
A QUICK INTRODUCTION TO ELLIPTIC CURVES

This writeup sketches aspects of the theory of elliptic curves, first over fields of
characteristic zero and then over arbitrary fields.

1. Elliptic curves in characteristic zero

Let k denote any field of characteristic 0.

Definition 1. An element α of an extension field K of k is algebraic over k if it
satisfies some monic polynomial with coefficients in k. Otherwise α is transcenden-
tal over k. A field extension K/k is algebraic if every α ∈ K is algebraic over k.
A field k is algebraically closed if there is no proper algebraic extension K/k; that
is, in any extension field K of k, any element α that is algebraic over k in fact lies
in k. An algebraic closure k of k is a minimal algebraically closed extension field
of k.

Every field has an algebraic closure. Any two algebraic closures k and k
′
of k

are k-isomorphic, meaning there exists an isomorphism k
∼−→ k

′

fixing k pointwise,
so we often refer imprecisely to “the” algebraic closure of k.

A Weierstrass equation over k is any cubic equation of the form

(1) E : y2 = 4x3 − g2x− g3, g2, g3 ∈ k.

Define the discriminant of the equation to be

∆ = g3
2 − 27g2

3 ∈ k,

and if ∆ 6= 0 define the invariant of the equation to be

j = 1728g3
2/∆ ∈ k.

Definition. Let k be an algebraic closure of the field k. When a Weierstrass
equation E has nonzero discriminant ∆ it is called nonsingular and the set

E = {(x, y) ∈ k
2

satisfying E(x, y)} ∪ {∞}
is called an elliptic curve over k.

Thus an elliptic curve always contains the point ∞. As the solution set of a
polynomial equation in two variables, an elliptic curve as defined here is a special
case of a plane algebraic curve.

Strictly speaking we are interested in equivalence classes of elliptic curves under
admissible changes of variable,

x = u2x′, y = u3y′, u ∈ k∗.

These transform Weierstrass equations to Weierstrass equations, taking g2 to g2/u
4,

g3 to g3/u
6, the discriminant ∆ to ∆/u12 (again nonzero) and preserving the invari-

ant j (exercise). Admissible changes of variable are special cases of isomorphisms
between algebraic curves.

For example, consider an elliptic curve E over C whose invariant is rational.
Supposing g2 and g3 are nonzero, the condition j ∈ Q is g3

2 = rg2
3 for some nonzero
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r ∈ Q (exercise). Let u ∈ C satisfy g2/u
4 = r; then also r3u12 = g3

2 = rg2
3 and thus

g3/u
6 = ±r, and we may take g3/u

6 = r after replacing u by iu if necessary. Since
the admissible change of variable x = u2x′, y = u3y′ produces new Weierstrass
coefficients g′2 = g2/u

4 and g′3 = g3/u
6, this shows that up to isomorphism E is

defined over Q by a Weierstrass equation

y2 = 4x3 − gx− g, g ∈ Q.

A separate argument when one of g2, g3 is zero (exercise) shows that in all cases
an elliptic curve over C has rational invariant j ∈ Q if and only if it is isomorphic
over C to an elliptic curve over Q. This argument works with C replaced by any
algebraically closed field k of characteristic 0 and with Q replaced by any subfield f

of k. It shows that any two elliptic curves over k with the same invariant j are
isomorphic when k is algebraically closed.

Associated to each Weierstrass equation and also denoted E is a corresponding
Weierstrass polynomial,

E(x, y) = y2 − 4x3 + g2x+ g3 ∈ k[x, y].

The Weierstrass equation (1) is nonsingular, meaning as in Definition 1 that its
discriminant ∆ is nonzero, if and only if the corresponding curve E is geometrically
nonsingular, meaning that at each point (x, y) ∈ E at least one of the partial
derivatives D1E(x, y), D2E(x, y) of the Weierstrass polynomial is nonzero. To see
this, note that the Weierstrass polynomial takes the form

E(x, y) = y2 − 4(x− x1)(x− x2)(x − x3), x1, x2, x3 ∈ k.

The third condition of

E(x, y) = 0, D1E(x, y) = 0, D2E(x, y) = 0

is y = 0 since char(k) = 0. Now the first condition is x ∈ {x1, x2, x3}, making the
second condition impossible exactly when x1, x2, x3 are distinct, i.e., when ∆ 6= 0.
One can think of geometric nonsingularity as meaning that E has a tangent line at
each point.

Many good texts on elliptic curves exist, so we state without proof the facts that
we need. Most importantly,

every elliptic curve forms an Abelian group with the point ∞ as its
additive identity.

The point ∞ is therefore denoted 0E from now on. One can think of addition on E
geometrically, algebraically, and analytically.

Geometrically the elliptic curve really sits in the projective plane over k, denoted

P2(k), the usual plane k
2

(called the affine plane) along with some additional points
conceptually out at infinity added to complete it. (The reader who is unfamiliar
with this construction should work exercise 3 to follow for details of the following
assertions.) The projective plane is the union of three overlapping affine planes
and the elliptic curve is correspondingly the union of three affine pieces. The
projective point ∞ of E is infinitely far in the y-direction, i.e., 0E = [0, 1, 0] in
projective notation. The curve can be studied about 0E by working in a different
affine piece of P2(k), and it is geometrically nonsingular at 0E as it is at its finite
points. Projective space is a natural construct, e.g., the Riemann sphere C ∪ {∞}
is P1(C), and similarly the set {0, . . . , p− 1,∞} that often serves as an index set in
the context of the Hecke operator Tp can be viewed as P1(Z/pZ).
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Bézout’s Theorem says that if C1 and C2 are plane curves over k whose defining
polynomials have degrees d1 and d2 and are relatively prime in k[x, y] (a unique fac-
torization domain) then their intersection in P2(k) consists of d1d2 points, suitably
counting multiplicity. Thus cubic curves, and only cubic curves, naturally produce
triples P , Q, R of collinear points, meaning projective points satisfying an equation
ax + by + cz = 0 where a, b, c ∈ k are not all zero. If the line is tangent to the
curve then two or three of P , Q, and R will coincide. The addition law on elliptic
curves E is that collinear triples sum to 0E . That is,

P +Q+R = 0E ⇐⇒ P , Q, R are collinear.

In particular, since P − P + 0E = 0E it follows that P , −P , and 0E are collinear.
So far this only requires 0E to be any point of E , but the condition 0E = [0, 1, 0]
gives the addition law a pleasing geometry. Since 0E is infinitely far in the vertical
direction, P and −P have the same x-coordinate. At most two points with the same
x-coordinate satisfy the Weierstrass equation (1), so any two points with the same
x-coordinate are equal or opposite, possibly both. Since the y-values satisfying (1)
for a given x sum to 0 the additive inverse of P = (xP , yP ) is the natural companion
point

−P = (xP ,−yP ).

As remarked, this could well be P again. More generally, given points P and Q
of E , let R be their third collinear point. The addition law P +Q = −R says that
the sum is the companion point of R, its reflection through the x-axis,

(2) if P , Q, R are collinear then P +Q = (xR,−yR).

Figure 1 illustrates this for the elliptic curve y2 = 4x3 − 4x.

P

Q

R

P+Q=-R

Figure 1. The addition law

Moving from geometry to algebra, the group law is defined by rational functions
over the field k. Let P = (xP , yP ) and Q = (xQ, yQ) be nonzero points of the curve,
and suppose their sum P +Q = (xP+Q, yP+Q) is nonzero as well. Then

xP+Q = r(xP , yP , xQ, yQ) and yP+Q = s(xP , yP , xQ, yQ)

where r and s are rational functions with coefficients in k. Even more specifically
since char(k) = 0, r and s are rational functions over the field Q(g2, g3). If xQ = xP
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and yQ = −yP then Q = −P and so P +Q = 0E . Otherwise P +Q lies in the affine
part of E . Let

λ =






yQ − yP

xQ − xP
xP 6= xQ,

12x2
P − g2
2yP

xP = xQ,
µ =






xQyP − xP yQ

xQ − xP
xP 6= xQ,

−4x3
P − g2xP − 2g3

2yP
xP = xQ.

The line y = λx + µ passes through P and Q when P 6= Q and is the tangent line
to E at P when P = Q (exercise). The casewise nature of λ and µ will be discussed
further in the next section. In either case, the rational functions giving xP+Q and
yP+Q are

(3)
r(xP , yP , xQ, yQ) = λ2/4 − xP − xQ,

s(xP , yP , xQ, yQ) = −λ r(xP , yP , xQ, yQ) − µ.

This algebraic definition of addition corresponds to the geometric description (2)

(exercise). For example, on the curve y2 = 4x3 − 4x of Figure 1, (0, 0)+ (2, 2
√

6) =

(−1/2,
√

6/2).
Because the coordinates of 0E = [0, 1, 0] lie in k and because the group law

is rational over k, for any algebraic extension K/k (i.e., k ⊂ K ⊂ k) the set of
K-points of E is a subgroup of E ,

E(K) = {P ∈ E − {0E} : (xP , yP ) ∈ K2} ∪ {0E}.
In particular if E is an elliptic curve over Q then its affine rational points and 0E
form a group under the addition law. A special case of the Mordell–Weil Theorem
states that this group is finitely generated. The text by Silverman and Tate gives
an excellent discussion of this subject.

We want to study the torsion structure of E algebraically. For any positive
integer N let

[N ] : E −→ E
denote N -fold addition, e.g., [2]P = P + P . This takes the form of a rational
function,

[N ](x, y) =

(
φN (x, y)

ψN (x, y)2
,
ωN (x, y)

ψN (x, y)3

)
.

Here the N th division polynomials φN , ωN , ψN lie in Z[g2, g3, x, y], and (∞,∞) is
understood to mean 0E . Thus the condition [N ](x, y) = 0E is ψN (x, y) = 0. This
works out to a polynomial condition on x alone,

[N ](x, y) = 0E ⇐⇒ ψ̃N (x) = 0, ψ̃N ∈ Z[g2, g3, x].

For instance, the condition [2]P = 0 for a nonzero point P is yP = 0, or 4x3
P −

g2xP − g3 = 0. Similarly, the condition that [3]P = 0 for nonzero P is [2]P = −P ,
or x([2]P ) = xP , or r(xP , yP , xP , yP ) = xP , and this works out to 48x4

P −24g2x
2
P −

48g3xP − g2
2 = 0 (exercise).

Let E [N ] denote the group of N -torsion points of E , the kernel of [N ],

E [N ] = {P ∈ E : [N ]P = 0E}.
We quote the structure theorem for E [N ].

Theorem. Let E be an elliptic curve over a field k of characteristic 0 and let N
be a positive integer. Then E [N ] ∼= (Z/NZ)2.
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Let K be a Galois extension field of k containing the x- and y-coordinates
of E [N ] \ {0E}. The relations E(xσ, yσ) = E(x, y)σ and ψ̃N (xσ) = ψ̃N (x)σ for
any x, y ∈ K and any automorphism σ ∈ Gal(K/k) show that the Galois group
acts on E [N ]. The action is an automorphism since the coefficients of the rational
functions r and s lie in Q(g2, g3) and hence in k. That is, r(xσ

P , y
σ
P , x

σ
Q, y

σ
Q) =

r(xP , yP , xQ, yQ)σ for all P,Q ∈ E [N ], and similarly for s, making P σ + Qσ =
(P +Q)σ. Since E [N ] ∼= (Z/NZ)2, once an ordered basis (P,Q) of E [N ] over Z/NZ
is chosen this gives a representation

ρ : Gal(K/k) −→ GL2(Z/NZ),

[
P σ

Qσ

]
= ρ(σ)

[
P
Q

]
,

where as always GL2(Z/NZ) is the group of invertible 2-by-2 matrices with entries
in Z/NZ. (Here we are seeing the beginning of the idea of a Galois representation
associated to the ellpitic curve.)

Analytically, when k ⊂ C we may view the coefficients of the Weierstrass equa-
tion as complex numbers. We know that there exists a lattice Λ ⊂ C such that the
Weierstrass equation (1) takes the form y2 = 4x3 − g2(Λ)x − g3(Λ), and addition
on the corresponding curve E is compatible with the natural addition on C/Λ via
the Weierstrass function ℘. In particular, the torsion group structure theorem is
clear and familiar when k = C. Also we know that holomorphic isomorphisms of
complex tori correspond to admissible changes of variable in complex Weierstrass
equations.

Recall that the map (℘τ , ℘
′
τ ) takes the complex torus C/Λτ to the algebraic

curve Eτ : y2 = 4x3 − g2(τ)x− g3(τ). (From now on the symbol E interchangeably
denotes an elliptic curve, its equation, or its polynomial, and the symbol E will no
longer be used.) The field of meromorphic functions on the modular curve X(N)
is generated by the modular invariant j and by functions of τ closely related to
the x-coordinates of the nonzero N -torsion points on the curve Eτ . We now scale
the curve Eτ to a new curve so that indeed C(X(N)) is generated by j and the
N -torsion x-coordinates.

Fix any τ ∈ H such that j(τ) /∈ {0, 1728}. This means that g2(τ) and g3(τ)
are nonzero since j = 1728g3

2/(g
3
2 − 27g2

3). Choose either complex square root
(g2(τ)/g3(τ))

1/2 and consider the map
(
g2(τ)

g3(τ)
℘τ ,

(g2(τ)
g3(τ)

)3/2

℘′

τ

)
: C/Λτ −→ C2 ∪ {∞}.

This differs from (℘τ , ℘
′
τ ) by the admissible change of variable (x, y) = (u2x′, u3y′)

where u = (g3(τ)/g2(τ))
1/2. Thus u−4 = (g2(τ)/g3(τ))

2 and u−6 = (g2(τ)/g3(τ))
3,

and nonzero points z+ Λτ map to points (x, y) satisfying the suitable modification
of the cubic equation of Eτ according to an exercise.

Ej(τ) : y2 = 4x3 − g2(τ)
3

g3(τ)2
x− g2(τ)

3

g3(τ)2
.

Since g2
3 = (g3

2 − ∆)/27, so that g3
2/g

2
3 = 27g3

2/(g
3
2 − ∆) = 27j/(j − 1728), the

equation is defined in terms of j(τ), justifying the name of the curve,

Ej(τ) : y2 = 4x3 −
(

27j(τ)

j(τ) − 1728

)
x−

(
27j(τ)

j(τ) − 1728

)
.
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(Cf. the method of reducing the general y2 = 4x3 − g2x − g3 to the form y2 =
4x3 − gx− g.) The equation is independent of which square root (g2(τ)/g3(τ))

1/2

was chosen. The map C/Λτ
∼−→ Ej(τ) restricts to an isomorphism of N -torsion

subgroups. In particular it takes the canonical generators τ/N + Λτ and 1/N + Λτ

of (C/Λτ )[N ] to the points

(4)

Pτ =

(
g2(τ)

g3(τ)
℘τ (τ/N) ,

(g2(τ)
g3(τ)

)3/2

℘′

τ (τ/N)

)
,

Qτ =

(
g2(τ)

g3(τ)
℘τ (1/N) ,

(g2(τ)
g3(τ)

)3/2

℘′

τ (1/N)

)
.

Negating the square root (g2(τ)/g3(τ))
1/2 negates these points, but modulo this

(Pτ , Qτ ) is a canonical ordered basis of Ej(τ)[N ] over Z/NZ. The x-coordinates
of ±Pτ and ±Qτ are f1,0(τ) and f0,1(τ) = f1(τ) respectively, and more generally the

nonzero points of Ej(τ)[N ] have x-coordinates {f±v
0 (τ)} as desired. The information

j(τ), f1,0(τ), f0,1(τ) thus describes an enhanced elliptic curve for Γ(N) modulo
negation,

(Ej(τ),±(Pτ , Qτ )).

This is the sort of element that represents a point [C/Λτ , (τ/N + Λτ , 1/N + Λτ )]
of the moduli space S(N), excluding the finitely many such points with j(τ) ∈
{0, 1728}. Similarly, the information j(τ), f1(τ) describes (Ej(τ),±Qτ ), represent-
ing a point of S1(N), and j(τ), f0(τ) describes (Ej(τ), 〈Qτ 〉), representing a point
of S0(N). The moduli space description of modular curves is emerging from the
function field description.

Change τ to a variable so that j = j(τ) varies as well. This gathers the family
of elliptic curves Ej(τ) into a single universal elliptic curve,

(5) Ej : y2 = 4x3 −
(

27j

j − 1728

)
x−

(
27j

j − 1728

)
,

whose j-invariant is indeed the variable j (exercise). The universal elliptic curve
specializes to a complex elliptic curve for every complex j except 0 and 1728.

Exercises

1. Show that every admissible change of variable x = u2x′, y = u3y′ where u ∈ k∗

transforms a Weierstrass equation E into another Weierstrass equation E′ with

u4g′2 = g2, u6g′3 = g3, u12∆′ = ∆, j′ = j.

2. (a) Confirm that for a Weierstrass equation (1) with g2 and g3 nonzero the
condition j ∈ Q is equivalent to the condition g3

2 = rg2
3 for some nonzero r ∈ Q.

(b) Show that an elliptic curve over C with either of g2, g3 zero is isomorphic to
an elliptic curve over Q.

3. For any positive integer n and any field K, n-dimensional projective space
over K is the set of equivalence classes of nonzero (n + 1)-tuples modulo scalar
multiplication,

Pn(K) = (Kn+1 − {0})/ ∼
where v ∼ v′ if v′ = cv for some nonzero c ∈ K. Let [v] ∈ Pn(K) denote the
equivalence class of the vector v.
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(a) When n = 1 this construction gives the projective line. Show that

P1(K) = {[x, 1] : x ∈ K} ∪ {[1, y] : y ∈ K},

so the projective line is an overlapping union of two affine lines. Show also that

P1(K) = {[x, 1] : x ∈ K} ∪ {[1, 0]},

so the projective line is a disjoint union of the line and a point at infinity. In

particular, P1(C) is the Riemann sphere Ĉ.
(b) When n = 2 the construction gives the projective plane mentioned in the section.
Show that

P2(K) = {[x, y, 1] : x, y ∈ K} ∪ {[x, 1, z] : x, z ∈ K} ∪ {[1, y, z] : y, z ∈ K},

so the projective plane is a union of three affine planes. Show also that

P2(K) = {[x, y, 1] : x, y ∈ K} ∪ {[x, 1, 0] : x ∈ K} ∪ {[1, 0, 0]}
= {[x, y, 1] : x, y ∈ K} ∪ (P1(K) × {0}),

so the projective plane is a disjoint union of the plane and a projective line at
infinity.
(c) Homogenize the Weierstrass polynomial by adding in powers of z to make each
term cubic,

Ehom(x, y, z) = y2z − 4x3 + g2xz
2 + g3z

3.

Show that either all points or no points in each equivalence class [x, y, z] ∈ P2(k)
satisfy Ehom. Show that [0, 1, 0] satisfies Ehom and no other [x, y, 0] does.
(d) Dehomogenize Ehom by setting y = 1 to obtain a second affine version of E,

E′(x, z) = z − 4x3 + g2xz
2 + g3z

3.

In the (x, z) coordinate system, the infinite point 0E is (0, 0). Working in this
affine coordinate system, show that E is geometrically nonsingular at 0E . Is the set

of points (x, z) ∈ k
2

satisfying E′(x, z) all of E?
(e) Let P = (xP , yP ) be any (x, y)-point of E, and homogenize it to P = [xP , yP , 1].
Show that the homogeneous equation x − xP z = 0 is satisfied by P and by 0E ,
thus defining the projective line containing them. Dehomogenize back to an (x, y)-
equation to obtain a vertical line. Thus 0E is infinitely far in the vertical direction.

4. (a) Show that the casewise definitions of λ and µ make the line y = λx + µ the
secant line through P and Q when P 6= Q and the tangent line to E through P when
P = Q.
(b) Show that the algebraic definition (3) of elliptic curve addition corresponds to
the geometric description (2).
(c) The points (2,±5) satisfy the equation y2 = 4x3−7. Find another point (x, y) ∈
Q2 that does so as well.

5. (a) Confirm that the condition x([2]P ) = xP works out to the polynomial condi-
tion given in the section.
(b) Compute E [2] and E [3] for the elliptic curve with Weierstrass equation y2 =
4x3 − 4x.
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2. Elliptic curves in arbitrary characteristic

Much of the material in section 1 on elliptic curves in characteristic 0 is also
valid in characteristic p. Let k be an arbitrary field. A Weierstrass equation over k

is any cubic equation of the form

(6) E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, a1, . . . , a6 ∈ k.

To study this, define

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6,

b8 = a2
1a6 − a1a3a4 + a2a

2
3 + 4a2a6 − a2

4,

and define the discriminant of the equation to be

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

Further define
c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6,

and if ∆ 6= 0 define the invariant of the equation to be

j = c34/∆.

Then all bi ∈ k, ∆ ∈ k, all ci ∈ k, and j ∈ k when it is defined. Also, 4b8 = b2b6−b24
and 1728∆ = c34−c26. (Confirming the calculations in this paragraph is an exercise.)
If k does not have characteristic 2 then replacing y by y − (a1x + a3)/2 in (6)
eliminates the xy and y terms from the left side, reducing the Weierstrass equation
to

(7) E : y2 = x3 + (b2x
2 + 2b4x+ b6)/4, b2, b4, b6 ∈ k, char(k) 6= 2.

If k does not have characteristic 2 or 3 then replacing x by (x − 3b2)/36 and y
by y/216 in (7) eliminates the x2 term from the right side, further reducing the
Weierstrass equation to the form

(8) E : y2 = x3 − 27c4x− 54c6, c4, c6 ∈ k, char(k) /∈ {2, 3}.
Since (7) and (8) are special cases of (6), the coefficients of a Weierstrass equation
will be referred to as the ai in all cases.

As before,

Definition. Let k be an algebraic closure of the field k. When a Weierstrass
equation E has nonzero discriminant ∆ it is called nonsingular and the set

E = {(x, y) ∈ k
2

satisfying E(x, y)} ∪ {∞}
is called an elliptic curve over k.

Note that an elliptic curve over k has infinitely many points even when k is a
finite field.

The general admissible change of variable is

x = u2x′ + r, y = u3y′ + su2x′ + t, u, r, s, t ∈ k, u 6= 0.

These form a group, and they transform Weierstrass equations to Weierstrass equa-
tions, taking the discriminant ∆ to ∆/u12 and preserving the invariant j (exercise).
In particular the changes of variable between Weierstrass equations (6), (7), and (8)
are admissible, and thus we may work with (8) if char(k) /∈ {2, 3} and with (7) if
char(k) 6= 2, needing the general (6) only when char(k) = 2 or when there is no
assumption about the characteristic—for example, one can reduce a Weierstrass
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equation (6) over Q modulo an arbitrary prime p. Since the changes of variable
from (6) to (7) to (8) have u = 1 and u = 1/6 respectively, the discriminant of (8)
is 612 times the discriminant of (6) and (7), i.e., ∆(8) = 2639(c34 − c26).

Somewhat awkwardly, the cubic equation y2 = 4x3 − g2x − g3 from section 1
is no longer a Weierstrass equation by our new definition since the coefficients
of y2 and x3 are unequal, and replacing y by 2y to put it in the form (8) is an
inadmissible change of variable. Both sorts of cubic equation can be encompassed in
more general definitions of Weierstrass equation and admissible change of variable,
but since normalizing the coefficients of y2 and x3 to 1 simplifies the formulas of
this chapter we accept the small inconsistency in terminology instead. Modulo
the inadmissible substitution, the earlier definitions of the discriminant and the
invariant for equations y2 = 4x3 − g2x− g3 are the same as their definitions for (8)
(exercise).

In particular, replacing y by 2y in the universal elliptic curve (5) leads to the
Weierstrass equation

(9) y2 = x3 − 1

4

(
27j

j − 1728

)
x− 1

4

(
27j

j − 1728

)
,

with discriminant 26312j2/(j − 1728)3 and invariant j. An admissible change of
variable then gives a more general universal curve (exercise)

(10) y2 + xy = x3 −
(

36

j − 1728

)
x−

(
1

j − 1728

)
,

with discriminant j2/(j − 1728)3 and invariant j. The curve (10) is well suited for
fields of arbitrary characteristic since its discriminant is nonzero even in charac-
teristic 2 or 3. It is used to define modular curves in prime characteristic as the
universal elliptic curve is used to define modular curves over Q.

Most of the results from Section 1 hold in arbitrary characteristic. The Weier-
strass polynomial associated to (6) is

(11) E(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 ∈ k[x, y],

and similarly for (7) and (8). In all cases the Weierstrass equation is nonsingular if
and only if the corresponding curve E is geometrically nonsingular, i.e., the gradient
of the Weierstrass polynomial never vanishes. Verifying this in characteristic 2
requires a different argument from the one given before (exercise). Again an elliptic
curve E lies in P2(k), it forms an Abelian group with the infinite point [0, 1, 0] (see
exercise 3(a)) as its additive identity 0E , and the addition law is that collinear
triples sum to 0E. Opposite pairs of points P and −P have the same x-coordinate,
at most two points with the same x-coordinate satisfy (6), and so any two points
with the same x-coordinate are equal or opposite, possibly both. Since the y-values
satisfying (6) for a given x sum to −a1x − a3 the additive inverse of P = (xP , yP )
is the natural companion point

−P = (xP ,−yP − a1xP − a3).

Given points P and Q of E, let R be their third collinear point. The addition law
P +Q = −R says that the sum is the companion point of R,

(12) if P , Q, R are collinear then P +Q = (xR,−yR − a1xR − a3).

Let kprime denote the prime subfield of k, meaning the smallest subfield inside k,
either the rational numbers Q if char(k) = 0 or the finite field Fp of order p if
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char(k) = p. Then the group law is defined by rational functions r and s over the
field kprime({ai}) where the ai are the Weierstrass coefficients. If xQ = xP and
yQ = −yP − a1xP − a3 then Q = −P and so P +Q = 0E. Otherwise P +Q lies in
the affine part of E. Let

λ =






yQ − yP

xQ − xP
xP 6= xQ,

3x2
P + 2a2xP + a4 − a1yP

a1xP + a3 + 2yP
xP = xQ,

and

µ =






yPxQ − yQxP

xQ − xP
xP 6= xQ,

−x3
P + a4xP + 2a6 − a3yP

a1xP + a3 + 2yP
xP = xQ.

The line y = λx + µ passes through P and Q when P 6= Q and is the tangent line
to E at P when P = Q (exercise). The rational functions giving xP+Q and yP+Q

are

(13)
r(xP , xQ, yP , yQ) = λ2 + a1λ− a2 − xP − xQ,

s(xP , xQ, yP , yQ) = −(λ+ a1)r(xP , xQ, yP , yQ) − µ− a3.

This algebraic definition of addition corresponds to the geometric description (12)
(exercise). As before, the casewise expressions for λ and µ arise from a single
rational function (exercise). For any algebraic extension K/k the set of K-points
of E is a subgroup of E,

E(K) = {P ∈ E − {0E} : (xP , yP ) ∈ K2} ∪ {0E}.
Let N be a positive integer. The structure theorem for the N -torsion subgroup

E[N ] = ker([N ]) of an elliptic curve is

Theorem. Let E be an elliptic curve over k and let N be a positive integer. Then

E[N ] ∼=
∏

E[pep ] where N =
∏

pep .

Also,

E[pe] ∼= (Z/peZ)2 if p 6= char(k).

Thus E[N ] ∼= (Z/NZ)2 if char(k) ∤ N . On the other hand,

E[pe] ∼= Z/peZ for all e ≥ 1

or

E[pe] = {0} for all e ≥ 1





if p = char(k).

In particular, if char(k) = p then either E[p] ∼= Z/pZ, in which case E is called
ordinary, or E[p] = {0} and E is supersingular.

In this chapter we will also need to know a bit about singular Weierstrass equa-
tions. As already mentioned, the condition ∆ = 0 is equivalent to the condition
that for some point P satisfying the Weierstrass polynomial (11), both partial
derivatives vanish at P . The projective point [0, 1, 0] is always nonsingular (this
was an exercise), so any such P is affine. The coordinates of P lie in k (exercise),
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so an admissible change of variable over k takes P to (0, 0). Then the conditions
E(0, 0) = D1E(0, 0) = D2E(0, 0) = 0 force the Weierstrass polynomial to be

(14) E(x, y) = y2 + a1xy − x3 − a2x
2.

If char(k) 6= 2 then letting ỹ = y + a1x/2 in (14) simplifies this to

(15) E(x, y) = ỹ2 − x3 − a′2x
2.

The point P = (0, 0) is the only singular point satisfying E. If char(k) = 2 then this
is easy to verify from (14), while if char(k) 6= 2 then it follows from (15) (exercise).

Rewrite (14) as

(16) E(x, y) = (y −m1x)(y −m2x) − x3,

where m1 and m2 satisfy the quadratic polynomial f(t) = t2 + a1t− a2 over Fp but
need not lie in Fp themselves. The singular point P is called a node if m1 6= m2,
meaning that two distinct tangent lines pass through the curve at P , and it is called
a cusp if m1 = m2, when there is only one tangent line. (See Figure 2.) Working
from (14) and (16), it is easy to compute that c4 = (m1 −m2)

4 (exercise), so that
the curve has a node if c4 6= 0 and a cusp if c4 = 0. These conditions apply to
the Weierstrass equation in its original form since the admissible change of variable
translating the singular point P to (0, 0) multiplies c4 by a nonzero scalar, as in an
exercise. In sum,

Proposition. Let E be a Weierstrass equation over k. Then

• E describes an elliptic curve ⇐⇒ ∆ 6= 0,
• E describes a curve with a node ⇐⇒ ∆ = 0 and c4 6= 0,
• E describes a curve with a cusp ⇐⇒ ∆ = 0 and c4 = 0.

In the case of a node the set of projective solutions of E other than the singular

point forms a multiplicative group isomorphic to k
∗

, and in the case of a cusp the
set forms an additive group isomorphic to k. (See Silverman’s book for the proof
of this.)

Figure 2. Node and cusp
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Exercises

1. (Suggestion: Don’t do this problem by hand.)
(a) Confirm that 4b8 = b2b6 − b24 and that 1728∆ = c34 − c26. Confirm that if
char(k) 6= 2 then replacing y by y − (a1x+ a3)/2 in (6) gives (7). Confirm that if
char(k) /∈ {2, 3} then replacing (x, y) by ((x− 3b2)/36, y/216) in (7) gives (8).
(b) Show that the admissible changes of variable x = u2x′ + r, y = u3y′ + su2x′ + t
where u, r, s, t ∈ k and u 6= 0 form a group. Show that every admissible change
of variable transforms a Weierstrass equation E of the form (6) into another such
equation E′ with

ua′1 = a1 + 2s,

u2a′2 = a2 − sa1 + 3r − s2,

u3a′3 = a3 + ra1 + 2t,

u4a′4 = a4 − sa3 + 2ra2 − (rs+ t)a1 + 3r2 − 2st,

u6a′6 = a6 + ra4 − ta3 + r2a2 − rta1 + r3 − t2,

and

u2b′2 = b2 + 12r,

u4b′4 = b4 + rb2 + 6r2,

u6b′6 = b6 + 2rb4 + r2b2 + 4r3,

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4,

and

u4c′4 = c4, u6c′6 = c6,

and

u12∆′ = ∆, j′ = j.

(c) Suppose the seemingly more general change of variable x = vx′ + r, y = wy′ +
vsx′ + t, where v, w, r, s, t ∈ k and v, w are nonzero, takes Weierstrass equations to
Weierstrass equations. Show that v = u2 and w = u3 for some u ∈ k.
(d) Replace y by y/2 in the third Weierstrass equation (8) to get

y2 = 4x3 − g2x− g3, g2 = 108c4, g3 = 216c6.

Show that the previously defined discriminant ∆old = g3
2 − 27g2

3 of this equation is
equal to the discriminant ∆(8) = 2639(c34 − c26) of (8) in this section. Show that the

previously defined invariant j = 1728g3
2/∆old is equal to the invariant j = c34/∆ in

this section.
(e) Find an admissible change of variable taking the modified universal elliptic curve
(9) to the more general universal elliptic curve (10). Confirm that the discriminants
and invariants of the two universal curves are as stated.

2. Show that algebraic and geometric nonsingularity are equivalent in characteris-
tic 2.

3. (a) Homogenize the general Weierstrass polynomial by adding in powers of z to
make each term cubic,

Ehom(x, y, z) = y2z + a1xyz + a3yz
2 − x3 − a2x

2z − a4xz
2 − a6z

3.
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Show that [0, 1, 0] satisfies Ehom and no other [x, y, 0] does.
(b) Dehomogenize Ehom by setting y = 1 to obtain

Ẽ(x, z) = z + a1xz + a3z
2 − x3 − a2x

2z − a4xz
2 − a6z

3.

In the (x, z) coordinate system, the infinite point 0E is (0, 0). Working in this affine
coordinate system, show that E is geometrically nonsingular at 0E.

4. (a) Show that the casewise definitions of λ and µ make the line y = λx + µ the
secant line through P and Q when P 6= Q and the tangent line to E through P
when P = Q.
(b) Show that the geometric and algebraic descriptions (12) and (13) of the group
law agree.
(c) Multiply the numerator and the denominator of the secant case λ by yQ + yP +
a1xP + a3 and use the Weierstrass equation (6) to obtain a new expression for λ
when yQ + yP + a1xP + a3 6= 0. Show that this also agrees with the old λ when
xP = xQ, suitably giving ∞ when P = −Q. Similarly derive a new expression
for µ.

5. (a) Let P be a singular point of a Weierstrass equation E over k. Show that the
coordinates of P lie in k. For char(k) = 2, assume that every element of k is a
square.
(b) Show that if char(k) = 2 then (0, 0) is the only singular point satisfying the
Weierstrass polynomial (14), and if char(k) 6= 2 then (0, 0) is the only singular
point satisfying the Weierstrass polynomial (15).
(c) Show that c4 = (m1 −m2)

4 in the context of equations (14) and (16).

6. (a) For what values a, b ∈ Q do the Weierstrass equations

y2 = x3 + ax2 + bx, y2 = x3 − 2ax2 + (a2 − 4b)x

both define elliptic curves E and E′ over Q?
(b) For such values a and b show that the map

(x, y) 7→ (y2/x2, y(b− x2)/x2)

defines a map ϕ : E −→ E′ taking 0E to 0E′ .
(c) Compute ker(ϕ) and compute ϕ−1(0, 0).
(d) Find the dual isogeny ψ : E′ −→ E, verifying the compositions ψ ◦ϕ = [2]E and
ϕ ◦ ψ = [2]E′ .


