
CAUCHY’S THEOREM FOR SIMPLE CURVES

Let Ω be a region in C and let f : Ω −→ C be differentiable. Cauchy’s theorem
for simple curves says that if γ is a simple closed rectifiable curve in Ω whose interior
lies in Ω then

∫
γ
f(z) dz = 0. We establish the theorem for triangles, then simple

polygons, then polygons, then simple closed rectifiable curves.
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1. Cauchy’s Theorem for Triangles

Let Ω be a region, let f : Ω −→ C be differentiable, and let T be a triangle in Ω.
Here T is not only three line segments, but also the region that they surround.
The three segments, traversed counterclockwise, are denoted T . That is, T = ∂T.
Cauchy’s Theorem for triangles states that∫

T

f(z) dz = 0.

Bisect each side of T to get four counterclockwise triangles T j1 = ∂Tj1 for j =
1, . . . , 4. Then∣∣∣∣∫

T

f(z) dz

∣∣∣∣ =

∣∣∣∣∣∣
4∑
j=1

∫
T j
1

f(z) dz

∣∣∣∣∣∣ ≤
4∑
j=1

∣∣∣∣∣
∫
T j
1

f(z) dz

∣∣∣∣∣ ≤ 4

∣∣∣∣∫
T1

f(z) dz

∣∣∣∣ ,
where T1 is one of the triangles T j1 . Iterating the argument shows that for any
n > 0 we have

(1)

∣∣∣∣∫
T

f(z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
Tn

f(z) dz

∣∣∣∣ ,
where Tn = ∂Tn and T ⊃ T1 ⊃ · · · ⊃ Tn, each triangle’s sides being half as long as
those of the triangle before it.

The intersection of all the solid triangles is a single point,⋂
n≥1

Tn = {p}.

Indeed, because the triangle diameters shrink by a factor of two at each generation,
the intersection can’t be more than one point. And because no finite intersection
of Tn’s is empty, the infinite intersection isn’t empty either because T is compact.
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For convenience we may assume that p = 0 and that f(0) = 0. The condition
that f is differentiable at 0 is that for some constant c ∈ C,

f(z) = cz + o(z).

Consequently, ∫
Tn

f(z) dz = c

∫
Tn

z dz +

∫
Tn

o(z) dz.

Because z has antiderivative z2 and Tn is closed, the first integral is 0, and so in
fact ∫

Tn

f(z) dz =

∫
Tn

o(z) dz.

Let ε > 0 be given. Because the triangles {Tn} are shrinking to 0, we have o(z) ≤
ε|z| for all z ∈ Tn as soon as n is large enough. For such n,∣∣∣∣∫

Tn

f(z) dz

∣∣∣∣ ≤ ε sup{|z| : z ∈ Tn} · length(Tn) ≤ ε · (length(Tn))2.

But length(Tn) = length(T )/2n. Therefore, for large enough n,∣∣∣∣∫
Tn

f(z) dz

∣∣∣∣ ≤ ε · (length(T ))2/4n.

Combine inequality (1) with these results to get∣∣∣∣∫
T

f(z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
Tn

f(z) dz

∣∣∣∣ ≤ ε · (length(T ))2.

Because ε > 0 is arbitrary and length(T ) is finite, the desired result follows,∫
T

f(z) dz = 0.

2. Cauchy’s Theorem for Simple Polygons

Let Ω be a region, let f : Ω −→ C be differentiable, and let P be a simple
polygon in Ω. Here P is not only the boundary segments, but also the region that
they surround. The segments, traversed counterclockwise, are denoted P . That
is, P = ∂P. To say that the polygon is simple is to say that the only intersection
points of the segments are each segment’s endpoint and the start-point of the next
segment, and the last segment’s endpoint and the start-point of the first segment.
Cauchy’s Theorem for simple polygons states that∫

P

f(z) dz = 0.

This can be shown by induction on the number of polygon vertices, with the triangle
as the base case. To do so, we show that some pair of polygon vertices can see each
other, in the sense that the segment joining them lies entirely inside the polygon;
add that segment and then cut along it to get two simple polygons, each of which
has fewer vertices than the original. So, assume that the simple polygon P has
more than three vertices. Let B be an outward-pointing vertex of the polygon P ;
such a vertex exists because the sum 2π of the external angles at the vertices is
positive. Let A and C be its neighboring vertices, with the interior of the polygon
to the left as we move from A to B to C. If A and C can see each other then we
are done. Otherwise, consider the line through B parallel to AC; start moving it
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from B toward AC, keeping it parallel to AC. There is a first moment where the
segment strictly between AB and BC of the moving line meets the polygon, and
at that moment the intersection contains a vertex D such that B and D see each
other.

3. Cauchy’s Theorem for Polygons

Given a non-simple polygon, we may add vertices where edges cross or share a
segment, eliminate back-and-forth edge traversals, and be left with finitely many
simple polygons. Specifically, if after adding vertices as just described, if the vertex
list contains a section . . . , a, b, c, b, d . . . then replace it by . . . a, b, d, . . . , and if the
vertex list takes the form a1, . . . , ak, b, c1, . . . , c`, b, d1, . . . , dn, a1 with ` ≥ 2 then
replace it by a1, . . . , ak, b, d1, . . . , dn, a1 and b, c1, . . . , c`, b; repeat this process until
obtaining a finite set of vertex lists with no duplicates except ending where they
start. None of this affects the integral

∫
P
f(z) dz, which is now 0.

4. Cauchy’s Theorem for Simple Curves

Let Ω be a region, let f : Ω −→ C be differentiable, and let γ be a simple
rectifiable closed curve in Ω whose interior lies in Ω. A simple closed curve is a loop
with no self-intersections except that its endpoint is its start-point. A rectifiable
curve is a curve of finite length. The seemingly self-evident fact that a simple closed
curve has an interior and an exterior is the Jordan Curve Theorem, not at all trivial
to prove. For example, the theorem fails for simple closed curves on a torus rather
than in the plane, even though the plane and the torus are indistinguishable in the
small; so the proof must make use of something quantifiable that distinguishes the
plane from the torus.

Cauchy’s Theorem for simple curves states that∫
γ

f(z) dz = 0.

The proof requires a little topology. The first claim is that for some ρ > 0, the
ρ-thickened version of the curve still lies in the region,

(2)
⋃
z∈γ

B(z, ρ) ⊂ Ω.

Here B(z, ρ) is the closed ball about z of radius ρ. If Ω is all of C then the
containment holds with ρ = 1. Otherwise, the complement Ωc is nonempty, and so
we can define the distance function from the curve to the complement

d : γ −→ R+, d(z) = inf{|z − w| : w ∈ Ωc}.
This function is continuous, as follows. Let ε > 0 be given. Consider two points
z, z′ of γ such that |z−z′| < ε/2. There exists w ∈ Ωc such that |z−w| < d(z)+ε/2.
Compute,

|z′ − w| = |z − w + z′ − z| ≤ |z − w|+ |z′ − z| < d(z) + ε/2 + ε/2 = d(z) + ε.

Thus d(z′) < d(z)+ε, i.e., d(z′)−d(z) < ε. Symmetrically, d(z)−d(z′) < ε as well,
so |d(z′)− d(z)| < ε if |z− z′| < ε/2, showing that d is continuous as claimed. Also
γ is compact, and so d has a minimum, which is positive. Denote this minimum 2ρ.
Then |z − w| ≥ 2ρ for all z ∈ γ and w ∈ Ωc, and the containment (2) follows.
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Let R (for “ribbon”) denote the thickened curve,

R =
⋃
z∈γ

B(z, ρ) ⊂ Ω.

Consider finitely many points z0, z1, z2, . . . , zn = z0 of γ, in order of clockwise tra-
versal, each within distance ρ of its predecessor along the length of γ. Consecutive
points must then also be within distance ρ of each other in C, and so the polygon P
with the points as vertices lies in the ribbon R. If we add more points, this will
not increase the distances between consecutive points along the curve, and so the
resulting new polygon will still lie in R. (This is true even though adding more
points, so that the distance along the curve between consecutive points is at most
as big as before, can make the distance in C between consecutive points grow; for
example, two points leading in and out of a hairpin turn are close, but the point at
the turn is far from them both.)

Consider the sum

S =

n∑
j=1

f(zj)(zj − zj−1).

This is a Riemann sum for the curve integral
∫
γ
f(z) dz that we want to equal zero,

and by taking enough division points zj we can make S as close to
∫
γ
f(z) dz as we

wish.
Also, S is a Riemann sum for a polygon integral

∫
P
f(z) dz, with P the polygon

having vertices z0, . . . , zn, and this integral is zero.
However, the argument that adding more division points thus also makes S as

close to zero as we wish isn’t quite transparent. The problem is that while the curve
γ is fixed in this discussion, so that adding more points zj along γ refines Riemann
sums for the one particular integral

∫
γ
f(z) dz, adding those points also changes

the polygon P and so the process is not refining sums for any particular polygon
integral

∫
P
f(z) dz. So even though polygon integrals are zero, a little more work

is required to show that adding enough points makes S close to zero by making it
close to a polygon integral.

Now let it be understood that with points z0, z1, . . . , zn = z0 chosen, P denotes
their polygon. The difference between the relevant polygon integral and sum is∫

P

f(z) dz − S =

n∑
j=1

(∫ zj

zj−1

f(z) dz − f(zj)(zj − zj−1)

)
,

with the integrals taken along the line segments [zj−1, zj ]. This equality rewrites
as ∫

P

f(z) dz − S =

n∑
j=1

∫ zj

zj−1

(f(z)− f(zj)) dz.

As explained above, the polygon P remains in the ribbon R as we add points. Also,
the polygon P remains an inscribed polygon of γ as points are added, so that always

length(P ) ≤ length(γ).

BecauseR is a compact subset of Ω, and because f is continuous on Ω, f is uniformly
continuous on R. So, for any ε > 0, there exists some δ > 0 such that for all z, z̃ ∈ R,

|z − z̃| < δ =⇒ |f(z)− f(z̃)| < ε/length(γ).
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Finally, add enough points to make |zj − zj−1| < δ for all j. This puts everything
in place for the final calculation,∣∣∣∣∫

P

f(z) dz − S
∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

∫ zj

zj−1

(f(z)− f(zj)) dz

∣∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣∣
∫ zj

zj−1

(f(z)− f(zj)) dz

∣∣∣∣∣
≤

n∑
j=1

∫ zj

zj−1

|f(z)− f(zj)| |dz|

≤
n∑
j=1

(ε/length(γ)) · |zj − zj−1|

≤ (ε/length(γ)) · length(P )

≤ ε.

Because the sum S is arbitrarily close to the curve-integral
∫
γ
f(z) dz, and because

it is arbitrary close to the polygon integral
∫
P
f(z) dz = 0, Cauchy’s Theorem for

simple curves follows, ∫
γ

f(z) dz = 0.

A variant proof can be given if γ is piecewise C1 beyond being rectifiable, but it
is not much different.


