_0 by continuity. So we can take an n^{th} root of g(z)

THEORY OF FUNCTIONS

near z_0 , call it h(z). Thus $w - w_0 = f(z) - w_0 = ((z - z_0)h(z))^n = \zeta^n$, where $\zeta = k(z) = (z - z_0)h(z)$, a homeomorphism near z_0 . Thus the general map f is locally a translation of a homeomorphism followed by an n^{th} power.

3. Behavior at infinity

If f is analytic on **C** except for finitely many singularities then f is analytic on $\{|z| > \rho\}$ for some positive ρ . Define

$$g: \{\zeta: 0 < |\zeta| < 1/\rho\} \longrightarrow \mathbf{C}, \qquad g(\zeta) = f(1/\zeta).$$

Then g has an isolated singularity at 0. The nature of the singularity of f at ∞ is *defined* to be the nature of the singularity of g at 0. For example, a polynomial of degree n has a singularity of degree n at ∞ since in this case

$$g(\zeta) = p(1/\zeta) = \sum_{k=0}^{n} a_k \zeta^{-k}.$$

More generally, a rational function

$$f(z) = \frac{p_n(z)}{q_m(z)}, \qquad \deg(p) = n, \ \deg(q) = m$$

has order m - n at infinity, giving the pleasant relation

$$\sum_{c \in \mathbf{C} \cup \infty} \operatorname{ord}_c(f) = 0.$$

An entire transcendental function f has an essential singularity at ∞ since

$$g(\zeta) = f(1/\zeta) = \sum_{n=0}^{\infty} a_n \zeta^{-n}.$$

And the principal part of any Laurent expansion has a removable singularity at ∞ . (This finishes exercise 5(a); in 5(b) the singularity at ∞ is not isolated since $g(\zeta) = f(1/\zeta)$ isn't analytic in any punctured disk about 0.)

What's going on here is that the Riemann sphere, while globally distinct from \mathbf{C} , is indistinguishable from \mathbf{C} in the small. To study a function at ∞ , we use the mapping

$$z \mapsto 1/z \stackrel{\text{call}}{=} \zeta$$

to take a neighborhood of ∞ homeomorphically to a neighborhood of 0, since we understand how to analyze singularities at 0. The notion we are tiptoeing around here is that of a *manifold*, loosely a topological space that looks Euclidean in the small. More generally than studying functions at infinity, if f has a nonisolated singularity at c and some mapping φ takes a neighborhood of a point $p \in \mathbf{C}$ analytically and homeomorphically to a neighborhood of c, then the singularity of f at c is of the same type as the singularity of $f \circ \varphi$ at p. Proving this is an exercise in manipulating Laurent series that cites the yet-unproven fact that

$$\varphi(\zeta) - c = b_1(\zeta - p) + \cdots$$
 (where $b_1 \neq 0$) for ζ near $Z p$.

Changing variables like this makes exercise 5(c) easy at z = 1/n where n is a nonzero integer. Let $z = 1/(\zeta + n)$ (so $\zeta = 1/z - n$) to study $\sin(\pi/z)$ at 1/n by studying $\sin \pi(\zeta + n\pi)$ at 0. The singularity at 0 is nonisolated.

4. More Function-Theoretic results

With the results here, a more general version of Casorati-Weierstrass is easy.

Theorem 4.1 (Casorati–Weierstrass Theorem, version 2). If f has an essential singularity at ∞ then for any R > 0, the set

$$\{f(z): |z| > R\}$$

is dense in C.

Proof. Consider the Laurent expansion

$$f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$$
, for large $|z|$.

This breaks into a principal part and an entire transcendental function. The principal part has absolute value less than $\varepsilon/2$ for |z| large enough, while the entire transcendental function gets within $\varepsilon/2$ of any $c \in \mathbf{C}$ for infinitely many large |z| by the previous version of Casorati-Weierstrass. The result follows.

There is nothing special about infinity, actually. The final version of Casorati-Weierstrass is

Theorem 4.2 (Casorati–Weierstras Theorem version 3). If f has an essential singularity at $c \in \mathbf{C} \cup \infty$ then for any neighborhood N of c, the set

 $f(N \setminus \{c\})$

is dense in \mathbf{C} .

Proof. The result is already established if $c = \infty$. If $c \in \mathbf{C}$ instead then let g(z) = f(z+c), which has an essential singularity at 0, and then let h(z) = g(1/z), which has an essential singularity at ∞ . Since h takes large inputs to a dense set of outputs, g takes inputs near 0 to a dense set of outputs, and so f takes inputs near c to a dense set of outputs.

The summary theorem about singularities is called

Theorem 4.3 (Riemann's Theorem). Let f have an isolated singularity at the point $c \in \mathbf{C} \cup \infty$. The singularity is

- removable if and only if f is bounded near c,
- a pole if and only if $|f(z)| \to +\infty$ as $z \to c$,
- essential if and only if f behaves in any other fashion.

What makes this theorem satisfying is that it perfectly matches up the various series-based descriptions of f about c with the various behavioral (i.e., function-theoretic) descriptions of f near c.

Proof. Consider the Laurent series of f about c. If $c \in \mathbf{C}$, the Laurent series is

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - c)^n,$$

while if $c = \infty$ then the Laurent series is

$$f(z) = \sum b_n \zeta^n$$
, $\zeta = 1/z$ and $b_n = a_{-n}$.

If the singularity at c is removable than $a_n = 0$ (or $b_n = 0$) for all n < 0, and so $f(z) \to a_0$ (or b_0) as $z \to c$.

THEORY OF FUNCTIONS

If the singularity at c is a pole of order N > 0 then $f(z) = a_{(-N)}(z-c)^{-N}(1+a_{(-N+1)}(z-c)+\ldots)$ or $f(z) = b_{(-N)}\zeta^{-N}(1+b_{(-N+1)}\zeta+\ldots)$, which goes to ∞ as $z \to c$ or $\zeta \to 0$.

If the singularity is essential then f is neither bounded nor uniformly large, by the Casorati-Weierstrass theorem. Thus the three implications \implies are proved. And since the three behaviors are exclusive and exhaustive, the three implications \iff follow.