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Preface

This text is an early draft for a general introductory textbook in computer science—a
Java-based version of my 1995 textbook The Art and Science of C.  My hope is that I can
use much of the existing material in writing the new book, although quite a bit of the
material and overall organization have to change.  At this point, the material is still in a
preliminary form, and the feedback I get from those of you who are taking this course
will almost certainly lead to some changes before the book is published.

One of the central features of the text is that it incorporates the work of the Association of
Computing Machinery’s Java Task Force, which was convened in 2004 with the
following charter:

To review the Java language, APIs, and tools from the perspective of introductory
computing education and to develop a stable collection of pedagogical resources that
will make it easier to teach Java to first-year computing students without having
those students overwhelmed by its complexity.

I am grateful to my colleagues on the Task Force—Kim Bruce, Robb Cutler, James H.
Cross II, Scott Grissom, Karl Klee, Susan Rodger, Fran Trees, Ian Utting, and Frank
Yellin—for all their hard work over the past year, as well as to the National Science
Foundation, the ACM Education Board, the SIGCSE Special Projects Fund for their
financial support.

I also want to thank the participants in last year’s CS 298 seminar—Andrew Adams,
Andy Aymeloglu, Kurt Berglund, Seyed Dorminani-Tabatabaei, Erik Forslin, Alex
Himel, Tom Hurlbutt, Dave Myszewski, Ann Pan, Vishakha Parvate, Cynthia Wang, Paul
Wilkins, and Julie Zhuo for helping me work through these ideas.  In addition, I would
like to thank my CS 106A TA Brandon Burr and all the hardworking section-leaders for
taking on the challenge of helping to teach a course with a just-in-time approach to the
materials.

Particularly because my wife Lauren Rusk (who has edited all of my books) has not yet
had her chance to work her wonderful magic on the language, you may still find some
rough edges, awkward constructions, and places where real improvement is needed.
Writing is, after all, at least as difficult as programming and requires just as much testing
to get everything right.  If you let me know when things are wrong, I think we’ll end up
with a textbook and a course that are exciting, thorough, and practical.

Thanks in advance for all your help.

Eric Roberts
Professor of Computer Science
Stanford University
September 2005
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Chapter 1
Introduction

[The Analytical Engine offers] a new, a vast, and a powerful language . . .
for the purposes of mankind.

— Augusta Ada Byron, Lady Lovelace,
The Sketch of the Analytical Engine
Invented by Charles Babbage, 1843

Augusta Ada Byron, Lady Lovelace (1815–1852)

Augusta Ada Byron, the daughter of English poet Lord Byron, was encouraged b ests in
science and mathematics at a time when few women were allowed to study those
subjects. At the age of 17, Ada met Charles Babbage, a prominent English scientist who
devoted his life to designing machines for carrying out mathematical computations—
machines that he was never able to complete.  Ada was firmly convinced of the potential
of Babbage’s Analytical Engine and wrote extensive notes on its design, along with
several complex mathematical programs that have led many people to characterize her as
the first programmer.  In 1980, the U.S. Department of Defense named the programming
language Ada in her honor.
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Given our vantage point at the beginning of the 21st century, it is hard to believe that
computers did not even exist in 1940.  Computers are everywhere today, and it is the
popular wisdom, at least among headline writers, to say that we live in the computer age.

1.1  A brief history of computing
In a certain sense, computing has been around since ancient times.  Much of early
mathematics was devoted to solving computational problems of practical importance,
such as monitoring the number of animals in a herd, calculating the area of a plot of land,
or recording a commercial transaction.  These activities required people to develop new
computational techniques and, in some cases, to invent calculating machines to help in
the process.  For example, the abacus, a simple counting device consisting of beads that
slide along rods, has been used in Asia for thousands of years, possibly since 2000 BCE.

Throughout most of its history, computing has progressed relatively slowly.  In 1623, a
German scientist named Wilhelm Schickard invented the first known mechanical
calculator, capable of performing simple arithmetical computations automatically.
Although Schickard’s device was lost to history through the ravages of the Thirty Years’
War (1618–1648), the French philosopher Blaise Pascal used similar techniques to
construct a mechanical adding machine in the 1640s, a copy of which remains on display
in the Conservatoire des Arts et Métiers in Paris.  In 1673, the German mathematician
Gottfried Leibniz developed a considerably more sophisticated device, capable of
multiplication and division as well as addition and subtraction.  All these devices were
purely mechanical and contained no engines or other source of power.  The operator
would enter numbers by setting metal wheels to a particular position; the act of turning
those wheels set other parts of the machine in motion and changed the output display.

During the Industrial Revolution, the rapid growth in technology made it possible to
consider new approaches to mechanical computation.  The steam engine already provided
the power needed to run factories and railroads.  In that context, it was reasonable to ask
whether one could use steam engines to drive more sophisticated computing machines,
machines that would be capable of carrying out significant calculations under their own
power.  Before progress could be made, however, someone had to ask that question and
set out to find an answer.  The necessary spark of insight came from a British
mathematician named Charles Babbage, who is one of the most interesting figures in the
history of computing.

During his lifetime, Babbage designed two different computing machines, which he
called the Difference Engine and the Analytical Engine; each represented a considerable
advance over the calculating machines available at the time.  The tragedy of his life is
that he was unable to complete either of these projects.  The Difference Engine, which he
designed to produce tables of mathematical functions, was eventually built by a Swedish
inventor in 1854—30 years after its original design.  The Analytical Engine was
Babbage’s lifelong dream, but it remained incomplete when Babbage died in 1871.  Even
so, its design contained many of the essential features found in modern computers.  Most
importantly, Babbage conceived of the Analytical Engine as a general-purpose machine,
capable of performing many different functions depending upon how it was programmed.
In Babbage’s design, the operation of the Analytical Engine was controlled by a pattern
of holes punched on a card that the machine could read.  By changing the pattern of
holes, one could change the behavior of the machine so that it performed a different set of
calculations.

Much of what we know of Babbage’s work comes from the writings of Augusta Ada
Byron, the only daughter of the poet Lord Byron and his wife Annabella.  More than
most of her contemporaries, Ada appreciated the potential of the Analytical Engine and
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became its champion.  She designed several sophisticated programs for the machine,
thereby becoming the first programmer.  In the 1970s, the U.S. Department of Defense
named its own programming language Ada in honor of her contribution.

Some aspects of Babbage’s design did influence the later history of computation, such
as the use of punched cards to control computation—an idea that had first been
introduced by the French inventor Joseph Marie Jacquard as part of a device to automate
the process of weaving fabric on a loom.  In 1890, Herman Hollerith used punched cards
to automate data tabulation for the U.S. Census.  To market this technology, Hollerith
went on to found a company that later became the International Business Machines
(IBM) corporation, which has dominated the computer industry for most of the twentieth
century.

Babbage’s vision of a programmable computer did not become a reality until the
1940s, when the advent of electronics made it possible to move beyond the mechanical
devices that had dominated computing up to that time.  A prototype of the first electronic
computer was assembled in late 1939 by John Atanasoff and his student, Clifford Barry,
at Iowa State College.  They completed a full-scale implementation containing 300
vacuum tubes in May 1942.  The computer was capable of solving small systems of
linear equations.  With some design modifications, the Atanasoff-Barry computer could
have performed more intricate calculations, but work on the project was interrupted by
World War II.

The first large-scale electronic computer was the ENIAC, an acronym for Electronic
Numerical Integrator And Computer.  Completed in 1946 under the direction of J.
Presper Eckert and John Mauchly at the Moore School of the University of Pennsylvania,
the ENIAC contained more than 18,000 vacuum tubes and occupied a 30-by-50 foot
room.  The ENIAC was programmed by plugging wires into a pegboard-like device
called a patch panel.  By connecting different sockets on the patch panel with wires, the
operators could control ENIAC’s behavior.  This type of programming required an
intimate knowledge of the internal workings of the machine and proved to be much more
difficult than the inventors of the ENIAC had imagined.

Perhaps the greatest breakthrough in modern computing occurred in 1946, when John
von Neumann at the Institute for Advanced Study in Princeton proposed that programs
and data could be represented in a similar way and stored in the same internal memory.
This concept, which simplifies the programming process enormously, is the basis of
almost all modern computers.  Because of this aspect of their design, modern computers
are said to use von Neumann architecture.

Since the completion of ENIAC and the development of von Neumann’s stored-
programming concept, computing has evolved at a furious pace.  New systems and new
concepts have been introduced in such rapid succession that it would be pointless to list
them all.  Most historians divide the development of modern computers into the
following four generations, based on the underlying technology.

• First generation.  The first generation of electronic computers used vacuum tubes as
the basis for their internal circuitry.  This period of computing begins with the
Atanasoff-Barry prototype in 1939.

• Second generation.  The invention of the transistor in 1947 ushered in a new
generation of computers.  Transistors perform the same functions as vacuum tubes but
are much smaller and require a fraction of the electrical power.  The first computer to
use transistors was the IBM 7090, introduced in 1958.
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• Third generation.  Even though transistors are tiny in comparison to vacuum tubes, a
computer containing 100,000 or 1,000,000 individual transistors requires a large
amount of space.  The third generation of computing was enabled by the development
in 1959 of the integrated circuit or chip, a small wafer of silicon that has been
photographically imprinted to contain a large number of transistors connected together.
The first computer to use integrated circuits in its construction was the IBM 360,
which appeared in 1964.

• Fourth generation.  The fourth generation of computing began in 1975, when the
technology for building integrated circuits made it possible to put the entire processing
unit of a computer on a single chip of silicon.  The fabrication technology is called
large-scale integration.  Computer processors that consist of a single chip are called
microprocessors and are used in most computers today.

The early machines of the first and second generations are historically important as the
antecedents of modern computers, but they would hardly seem interesting or useful
today.  They were the dinosaurs of computer science: gigantic, lumbering beasts with
small mental capacities, soon to become extinct.  The late Robert Noyce, one of the
inventors of the integrated circuit and founder of Intel Corporation, observed that,
compared to the ENIAC, the typical modern computer chip “is twenty times faster, has a
larger memory, is thousands of times more reliable, consumes the power of a light bulb
rather than that of a locomotive, occupies 1/30,000 the volume, and costs 1/10,000 as
much.”  Computers have certainly come of age.

1.2  What is computer science?
Growing up in the modern world has probably given you some idea of what a computer
is.   This text, however, is less concerned with computers as physical devices than with
computer science.  At first glance, the words computer and science seem an incongruous
pair.  In its classical usage, science refers to the study of natural phenomena; when people
talk about biological science or physical science, we understand and feel comfortable
with that usage.  Computer science doesn’t seem the same sort of thing.  The fact that
computers are human-made artifacts makes us reticent to classify the study of computers
as a science.  After all, modern technology has also produced cars, but we don’t talk
about “car science.”  Instead, we refer to “automotive engineering” or “automobile
technology.”  Why should computers be any different?

To answer this question, it is important to recognize that the computer itself is only
part of the story.  The physical machine that you can buy today at your local computer
store is an example of computer hardware.  It is tangible.  You can pick it up, take it
home, and put it on your desk.  If need be, you could use it as a doorstop, albeit a rather
expensive one.  But if there were nothing there besides the hardware, if a machine came
to you exactly as it rolled off the assembly line, serving as a doorstop would be one of the
few jobs it could do.  A modern computer is a general-purpose machine, with the
potential to perform a wide variety of tasks.  To achieve that potential, however, the
computer must be programmed.  The act of programming a computer consists of
providing it with a set of instructions—a program—that specifies all the steps necessary
to solve the problem to which it is assigned.  These programs are generically known as
software, and it is the software, together with the hardware, that makes computation
possible.

In contrast to hardware, software is an abstract, intangible entity.  It is a sequence of
simple steps and operations, stated in a precise language that the hardware can interpret.
When we talk about computer science, we are concerned primarily with the domain of
computer software and, more importantly, with the even more abstract domain of
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problem solving.  Problem solving turns out to be a highly challenging activity that
requires creativity, skill, and discipline.  For the most part, computer science is best
thought of as the science of problem solving in which the solutions happen to involve a
computer.

This is not to say that the computer itself is unimportant.  Before computers, people
could solve only relatively simple computational problems.  Over the last 50 years, the
existence of computers has made it possible to solve increasingly difficult and
sophisticated problems in a timely and cost-effective way.  As the problems we attempt to
solve become more complex, so does the task of finding effective solution techniques.
The science of problem solving has thus been forced to advance along with the
technology of computing.

1.3  An overview of computer hardware
This text focuses almost exclusively on software and the activity of solving problems by
computer that is the essence of computer science.  Even so, it is important to spend some
time in this chapter talking about the structure of computer hardware at a very general
level of detail.  The reason is simple: programming is a learn-by-doing discipline.  You
will not become a programmer just by reading this book, even if you solve all the
exercises on paper.  Learning to program is hands-on work and requires you to use a
computer.

In order to use a computer, you need to become acquainted with its hardware.  You
have to know how to turn the computer on, how to use the keyboard to type in a program,
and how to execute that program once you’ve written it.  Unfortunately, the steps you
must follow in order to perform these operations differ significantly from one computer
system to another.  As someone who is writing a general textbook, I cannot tell you how
your own particular system works and must instead concentrate on general principles that
are common to any computer you might be using.  As you read this section, you should
look at the computer you have and see how the general discussion applies to that
machine.

Most computer systems today consist of the components shown in Figure 1-1.  Each of
the components in the diagram is connected by a communication channel called a bus,

bus
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FIGURE 1-1 Components of a typical computer
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which allows data to flow between the separate units.  The individual components are
described in the sections that follow.

The CPU
The  central processing unit or CPU is the “brain” of the computer.  It performs the
actual computation and controls the activity of the entire computer.  The actions of the
CPU are determined by a program consisting of a sequence of coded instructions stored
in the memory system.  One instruction, for example, might direct the computer to add a
pair of numbers.  Another might make a character appear on the computer screen.  By
executing the appropriate sequence of simple instructions, the computer can be made to
perform complex tasks.

In a modern computer, the CPU consists of an integrated circuit—a tiny chip of
silicon that has been imprinted with millions of microscopic transistors connected to form
larger circuits capable of carrying out simple arithmetic and logical operations.

Memory
When a computer executes a program, it must have some way to store both the program
itself and the data involved in the computation.  In general, any piece of computer
hardware capable of storing and retrieving information is a storage device.  The storage
devices that are used while a program is actively running constitute its primary storage,
which is more often called its memory.  Since John von Neumann first suggested the
idea in 1946, computers have used the same memory to store both the individual
instructions that compose the program and the data used during computation.

Memory systems are engineered to be very efficient so that they can provide the CPU
with extremely fast access to their contents.  In today’s computers, memory is usually
built out of a special integrated-circuit chip called a RAM, which stands for random-
access memory.  Random-access memory allows the program to use the contents of any
memory cell at any time.

Secondary storage
Although computers usually keep active data in memory whenever a program is running,
most primary storage devices have the disadvantage that they function only when the
computer is turned on.  When you turn off your computer, any information that was
stored in primary memory is lost.  To store permanent data, you need to use a storage
device that does not require electrical power to maintain its information.  Such devices
constitute secondary storage.

The most common secondary storage devices used in computers today are disks,
which consist of circular spinning platters coated with magnetic material used to record
data.  In a modern personal computer, disks come in two forms: hard disks, which are
built into the computer system, and floppy disks, which are removable.  When you
compose and edit your program, you will usually do so on a hard disk, if one is available.
When you want to move the program to another computer or make a backup copy for
safekeeping, you will typically transfer the program to a floppy disk.

I/O devices
For the computer to be useful, it must have some way to communicate with users in the
outside world.  Computer input usually consists of characters typed on a keyboard.
Output from the computer typically appears on the computer screen or on a printer.
Collectively, hardware devices that perform input and output operations are called I/O
devices, where I/O stands for input/output.
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I/O devices vary significantly from machine to machine.  Outside of the standard
alphabetic keys, computer keyboards have different arrangements and even use different
names for some of the important keys.  For example, the key used to indicate the end of a
line is labeled Return on some keyboards and Enter on others.  On some computer
systems, you make changes to a program by using special function keys on the top or
side of the keyboard that provide simple editing operations.  On other systems, you can
accomplish the same task by using a hand-held pointing device called a mouse to select
program text that you wish to change.  In either case, the computer keeps track of the
current typing position, which is usually indicated on the screen by a flashing line or
rectangle called the cursor.

Network
The final component shown in Figure 1-1 is the network, which indicates a connection to
the constellation of other computers that are connected together as part of the Internet.  In
many respects, the network is much the same as the I/O devices in terms of the overall
hardware structure.  As the network becomes increasingly central to our collective
expectation of what computing means, it makes sense to include the network as a separate
component to emphasize its importance.  Adding emphasis to the role of networking is
particularly important in a book that uses Java as its programming language because the
success of Java was linked fairly closely to the rise of networking, as discussed later in
this chapter.

1.4  Algorithms
Now that you have a sense of the structure of a computer system, let’s turn to computer
science.  Because computer science is the discipline of solving problems with the
assistance of a computer, you need to understand a concept that is fundamental to both
computer science and the abstract discipline of problem solving—the concept of an
algorithm.  The word algorithm comes to us from the name of the ninth-century Persian
mathematician Abu Ja‘far Mohammed ibn Mûsâ al-Khowârizmî, who wrote a treatise on
mathematics entitled Kitab al jabr w’al-muqabala (which itself gave rise to the English
word algebra).  Informally, you can think of an algorithm as a strategy for solving a
problem.  To appreciate how computer scientists use the term, however, it is necessary to
formalize that intuitive understanding and tighten up the definition.

To be an algorithm, a solution technique must fulfill three basic requirements.  First of
all, an algorithm must be presented in a clear, unambiguous form so that it is possible to
understand what steps are involved.  Second, the steps within an algorithm must be
effective, in the sense that it is possible to carry them out in practice.  A technique, for
example, that includes the operation “multiply r by the exact value of π” is not effective,
since it is not possible to compute the exact value of π.  Third, an algorithm must not run
on forever but must deliver its answer in a finite amount of time.  In summary, an
algorithm must be

1. Clearly and unambiguously defined.
2. Effective, in the sense that its steps are executable.
3. Finite, in the sense that it terminates after a bounded number of steps.

These properties will turn out to be more important later on when you begin to work with
complex algorithms.  For the moment, it is sufficient to think of algorithms as abstract
solution strategies—strategies that will eventually become the core of the programs you
write.
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As you will soon discover, algorithms—like the problems they are intended to solve—
vary significantly in complexity.  Some problems are so simple that an appropriate
algorithm springs immediately to mind, and you can write the programs to solve such
problems without too much trouble.  As the problems become more complex, however,
the algorithms needed to solve them begin to require more thought.  In most cases,
several different algorithms are available to solve a particular problem, and you need to
consider a variety of potential solution techniques before writing the final program.

1.5  Stages in the programming process
Solving a problem by computer consists of two conceptually distinct steps. First, you
need to develop an algorithm, or choose an existing one, that solves the problem. This
part of the process is called algorithmic design. The second step is to express that
algorithm as a computer program in a programming language. This process is called
coding.

As you begin to learn about programming, the process of coding—translating your
algorithm into a functioning program—will seem to be the more difficult phase of the
process.  As a new programmer, you will, after all, be starting with simple problems just
as you would when learning any new skill.  Simple problems tend to have simple
solutions, and the algorithmic design phase will not seem particularly challenging.
Because the language and its rules are entirely new and unfamiliar, however, coding may
at times seem difficult and arbitrary.  I hope it is reassuring to say that coding will rapidly
become easier as you learn more about the programming process.  At the same time,
however, algorithmic design will get harder as the problems you are asked to solve
increase in complexity.

When new algorithms are introduced in this text, they will usually be expressed
initially in English.  Although it is often less precise than one would like, English is a
reasonable language in which to express solution strategies as long as the communication
is entirely between people who speak English.  Obviously, if you wanted to present your
algorithm to someone who spoke only Russian, English would no longer be an
appropriate choice.  English is likewise an inappropriate choice for presenting an
algorithm to a computer.  Although computer scientists have been working on this
problem for decades, understanding English or Russian or any other human language
continues to lie beyond the boundaries of current technology.  The computer would be
completely unable to interpret your algorithm if it were expressed in human language.  To
make an algorithm accessible to the computer, you need to translate it into a
programming language.  There are many programming languages in the world, including
Fortran, BASIC, Pascal, Lisp, C, C++, and a host of others.  In this text, you will learn
how to use the programming language Java—a language developed by Sun Microsystems
in 1995 that has since become something of a standard both for industry and for
introductory computer science courses.

Creating and editing programs
Before you can run a program on most computer systems, it is necessary to enter the text
of the program and store it in a file, which is the generic name for any collection of
information stored in the computer’s secondary storage.  Every file must have a name,
which is usually divided into two parts separated by a period, as in MyProgram.java.
When you create a file, you choose the root name, which is the part of the name
preceding the period, and use it to tell yourself what the file contains.  The portion of the
filename following the period indicates what the file is used for and is called the
extension.  Certain extensions have preassigned meanings.  For example, the extension
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.java indicates a program file written in the Java language.  A file containing program
text is called a source file.

The general process of entering or changing the contents of a file is called editing that
file.  The editing process differs significantly between individual computer systems, so it
is not possible to describe it in a way that works for every type of hardware.  When you
work on a particular computer system, you will need to learn how to create new files and
to edit existing ones.  You can find this information in the computer manual or the
documentation for the compiler you are using.

The compilation process
Once you have created your source file, the next step in the process is to translate your
program into a form that the computer can understand.  Languages like Java, C, and C++
are examples of what computer scientists call higher-level languages.  Such languages
are designed to make it easier for human programmers to express algorithms without
having to understand in detail exactly how the underlying hardware will execute those
algorithms.  Higher-level languages are also typically independent of the particular
characteristics that differentiate individual machine architectures.  Internally, however,
each computer system understands a low-level language that is specific to that type of
hardware, which is called its machine language.  For example, the Apple Macintosh and
a Windows-based computer use different underlying machine languages, even though
both of them can execute programs written in a higher-level language.

To make it possible for a program written in a higher-level language to run on different
computer systems, there are two basic strategies.  The classical approach is to use a
program called a compiler to translate the programs that you write into the low-level
machine language appropriate to the computer on which the program will run.  Under this
strategy, different platforms require different translators.  For example, if you are writing
C programs for a Macintosh, you need to run a special program that translates C into the
machine language for the Macintosh.  If you are using a Windows platform to run the
same program, you need to use a different translator because the underlying hardware
uses a different machine language.

The second approach is to translate the program into an intermediate language that is
independent of the underlying platform.  On each of these platforms, programs run in a
system called an interpreter that executes the intermediate language for that machine.  In
a pure interpreter, the interpreter does not actually translate the intermediate language
into machine language but simply implements the intended effect for each operation.

Modern implementations of Java use a hybrid approach.  A Java compiler translates
your programs into a common intermediate language.  That language is then interpreted
by a program called the Java Virtual Machine (or JVM for short) that executes the
intermediate language for that machine.  The program that runs the Java Virtual Machine,
however, typically does compile pieces of the intermediate code into the underlying
machine language.  As a result, Java can often achieve a level of efficiency that is
unattainable with traditional interpreters.

  In classical compiler-based systems, the compiler translates the source file into a
second file called an object file that contains the actual instructions appropriate for that
computer system.  This object file is then combined together with other object files to
produce an executable file that can be run on the system.  These other object files
typically include predefined object files, called libraries, that contain the machine-
language instructions for various operations commonly required by programs.  The
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FIGURE 1-2 Stages in the classical compilation process

#include <stdio.h>

main() {
 printf("Hello\n");
}

compiler
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linker
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executable file

other object

process of combining all the individual object files into an executable file is called
linking. The entire process is illustrated by the diagram shown in Figure 1-2.

In Java, the process is slightly more elaborate.  As noted earlier in this section, Java
produces intermediate code that it stores in files called class files.  Those class files are
then combined with other class files and libraries to produce a complete version of the
intermediate program with everything it needs linked together.  The usual format for that
version of the program is a compressed collection of individual files called a  JAR
archive.  That archive file is then interpreted by the Java Virtual Machine in such a way
that the output appears on your computer. This process is illustrated in Figure 1-3.

Programming errors and debugging
Besides translation, compilers perform another important function.  Like human
languages, programming languages have their own vocabulary and their own set of
grammatical rules.  These rules make it possible to determine that certain statements are
properly constructed and that others are not.  For example, in English, it is not
appropriate to say “we goes” because the subject and verb do not agree in number.  Rules
that determine whether a statement is legally constructed are called syntax rules.
Programming languages have their own syntax, which determines how the elements of a
program can be put together.  When you compile a program, the compiler first checks to
see whether your program is syntactically correct.  If you have violated the syntactic
rules, the compiler displays an error message.  Errors that result from breaking these rules
are called syntax errors.  Whenever you get a message from the compiler indicating a
syntax error, you must go back and edit the program to correct it.

Syntax errors can be frustrating, particularly for new programmers.  They will not,
however, be your biggest source of frustration.  More often than not, the programs you
write will fail to operate correctly not because you wrote a program that contained
syntactic errors but because your perfectly legal program somehow comes up with
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FIGURE 1-3 Stages in running a Java program

import acm.program.*;

public class Add2 ext
    println("This pro
    int n1 = readInt(
    int n2 = readInt(
    int total = n1 +
    println("The tota
  }
}

Java
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incorrect answers or fails to produce answers at all.  You look at the program and
discover that you have made a mistake in the logic of the program—the type of mistake
programmers call a bug.  The process of finding and correcting such mistakes is called
debugging and is an important part of the programming process.

Bugs can be extremely insidious and frustrating.  You will be absolutely certain that
your algorithm is correct, and then discover that it fails to handle some case you had
previously overlooked.  Or perhaps you will think about a special condition at one point
in your program only to forget it later on.  Or you might make a mistake that seems so
silly you cannot believe anyone could possibly have blundered so badly.

Relax.  You’re in excellent company.  Even the best programmers have shared this
experience.  The truth is that programmers—all programmers—make logic errors.  In
particular, you will make logic errors.  Algorithms are tricky things, and you will often
discover that you haven’t really gotten it right.

In many respects, discovering your own fallibility is an important rite of passage for
you as a programmer.  Describing his experiences as a programmer in the early 1960s,
the pioneering computer scientist Maurice Wilkes wrote:

Somehow, at the Moore School and afterwards, one had always assumed there
would be no particular difficulty in getting programs right.  I can remember the
exact instant in time at which it dawned on me that a great part of my future life
would be spent in finding mistakes in my own programs.

What differentiates good programmers from the rest of their colleagues is not that they
manage to avoid bugs altogether but that they take pains to minimize the number of bugs
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that persist in the finished code.  When you design an algorithm and translate it into a
syntactically legal program, it is critical to understand that your job is not finished.
Almost certainly, your program has a bug in it somewhere.  Your job as a programmer is
to find that bug and fix it.  Once that is done, you should find the next bug and fix that.
Always be skeptical of your own programs and test them as thoroughly as you can.

Software maintenance
One of the more surprising aspects of software development is that programs require
maintenance.  In fact, studies of software development indicate that, for most programs,
paying programmers to maintain the software after it has been released constitutes
between 80 and 90 percent of the total cost.  In the context of software, however, it is a
little hard to imagine precisely what maintenance means.  At first hearing, the idea sounds
rather bizarre.  If you think in terms of a car or a bridge, maintenance occurs when
something has broken—some of the metal has rusted away, a piece of some mechanical
linkage has worn out from overuse, or something has gotten smashed up in an accident.
None of these situations apply to software.  The code itself doesn’t rust.  Using the same
program over and over again does not in any way diminish its functioning.  Accidental
misuse can certainly have dangerous consequences but does not usually damage the
program itself; even if it does, the program can often be restored from a backup copy.
What does maintenance mean in such an environment?

Software requires maintenance for two principal reasons.  First, even after considerable
testing and, in some cases, years of field use, bugs can still survive in the original code.
Then, when some unusual situation arises or a previously unanticipated load occurs, the
bug, previously dormant, causes the program to fail.  Thus, debugging is an essential part
of program maintenance.  It is not, however, the most important part.  Far more
consequential, especially in terms of how much it contributes to the overall cost of
program maintenance, is what might be called feature enhancement.  Programs are
written to be used; they perform, usually faster and less expensively than other methods,
a task that the customer needs done.  At the same time, the programs probably don’t do
everything the customer wants.  After working with a program for a while, the customer
decides it would be wonderful if the program also did something else, or did something
differently, or presented its data in a more useful way, or ran a little faster, or had an
expanded capacity, or just had a few more simple but attractive features (often called
bells and whistles in the trade).  Since software is extremely flexible, suppliers have the
option of responding to such requests.  In either case—whether one wants to repair a bug
or add a feature—someone has to go in, look at the program, figure out what’s going on,
make the necessary changes, verify that those changes work, and then release a new
version.  This process is difficult, time-consuming, expensive, and prone to error.

Part of the reason program maintenance is so difficult is that most programmers do not
write their programs for the long haul.  To them it seems sufficient to get the program
working and then move on to something else.  The discipline of writing programs so that
they can be understood and maintained by others is called software engineering.  In this
text, you are encouraged to write programs that demonstrate good engineering style.

As you write your programs, try to imagine how someone else might feel if called
upon to look at them two years later.  Would your program make sense?  Would the
program itself indicate to the new reader what you were trying to do?  Would it be easy to
change, particularly along some dimension where you could reasonably expect change?
Or would it seem obscure and convoluted?  If you put yourself in the place of the future
maintainer (and as a new programmer in most companies, you will probably be given that
role), it will help you to appreciate why good style is critical.



Introduction 13

Many novice programmers are disturbed to learn that there is no precise set of rules
you can follow to ensure good programming style.  Good software engineering is not a
cookbook sort of process.  Instead it is a skill blended with more than a little bit of
artistry.  Practice is critical.  One learns to write good programs by writing them, and by
reading others, much as one learns to be a novelist.  Good programming requires
discipline—the discipline not to cut corners or to forget about that future maintainer in
the rush to complete a project.  And good programming style requires developing an
aesthetic sense—a sense of what it means for a program to be readable and well
presented.

1.6  Java and the object-oriented paradigm
As noted earlier in this chapter, this text uses the programming language Java to illustrate
the more general concepts of programming and computer science.  But why Java?  The
answer lies primarily in the way that Java encourages programmers to think about the
programming process.

Over the last decade, computer science and programming have gone through
something of a revolution.  Like most revolutions—whether political upheavals or the
conceptual restructurings that Thomas Kuhn describes in his 1962 book The Structure of
Scientific Revolutions—this change has been driven by the emergence of an idea that
challenges an existing orthodoxy.  Initially, the two ideas compete.  For a while, the old
order maintains its dominance.  Over time, however, the strength and popularity of the
new idea grows, until it begins to displace the older idea in what Kuhn calls a paradigm
shift.  In programming, the old order is represented by the procedural paradigm, in
which programs consist of a collection of procedures and functions that operate on data.
The challenger is the object-oriented paradigm, in which programs are viewed instead
as a collection of “objects” for which the data and the operations acting on that data are
encapsulated into integrated units.  Most traditional languages, including Fortran, Pascal,
and C, embody the procedural paradigm.  The best-known representatives of the object-
oriented paradigm are Smalltalk, C++, and Java.

Although object-oriented languages are gaining popularity at the expense of procedural
ones, it would be a mistake to regard the object-oriented and procedural paradigms as
mutually exclusive.  Programming paradigms are not so much competitive as they are
complementary.  The object-oriented and the procedural paradigm—along with other
important paradigms such as the functional programming style embodied in LISP and
Scheme—all have important applications in practice.  Even within the context of a single
application, you are likely to find a use for more than one approach.  As a programmer,
you must master many different paradigms, so that you can use the conceptual model that
is most appropriate to the task at hand.

The history of object-oriented programming
The idea of object-oriented programming is not really all that new.  The first object-
oriented language was SIMULA, a language for coding simulations designed in the early
1960s by the Scandinavian computer scientists Ole-Johan Dahl, Björn Myhrhaug, and
Kristen Nygaard.  With a design that was far ahead of its time, SIMULA anticipated
many of the concepts that later became commonplace in programming, including the
concept of abstract data types and much of the modern object-oriented paradigm.  In fact,
most of the terminology used to describe object-oriented systems comes from the original
reports on the initial version of SIMULA and its successor, SIMULA 67.
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For many years, however, SIMULA mostly just sat on the shelf.  Few people paid
much attention to it, and the only place you were likely to hear about it would be in a
course on programming language design.  The first object-oriented language to gain any
significant level of recognition within the computing profession was Smalltalk, which
was developed at the Xerox Palo Alto Research Center (more commonly known as Xerox
PARC) in the late 1970s.  The purpose of Smalltalk, which is described in the book
Smalltalk-80: The Language and Its Implementation by Adele Goldberg and David
Robson, was to make programming accessible to a wider audience.  As such, Smalltalk
was part of a larger effort at Xerox PARC that gave rise to much of the modern user-
interface technology that is now standard on personal computers.

Despite many attractive features and a highly interactive user environment that
simplifies the programming process, Smalltalk never achieved much commercial success.
The profession as a whole took an interest in object-oriented programming only when the
central ideas were incorporated into variants of C, which had become an industry
standard.  Although there were several parallel efforts to design an object-oriented
language based on C, the most successful was the language C++, which was designed in
the early 1980s by Bjarne Stroustrup at AT&T Bell Laboratories.  By making it possible
to integrate object-oriented techniques with existing C code, C++ enabled large
communities of programmers to adopt the object-oriented paradigm in a gradual,
evolutionary way.

The Java programming language
The most recent chapter in the history of object-oriented programming is the
development of Java by a team of programmers at Sun Microsystems led by James
Gosling.  In 1991, when Sun initiated the project that would eventually become Java, the
goal was to design a language suitable for programming microprocessors embedded in
consumer electronic devices.  Had this goal remained the focus of the project, it is
unlikely that Java would have caught on to the extent that it has.  As is often the case in
computing, the direction of Java changed during its development phase in response to
changing conditions in the industry.  The key factor leading to the change in focus was
the phenomenal growth in the Internet that occurred in the early 1990s, particularly in the
form of the World Wide Web, an ever-expanding collection of interconnected resources
contributed by computer users all over the world.  When interest in the Web skyrocketed
in 1993, Sun redesigned Java as a tool for writing highly interactive, Web-based
applications.  That decision proved extremely fortuitous.  Since the formal announcement
of the language in May 1995, Java has generated unprecedented excitement in both the
academic and commercial computing communities.  In the process, object-oriented
programming has become firmly established as a central paradigm in the computing
industry.

To get a sense of the strengths of Java, it is useful to look at Figure 1-4, which contains
excerpts from a now-classic paper on the initial Java design written in 1996 by James
Gosling and Henry McGilton.  In that paper, the authors describe Java with a long series
of adjectives: simple, object-oriented, familiar, robust, secure, architecture-neutral,
portable, high-performance, interpreted, threaded, and dynamic.  The discussion in Figure
1-4 will provide you with a sense as to what these buzzwords mean, and you will come to
appreciate the importance of these features even more as you learn more about Java and
computer science.
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FIGURE 1-4    Excerpts from the “Java White Paper”

DESIGN GOALS OF THE JAVA™ PROGRAMMING LANGUAGE

The design requirements of the Java™ programming language are driven by the nature of the computing
environments in which software must be deployed.

The massive growth of the Internet and the World-Wide Web leads us to a completely new way of
looking at development and distribution of software. To live in the world of electronic commerce and
distribution, Java technology must enable the development of secure, high performance, and highly
robust applications on multiple platforms in heterogeneous, distributed networks.

Operating on multiple platforms in heterogeneous networks invalidates the traditional schemes of
binary distribution, release, upgrade, patch, and so on. To survive in this jungle, the Java programming
language must be architecture neutral, portable, and dynamically adaptable.

The system that emerged to meet these needs is simple, so it can be easily programmed by most
developers; familiar, so that current developers can easily learn the Java programming language; object
oriented, to take advantage of modern software development methodologies and to fit into distributed
client-server applications; multithreaded, for high performance in applications that need to perform
multiple concurrent activities, such as multimedia; and interpreted, for maximum portability and dynamic
capabilities.

Together, the above requirements comprise quite a collection of buzzwords, so let’s examine some of
them and their respective benefits before going on.

Simple, Object Oriented, and Familiar
Primary characteristics of the Java programming language include a simple language that can be
programmed without extensive programmer training while being attuned to current software practices.
The fundamental concepts of Java technology are grasped quickly; programmers can be productive from
the very beginning.

The Java programming language is designed to be object oriented from the ground up. Object
technology has finally found its way into the programming mainstream after a gestation period of thirty
years. The needs of distributed, client-server based systems coincide with the encapsulated, message-
passing paradigms of object-based software. To function within increasingly complex, network-based
environments, programming systems must adopt object-oriented concepts. Java technology provides a
clean and efficient object-based development platform.

Programmers using the Java programming language can access existing libraries of tested objects that
provide functionality ranging from basic data types through I/O and network interfaces to graphical user
interface toolkits. These libraries can be extended to provide new behavior.

Even though C++ was rejected as an implementation language, keeping the Java programming
language looking like C++ as far as possible results in it being a familiar language, while removing the
unnecessary complexities of C++. Having the Java programming language retain many of the object-
oriented features and the "look and feel" of C++ means that programmers can migrate easily to the Java
platform and be productive quickly.

Robust and Secure
The Java programming language is designed for creating highly reliable software. It provides extensive
compile-time checking, followed by a second level of run-time checking. Language features guide
programmers towards reliable programming habits.

The memory management model is extremely simple: objects are created with a new operator. There
are no explicit programmer-defined pointer data types, no pointer arithmetic, and automatic garbage
collection. This simple memory management model eliminates entire classes of programming errors that
bedevil C and C++ programmers. You can develop Java code with confidence that the system will find
many errors quickly and that major problems won’t lay dormant until after your production code has
shipped.

Java technology is designed to operate in distributed environments, which means that security is of
paramount importance. With security features designed into the language and run-time system, Java
technology lets you construct applications that can’t be invaded from outside. In the network
environment, applications written in the Java programming language are secure from intrusion by
unauthorized code attempting to get behind the scenes and create viruses or invade file systems.
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Architecture Neutral and Portable
Java technology is designed to support applications that will be deployed into heterogeneous network
environments. In such environments, applications must be capable of executing on a variety of hardware
architectures. Within this variety of hardware platforms, applications must execute atop a variety of
operating systems and interoperate with multiple programming language interfaces. To accommodate the
diversity of operating environments, the Java Compiler™ product generates bytecodes—an architecture
neutral intermediate format designed to transport code efficiently to multiple hardware and software
platforms. The interpreted nature of Java technology solves both the binary distribution problem and the
version problem; the same Java programming language byte codes will run on any platform.

Architecture neutrality is just one part of a truly portable system. Java technology takes portability a
stage further by being strict in its definition of the basic language. Java technology puts a stake in the
ground and specifies the sizes of its basic data types and the behavior of its arithmetic operators. Your
programs are the same on every platform—there are no data type incompatibilities across hardware and
software architectures.

The architecture-neutral and portable language platform of Java technology is known as the Java
virtual machine. It’s the specification of an abstract machine for which Java programming language
compilers can generate code. Specific implementations of the Java virtual machine for specific hardware
and software platforms then provide the concrete realization of the virtual machine. The Java virtual
machine is based primarily on the POSIX interface specification—an industry-standard definition of a
portable system interface. Implementing the Java virtual machine on new architectures is a relatively
straightforward task as long as the target platform meets basic requirements such as support for
multithreading.

High Performance
Performance is always a consideration. The Java platform achieves superior performance by adopting a
scheme by which the interpreter can run at full speed without needing to check the run-time environment.
The automatic garbage collector runs as a low-priority background thread, ensuring a high probability
that memory is available when required, leading to better performance. Applications requiring large
amounts of compute power can be designed such that compute-intensive sections can be rewritten in
native machine code as required and interfaced with the Java platform. In general, users perceive that
interactive applications respond quickly even though they’re interpreted.

Interpreted, Threaded, and Dynamic
The Java interpreter can execute Java bytecodes directly on any machine to which the interpreter and run-
time system have been ported. In an interpreted platform such as Java technology-based system, the link
phase of a program is simple, incremental, and lightweight. You benefit from much faster development
cycles—prototyping, experimentation, and rapid development are the normal case, versus the traditional
heavyweight compile, link, and test cycles.

Modern network-based applications, such as the HotJava™ Browser for the World Wide Web,
typically need to do several things at the same time. A user working with HotJava Browser can run
several animations concurrently while downloading an image and scrolling the page. Java technology’s
multithreading capability provides the means to build applications with many concurrent threads of
activity. Multithreading thus results in a high degree of interactivity for the end user.

The Java platform supports multithreading at the language level with the addition of sophisticated
synchronization primitives: the language library provides the Thread class, and the run-time system
provides monitor and condition lock primitives. At the library level, moreover, Java technology’s high-
level system libraries have been written to be thread safe: the functionality provided by the libraries is
available without conflict to multiple concurrent threads of execution.

While the Java Compiler is strict in its compile-time static checking, the language and run-time
system are dynamic in their linking stages. Classes are linked only as needed. New code modules can be
linked in on demand from a variety of sources, even from sources across a network. In the case of the
HotJava Browser and similar applications, interactive executable code can be loaded from anywhere,
which enables transparent updating of applications. The result is on-line services that constantly evolve;
they can remain innovative and fresh, draw more customers, and spur the growth of electronic commerce
on the Internet.

—White Paper: The Java Language Environment
James Gosling and Henry McGilton, May 1996
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1.7  Java and the World Wide Web
In many ways, Java’s initial success as a language was tied to the excitement surrounding
computer networks in the early 1990s.  Computer networks had at that time been around
for more than 20 years, ever since the first four nodes in the ARPANET—the forerunner
of today’s Internet—came on line in 1969.  What drove the enormous boom in Internet
technology throughout the 1990s was not so much the network itself as it was the
invention of the World Wide Web, which allows users to move from one document to
another by clicking on interactive links.

Documents that contain interactive links are called hypertext—a term coined in 1965
by Ted Nelson, who proposed the creation of an integrated collection of documents that
has much in common with today’s World Wide Web.  The fundamental concepts,
however, are even older; the first Presidential Science Advisor, Vannevar Bush, proposed
a similar idea in 1945.  This idea of a distributed hypertext system, however, was not
successfully put into practice until 1989, when Tim Berners-Lee of CERN, the European
Particle Physics Laboratory in Geneva, proposed creating a repository that he called the
World Wide Web.  In 1991, implementers at CERN completed the first browser, a
program that displays Web documents in a way that makes it easy for users to follow the
internal links to other parts of the Web.  After news of the CERN work spread to other
researchers in the physics community, more groups began to create browsers.  Of these,
the most successful was the Mosaic project based at the National Center for
Supercomputing Applications (NCSA) in Champaign, Illinois.  After the appearance of
the Mosaic browser in 1993, interest in the Web exploded.  The number of computer
systems implementing World Wide Web repositories grew from approximately 500 in
1993 to over 35,000,000 in 2003.  The enthusiasm for the Web in the Internet community
has also sparked considerable commercial interest, leading to the formation of several
new companies and the release of commercial Web browsers like Apple’s Safari,
Netscape’s Navigator and Microsoft’s Internet Explorer.

The number of documents available on the World Wide Web has grown rapidly
because Internet users can easily create new documents and add them to the Web.  If you
want to add a new document to the Web, all you have to do is create a file on a system
equipped with a program called a Web server that gives external users access to the files
on that system.  The individual files exported by the server are called Web pages.  Web
pages are usually written in a language called HTML, which is short for Hypertext
Markup Language.  HTML documents consist of text along with formatting information
and links to other pages elsewhere on the Web.  Each page is identified by a uniform
resource locator, or URL, which makes it possible for Web browsers to find this page in
the sea of existing pages.  URLs for the World Wide Web begin with the prefix http://,
which is followed by a description of the Internet path needed to reach the desired page.

One of the particularly interesting aspects of Java is that the virtual machine is not
always running on the same machine that houses the programs. One of Java’s design
goals was to make the language work well over a network. A particularly interesting
consequence of this design goal is that Java supports the creation of applets, which are
programs that run in the context of a network browser.  The process of running an applet
is even more intricate than the models of program execution presented earlier in the
chapter and is described in Figure 1-5.
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FIGURE 1-5 Java programs running as applets

1. The author of the Web page writes the 
code for a program to run as an applet.

/* File: GraphicHello.java */

import acm.graphics.*;
import acm.program.*;

public class GraphicHello extends GraphicsProgram {
  public void run() {
    add(new GLabel("Hello, world!"), 20, 20);
  }
}

GraphicHello.java

2. The applet author then uses a Java
compiler to generate a file containing
a byte-coded version of the applet.

3. The applet author publishes an HTML
Web page that includes a reference to
the compiled applet.

4. The user’s browser reads the HTML
source for the Web page and begins

6. A verifier program in the browser
checks the byte codes in the applet
to ensure that they do not violate the

to display the image on the screen.

5. The appearance of an applet tag
in the HTML source file causes the
browser to download the compiled
applet over the network.

security of the user’s system.

7. The Java interpreter in the browser
program runs the compiled applet,
which generates the desired display
on the user’s console.

GraphicHello.jar

Steps taken by the applet author

GraphicHello.html

Graphic Hello Program

Hello, world!

Steps taken by the applet user
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47 72 61 70 68 69 63 73 3B 29 56 01 00 04 9E 00

<html>
<title>Graphic Hello Applet</title>
<applet archive="GraphicHello.jar"
        code="GraphicHello.class"
        width=300 height=150>
</applet>
</html>

Summary
The purpose of this chapter is to set the stage for learning about computer science and
programming, a process that you will begin in earnest in Chapter 2.  In this chapter, you
have focused on what the programming process involves and how it relates to the larger
domain of computer science.

The important points introduced in this chapter include:

• The physical components of a computer system—the parts you can see and touch—
constitute hardware.  Before computer hardware is useful, however, you must specify
a sequence of instructions, or program, that tells the hardware what to do.  Such
programs are called software.

• Computer science is not so much the science of computers as it is the science of
solving problems using computers.

• Strategies for solving problems on a computer are known as algorithms.  To be an
algorithm, the strategy must be clearly and unambiguously defined, effective, and
finite.
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• Programs are typically written using a higher-level language that is then translated by
a compiler into the machine language of a specific computer system or into an
intermediate language executed by an interpreter.

• To run a program, you must first create a source file containing the text of the
program.  The compiler translates the source file into an object file, which is then
linked with other object files to create the executable program.

• Programming languages have a set of syntax rules that determine whether a program is
properly constructed.  The compiler checks your program against these syntax rules
and reports a syntax error whenever the rules are violated.

• The most serious type of programming error is one that is syntactically correct but that
nonetheless causes the program to produce incorrect results or no results at all.  This
type of error, in which your program does not correctly solve a problem because of a
mistake in your logic, is called a bug.  The process of finding and fixing bugs is called
debugging.

• Most programs must be updated periodically to correct bugs or to respond to changes
in the demands of the application.  This process is called software maintenance.
Designing a program so that it is easier to maintain is an essential part of software
engineering.

• This text uses the programming language Java to illustrate the programming process.
The primary feature that sets Java apart from most of its predecessor languages is the
fact that it is an object-oriented language, which means that it encapsulates data and
the operations on that data into conceptually unified entities called objects.

• Java was designed during the “Internet boom” of the 1990s and is designed to work
well in a networked environment.  In particular, Java makes it possible to run programs
in the context of a web browser.  Programs that run in this way are called applets.

Review questions
1. What new concept in computing was introduced in the design of Babbage’s

Analytical Engine?

2. Who is generally regarded as the first programmer?

3. What concept lies at the heart of von Neumann architecture?

4. What is the difference between hardware and software?

5. Traditional science is concerned with abstract theories or the nature of the universe—
not human-made artifacts.  What abstract concept forms the core of computer
science?

6. What are the three criteria an algorithm must satisfy?

7. What is the distinction between algorithmic design and coding?  Which of these
activities is usually harder?

8. What is meant by the term higher-level language?  What higher-level language is
used as the basis of this text?

9. How does an interpreter differ from a compiler?



20 The Art and Science of Java

10. What is the relationship between a source file and an object file?  As a programmer,
which of these files do you work with directly?

11. What is the difference between a syntax error and a bug?

12. True or false: Good programmers never introduce bugs into their programs.

13. True or false: The major expense of writing a program comes from the development
of that program; once the program is put into practice, programming costs are
negligible.

14. What is meant by the term software maintenance?

15. Why is it important to apply good software engineering principles when you write
your programs?

16. What is the fundamental difference between the object-oriented and procedural
paradigms?

17. What steps are involved in running an applet under the control of a web browser?  In
what ways does running a Java applet differ from running a Java application?



Chapter 2
Programming by Example

Example is always more efficacious than precept.
— Samuel Johnson, Rasselas, 1759

Grace Murray Hopper (1906–1992)

Grace Murray Hopper studied mathematics and physics at Vassar College and went on to
earn her Ph.D. in mathematics at Yale.  During the Second World War, Hopper joined the
United States Navy and was posted to the Bureau of Ordinance Computation at Harvard
University, where she worked with computing pioneer Howard Aiken.  Hopper became
one of the first programmers of the Mark I digital computer, which is the machine visible
in the background of this photograph.  Hopper made several contributions to computing
in its early years and was one of the major contributors to the development of COBOL,
which continues to have widespread use in business-programming applications.  In 1985,
Hopper became the first woman promoted to the rank of admiral.  During her life, Grace
Murray Hopper served as the most visible example of a successful woman in computer
science. In recognition of that contribution, there is now a biennial Celebration of Women
in Computing, which was named in her honor.
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The purpose of this book is to teach you the fundamentals of programming.  Along the
way, you will become quite familiar with a particular programming language called Java,
but the details of that language are not the main point.  Programming is the science of
solving problems by computer, and most of what you learn from this text will be
independent of the specific details of Java.  Even so, you will have to master many of
those details eventually so that your programs can take maximum advantage of the tools
that Java provides.

From your position as a new student of programming, the need to understand both the
abstract concepts of programming and the concrete details of a specific programming
language leads to a dilemma: there is no obvious place to start.  To learn about
programming, you need to write some fairly complex programs.  To write those programs
in Java, you must know enough about the language to use the appropriate tools.  But if
you spend all of your energy learning about Java, you will probably not learn as much as
you should about more general programming issues.  Moreover, Java was designed for
experts and not for beginning programmers.  There are many details that just get in the
way if you try to master Java without first understanding something about programming.

Because it’s important for you to get a feel for what programming is before you master
its intricacies, this chapter begins by presenting a few simple programs in their entirety.
When you look at these programs, try to understand what is happening in them generally
without being concerned about details just yet.  You can learn about those details in
Chapters 3 and 4.  The main purpose of this chapter and the one that follows is to help
build your intuition about programming and problem solving, which is far more
important in the long run.

2.1  The “hello world” program
Java is part of a collection of languages that grew out of C, one of the most successful
programming languages in the history of the field.  In the book that has served as C’s
defining document, The C Programming Language by Brian Kernighan and Dennis
Ritchie, the authors offer the following advice on the first page of Chapter 1:

The only way to learn a new programming language is by writing programs
in it.  The first program to write is the same for all languages:

Print the words
hello, world

This is the big hurdle; to leap over it you have to be able to create the program
text somewhere, compile it successfully, load it, run it, and find out where the
output went.  With these mechanical details mastered, everything else is
comparatively easy.

That advice was followed by the four-line text of the “hello world” program, which
became part of the heritage shared by all C programmers.  Java is, of course, different
from C, but the underlying advice is still sound: The first program you write should be as
simple as possible to ensure that you can master the mechanics of the programming
process.

At the same time, it is important to remember that this is now the 21st century, and the
programs that were appropriate to the early 1970s are not the same ones we would use
today.  The mechanical teletypes and primitive consoles that were available then have
been replaced by more sophisticated displays, and the ability to print a series of words is
no longer quite as exciting as it once was.  Today, that output would more likely be
directed to a graphical window on the screen.  Fortunately, the Java program that does
precisely that is still very simple and appears in Figure 2-1.
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FIGURE 2-1 The “hello world” program
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As Figure 2-1 indicates, HelloProgram is divided into three separate sections: a
program comment, a list of imports, and the main class.  Although its structure is
extremely simple, HelloProgram is typical of the programs you will see in the next few
chapters, and you should use it as a model of how Java programs should be organized.

Comments
The first section of HelloProgram is an English-language comment, which is simply
program text that is ignored by the compiler.  In Java, comments come in two forms.  The
first consists of text enclosed between the markers /* and */, even if that text continues
for several lines.  The second—which I won’t use in this text—is introduced by the
symbol // and continues up to the end of the line.  In HelloProgram, the comment
begins with the /* on the first line and ends with the */ eight lines later.

Comments are written for human beings, not for the computer.  They are intended to
convey information about the program to other programmers.  When the Java compiler
translates a program into a form that can be executed by the machine, it ignores the
comments entirely.

In this text, every program begins with a special comment called the program
comment that describes the operation of the program as a whole.  That comment includes
the name of the program file and a message that describes the operation of the program.
In this case, the program comment also provides credit for the original idea of the
program.  Comments might also describe any particularly intricate parts of the program,
indicate who might use it, offer suggestions on how to change the program behavior, or
provide any additional information that other programmers might want to know about the
program.  For a program this simple, extensive comments are usually not necessary.  As
your programs become more complicated, however, you will discover that good
comments are one of the best ways to make them understandable to someone else—or to
figure out what you yourself intended if you return to a program after not looking at it for
a while.
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Imports
The second section of the program consists of the lines

import acm.graphics.*;
import acm.program.*;

These lines indicate that the program uses two additional library packages.  A library
package is a collection of tools written by other programmers that perform specific
operations.  The libraries used by the HelloProgram are a graphics library and a program
library, each of which come from a collection of packages produced by the Association
for Computing Machinery (ACM).  The asterisk at the end of the package name is used to
indicate that all components from the relevant package should be imported.  Every
program in this book will import at least the acm.program package, and any programs
that use graphics will import acm.graphics, which means most of your programs will
also need to include these lines immediately after the program comment.  Some programs
will use additional packages as well and must contain an import line for each one.

When you write your own programs, you can use the tools provided by these packages,
which saves you the trouble of writing them yourself.  Libraries are critical to
programming, and you will quickly come to depend on several important packages as you
begin to write more sophisticated programs.

The main class
The last section of the HelloProgram.java file is the HelloProgram class itself, which
consists of the lines

public class HelloProgram extends GraphicsProgram {
public void run() {

add(new GLabel("hello, world"), 100, 75);
}

}

These five lines represent the first example of a class definition in Java.  A class is the
primary unit into which Java programs are divided and constitute a template for the
creation of individual objects.  That definition is admittedly relatively vague at this point
and will be refined in the section entitled “Classes and objects” later in this chapter.

As you did when you were introduced to classes in the context of Karel, it is important
to understand this program by breaking it down hierarchically.  The class definition itself
looks like this:

public class HelloProgram extends GraphicsProgram {

body of the class definition

}

The first line of the class definition is called the header line and provides important
information about the characteristics of the class.  Here, the extends keyword indicates
that HelloProgram is a subclass of GraphicsProgram, which is one of the program types
defined in the acm.program package.  The specific capabilities of the GraphicsProgram
class will be defined in detail in Chapter 7.  For the moment—while you’re in the
“programming by example” mode—it is sufficient to rely on your intuition.
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HelloProgram is a GraphicsProgram and can therefore do any of the things that
GraphicsProgram can do, the details of which you will discover later.

The body of the class definition for HelloProgram contains a single definition, which
looks like this:

public void run() {
add(new GLabel("hello, world"), 100, 75);

}

This definition is an example of a Java method, which is simply a sequence of program
steps that have been collected together and given a name.  The name of this method, as
given on its header line, is run.  The steps that the method performs are listed between
the curly braces and are called statements.  Collectively, the statements constitute the
body of the method.  The method run shown in the HelloProgram.java example
contains only one statement, but it is common for methods to contain several statements
that are performed sequentially, beginning with the first statement and continuing through
the last statement in the body.

The method run plays a special role in programs that use the acm.program package.
Whenever you run a Java program, the computer executes the statements enclosed in the
body of the run method for the main class.  In HelloProgram, the body of run consists of
the single statement

add(new GLabel("hello, world"), 100, 75);

This statement uses two facilities from the library packages.  The first is the GLabel class,
which comes from acm.graphics.  The part of the line that reads

new GLabel("hello, world")

creates a new GLabel object containing the text "hello, world".  The rest of the line is

add(  newly generated label , 100, 75);

which takes the new GLabel and adds it to the graphics program at a position whose x
and y coordinates are 100 and 75.  The result is that the program produces the following
image on the screen:

HelloProgram

hello, world

2.2  Perspectives on the programming process
The point of this chapter is not to understand the details of how Java works, but rather to
get a good overall perception—what psychologists often call a gestalt—of a few simple
programs.  You could figure out a great deal about Java simply by typing the
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HelloProgram.java file into the computer and experimenting with it, which is in fact
the first exercise at the end of this chapter.  It would be easy, for example, to change the
message from "hello, world" to something more interesting.  You could put that
message at a different position on the screen by changing the numbers 100 and 75 to
something else.  In the process, you would presumably discover some interesting facts
about the Java coordinate system, such as the fact that the origin is in the upper left corner
instead of the lower left corner that you’re familiar with from geometry.  Thus, if you
change the y coordinate from 75 to 100, the message moves downward on the screen.
You might also get a feeling for what the units are: Java specifies coordinates in units
corresponding to the individual dots on the display screen, which are called pixels.  Thus
the coordinate pair (100, 75) indicates a position on the screen that is 100 pixels inward
from the left edge of the window and 75 pixels down from the top.  And you could put
more than one message on the screen simply by another statement similar in form to the
single line in the existing program, but with a different message and location.

The take-home message here is that it is useful to experiment.  As Brian Kernighan
and Dennis Ritchie assert, “the only way to learn a new programming language is by
writing programs in it.”  And the more programs you write and the more you play around
with those programs, the more you will learn about how programming works.

At some point, of course, you will need to learn about the details of the Java statements
so that you can understand how each statement works.  This detailed view, however, is
not the only useful way to look at a program.  Sometimes it helps to stand back and look
at a program as a whole.  The step-by-step detailed view is an example of a reductionistic
approach.  If you look at a program from a more global perspective—as a complete entity
whose operation as a whole is of primary concern—you are adopting a more holistic
perspective that allows you to see the program in a different light.

Reductionism is the philosophical principle that the whole of an object can best be
understood by understanding the parts that make it up.  Its antithesis is holism, which
recognizes that the whole is often more than the sum of its parts.  As you learn how to
write programs, you must learn to see the process from each of these perspectives.  If you
concentrate only on the big picture, you will end up not understanding the tools you need
for solving problems.  However, if you focus exclusively on details, you will invariably
miss the forest for the trees.

When you are first learning about programming, the best approach is usually to
alternate between these two perspectives.  Taking the holistic view helps sharpen your
intuition about the programming process and enables you to stand back from a program
and say, “I understand what this program does.”  On the other hand, to practice writing
programs, you have to adopt enough of the reductionistic perspective to know how those
programs are put together.

2.3  A program to add two numbers
Learning to program by example is easier if you have more examples.  Figure 2-2 shows
a different kind of program that asks the user to enter two integers (which is simply the
mathematical term for whole numbers without fractional parts), adds those integers
together, and then displays the sum.



Programming by Example 27

FIGURE 2-2    Program to add two integers

/*
 * File: Add2Integers.java
 * -----------------------
 * This program adds two integers and prints their sum.
 */

import acm.program.*;

public class Add2Integers extends ConsoleProgram {

public void run() {
println("This program adds two integers.");
int n1 = readInt("Enter n1: ");
int n2 = readInt("Enter n2: ");
int total = n1 + n2;
println("The total is " + total + ".");

}

}

The program in Figure 2-2 introduces several new programming concepts that were
not part of HelloProgram.  First, Add2Integers is a different kind of program, as
indicated by its header line:

public class Add2Integers extends ConsoleProgram

This program extends ConsoleProgram instead of GraphicsProgram, which means that
it has access to a different set of facilities.  The ConsoleProgram class is designed to
support user interaction in a traditional text-based style.  A ConsoleProgram can request
input from the user and display information back as illustrated in the following diagram,
which shows what you might see if you ran the Add2Integers program:

Add2Integers
This program adds two integers.
Enter n1: 17
Enter n2: 25
The total is 42.

Diagrams that show the output that a program produces are called sample runs.
Although it may be hard to see in this photocopied edition of the text, the input that the
user types appears in blue, as it does on the display when you run this program.  This
convention makes it easy to tell which parts of a session are entered by the user and
which parts are generated by the program.

If you take a holistic look of this program, I’m certain you could have told me what it
did even before you knew what any of its statements really did.  If nothing else, the
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program comment and the first line of the run method are dead giveaways.  But even
without those signposts, most beginning programmers would have little trouble
understanding the function of the code.  Programs are typically easier to read than they
are to write.  Moreover, just as it is far easier to write a novel after having read a number
of them, you will find that it is easier to write good programs if you take the time to read
several well-designed programs and learn to emulate their structure and style.  The
meaning of a particular statement—much like unfamiliar words in a novel—often
becomes clear either from the context or from simple common sense.  Before going on to
look at the explanations that follow, try taking a look at each line of Add2Integers and
see how much sense you can make of it working from first principles alone.

The first line in the run method is

println("This program adds two integers.");

The println method—which is a contraction of “print line”—is used to display
information on the console.  The value in parentheses is called an argument and tells the
println method what it should display.  The double quotes surrounding the text

This program adds two integers.

do not appear in the output but are used by Java to indicate that the characters between
the quotation marks are an instance of text data called a string.  The effect of the
println method is to display the entire argument string on the console and then to return
to the beginning of the next line.  Thus, if you make several println calls in succession,
each string in the output will appear on a separate line.

Note that the purpose of the first line in this program is not to tell programmers reading
the code what the program does; that function is accomplished by the program comments
at the beginning of the file.  The first println statement is there to tell the user sitting at
the computer what the program does.  Most people who use computers today are not
programmers, and it wouldn’t be reasonable to expect those users to look at the code for a
program to determine what it did.  The program itself has to make its purpose clear.

The next line of the run method looks like this:

int n1 = readInt("Enter n1: ");

At a holistic level, the intent of the line is reasonably clear, given that everything you can
see suggests that it must be reading the first integer value.  If you adopt a reductionistic
perspective, however, this line of code introduces several new concepts.  Of these, the
most important is that of a variable, which is easiest to think of as a placeholder for some
piece of data whose value is unknown when the program is written.  When you write a
program to add two integers, you don’t yet know what integers the user will want to add.
The user will enter those integers when the program runs.  So that you can refer to these
as-yet-unspecified values in your program, you create a variable to hold each value you
need to remember, give it a name, and then use its name whenever you want to refer to
the value it contains.  Variable names are usually chosen so that programmers who read
the program in the future can easily tell how each variable is used.  In the Add2Integers
program, the variables n1 and n2 represent the integers to be added, and the variable
total represents the sum.

When you introduce a new variable in Java, you must declare that variable, which
consists of making sure that the Java compiler knows the type of data that variable will
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contain.  In Java, the type used to store integer data is called int.  A declaration of the
form

int n1 =  value ;

introduces a new integer variable called n1 whose value is given by whatever expression
appears in the box labeled value.  In this case, that expression is

readInt("Enter n1: ")

Just like the println example from the first line, this expression is an invocation of the
readInt method in ConsoleProgram. The readInt method begins by displaying its
argument on the console so that the user knows what is expected; this type of message is
generally called a prompt.  Unlike println, however, the readInt method does not
return to the beginning of the next line but waits after the prompt for the user to type in an
integer.  When the user has finished typing in the integer and hits the Return or Enter key,
that integer is then passed back as the result of the readInt method.  In programming
terminology, we say that readInt returns the value the user typed.

When tracing through the operation of a program on paper, programmers often use box
diagrams to indicate the values assigned to variables.  If you look back at the sample run
presented earlier in this section, you will see that the user entered the value 17 in response
to the first input request.  Thus, to illustrate that the assignment statement has stored the
value 17 in the variable n1, you draw a box, name the box n1, and then indicate its value
by writing a 17 inside the box, as follows:

n

17

1

The third line in the run method is almost exactly the same as the second and reads a
value for the variable n2.  If the user enters 25 in response to this prompt, you could
update your box diagram to show the new variable, as follows:

n

17

1 n

25

2

The next line in the run method is

int total = n1 + n2;

This statement declares the variable total and assigns it the value to the right of the
equal sign, which is

n1 + n2

This piece of the code is an example of an essential programming construct called an
expression that represents the result of computation.  The structure of expressions is
defined more formally in Chapter 3, but it is often easy to understand what a Java
expression means given that they look very much like expressions in traditional
mathematics.
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In Add2Integers, the goal is to add the values stored in the variables n1 and n2.  To
do so, you use the + operator, which you’ve understood since elementary-school
arithmetic.  To keep track of the result, you need to store it in some variable, and this
statement introduces total for precisely this purpose.

The final statement in the run method is

println("The total is " + total + ".");

which accomplishes the task of displaying the computed result.  For the most part, this
statement looks like the first statement in the program, which is also a call to the println
method.  This time, however, there’s a new twist.  Instead of taking a single string
argument, this statement passes to println the argument value

"The total is " + total + "."

Just like the n1 + n2 expression from the previous statement, this value is given by an
expression involving the + operator.  In this statement, however, at least some of the
values to which + is applied are string data rather than the numeric data on which addition
is defined.  In Java, applying the + operator to string data reinterprets that operator to
mean adding the strings together end to end to combine their characters.  This operation
is called concatenation.  If there are any parts of the expression that are not strings, Java
converts them into their standard string representation before applying the concatenation
operator.  The effect of this last println statement is to display the value of total after
adding on the surrounding text.  You can see the effect of this statement in the sample
run.

Although Add2Integers is set up to work only with integers, Java is capable of
working with many other types of data.  You could, for example, change this program so
that it added two real numbers simply by changing the types of the variables and the
names of the input methods, as shown in Figure 2-3.

FIGURE 2-3    Program to add two double-precision numbers

/*
 * File: Add2Doubles.java
 * ----------------------
 * This program adds two double-precision floating-point numbers
 * and prints their sum.
 */

import acm.program.*;

public class Add2Doubles extends ConsoleProgram {

public void run() {
println("This program adds two numbers.");
double n1 = readDouble("Enter n1: ");
double n2 = readDouble("Enter n2: ");
double total = n1 + n2;
println("The total is " + total + ".");

}

}
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In most programming languages, numbers that include a decimal fraction are called
floating-point numbers, which are used to approximate real numbers in mathematics.
The most common type of floating-point number in Java is the type double, which is
short for double-precision floating-point.  If you need to store floating-point values in a
program, you must declare variables of type double, just as you previously had to declare
variables of type int to write Add2Integers.  The only other change in the program is
that the user input is obtained by calling readDouble instead of readInt.  The basic
pattern of the program is unchanged.

2.4  Classes and objects
Before continuing on to consider the details of expressions and statements in Chapters 3
and 4, it is important to introduce one more high-level concept illustrated by the examples
in this chapter.  The programs you’ve seen—HelloProgram, Add2Integers, and
Add2Doubles—are each defined as Java classes, although the text has so far been rather
vague as to the precise meaning of that term.  These classes, moreover, are defined as
extensions of existing classes supplied by the acm.program package: HelloProgram is an
extension of GraphicsProgram, and the other two are extensions of ConsoleProgram.
Whenever you define a new class as an extension of an existing one, the new class is said
to be a subclass of the original. Thus, HelloProgram is a subclass of GraphicsProgram.
Symmetrically, GraphicsProgram is a superclass of HelloProgram.

The concept of a class is one of the most important ideas in Java.  At its essence, a
class is as an extensible template that specifies the structure of a particular style of object.
An object, as you already know from the discussion in the Karel book, is a conceptually
integrated entity that encapsulates both state and behavior.  Each object is an instance of a
particular class, which can, in turn, serve as a template for many different objects.  If you
want to create objects in Java, you must first define the class to which those objects
belong and then construct individual objects that are instances of that class.

Class hierarchies
Classes in Java form hierarchies.  These hierarchies are similar in structure to many more
familiar classification structures such as the organization of the biological world
originally developed by the Swedish botanist Carl Linnaeus in the 18th century.  Portions
of this hierarchy are shown in the diagram in Figure 2-4.  At the top of the chart is the
universal category of all living things.  That category is subdivided into several
kingdoms, which are in turn broken down by phylum, class, order, family, genus, and
species.  At the bottom of the hierarchy shown in Figure 2-4 is the type of creature that
biologists name using the genus and species together.  In this case, the bottom of the
hierarchy is occupied by Iridomyrmex purpureus, which is a type of red ant.  The
individual red ants in the world correspond to the objects in a programming language.
Thus, each of the individuals

                        

is an instance of the species purpureus.  By virtue of the hierarchy, however, that
individual is also an instance of the genus Iridomyrmex, the class Insecta, and the phylum
Arthropoda.  It is similarly, of course, both an animal and a living thing.  Moreover, each
red ant has the characteristics that pertain to each of its ancestor categories.  For example,
red ants have six legs, which is one of the defining characteristics of the class Insecta.
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FIGURE 2-4 Levels in the biological classification hierarchy
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The biological metaphor illustrates one of the fundamental properties of classes in
Java.  Any instance of a particular class is also an instance of every one of its
superclasses.  Thus, any instance of HelloProgram is, by definition, also an instance of
GraphicsProgram.  Moreover, each instance of HelloProgram automatically acquires
the public behavior of GraphicsProgram.  This property of taking on the behavior of
your superclasses is called inheritance.

The Program class hierarchy
The classes defined by the acm.program form a hierarchy with a little more structure and
complexity than you have seen up to this point.  That hierarchy appears in Figure 2-5.
Each of the classes you have seen—GraphicsProgram and ConsoleProgram—is a
subclass of a higher-level class called Program, which is in turn a subclass of the standard
Java class called Applet.  The diagram tells you that every instance of a program you
design, such as the instance of HelloProgram shown in Figure 2-1, is simultaneously a
GraphicsProgram, a Program, and an Applet.  The fact that it is an applet means that
you can run it in a web browser, which is a property that all Applets share, along with all
Programs and GraphicsPrograms, by inheritance.

Figure 2-5 also shows that there is another Program subclass besides the two you have
already seen.  The DialogProgram subclass turns out to be quite similar in its overall
organization to ConsoleProgram.  In particular, it shares exactly the same set of methods,
which are in fact all specified by the Program class.  What’s different is that these
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FIGURE 2-5 The Program class hierarchy
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methods have a different interpretation.  In a ConsoleProgram, methods like println
and readInt specify user interaction with a console.  In a DialogProgram, these same
methods specify user interaction through interactive dialogs that pop up as the program
runs.  If you were to change the class header line shown in Figure 2-2 so that it read

public class Add2Integers extends DialogProgram {

the program would still add two numbers, but the interaction style would be quite
different.  Running this new version program produces the series of dialogs shown in
Figure 2-6.

What’s going on in this example is that ConsoleProgram and DialogProgram each
define their own version of println and readInt so that they operate in the style
appropriate to that class.  Redefining an existing method so that it does something
different from that in its superclass is called overriding that method.

The GObject class hierarchy
You’ve actually seen one instance of another class hierarchy that also serves as a good
illustration of the idea of extension by subclassing.  The HelloProgram presented at the
very beginning of the chapter used the class GLabel to display the text "hello, world".
The GLabel class is only one of many subclasses of the GObject class, which is defined
in the acm.graphics package to represent the universe of graphical objects.  The portion
of that hierarchy consisting of the collection of “shapes” that can be displayed in a
GraphicsProgram appears in Figure 2-7.
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FIGURE 2-6    Dialogs that appear when running Add2Dialog
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FIGURE 2-7 The shape classes in the GObject hierarchy
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You will have a chance to learn about all these classes in Chapter 7, but it is possible
to start using them even if you know only a very little bit about them.  Consider, for
example, the GRect and GOval classes.  Each of these classes is constructed in a similar
way.  To create one of these objects, you use the keyword new followed by the name of
the class and a sequence of four arguments specifying the x position, the y position, the
width, and the height, respectively.  As with all coordinates in Java, the x and y positions
indicate the location of the upper-left corner, and all values are measured in pixel units.
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A GRect object draws the outline of rectangle that completely fills that area; a GOval
object draws the outline of the largest oval that fits inside that box.  You can use these
classes to create more interesting graphical programs, such as the DrawRobot shown in
Figure 2-8, which produces the following diagram:

DrawRobot

Because the goal of this chapter is to learn programming by example, and because
there is no better way to learn programming than by doing it, you should set the book
aside and try writing some simple programs that use the features described in this chapter.
Several such problems are given in the exercises at the end of this chapter, but you can
also use your own imagination.

FIGURE 2-8    Program to draw the outline of a simple robot

/*
 * File: DrawRobot.java
 * --------------------
 * This program draws a simple robot diagram in the window.  Its
 * programming style leaves much to be desired, mostly because
 * the coordinate values are specified explicitly and not defined
 * so that they automatically adjust according to specified
 * parameters of the image as a whole.  You will learn how to
 * improve the style in Chapter 7.
 */

import acm.graphics.*;
import acm.program.*;

public class DrawRobot extends GraphicsProgram {
public void run() {

add(new GOval(120, 20, 40, 40));
add(new GRect(100, 60, 80, 110));
add(new GRect(115, 170, 15, 70));
add(new GRect(150, 170, 15, 70));

}
}
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Summary
In this chapter, you have had the opportunity to look at several complete Java programs
to get an idea of their general structure and how they work.  The details of those programs
have been deferred to later chapters; at this point, your principal objective has been to
focus on the programming process itself by adopting a holistic view.  Even so, by
building on the programming examples provided here, you should be ready at this point
to write simple programs that involve only the following operations:

• Reading in numeric values entered by the user, either on a console or through a dialog
• Displaying text on a console
• Generating graphical programs formed from rectangles, ovals, and labels

Important points about programming introduced in this chapter are:

• Well-written programs contain comments that explain in English what the program is
doing.

• Most programs use packages that provide tools the programmer need not recreate from
scratch.  The programs in this chapter use two packages: acm.program and
acm.graphics.  Subsequent chapters will introduce additional packages.

• You gain access to packages by adding at the top of the program an import line for
that package.

• Every Java program used in this text will consist of a class definition that extends one
of the classes in the acm.program package.  That class is called the main class.

• Every main class contains a method called run.  When the program is executed, the
statements in the body of run are executed in order.

• To accept input typed by the user, you use the methods readInt and readDouble,
depending on the type of data.

• To display messages and data values on the computer screen, you use the method
println.

• Classes form hierarchies that reflect the extends relationship.  If class A extends class
B, then A is a subclass of B and B is a superclass of A.

• Subclasses inherit the public behavior of their superclass.
• The Program class in acm.program has three defined subclasses: GraphicsProgram,

ConsoleProgram, and DialogProgram.
• The GObject class in acm.graphics has many useful subclasses.  Although you won’t

have a chance to see the details until Chapter 7, you can use the GLabel, GRect, and
GOval classes to create simple pictures.

Review questions
1. What is the purpose of the comments shown at the beginning of each program in this

chapter?

2. What is the role of a library package?

3. What is the name of the method that is executed when a Java program starts up under
the control of the acm.program package?
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4. To what does the word argument refer in programming?  What purpose do
arguments serve?

5. Describe the function of the println method.  What is the significance of the letters
ln at the end of its name?

6. What is the purpose of the readInt method?  How would you use it in a program?

7. This chapter describes two uses for the + operator in Java programs.  What are they,
and how does Java determine which interpretation to use?

8. Describe the difference between the philosophical terms holism and reductionism.
Why are these concepts important to programming?

9. What is the difference between a class and an object?

10. Define the terms subclass, superclass, and inheritance.

11. What is the difference between a ConsoleProgram and a DialogProgram?

Programming exercises
1. Type in the HelloProgram.java program exactly as it appears in this chapter and

get it working.  Change the message so that it reads "I love Java" instead.  Add your
name as a signature to the lower right corner.

2. The following program was written without comments or instructions to the user,
except for a couple of input prompts:

import acm.program

public class MyProgram extends ConsoleProgram {
public void run() {

double b = readDouble("Enter b: ");
double h = readDouble("Enter h: ");
double a = (b * h) / 2;
println("a = " + a);

}
}

Read through the program and figure out what it is doing.  What result is it
calculating?  Rewrite this program so it is easier to understand, both for the user and
for the programmer who must modify the program in the future.

3. Extend the Add2Integers program given in Figure 2-2 so that it adds three numbers
instead.

4. Write a GraphicsProgram subclass that generates the following picture of a
snowperson:
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Snowperson

v

Play with the coordinates until you get something that looks more or less right.  The
nose is simply a GLabel containing the letter v.



Chapter 3
Expressions

“What’s twice eleven?” I said to Pooh.
(“Twice what?” said Pooh to Me.)
“I think it ought to be twenty-two.”
“Just what I think myself,” said Pooh.

— A. A. Milne, “Us Two,” Now We Are Six, 1927

Dennis Ritchie

As a young research scientist at Bell Labs, Dennis Ritchie created the C programming
language in 1970 to simplify the development of the Unix operating system that he
developed jointly with Ken Thompson.  Both Unix and C have had enormous impact on
the field of computing.  C, in particular, provided the foundation from which many of
today’s most important programming languages, including Java, got their start.  Ritchie’s
design of C’s expression syntax has been carried over into Java in almost exactly its
original form.  Ritchie and Thompson jointly received the ACM Turing Award—the
computing profession’s highest honor—in 1983.
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In Chapter 2, you had the opportunity to see a couple of simple programs—Add2Integer
and Add2Double—that perform arithmetic manipulation. The idea in Chapter 2 was for
you to get a sense for what that type of program looks like. In this chapter, your goal is to
learn the underlying rules that allow you to write Java programs that specify computation.
In doing so, you will combine a reductionistic understanding of the details with the
holistic understanding of the program as a whole.

In each of these programs, the actual computation is specified by the appearance in the
code of

n1 + n2

which indicates, naturally enough, that the computer should add the values stored in the
variables n1 and n2. This combination of variables and the + operator is an example of an
expression, which is the symbolic representation in a programming language of the
sequence of operations necessary to produce a desired result. To make programming
easier for humans, these expressions tend to have a syntactic form that mirrors as closely
as possible the representation used in traditional mathematical formulae. Indeed, the
name FORTRAN, which was the first higher-level language to include expression syntax,
is a contraction of the words formula translation, because that aspect of the language was
widely seen as its principal advantage over machine-language programming.

As in most languages, an expression in Java is composed of terms and operators. A
term, such as n1 and n2 in the expressions from Chapter 2, represents a single data value.
An operator, such as the + sign, is a character (or sometimes a short sequence of
characters) that indicates a computational operation. In an expression, a term must be one
of the following:

• A constant. An explicit data value that appears as part of the program is called a
constant. Numbers such as 0 or 3.14159 are examples of constants.

• A variable. Variables serve as placeholders for data that can change during the
execution of a program.

• A method call. Values are often generated by calling other methods, possibly in
library packages, that return data values to the original expression. In the
Add2Integer program, for example, the method readInt is used to read in each of
the input values; the method call readInt is therefore an example of a term. Method
calls are discussed further in Chapter 5.

• An expression in parentheses. Parentheses may be used in an expression to indicate
the order of operations, in the same way they are used in mathematics. From the
compiler’s point of view, the expression in parentheses becomes a term, which must
be handled as a unit before computation can proceed.

When a program is run, the process of carrying out each of the specified operations in
an expression is called evaluation. When an expression is evaluated, each operator is
applied to the data values represented by the surrounding terms. After all the operators
have been evaluated, what remains is a single data value that represents the result of the
computation. For example, given the expression

n1 + n2

the evaluation process consists of taking the values in the variables n1 and n2 and adding
them together, and the result of the evaluation is whatever that sum happens to be.
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3.1  Primitive data types
Before turning to the details of expression formation, it is useful to take a quick survey of
the types of data that expressions can manipulate. In much of this text, you will work
primarily with data objects that are representatives of a class. Those objects and classes
represent the defining characteristic of the object-oriented paradigm on which Java is
based. Expressions, however, tend to work with simpler types of data that—at least in
Java—fall outside of the object hierarchy. These data types are all predefined as part of
the language and represent the primitive data types from which more complex objects
are built.

To be useful in a wide variety of applications, programs must be able to store many
different types of data. As you saw in Chapter 2, it was possible to write programs like
Add2Integer that work with whole numbers but also programs like Add2Double in
which numbers had fractional parts, such as 1.5 or 3.1415926. When you use a word-
processing program, the individual data values are characters, which are then assembled
into larger units such as words, sentences, and paragraphs. As your programs get more
complicated, you will begin to work with large collections of information structured in a
variety of ways. All of these different classes of information constitute data.

Whenever you work with some piece of data—which might be an integer or a number
with a fractional part or a character—the Java compiler needs to know its data type.
Holistically speaking, a data type is defined by two properties: a set of values, or domain,
and a set of operations. The domain is simply the set of values that are elements of that
type. For example, the domain of the type int includes all integers (. . . –2, –1, 0,
1, 2 . . .) up to the limits defined by the Java language. For character data, the domain is
the set of symbols that appear on the keyboard or that can be displayed on the terminal
screen. The set of operations comprises the tools you have to manipulate values of that
type. For example, given two integers, you might multiply them together or divide one by
another. Given text data, on the other hand, it is hard to imagine what an operation like
multiplication might mean. You would instead expect to use operations such as
comparing two words to see if they are in alphabetic order or displaying a message on the
screen. Thus, the operations must be appropriate to the elements of the domain, and the
two components together—the domain and the operations—define the data type.

Java defines eight primitive data types, which appear in Figure 3-1.  The first four
types—byte, short, int, and long—represent integers with different maximum and
minimum values that reflect the capacity of the memory cells in which they are stored.
The next two—float and double—represent floating-point numbers, again with
different dynamic ranges.  Except in those rare cases in which a library method requires
the use of one of the other types, this text will use int and double as its standard numeric
types.  The type boolean has a domain consisting of only two values: true and false.
Boolean data plays a central role in controlling the flow of a program and is discussed in
Chapter 4.  The type char is used to represent character data and is covered in Chapter 8.

In addition to these primitive types, it is often useful to think of the Java type String
as if it were primitive. It is, in fact, a class defined in the package java.lang, but it is
integrated into the language in several ways that make it easy to regard as roughly
analogous to the built-in primitive types. For example, Java provides a special syntax for
string constants. Moreover, just as you could with any class, you can declare variables of
type String in your programs and use them without considering their underlying
structure. Having String available makes it easier to write more interactive programs
and helps to counter the common predisposition to think of data as numeric.
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8-bit integers in the range –128 to 127

64-bit integers in the range
–9223372036854775808 to 9223372036854775807

32-bit integers in the range
–2147483648 to 2147483647

16-bit integers in the range –32768 to 32767

the values and eurt

64-bit floating-point numbers in the range

32-bit floating-point numbers in the range

1.7976931348623157 x 104.39 x 10± –322 308to ±

3.4028235 x 101.4 x 10± –45 38to ±

16-bit characters encoded using Unicode

The arithmetic operators:

The relational operators:

+ add
- subtract

* multiply
/ divide
% remainder

= equal
< less than
> greater than

not equal
less or equal
greater or equal

= !=
<=
>=

The arithmetic operators except %

The relational operators

The relational operators

& and& | or| not!
The logical operators:

FIGURE 3-1 Primitive types in Java

Type Domain Common operations

3.2  Constants and variables
The two simplest types of terms in an expression are constants and variables. Constants
appear when you need to use an explicit value that doesn’t change over the course of the
program. Variables are placeholders for data that can change during execution. The
sections that follow show you how to write constants and variables and detail the rules
that Java imposes on their specification.

Constants
When you write a formula in mathematics, some symbols in the formula typically
represent unknown values while other symbols represent constants whose values are
known. Consider, for example, the mathematical formula for computing the
circumference (C) of a circle given its radius (r):

C  =  2 π r

To translate this formula into a expression, you would use variables to record the radius
and circumference. These variables change depending on the data. The values 2 and π,
however, are constants—explicit values that never change. The value 2 is an integer
constant, and the value π is a real number constant, which would be represented in a
program by a floating-point approximation, such as 3.14159265358979323846. Because
constants are an important building block for constructing expressions, it is important to
be able to write constant values for each of the basic data types.

• Integer constants. To write an integer constant as part of a program or as input data,
you simply write the digits that make up the number. If the integer is negative, you
write a minus sign before the number, just as in mathematics. Commas are never used.
Thus, the value one million must be written as 1000000 and not as 1,000,000.

• Floating-point constants. Floating-point constants in Java are written with a decimal
point. Thus, if 2.0 appears in a program, the number is represented internally as a
floating-point value; if the programmer had written 2, this value would be an integer.



Expressions 43

Floating-point values can also be written in a special programmer’s style of scientific
notation, in which the value is represented as a floating-point number multiplied by a
integral power of 10. To write a number using this style, you write a floating-point
number in standard notation, followed immediately by the letter E and an integer
exponent, optionally preceded by a +  or - sign. For example, the speed of light in
meters per second is approximately

2.9979 x 108

which can be written in Java as

2.9979E+8

where the E stands for the words times 10 to the power.

Boolean constants and character constants also exist and are described in subsequent
chapters along with their corresponding types.

There is, however, one additional form of constant that you need to know about, even
though it is not a primitive type:

• String constants. You write a string constant in Java by enclosing the characters that
comprise the string in double quotation marks. For example, the very first example of
data used in this text was the string

"hello, world"

in the HelloProgram example from Chapter 2. This string consists of the characters
shown between the quotation marks, including the letters, the comma, and the space.
The quotation marks are not part of the string but serve only to mark its beginning and
end. There are several additional rules for writing string constants that allow you to
include special characters (such as quotation marks) within the string. These rules are
described in detail in Chapter 8.

Variables
A variable is a placeholder for a value and has three important attributes: a name, a
value, and a type. To understand the relationship of these attributes, it is easiest to think
of a variable as a box with a label attached to the outside. The name of the variable
appears on the label and is used to tell the different boxes apart. If you have three boxes
(or variables), you can refer to a particular one using its name. The value of the variable
corresponds to the contents of the box. The name on the label of the box never changes,
but you can take values out of a box and put new values in as often as you like. The type
of the variable indicates what kind of data values can be stored in the box. For example, if
you have a box designed to hold values of type int, you cannot put values of type
string into that box.

Names in Java—for variables as well as other sorts of things such as classes and
methods—are called identifiers. Identifiers must be constructed according to the
following rules:

1. Identifiers must start with a letter or the underscore character (_). In Java, uppercase
and lowercase letters appearing in an identifier are considered to be different, so the
names ABC, Abc, and abc refer to three separate identifiers.

2. All other characters in an identifier must be letters, digits, or the underscore. No
spaces or other special characters are permitted. Identifiers can be of any length.
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3. Identifiers must not be one of the following reserved words, which are names that
Java defines for a specific purpose:

abstract else interface super
boolean extends long switch
break false native synchronized
byte final new this
case finally null throw
catch float package throws
char for private transient
class goto protected true
const if public try
continue implements return void
default import short volatile
do instanceof static while
double int strictfp

In addition, good programming style requires two more rules, as follows:

4. Identifiers should make obvious to the reader the purpose of the variable, class, or
method. Although names of friends, expletives, and the like may be legal according to
the other rules, they do absolutely nothing to improve the readability of your
programs.

5. Identifiers should match the case conventions that have become standard in Java. In
particular, variable names should begin with a lowercase letter; class names should
begin with an uppercase letter. Thus, n1 is appropriate as the name of a variable, and
HelloProgram is appropriate as the name of a class. Each additional English word
appearing in the name is typically capitalized to improve readability, as in the variable
name numberOfStudents. Names that are used as constants, which are discussed in
the section entitled “Named constants” later in this chapter, use only uppercase letters
and separate words with underscores, as in PLANCKS_CONSTANT.

Declarations
As noted in the discussion of the Add2Integers program in Chapter 2, you must
explicitly specify the data type of each variable when you introduce it into a program.
This process is known as declaring the variable. The syntax for declaring a variable is
expressed in the following line:

type identifier = expression;

Syntax for declarations:

type identifier = expression;

where:
type is the type of the variable
identifier is the name of the variable
expression specifies the initial value

The code line above with its italicized pieces is an
example of a syntax template. The words in italics
represent items you can fill in with anything that
fits the specification of that template. In writing an
assignment statement, for example, you can declare
variables of any type, use any identifier to the left
of the equal sign, and supply any expression on the
right. The boldface items in the template—in this
case the equal sign and the semicolon—are fixed.
Thus, in order to write a declaration, you start with
the type name, followed by the variable name, an equal sign, an expression, and a
semicolon, in that order.

When new syntactic constructs are introduced in this text, they will be accompanied by
a syntax box that defines their structure, such as the one shown on the right. Syntax
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boxes contain a capsule summary of the grammatical rules for Java and serve as a handy
reference.

The equal sign and the expression giving the initial value are in fact optional in a
variable declaration. Leaving them out, however, can often lead to programming errors
because the initial value of the variable depends on the context in which it is declared. In
this text, all variables declared inside methods will be given an initial value to eliminate
this source of error.

Variables can be declared in several different parts of the program. The variables you
have seen up to this point have all been declared inside the body of a method. (So far, that
method has always been run, but it is legal to declare variables in any method.)
Variables declared inside a method are called local variables because they are available
only to that method and not to any other parts of the code. You can, however, declare
variables within the definition of a class but outside of any method. Variables defined at
this level are called instance variables, or ivars for short, and are stored as part of each
object. Instance variables must be used with a certain amount of care, and it is probably
best to avoid them until you have a chance to learn about some of the appropriate
strategies in Chapter 5. There is, however, one additional style of variable declaration that
is particularly important for good programming style. These variables are called class
variables and, as their name suggests, are defined at the level of the class rather than at
the level of a method. Unlike instance variables, class variables are associated with all
objects of a particular class and not with individual objects. Class variables must also be
used with care, but they are precisely the right tool for introducing names for constants,
as discussed in the following section.

Named constants
As you write your programs, you will find that you will often use the same constant many
times in the same program. If, for example, you are performing geometrical calculations
that involve circles, the constant π comes up frequently. Moreover, if those calculations
require high precision, you might actually need all the digits that fit into a value of type
double, which means you would be working with the value 3.14159265358979323846.
Writing that constant over and over again is tedious at best, and error-prone if you try to
type it in each time by hand instead of cutting and pasting the value. It would be better if
you could give this constant a name and then use it everywhere in the program. You
could, of course, simply declare it as a local variable by writing

double pi = 3.14159265358979323846;

but you would then be able to use it only within the method in which it was defined. A
better strategy is to declare it as a class variable like this:

private static final double PI = 3.14159265358979323846;

The keywords at the beginning of this declaration each provide some information
about the nature of the declaration. The private keyword indicates that this constant can
be used only within the class that defines it. It often makes more sense to declare
constants to be public, but good programming practice suggests that you should keep all
declarations private unless there is a compelling reason to do otherwise. The static
keyword indicates that this declaration introduces a class variable rather than an instance
variable. The final keyword declares that the value will not change after the variable is
initialized, thereby ensuring that the value remains constant. It would not be appropriate,
after all, to change the value of π (despite the fact that a bill was introduced in 1897 into
the Indiana State Legislature attempting to do just that). The rest of the declaration
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consists of the type, the name, and the value, as before. The only difference is that the
name is written entirely in uppercase to be consistent with Java’s naming scheme.

Using named constants offers several advantages. First, it usually makes the program
easier to read. More importantly, however, using constants makes the program easier to
maintain. Many constants in a program specify things that might change from release to
release, even though they will be constant during the execution of any program. Suppose,
for example, that you were writing one of the early networking programs and decided that
you needed to impose a limit—as the designers of the ARPANET did in 1969—of 127
computers (which were called hosts in the ARPANET days) that could be connected. If
Java had existed in those days, you might have declared a constant that looks like this:

private static final int MAXIMUM_NUMBER_OF_HOSTS = 127;

At some later point, however, the explosive growth of networking would force you to
raise this bound. That process is relatively easy if you use named constants in your
programs. To raise the limit on the number of hosts to 1023, it might well be sufficient to
change this declaration so that it read

private static final int MAXIMUM_NUMBER_OF_HOSTS = 1023;

If you adopted this approach and used MAXIMUM_NUMBER_OF_HOSTS everywhere in your
program in which you needed to refer to that maximum value, then making this simple
change would automatically propagate to every part of the program in which this name
was used. The situation would be entirely different if you had written the constant 127
everywhere instead. In that case, you would need to search through the entire program
and change all instances of 127 used for this purpose to the larger value. And if you
missed one, you would likely have a very hard time tracking down the bug.

3.3  Operators and operands
In an expression, the actual computational steps are indicated by symbolic operators that
connect the individual terms. The simplest operators to define are those used for
arithmetic expressions, which use the standard operators from arithmetic. The arithmetic
operators that apply to all numeric data types are:

+ Addition
– Subtraction (or negation, if written with no value to its left)
* Multiplication
/ Division

Each of these operators forms a new expression by connecting two smaller expressions,
one to the left and one to right of the operator. These subsidiary expressions (or
subexpressions) to which the operator is applied are called the operands for that
operator. For example, in the expression

x + 3

the operands for the + operator are the subexpressions x and 3. Operands are often
individual terms, but they can also be more complicated expressions. For example, in the
expression

(2 * x) + (3 * y)

the operands to + are the subexpressions (2 * x) and (3 * y).
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As in conventional mathematics, the operator – can be used in two forms. When it is
positioned between two operands, it indicates subtraction, as in x - y. When used with no
operand to its left, it indicates negation, so -x denotes the negative of whatever value x
has. When used in this way, the – operator is called a unary operator because it applies
to a single operand. The other operators (including – when it denotes subtraction) are
called binary operators because they apply to a pair of operands.

These new operators make it possible to write programs that compute much more
interesting and useful results than the sum of two numbers. For example, suppose you
want to write a program to convert a length given in inches to its metric counterpart in
centimeters. All you really need to know is that 1 inch equals 2.54 centimeters; you can
construct the rest of the program just by adapting lines from the Add2Double example
from Chapter 2 and putting them back together in the appropriate way. The final result is
shown in Figure 3-2.

FIGURE 3-2    Program to convert inches to centimeters

/*
 * File: InchesToCentimeters.java
 * ------------------------------
 * This program converts inches to centimeters.
 */

import acm.program.*;

public class InchesToCentimeters extends ConsoleProgram {

public void run() {
println("This program converts inches to centimeters.");
double inches = readDouble("Enter value in inches: ");
double cm = inches * CENTIMETERS_PER_INCH;
println(inches + "in = " + cm + "cm");

}

private static final double CENTIMETERS_PER_INCH = 2.54;
}

Combining integers and floating-point numbers
In Java, values of type int and double can be freely combined. If you use a binary
operator with two values of type int, the result is of type int. If either or both operands
are of type double, however, the result is always of type double. Thus, the value of the
expression

n + 1

is of type int, if the variable n is declared as type int. On the other hand, the expression

n + 1.5

is always of type double. This convention ensures that the result of the computation is as
accurate as possible. In the case of the expression n + 1.5, for example, there would be no
way to represent the .5 if the result were computed using integer arithmetic.
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Integer division and the remainder operator
The fact that applying a binary operator to integer operands gives back an integer leads to
an interesting situation with respect to division. If you write an expression like

9 / 4

Java’s rules specify that the result of this operation must be an integer, because both
operands are of type int. When the program evaluates this expression, it divides 9 by 4
and throws away any remainder. Thus, the value of the expression is 2, not 2.25. If you
want to compute the mathematically correct result, at least one of the operands must be a
floating-point number. For example, the three expressions

9.0 / 4
9 / 4.0
9.0 / 4.0

each produce the floating-point value 2.25. The remainder is thrown away only if both
operands are of type int.

There is an additional arithmetic operator that computes a remainder, which is
indicated in Java by the percent sign (%). The % operator requires that both operands be of
type int. It returns the remainder when the first operand is divided by the second. For
example, the value of

9 % 4

is 1, since 4 goes into 9 twice, with 1 left over. The following are some other examples of
the % operator:

0 % 4 = 0 19 % 4 = 3
1 % 4 = 1 20 % 4 = 0
4 % 4 = 0 2001 % 4 = 1

The /  and %  operators turn out to be extremely useful in a wide variety of
programming applications. The % operator, for example, is often used to test whether one
number is divisible by another. For example, to determine whether an integer n is
divisible by 3, you just check whether the result of the expression n % 3 is 0.

As a side note, it is not always easy to understand what happens when one or both of
the operands to % are negative. Java does define the result in such cases, but the definition
was developed to be consistent with the way machine architectures work, which is
unfortunately different from what mathematicians would like. To obviate any confusion,
this text will avoid using % with negative operands, and it probably makes sense to adopt
the same convention in your own code.

Precedence
If an expression has more than one operator, the order in which those operators are
applied becomes an important issue. In Java, you can always specify the order by putting
parentheses around individual subexpressions, just as you would in traditional
mathematics. For example, the parentheses in the expression

(2 * x) + (3 * y)
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indicate that Java should perform each of the multiplication operations before the
addition. But what happens if the parentheses are missing?  Suppose that the expression is
simply

2 * x + 3 * y

How does the Java compiler decide the order in which to apply the individual operations?

In Java, as in most programming languages, that decision is dictated by a set of
ordering rules chosen to conform to standard mathematical usage. They are called rules
of precedence. For arithmetic expressions, the rules are:

1. The Java compiler first applies any unary minus operators (a minus sign with no
operand to its left).

2. The compiler then applies the multiplicative operators (*, /, and %). If two of these
operators apply to the same operand, the leftmost one is performed first.

3. It then applies the additive operators (+ and -). Once again, if two operators at this
level of precedence apply to the same operand, Java starts with the leftmost one.

Thus, in the expression

2 * x + 3 * y

the multiplication operations are performed first, even when the parentheses are missing.
Using parentheses may make the order clearer, but in this case their use is not required
because the intended order of operations matches the precedence assumptions of
traditional mathematics. If you instead want the addition to be performed first, you must
indicate that fact explicitly by using parentheses, as in

2 * (x + 3) * y

The rules of precedence apply only when two operators “compete” for a single
operand. For instance, in the expression

2 * x + 3 * y

the operators * and + compete for the operand x. The rules of precedence dictate that the
* is performed first because multiplication has higher precedence than addition.
Similarly, looking at the two operators next to the value 3, you can again determine that
the * is performed first, for precisely the same reason. In cases in which operators do not
actually compete for the same operand, as is the case with the two multiplication
operations in this expression, Java performs the computation in left-to-right order. Thus,
Java will multiply x by 2 before multiplying y by 3.

Precedence rules can make a significant difference in the outcome of expression
evaluation. Consider, for example, the expression

10 - 5 - 2

Because Java’s precedence rules dictate that the leftmost – be performed first, the
computation is carried out as if the expression had been written

(10 - 5) - 2
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which yields the value 3. If you want the subtractions performed in the other order, you
must use explicit parentheses:

10 - (5 - 2)

In this case, the result would be 7.

There are many situations in which parentheses are required to achieve the desired
result. For example, suppose that, instead of adding two floating-point numbers the way
Add2Doubles does, you wanted them averaged instead. The program is almost the same,
as shown in Figure 3-3.

FIGURE 3-3    Program to average two double-precision numbers

/*
 * File: Average2Doubles.java
 * ----------------------
 * This program averages two double-precision floating-point numbers.
 */

import acm.program.*;

public class Average2Doubles extends ConsoleProgram {

public void run() {
println("This program averages two numbers.");
double n1 = readDouble("Enter n1: ");
double n2 = readDouble("Enter n2: ");
double average = (n1 + n2) / 2;
println("The average is " + average + ".");

}

}

Note that the parentheses are necessary in the statement

double average = (n1 + n2) / 2;

to ensure that the addition is performed before the division. If the parentheses were
missing, Java’s precedence rules would dictate that the division be performed first, and
the result would be the mathematical expression

n1 +  n2
2

instead of the intended

 n1 + n2
2
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Applying precedence rules
To illustrate precedence rules in action, let’s consider the expression

8 * (7 - 6 + 5) % (4 + 3 / 2) - 1

Put yourself in the place of the computer. How would you go about evaluating this
expression?

Your first step is to evaluate the parenthesized subexpressions, which happens in left-
to-right order. To compute the value of (7 - 6 + 5), you subtract 6 from 7 to get 1, and
then add 5 to get 6. Thus, after evaluating the first subexpression, you are left with

8 * 6  % (4 + 3 / 2) - 1

where the box indicates that the value is the result of a previously evaluated
subexpression.

You can then go on to evaluate the second parenthesized subexpression. Here, you
must do the division first, since division and multiplication take precedence over
addition. Thus, your first step is to divide 3 by 2, which results in the value 1 (remember
that integer division throws away the remainder). You then add the 4 and 1 to get 5. At
this point, you are left with the following expression:

8 * 6  % 5  - 1

From here, Java’s precedence rules dictate that you perform the multiplication and
remainder operations, in that order, before the subtraction: 6 times 8 is 48, and the
remainder of 48 divided by 5 is 3. Your last step is to subtract 1, leaving 2 as the value of
the complete expression.

Type conversion
You have already learned that it is possible to combine values of different numeric types
within a Java program. When you do so, Java handles the situation by using automatic
type conversion, a process by which values of one type are converted into another
compatible type as an implicit part of the computation process. For example, whenever an
integer and a floating-point value are combined using an arithmetic operator, the integer
is automatically converted into the mathematically equivalent double before the
operation is applied. Thus, if you write the expression

1 + 2.3

the integer 1 is converted internally into the floating-point number 1.0 before the addition
is performed.

In Java, automatic type conversions are also performed whenever a variable is given a
value of a more restrictive type. For example, if you write the declaration

double total = 0;

the integer 0 is converted into a double before it is assigned as the initial value of the
variable total. Some programming languages (and some programmers) insist on writing
this statement as
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double total = 0.0;

In terms of its effect, this statement has the same meaning as the earlier one. On the other
hand, the values 0 and 0.0 mean different things to mathematicians. Writing the value 0
indicates that the value is precisely 0, because integers are exact. When 0.0 appears in a
statistical or mathematical context, however, the usual interpretation is that it represents a
number close to zero, but one whose accuracy is known only to one significant digit after
the decimal point. To avoid ambiguity, this text uses integers to indicate exactness, even
in floating-point contexts.

It is, however, illegal in Java to use a value of type double as the initial value of a
variable of type int. You can get around this restriction by using a syntactic construct
called a type cast, which consists of the desired type in parentheses followed by the value
you wish to convert. Thus, if you write the declaration

int n = (int) 1.9999;

Java will convert 1.9999 to an integer before assigning it as the initial value of n. You
may, however, be surprised to learn that the integer it chooses is 1 rather than 2.
Converting a value from floating-point to integer representation—which happens both
with type casts and in integer division—simply throws away any fraction. That form of
conversion is called truncation.

As an example of how truncation is useful, suppose that you have been asked to write
a program that translates a metric distance in centimeters back into English units—the
inverse of the InchesToCentimeters.java program in Figure 3-2. If all you need are
the number of inches, the body of the program would look pretty much the same as
before; the only difference in the computation is that you would divide by
CENTIMETERS_PER_INCH instead of multiplying.

Suppose, however, that your employer wants you to display the answer not simply as
the total number of inches, but as an integral number of feet plus the number of leftover
inches. To compute the whole number of feet, you can divide the total number of inches
by 12 and throw away any remainder. To calculate the number of inches left over, you
can multiply the number of feet by 12 and subtract that quantity from the total number of
inches. The entire program is shown in Figure 3-4.

The declaration

int feet = (int) (totalInches / INCHES_PER_FOOT);

throws away the remainder because the result is cast to be an int. The parentheses here
are important because the type cast operator has very high precedence.

There are also cases in which you need to specify a type conversion even though the
rules for automatic conversion do not apply. Suppose, for example, you have declared
two integer variables, num and den, and you want to compute their mathematical quotient
(including the fraction) and assign the result to a newly declared double variable named
quotient. You can’t simply write

double quotient = num / den;

because both num and den are integers. When the division operator is applied to two
integers, it throws away the fraction. To avoid this problem, you have to convert at least
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FIGURE 3-4    Program to convert centimeters into feet and inches

/*
 * File: CentimetersToFeetAndInches.java
 * -------------------------------------
 * This program converts centimeters to an integral number of feet
 * and any remaining inches.
 */

import acm.program.*;

public class CentimetersToFeetAndInches extends ConsoleProgram {

public void run() {
println("This program converts centimeters to feet and inches.");
double cm = readDouble("Enter value in centimeters: ");
double totalInches = cm / CENTIMETERS_PER_INCH;
int feet = (int) (totalInches / INCHES_PER_FOOT);
double inches = totalInches - INCHES_PER_FOOT * feet;
println(cm + "cm = " + feet + "ft + " + inches + "in");

}

private static final int INCHES_PER_FOOT = 12;
private static final double CENTIMETERS_PER_INCH = 2.54;

}

one of the values to double before the division is performed. There are several ways to
do so. You could, for example, convert the denominator of the fraction by writing

double quotient = num / (double) den;

Since the denominator is now of type double, the division is carried out using floating-
point arithmetic and the fraction is retained. Equivalently, you can convert the numerator
by writing

double quotient = (double) num / den;

This statement has the same effect, but only because the precedence of a type cast is
higher than that of division, which means that the type conversion is performed first.

3.4  Assignment statements

Syntax for assignment statements:

variable = expression;

where:
variable is the variable you wish to set
expression specifies the value

Variables in Java are given values in either of two
ways. In the programs you have seen so far, the
value of a variable has been set as part of the
declaration. More sophisticated programs,
however, often change the value of variables after
they are declared, since one of the central
advantages of variables is that their values can
change over the lifetime of a program. To assign a
new value to a variable, you need to use an
assignment statement, using the syntax diagram shown on the right. The syntax is
clearly very close to that used in declarations; the only difference is that the name of the
type is missing.
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Diagramming the result of assignment statements
As noted in Chapter 2, drawing box diagrams can help you visualize the role of variables
in a program. Whenever you declare a local variable as part of a method definition, you
can draw a new box to hold its value and label the box with the variable name. For
example, suppose that a method introduces three new variables—two of type int with
the names n1 and n2, and one of type String with the name msg—using the following
declarations:

int n1 = 17;
int n2 = 0;
String msg = "Hello";

You can represent the variables in that method graphically by drawing a box for each
variable, as follows.

1n gsm2n

17 0 olleH

In this text, the double-line border surrounding all the variables is used to indicate that
those variables are defined within the same method. In programming, that collection of
variables associated with a particular invocation of a method is called a stack frame, for
reasons that will be described in Chapter 6. I have also chosen to draw the box for the
String variable with a different size and shape to emphasize that it holds values of a
different type.

Assignment statements change the value of variables in the current stack frame. Thus,
if your program executes the statement

n2 = 25;

you can represent this assignment in the diagram by writing 25 inside the box named n2:

1n gsm2n

17 25 olleH

Similarly, you can indicate the effect of the statement

msg = "Welcome";

as follows:
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emocleW

1n gsm2n

17 25

Again, it is important to keep in mind that a variable can only hold a value of the
appropriate type. If, for instance, you were to write the statement

msg = 173;

in your program, the Java compiler would mark this statement as an error because the
variable msg has been declared as a String.

The most important property illustrated by the diagram is that each variable holds
precisely one value. Once you have assigned a value to a variable, the variable maintains
that value until you assign it a new one. The value of one variable does not disappear if
you assign its value to another variable. Thus the assignment

n2 = n1;

changes n2 but leaves n1 undisturbed:

emocleW

1n gsm2n

17 17

Assigning a new value to a variable erases its previous contents. Thus, the statement

msg = "Aloha!";

changes the picture to

!aholA

1n gsm2n

17 17

The previous value of the variable msg is lost.

It is particularly important to recognize that assignment is an active operation and not a
mathematical statement of equality. The mathematical equation

x = x + 1
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is nonsensical. There are no values of x for which x is equal to x + 1. The corresponding
assignment statement

x = x + 1;

has a perfectly legitimate—and extraordinarily useful—meaning. As in any assignment
statement, the value of the expression on the right of the equal sign is stored in the
variable appearing on the left. The effect of this statement, therefore, is to replace the
value of x with one more than its previous value or, in other words, to add 1 to x. This
construct is so common in programming that Java—drawing on the structure of C before
it—defines a special idiom for this purpose, as described in the following section.

3.5  Programming idioms and patterns
Before the invention of writing, history and religion passed from generation to generation
as part of an oral tradition. The Iliad and The Odyssey of Homer, the Vedic literature of
India, the Old Norse mythologies, the sermons and songs that kept African traditions
alive through centuries of slavery—all are examples of an oral tradition. These works are
characterized by the patterned repetition of phrases, which make it easier for singers,
preachers, and storytellers to remember them. These repeated patterns, called formulas,
provide the memory cues that make it possible to remember and make variations on a
long and detailed story.

In its entirety, Java is itself a long and detailed story with many rules and techniques to
remember. Even so, as you write your programs, you will notice that many formulaic
structures come up repeatedly, just like the formulas in oral tradition. If you learn to
recognize these formulas and think of them as conceptual units, you will soon discover
that there is less to remember about programming in Java than you might have thought.
In programming, such formulas are called programming idioms or programming
patterns. To write programs effectively, you must learn how to apply these programming
patterns to the task at hand. Eventually, you should be able to do so without devoting any
conscious attention to the process. A general idea will come into your mind as part of a
solution strategy, and you will automatically translate that idea into the appropriate
pattern as you compose the program.

One of the most common patterns in Java consists of shorthand forms for certain
frequently occurring assignment statements. In Java, you will find that you often change a
variable by adding something to its current value, subtracting something from it, or some
similar operation. For example, if you were writing a program to balance your
checkbook, you might expect to use following assignment statement:

balance = balance + deposit;

This statement adds the value in the variable deposit to the current value of the variable
balance, leaving the result in balance. In more colloquial English, the effect of this
statement can be summarized as “add deposit to balance.”

Although the statement

balance = balance + deposit;

has the desired effect, it is not the statement that a Java programmer would usually write.
Statements that perform some operation on a variable and then store the result back in
that same variable occur so frequently in programming that the designers of C—from
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which Java’s expression structure is derived—included an idiomatic shorthand for it. For
any binary operator op, the statement

variable = variable op expression;

can be replaced by

variable op= expression;

The combination of an operator with the = used for assignment form is called a
shorthand assignment operator.

Using the shorthand assignment operator for addition, the more common form of the
statement

balance = balance + deposit;

is therefore

balance += deposit;

which means, in English, “add deposit to balance.”

Because this same shorthand applies to any binary operator in Java, you can subtract
the value of surcharge from balance by writing

balance -= surcharge;

divide the value of x by 10 using

x /= 10;

or double the value of salary by using

salary *= 2;

Beyond the shorthand assignment operators, Java offers a further level of abbreviation
for two particularly common programming operations—adding or subtracting 1 from a
variable. Adding 1 to a variable is called incrementing that variable; subtracting 1 is
called decrementing that variable. To indicate these operations in an extremely compact
form, Java provides the operators ++ and --. For example, the statement

x++;

has the same ultimate effect as

x += 1;

which is itself short for

x = x + 1;
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Similarly,

y--;

has the same effect as

y -= 1;

or

y = y - 1;

The ++ and -- operators occur all the time in Java programs and are actually more
complex in their operation than this presentation suggests. The form shown here,
however, is sufficient for you to understand how these operators are used in the standard
statement forms introduced in Chapter 4.

Summary
In this chapter, you have had the opportunity to learn about expressions in Java programs
and how they work. Important points introduced in the chapter include:

• Data values come in many different types, each of which is defined by a domain and a
set of operations.

• Constants are used to specify values that do not change within a program.
• Variables have three attributes: a name, a value, and a type. All variables used in a

Java program must be declared, which establishes the name and type of the variable.
• You can use class variables to associate names with constants. Such declarations are

written outside of any method and include the keywords static and final.
• Expressions are composed of individual terms connected by operators. The

subexpressions to which an operator applies are called its operands.
• When an operator is applied to two operands of type int, the result is also of type int.

If either or both operands are of type double, so is the result.
• If the / operator is applied to two integers, the result is the integer obtained by dividing

the first operand by the second and then throwing the remainder away. The remainder
can be obtained by using the % operator.

• The order of operations in an expression is determined by rules of precedence. The
operators introduced so far fall into three precedence classes:

unary -   (type cast) (highest)
*   /   %
+   - (lowest)

For the binary operators introduced so far, whenever two operators from the same
precedence class compete for the same operand, those operators are applied in left-to-
right order.

• Automatic conversion between numeric types occurs when values of different types
are combined in an expression or when an assignment is performed to a variable of a
more general type.

• Explicit conversion between numeric types can be indicated by using a type cast.
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• Variables are given values through the use of assignment statements. Each variable can
hold only one value at a time; when a variable is assigned a new value, any previous
value is lost.

• Java includes a shorthand form of the assignment statement in which the statement

variable = variable op expression;

can be replaced by

variable op= expression;

• Java includes special operators ++ and --, which specify adding and subtracting 1 from
a variable, respectively.

Review questions
1. What are the two attributes that define a data type?

2. Identify which of the following are legal constants in Java. For the ones that are
legal, indicate whether they are integers or floating-point constants.

a) 42 g) 1,000,000

b) -17 h) 3.1415926

c) 2+3 i) 123456789

d) -2.3 j) 0.000001

e) 20 k) 1.1E+11

f) 2.0 l) 1.1X+11

3. Rewrite the following floating-point constants in Java’s form for scientific notation:

a) 6.02252 x 1023

b) 29979250000.0

c) 0.00000000529167

d) 3.1415926535

(By the way, each of these constants represents an approximation of an important
value from chemistry, physics, or mathematics: (a) Avogadro’s number, (b) the
speed of light in centimeters per second, (c) the Bohr radius in centimeters, and (d)
the mathematical constant π. In the case of π, there is no advantage in using the
scientific notation form, but it is nonetheless possible and you should know how to
do so.)

4. Indicate which of the following are legal variable names in Java:

a) x g) total output

b) formula1 h) aReasonablyLongVariableName

c) average_rainfall i) 12MonthTotal

d) %correct j) marginal-cost

e) short k) b4hand

f) tiny l) _stk_depth
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5. Indicate the values and types of the following expressions:

a) 2 + 3 d) 3 * 6.0

b) 19 / 5 e) 19 % 5

c) 19.0 / 5 f) 2 % 7

6. What is the difference between the unary minus operator and the binary subtraction
operator?

7. By applying the appropriate precedence rules, calculate the result of each of the
following expressions:

a) 6 + 5 / 4 - 3

b) 2 + 2 * (2 * 2 - 2) % 2 / 2

c) 10 + 9 * ((8 + 7) % 6) + 5 * 4 % 3 * 2 + 1

d) 1 + 2 + (3 + 4) * ((5 * 6 % 7 * 8) - 9) - 10

8. If the variable k is declared to be of type int, what value does k contain after the
program executes the assignment statement

k = (int) 3.14159;

What value would k contain after the assignment statement

k = (int) 2.71828;

9. In Java, how do you specify conversion between numeric types?

10. What idiom would you use to multiply the value of the variable cellCount by 2?

11. What is the most common way in Java to write a statement that has the same effect
as the statement

x = x + 1;

Programming exercises
1. Extend the InchesToCentimeters program given in Figure 3-2 so that it reads in

two input values: the number of feet, followed on a separate line by the number of
inches. Here is a sample run of the program:

FeetAndInchesToCentimeters
This program converts feet and inches to centimeters.
Enter number of feet: 5
Enter number of inches: 11
5ft 11in = 180.0cm
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2. Write a program that reads in two numbers: an account balance and an annual
interest rate expressed as a percentage. Your program should then display the new
balance after a year. There are no deposits or withdrawals—just the interest payment.
Your program should be able to reproduce the following sample run:

Interest
Interest calculation program
Enter starting balance: 6000
Enter annual interest rate: 4.25
Balance after one year = 6255.0

3. Extend the program you wrote in Exercise 2 so that it also displays the balance after
two years have elapsed, as shown in the following sample run:

Interest2
Interest calculation program
Enter starting balance: 6000
Enter annual interest rate: 4.25
Balance after one year = 6255.0
Balance after two years = 6520.84

Note that the interest used in this example is compounded annually, which means the
interest from the first year is added back to the bank balance and is therefore itself
subject to interest in the second year. In the first year, the $6,000 earns 4.25%
interest, or $255. In the second year, the account earns 4.25% interest on the entire
$6,255.

4. Write a program that asks the user for the radius of a circle and then computes the
area of that circle (A) using the formula

A =  π r 2

Note that there is no “raise to a power” operator in Java. Given the arithmetic
operators you know Java has, how can you write an expression that achieves the
desired result?

5. Write a program that reads in a temperature in degrees Fahrenheit and returns the
corresponding temperature in degrees Celsius. The conversion formula is

C =   5
 9

 (F – 32)

The following is a sample run of the program:
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FahrenheitToCelsius
This program converts Fahrenheit to Celsius.
Enter Fahrenheit temperature: 212
Celsius equivalent = 100.0

If you write this program carelessly, the answer always comes out 0. What bug
causes this behavior?

6. In Norton Juster’s children’s story The Phantom Tollbooth, the Mathemagician gives
Milo the following problem to solve:

4 + 9 - 2 * 16 + 1 / 3 * 6 - 67 + 8 * 2 - 3 + 26 - 1 / 34 + 3 / 7 + 2 - 5

According to Milo’s calculations, which are corroborated by the Mathemagician, this
expression “all works out to zero.”  If you do the calculation, however, the
expression comes out to zero only if you start at the beginning and apply all the
operators in strict left-to-right order. What would the answer be if the
Mathemagician’s expression were evaluated using Java’s precedence rules?  Write a
program to verify your calculation.

7. Write a program that converts a metric weight in kilograms to the corresponding
English weight in pounds and ounces. The conversion factors you need are

1 kilogram =  2.2 pounds
1 pound = 16 ounces

8. Write a program that computes the average of four integers.

9. There’s an old nursery rhyme that goes like this:

As I was going to St. Ives,
I met a man with seven wives,
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits:
Kits, cats, sacks, and wives,
How many were going to St. Ives?

The last line turns out to be a trick question: only the speaker is going to St. Ives;
everyone else is presumably heading in the opposite direction. Suppose, however,
that you want to find out how many representatives of the assembled multitude—
kits, cats, sacks, and wives—were coming from St. Ives. Write a Java program to
calculate and display this result. Try to make your program follow the structure of
the problem so that anyone reading your program would understand what value it is
calculating.



Chapter 4
Statement Forms

The statements was interesting but tough.
— Mark Twain, Adventures of Huckleberry Finn, 1884

George Boole (1815-1864)

Even though he was largely self-taught and never earned a formal university degree,
George Boole achieved sufficient prominence to be appointed Professor of Mathematics
at Queen's College in County Cork, Ireland, and to be elected as a Fellow of the Royal
Society.  His most influential work was an 1854 book entitled An Investigation into the
Laws of Thought, on Which are Founded the Mathematical Theories of Logic and
Probabilities. That book introduced a system of logic that has come to be known as
Boolean algebra and which serves as the foundation for the control operations
implemented in modern programming languages.
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In Chapter 2, you saw several examples of Java programs that extend the Program
hierarchy.  Such programs operate by executing the statements contained within the body
of a method called run.  This chapter covers the different statement types available in
Java and, in the process, extends the set of tools you have for solving problems.

As in most programming languages, statements in Java fall into one of two principal
classifications: simple statements, which perform some action, and control statements,
which affect the way in which other statements are executed.  You have already seen a
variety of simple statements in Java, such as assignments and calls to the println
method.  You have also encountered various control statements in your work with Karel.
The for statement makes it possible to repea65 number of times, the while statement
allows you to specify repetition until some condition occurs, and the if statement makes
it possible to choose different paths through a program depending on some conditional
test.  Up to now, however, you have studied these statements in an informal, idiomatic
way.  To use the full power of these statements, you need a more detailed understanding
of how each type of statement works and how it can be applied as part of your problem-
solving repertoire.

4.1  Simple statements
In the programs in Chapters 2 and 3, you saw simple statements used to accomplish a
variety of tasks.  For example, the very first program in the text was

add(new GLabel("hello, world"), 100, 75);

which was a call to the add method in GraphicsProgram.  Similarly, you have been
introduced to assignment statements, such as the shorthand form

balance += deposit;

and statements that display information, such as

println("The total is " + total + ".");

Informally, it makes sense to think of these statement types as separate tools and to use
them idiomatically.  If you need to read an integer, all you need to do is remember that
there is an idiom for that purpose, which you can then write down.  If you need to display
a value, you know that you should use the println method.  Viewed formally, however,
these simple statements all have a unified structure that makes it easy for the Java
compiler to recognize a legal statement in a program.  In Java, all simple statements—
regardless of their function—fit the following rule:

Simple Statement Rule

A simple statement consists of an expression followed by a
semicolon.

Thus, the template for a simple statement is simply this:

expression;

Adding the semicolon after the expression turns the expression into a legal statement
form.
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Even though any expression followed by a semicolon is a legal statement in Java, it is
not true that every such combination represents a useful statement.  To be useful, a
statement must have some discernible effect.  The statement

n1 + n2;

consists of the expression n1 + n2 followed by a semicolon and is therefore a legal
statement.  It is, however, an entirely useless one because nothing is ever done with the
answer; the statement adds the variables n1 and n2 together and then throws the result
away.  Simple statements in Java are typically assignments (including the shorthand
assignments and increment/decrement operators) or calls to methods, such as println,
that perform some useful operation.

It is easy to see that program lines such as

println("The total is " + total + ".");

are legal statements according to the Simple Statement Rule.  In the definition of
expression given in Chapter 2, method calls are legal expressions, so that the method call
part of the above line—everything except the semicolon—is a legal expression.  Putting
the semicolon at the end of the line turns that expression into a simple statement.

But what about assignments?  If a line like

total = 0;

is to fit the Simple Statement Rule, it must be the case that

total = 0

is itself an expression.

In Java, the equal sign used for assignment is simply a binary operator, just like + or /.
The = operator takes two operands, one on the left and one on the right.  For our present
purposes, the left operand must be a variable name.  When the assignment operator is
executed, the expression on the right-hand side is evaluated, and the resulting value is
then stored in the variable that appears on the left-hand side.  Because the equal sign used
for assignment is an operator,

total = 0

is indeed an expression, and the line

total = 0;

is therefore a simple statement.

Blocks
Simple statements allow programmers to specify actions.  Except for the HelloProgram
example in Chapter 2, however, every program you have seen so far requires more than
one simple statement to do the job.  For most programs, the solution strategy requires a
coordinated action consisting of several sequential steps.  The Add2Integers program,
for example, had to first get one number, then get a second, then add the two together,
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and finally display the result.  Translating this sequence of actions into actual program
steps required the use of several individual statements that all became part of the main
program body.

To specify that a sequence of statements is part of a coherent unit, you can assemble
those statements into a block, which is a collection of statements and declarations
enclosed in curly braces, as follows:

{
statement1
statement2
statement3
 . . .
statementn

}

Any of these statements can be replaced by a declaration, and it is probably easiest to
think of declarations as simply another form of statement.

You have already seen blocks in several of the programming examples from the
previous chapters.  The body of each method is a block, as are the bodies of the control
statements introduced later in this chapter.

The statements in the interior of a block are usually indented relative to the enclosing
context.  The compiler ignores the indentation, but the visual effect is helpful to the
human reader, because it makes the structure of the program jump out at you from the
format of the page.  Empirical research has shown that using either three or four spaces at
each new level makes the program structure easiest to see; the programs in this text use
four spaces for each new level.  Indentation is critical to good programming, so you
should strive to develop a consistent indentation style in your programs.

When the Java compiler encounters a block, it treats the entire block as a single
statement.  Thus, whenever the notation statement appears in a syntax template or an
idiomatic pattern, you can substitute for it either a single statement or a block.  To
emphasize that they are statements as far as the compiler is concerned, blocks are
sometimes referred to as compound statements.

4.2  Control statements
In the absence of any directives to the contrary, statements in a Java program are
executed one at a time in the order in which they appear.  For most applications, however,
this strictly top-to-bottom ordering is not sufficient.  Solution strategies for real-world
problems tend to involve such operations as repeating a set of steps or choosing between
alternative sets of actions.  Statements that affect the way in which other statements are
executed are called control statements.

Control statements in Java fall into two basic classes:

1. Conditionals.  In solving problems, you will often need to choose between two or
more independent paths in a program, depending on the result of some conditional
test.  For example, you might be asked to write a program that behaves one way if a
certain value is negative and some different way otherwise.  The type of control
statement needed to make decisions is called a conditional.  In Java, there are two
conditional statement forms: the if statement and the switch statement.
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2. Iteration.  Particularly as you start to work with problems that involve more than a
few data items, your programs will often need to repeat an operation a specified
number of times or as long as a certain condition holds.  In programming, such
repetition is called iteration and the portion of code that repeats is called a loop.  In
Java, the control statements used as the basis for iteration are the while statement and
the for statement.

Each control statement in Java consists of two parts: the control line, which specifies
the nature of the repetition or condition, and the body, which consists of the statements
that are affected by the control line.  In the case of conditional statements, the body may
be divided into separate parts, where one set of statements is executed in certain cases and
another set of statements is executed in others.

The body of each control statement consists of other statements.  The effect of the
control statement itself—no matter whether it specifies repetition or conditional
execution—is applied to each of the statements in the body.  Those statements, moreover,
can be of any type.  They may be simple statements, they may be compound statements,
or they may themselves be control statements, which in turn contain other statements.
When a control statement is used within the body of another control statement, it is said
to be  nested.  The ability to nest control statements, one inside another, is one of the
most important characteristics of modern programming languages.

4.3  Boolean data
In the course of solving a problem, it is often necessary to have the program test a
particular condition that affects the subsequent behavior of the program.  The if
statement, along with many of the other facilities that control the execution of a program,
use expressions whose values are either true or false.  This type of data—for which the
only values in the domain are true and false—is called Boolean data, after the
mathematician George Boole, who developed an algebraic approach for working with
such values.

Java defines several operators that work with boolean values, which is one of the
primitive types introduced in Chapter 3.  These operators fall into two major classes—
relational operators and logical operators—which are discussed in the next two sections.

Relational operators
The relational operators are used to compare two values.  Java defines six relational
operators, which actually fall into two precedence classes.  The operators that test the
ordering relationship between two quantities are

> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

These operators appear in the precedence hierarchy below the arithmetic operators, and
are in turn followed by the operators

== Equal
!= Not equal

which test for equality and inequality.



68 The Art and Science of Java

When writing programs that test for
equality, be sure to use the ==
operator and not the single =
operator, which signifies assignment.

When you write programs that test for
equality, be very careful to use the == operator,
which is composed of two equal signs.  A single
equal sign is the assignment operator.  Since the
double equal sign is not part of standard
mathematics, replacing it with a single equal sign
is a particularly common mistake.  Fortunately,
the Java compiler usually catches the error when it compiles your program, because the
assignment is usually illegal in the context in which it appears.

The relational operators can only be used to compare atomic data values—data values
that are not built up from smaller component parts.  For example, integers, floating-point
numbers, Boolean values, and characters constitute atomic data because they cannot be
decomposed into smaller pieces.  Strings, on the other hand, are not atomic because they
are composed of individual characters.  Thus, you can use relational operators to compare
two values of the types int, double, char, or even boolean itself, but you cannot use
them to compare two values of type String.  You will learn how to compare strings in
Chapter 8.

Logical operators
In addition to the relational operators, which take atomic values of any type and produce
Boolean results, Java defines three operators that take Boolean operands and combine
them to form other Boolean values:

! Logical not (true if the following operand is false)
&& Logical and (true if both operands are true)
|| Logical or (true if either or both operands are true)

These operators are called logical operators and are listed in decreasing order of
precedence.

The operators &&, ||, and ! closely resemble the English words and, or, and not.  Even
so, it is important to remember that English can be somewhat imprecise when it comes to
logic.   To avoid that imprecision, it is often helpful to think of these operators in a more
formal, mathematical way.  Logicians define these operators using truth tables, which
show how the value of a Boolean expression changes as the values of its operands
change.  For example, the truth table for the && operator, given Boolean values p and q, is

p q p && q
false false false
false true false
true false false
true true true

The last column of the table indicates the value of the Boolean expression p && q given
individual values of the Boolean variables p and q shown in the first two columns.  Thus,
the first line in the truth table shows that when p is false and q is false, the value of the
expression p && q is also false.

The truth table for || is
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p q p || q
false false false
false true true
true false true
true true true

Note that the || operator does not indicate one or the other, as it often does in English,
but instead indicates either or both, which is its mathematical meaning.

The ! operator has the following simple truth table:

p !p
false true
true false

If you need to determine how a more complex logical expression operates, you can break
it down into these primitive operations and build up a truth table for the individual pieces
of the expression.

Be careful when using the && and ||
operators with relational tests that
involve the !  and !=  operators.
English can be somewhat fuzzy in its
approach to logic, but programming
requires you to be precise.

In most cases, logical expressions are not so
complicated that you need a truth table to figure
them out.  The only common case that seems to
cause confusion is when the !  or != operator
comes up in conjunction with && or ||.  When
talking about situations that are not true (as is the
case when working with the ! and != operators),
conventional English is sometimes at odds with
mathematical logic, and you should use some
extra care to avoid errors.  For example, suppose you wanted to express the idea “x is not
equal to either 2 or 3” as part of a program.  Just reading from the English version of this
conditional test, new programmers are very likely to write

if (x != 2 || x != 3) . . .

If you look at this conditional test from the mathematical point of view, you can see that
the expression within the if test is true if either (a) x is not equal to 2 or (b) x is not
equal to 3.  No matter what value x has, one of the statements must be true, since, if x is
2, it cannot also be equal to 3, and vice versa.  Thus, the if test as written above would
always succeed.

To fix this problem, you need to refine your understanding of the English expression
so that it states the condition more precisely.  That is, you want the test in the if
statement to succeed whenever “it is not the case that either x is 2 or x is 3.”  You could
translate this statement directly to Java by writing

if (!(x == 2 || x == 3)) . . .

but the resulting statement is a bit ungainly.  The question you really want to ask is
whether both of the following conditions are true:

• x is not equal to 2, and
• x is not equal to 3.
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If you think about the question in this form, you could write the test as

if (x != 2 && x != 3) . . .

This simplification is a specific illustration of the following more general relationship
from mathematical logic:

!(p || q)   is equivalent to   !p && !q

for any logical expressions p and q.  This transformation rule and its symmetric
counterpart

!(p && q)   is equivalent to   !p || !q

are called De Morgan’s laws.  Forgetting to apply these rules and relying instead on the
English style of logic is a common source of programming errors.

To test whether a number is in a
particular range, it is not sufficient to
combine relational operators, as is
conventional in mathematics.  The
two parts of the condition must be
written explicitly using &&, as in

(0 < x) && (x < 10)

Another common mistake comes from
forgetting to use the appropriate logical
connective when combining several relational
tests.  In mathematics, one often sees an
expression of the form

0  <  x  <  10

While this expression makes sense in
mathematics, it is not meaningful in Java.  In
order to test that the variable x is both greater than 0 and less than 10, you need to
indicate both conditions explicitly, as follows:

0 < x && x < 10

Short-circuit evaluation
Java interprets the && and || operators in a way that differs from the interpretation used
in many other programming languages.  In Pascal, for example, evaluating these
operators (which are written as AND and OR) requires evaluating both halves of the
condition, even when the result can be determined halfway through the process.  The
designers of Java took a different approach that is often more convenient for
programmers.

Whenever a Java program evaluates any expression of the form

exp1 && exp2

or

exp1 || exp2

the individual subexpressions are always evaluated from left to right, and evaluation ends
as soon as the answer can be determined.  For example, if exp1 is false in the expression
involving &&, there is no need to evaluate exp2 since the final answer will always be
false.  Similarly, in the example using ||, there is no need to evaluate the second
operand if the first operand is true.  This style of evaluation, which stops as soon as the
answer is known, is called short-circuit evaluation.
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A primary advantage of short-circuit evaluation is that it allows one condition to
control the execution of a second one.  In many situations, the second part of a compound
condition is meaningful only if the first part comes out a certain way.  For example,
suppose you want to express the combined condition that (1) the value of the integer x is
nonzero and (2) x divides evenly into y.  You can express this conditional test in Java as

(x != 0) && (y % x == 0)

because the expression y % x is evaluated only if x is nonzero.  The corresponding
expression in Pascal fails to generate the desired result, because both parts of the Pascal
condition will always be evaluated.  Thus, if x is 0, a Pascal program containing this
expression will end up dividing by 0 even though it appears to have a conditional test to
check for that case.  Conditions that protect against evaluation errors in subsequent parts
of a compound condition, such as the conditional test

(x != 0)

in the preceding example, are called guards.

Flags
Variables of type boolean are so important that they have a special name: flags.  For
example, if you declare a Boolean variable using the declaration

boolean done;

the variable done becomes a flag, which you can use in your program to record whether
or not you are finished with some phase of the operation.  You can assign new values to
flags just as you can to any other variable.  For example, you can write

done = true;

or

done = false;

More importantly, you can assign any expression that has a Boolean value to a
Boolean variable.  For example, suppose the logic of your program indicates that you are
finished with some phase of the operation as soon as the value of the variable
itemsRemaining becomes 0.  To set done to the appropriate value, you can simply write

done = (itemsRemaining == 0);

The parentheses in this expression are not necessary but are often used to emphasize the
fact that you are assigning the result of a conditional test to a variable.  The statement
above says, “Calculate the value of (itemsRemaining == 0), which will be either true
or false, and store that result in the variable done.”

Avoiding redundancy in Boolean expressions
Even though the statement

done = (itemsRemaining == 0);

is sufficient to store the correct Boolean value in the variable done, this type of statement
seems difficult for people to learn.  New programmers have a tendency to achieve the
same effect with the following if statement:
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if (itemsRemaining == 0) {
    done = true;
} else {
    done = false;
}

Be careful to avoid redundancy
when using Boolean data.  Standard
warning signs include comparing a
Boolean value against the constant
true and the use of an if statement
to produce a Boolean result that was
already available as a conditional
expression.

Although these lines have the desired effect, they
do not have the efficiency or the elegance you
should seek to achieve in your programs.  The
second version requires five lines to do the work
of one and will make your programs much longer
than they need to be.  As you work with Boolean
data, it is important to remember that you can
assign Boolean values just like any other values
and that explicit tests are not necessary.

A similar problem occurs when you use a flag as part of a conditional test.  To test
whether done has the value true, an experienced programmer writes

if (done) . . .

and not

if (done == true) . . .

Even though this second expression also works, the equality test is redundant.  The value
of done is already guaranteed to be either true or false, which is precisely the sort of
value the if statement wants.  You don’t need to ask whether done is equal to true, since
the extra test provides no new information.

An example of Boolean calculation
As astronomers have known for centuries, the earth takes a little more than 365 days to
make a complete revolution around the sun.  Because it takes about a quarter of a day
more than 365 days for it to complete its annual cycle, an extra day builds up every four
years, which must then be added to the calendar, creating a leap year.  This adjustment
helps keep the calendar in sync with the sun’s orbit, but it is still off by a slight amount.
To ensure that the beginning of the year does not slowly drift through the seasons, the
actual rule used for leap years is slightly more complicated.  Leap years come every four
years, except for years ending in 00, which are leap years only if they are divisible by
400.  Thus, 1900 was not a leap year even though 1900 is divisible by 4.  The year 2000,
on the other hand, was a leap year because 2000 is divisible by 400.

Suppose you have been asked to write a program that reads in a year and determines
whether that year is a leap year.  How would you write the Boolean expression necessary
to answer that question?  In order to be a leap year, one of the following conditions must
hold:
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• The year is divisible by 4 but not divisible by 100, or
• The year is divisible by 400.

If the year is contained in the variable y, the following Boolean expression has the correct
result:

((y % 4 == 0) && (y % 100 != 0)) || (y % 400 == 0)

Given Java’s rules of precedence, none of the parentheses in this expression are actually
required, but using parentheses makes long Boolean expressions easier to read.  If you
take the result of this expression and store it in a flag called isLeapYear, you can then
test the flag at other points in the program to determine whether the isLeapYear
condition is true.  A program that performs the leap-year calculation is shown in Figure
4-1.

FIGURE 4-1    Program to determine whether a year is a leap year

/*
 * File: LeapYear.java
 * -------------------
 * This program reads in a year and determines whether it is a
 * leap year.  A year is a leap year if it is divisible by four,
 * unless it is divisible by 100.  Years divisible by 100 are
 * leap years only if divisible by 400.
 */

import acm.program.*;

public class LeapYear extends ConsoleProgram {
public void run() {

println("This program checks for leap years.");
int year = readInt("Enter year: ");
boolean isLeapYear = ((year % 4 == 0) && (year % 100 != 0))
                     || (year % 400 == 0);
if (isLeapYear) {

println(year + " is a leap year.");
} else {

println(year + " is not a leap year.");
}

}
}

4.4  The if statement
The simplest way to express conditional execution in Java is by using the if statement,
which comes in two forms:

if (condition) statement

if (condition) statement else statement

The condition component of this template is a Boolean-valued expression.  The
statements can be either simple statements or blocks.
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You use the first form of the if statement when your solution strategy calls for a set of
statements to be executed only if a particular condition applies.  If that condition does not
apply, the statements that form the body of the if statement are simply skipped.  You use
the second form of the if statement for situations in which the program must  choose
between two independent sets of actions based on the result of a test.  The decision is
always based on the dynamics of the problem.  If the English description of the problem
might logically contain the word otherwise, there is a good chance that you’ll need the
else form.  If the English description conveys no such notion, then the simple if
statement is probably sufficient.

The use of the if statement with the else form is illustrated by the LeapYear program
given in Figure 4-1, in which the program needs to print one message if the specified year
is a leap year and a different message otherwise.  If the problem were instead structured
so that a message were printed only in leap years, you would use the simple if form
instead, as follows:

if (isLeapYear) {
println(year + " is a leap year.");

}

In an if statement, the block of statements executed when the conditional expression
is true is called the then clause of the if statement.  The block of statements executed
when the condition is false—if one is specified—is called the else clause.

The fact that the else clause is optional in the if statement sometimes creates an
ambiguity, which is called the dangling-else problem.  If you write several if statements
nested one within another, some of which have else clauses and some of which don’t, it
can be difficult to tell which else goes with which if.  When faced with this situation,
the Java compiler follows the simple rule that each else clause is paired with the most
recent if statement that does not already have an else clause.  While this rule is simple
for the compiler, it can still be hard for human readers to recognize quickly where each
else clause belongs.  By adopting a more disciplined programming style than Java
requires, it is possible to get rid of dangling-else ambiguities.  The following rule
governing how to use blocks within if statements eliminates the problem:

If/Else Blocking Rule

For any if statement that (1) requires more than a single
line or (2) requires an else clause, always use curly braces
to enclose in a separate block the statements under the
control of the if statement.

Because this text follows the If/Else Blocking Rule, the if statement appears only in
one of the following four forms:

1. A single-line if statement used for extremely short conditions
2. A multiline if statement in which the statements are enclosed in a block
3. An if-else statement that always uses blocks to enclose the statements controlled by

the if statement, even if they consist of a single statement
4. A cascading if statement, used for expressing a series of conditional tests

Each of these forms is discussed in more detail in the sections that follow.
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Syntax for single-line if statements:

   if (condition) statement;

where:
condition is the Boolean value being tested
statement is a single statement to be

executed if condition is true

Syntax for multiline if statements:

   if (condition) {
      statements;
   }

where:
condition is the Boolean value being tested
statements is a block of statements to be

executed if the condition is true

Syntax for if-else statements:

   if (condition) {
      statementsT

   } else {
      statementsF

   }

where:
condition is the Boolean value being tested
statementsT is a block of statements to be

executed if condition is true
statementsF is a block of statements to be

executed if condition is false

Syntax for cascading if statements:

   if (condition1) {
      statements1

   } else if (condition2) {
      statements2

   } else if (condition3) {
      statements3

       . . .
   } else {
      statementsnone

   }

where:
each conditioni is a Boolean expression
each statementsi is a block of statements to

be executed if conditioni is true
statementsnone is the block of statements to

be executed if every conditioni is false

Single-line if statements
The simple one-line format shown in the syntax
box to the right is used only for those if statements
in which there is no else clause and in which the
body is a single statement short enough to fit on the
same line as the if.  In this type of situation, using
braces and extending the if statement from one to
three lines would make the program longer and
more difficult to read.

Multiline if statements
Whenever the body of an if statement consists of
multiple statements or a single statement that is too
long for a single line, the statements are enclosed
in a block, as shown in the syntax box.  In this
form, the statements are executed if the condition is
true.  If the condition is false, the program takes
no action at all and continues with the statement
following the if.

The if-else statement
To avoid the dangling-else problem, the bodies of
if statements that have else clauses are always
enclosed within blocks, as shown in the syntax box
to the right.  Technically, the curly braces that
surround the block are necessary only if there is
more than one statement governed by that
condition.  By systematically using those braces,
however, you can minimize the possibility of
confusion and make your programs easier to
maintain.

Cascading if statements
The syntax box on the right illustrates an important
special case of the if statement that is useful for
applications in which the number of possible cases
is larger than two.  The characteristic form is that
the else part of a condition consists of yet another
test to check for an alternative condition.  Such
statements are called cascading if statements and
may involve any number of else if lines.  For
example, the program SignTest in Figure 4-2 uses
the cascading if statement to report whether a
number is positive, zero, or negative.  Note that
there is no need to check explicitly for the n  <  0
condition.  If the program reaches that last else
clause, there is no other possibility, since the
earlier tests have eliminated the positive and zero
cases.
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FIGURE 4-2    Program to classify an integer according to its sign

/*
 * File: SignTest.java
 * -------------------
 * This program reads in an integer and classifies it as negative,
 * zero, or positive depending on its sign.
 */

import acm.program.*;

public class SignTest extends ConsoleProgram {
public void run() {

println("This program classifies an integer by its sign.");
int n = readInt("Enter n: ");
if (n > 0) {

println("That number is positive.");
} else if (n == 0) {

println("That number is zero.");
} else {

println("That number is negative.");
}

}
}

In many situations, the process of choosing among a set of independent cases can be
handled more efficiently using the switch statement, which is described in a separate
section later in this chapter.

The ?: operator
The Java programming language provides another, more compact mechanism for
expressing conditional execution that can be extremely useful in certain situations: the ?:
operator.  (This operator is referred to as question-mark colon, even though the two
characters do not actually appear adjacent to one another.)  Unlike any other operator in
Java, ?: is written in two parts and requires three operands.  The general form of the
operation is

condition ? expression1 : expression2

When a Java program encounters the ?: operator, it first evaluates the condition.  If the
condition turns out to be true, expression1 is evaluated and used as the value of the entire
expression; if the condition is false, the value is the result of evaluating expression2.
The ?: operator is therefore a shorthand form of the if statement

if (condition) {
   value = expression1;
} else {
   value = expression2;
}

where the value of the ?: expression as a whole is whatever would have been stored in
value in the expanded, if-statement form.
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For example, you can use the ?: operator to assign to max either the value of x or the
value of y, whichever is greater, as follows:

max = (x > y) ? x : y;

The parentheses around the condition here are not technically required, but many Java
programmers tend to include them in this context to enhance the readability of the code.

One of the most common situations in which the ?: operator makes sense is in calls to
println where the output you want differs slightly depending on some condition.  For
example, suppose that you are writing a program that counts the number of some item
and that, after doing all the counting, stores the number of items in the variable nItems.
How would you report this value to the user?  The obvious way is just to call println
using a statement like

println(nItems + " items found.");

But if you are a grammatical purist, you might be a little chagrined to read the output

ItemCount
1 items found.

when nItems happens to have the value 1.  You could, however, correct the English by
enclosing the println line in the following if statement:

if (nItems == 1) {
println(nItems + " item found.");

} else {
println(nItems + " items found.");

}

The only problem is that this solution strategy requires a five-line statement to express
a relatively simple idea.  As an alternative, you could use the ?: operator as follows:

println(nItems + " item" + (nItems == 1 ? "" : "s") + " found.");

The string "item" in the output would then be followed by the empty string if nItems is
equal to one and the string "s" otherwise.  Note that the parentheses are necessary around
the expression

(nItems == 1 ? "" : "s")

The ?: operator has relatively low precedence with respect to +, which means that Java
would try to do the concatenation first.

In Java, it is possible to overuse the ?: operator.  If an essential part of the decision-
making structure with a program is hidden away in the ?: operator, those decision-
making operations can easily get lost in the rest of the code.  On the other hand, if using
?: makes it possible to handle some small detail without writing a complicated if
statement, this operator can simplify the program structure considerably.
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4.5  The switch statement

Syntax for the switch statement:

switch (e) {
   case c1:
      statements1

      break;
   case c2:
      statements2

      break;
   . . . more case clauses . . .
   default:
      statementsdef

      break;
}

where:
e is the control expression, which is used

to choose what statements are
executed

each ci is a constant value
each statementsi is a sequence of

statements to be executed if ci is equal
to e

statementsdef is a sequence of statements to
be executed if none of the ci values
match the expression e

The if statement is ideal for those applications in
which the program logic calls for a two-way
decision point: some condition is either true or
false, and the program acts accordingly.  Some
applications, however, call for more complicated
decision structures involving more than two
choices, where those choices can be divided into a
set of mutually exclusive cases: in one case, the
program should do x; in another case, it should do
y; in a third, it should do z; and so forth.  In many
applications, the most appropriate statement to use
for such situations is the switch statement, which
is outlined in the syntax box on the right.

The header line of the switch statement is

switch (e)

where e  is an expression called the control
expression.  The body of the switch statement is
divided into individual groups of statements
introduced with one of two keywords: case or
default.  A case line and all the statements that
follow it up to the next instance of either of these
keywords are called a case clause; the default
line and its associated statements are called the
default clause.  For example, in the template
shown in the syntax box, the range of statements

case c1:
  statements1

  break;

constitutes the first case clause.

When the program executes a switch statement, the control expression e is evaluated
and compared against the values c1, c2, and so forth, each of which must be an integer
constant (or, as you will see in Chapter 8, any value that behaves like an integer, such as a
character).  If one of the constants matches the value of the control expression, the
statements in the associated case clause are executed.  When the program reaches the
break statement at the end of the clause, the operations specified by that clause are
complete, and the program continues with the statement following the entire switch
statement.  If none of the case constants match the value of the control expression, the
statements in the default clause are executed.

The template shown in the syntax box deliberately suggests that the break statements
are a required part of the syntax.  I encourage you to think of the switch syntax in
precisely that form.  Java is defined so that if the break statement is missing, the program
starts executing statements from the next clause after it finishes the selected one.  While
this design can be useful in some cases, it tends to cause more problems than it solves.
To reinforce the importance of remembering to include the break statement, every case
clause in this text ends with an explicit break statement (or sometimes with a return
statement, as discussed in Chapter 5).
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It is good programming practice to
include a break statement at the end
of every case  clause within a
switch statement.  Doing so will
help you to avoid programming
errors that can be extremely difficult
to find.  It is also good practice to
include a default clause unless you
are sure you have covered all the
cases.

The one exception to this rule is that multiple
case lines specifying different constants can
appear together, one after another, before the
same statement group.  For example, a switch
statement might include the following code:

case 1:
case 2:
  statements
  break;

which indicates that the specified statements
should be executed if the select expression is
either 1 or 2.  The Java compiler treats this construction as two case clauses, the first of
which is empty.  Because the empty clause contains no break statement, a program that
selects that path simply continues on with the second clause.  From a conceptual point of
view, however, you are probably better off to think of this construction as a single case
clause representing two possibilities.

The default clause is optional in the switch statement.  If none of the cases match
and there is no default clause, the program simply continues on with the next statement
after the switch statement without taking any action at all.  To avoid the possibility that
the program might ignore an unexpected case, it is good programming practice to include
a default clause in every switch statement unless you are certain you have enumerated
all the possibilities.

Because the switch statement can be rather long, programs are easier to read if the
case clauses themselves are short.  If there is room to do so, it also helps to put the case
identifier, the statements forming the body of the clause, and the break statement all
together on the same line.  This style is illustrated in the CardRank program in Figure 4-3,
which shows an example of a switch statement that might prove useful in writing a
program to play a card game.  In this game, the cards within each suit are represented by
the numbers 1 to 13.  Displaying the number of the card is fine for the cards between 2
and 10, but this style of output is not very satisfying for the values 1, 11, 12, and 13,
which should properly be represented using the names Ace, Jack, Queen, and King.  The
CardRank program uses the switch statement to display the correct symbol for each card.

The fact that the switch statement can only be used to choose between cases identified
by an integer (or integer-like) constant does place some restrictions on its use.  You will
encounter situations in which you want to choose between several cases based on the
value of a string variable or in which the values you want to use as case indicators are not
constants.  Since the switch statement cannot be used in such cases, you will instead
need to rely on cascading if statements.  In situations that allow the use of the switch
statement, however, using it can make your program both more readable and more
efficient.

4.6  The concept of iteration
Before looking at the details of Java’s while and for statements, it is useful to take a step
back and think holistically about the role that iteration—which is just a fancier computer
science term for repetition—plays in the programming process.  Think back for a moment
to the Add2Integers program from Chapter 2.  While that example helped illustrate how
simple programs are written, it was hardly anything to get excited about.  Most people are
perfectly capable of adding two integers together with reasonable speed and accuracy.
For a job that simple, a computer isn’t necessary.  But what if you needed to add ten
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FIGURE 4-3    Program to convert an integer to its rank as a playing card

/*
 * File: CardRank.java
 * -------------------
 * This program reads in an integer between 1 and 13 and
 * writes out the appropriate symbol for a playing card
 * of that rank.
 */

import acm.program.*;

public class CardRank extends ConsoleProgram {
public void run() {

println("This program converts integers to card ranks.");
int n = readInt("Enter an integer between 1 and 13: ");
switch (n) {

case  1: println("Ace"); break;
case 11: println("Jack"); break;
case 12: println("Queen"); break;
case 13: println("King"); break;
default: println(n); break;

}
}

}

integers, or a thousand integers, or a million integers.  At that point, the advantages of a
computer become more clear.

But how would you go about changing the Add2Integers program so that it was able
to add up integers on a larger scale?  If you wanted to add four integers, you could simply
add a few lines to the run method, as follows:

public void run() {
println("This program adds four integers.");
int n1 = readInt("Enter n1: ");
int n2 = readInt("Enter n2: ");
int n3 = readInt("Enter n3: ");
int n4 = readInt("Enter n4: ");
int total = n1 + n2 + n3 + n4;
println("The total is " + total + ".");

}

While this approach is suitable for adding four integers, it would quickly become tedious
if you tried to apply the same strategy for ten integers, let alone a thousand or a million.

Suppose that you wanted to find a way to write the program for adding ten integers in
a way that did not require the declaration of ten variables.  Solving problems like this one
is what makes computer programming hard; it is also what makes it interesting and fun.
Think about the problem for a minute.  Imagine that you are adding up 10 numbers—
without a computer—and that I start calling those numbers out to you: 7, 4, 6, and so on.
What would you do?  You could write down the numbers and then add them at the end.
This strategy is analogous to the one used in the Add2Integers program.  It’s effective,
but it won’t win any prizes for speed or cleverness.  Alternatively, you could try adding
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the numbers as you go: 7 plus 4 is 11, 11 plus 6 is 17, and so on.  You don’t have to keep
track of each individual number, just the current total.  When you hear the last number,
you’re all set to announce the answer.

The fact that you don’t have to remember each individual number should help answer
the question of how to add 10 integers without declaring 10 variables.  With this new
strategy, you should be able to write a new Add10Integers program using only two
variables: one for each number as it comes in (value) and one for the sum of the numbers
so far (total).  Each time you read in a new number into value, you simply add it to
total, which keeps track of the running total.  Once you’ve done so, you can go back
and reuse value to hold the next number, which is treated in precisely the same way.

This insight should enable you to begin the task of coding a program that uses the new
strategy.  For each input value, you know that you must execute the following steps:

1. Request an integer value from the user and store it in the variable value.
2. Add value to the running sum stored in the variable total.

You already know how to code the first step; it is a perfect example of the read-an-
integer-from-the-user pattern that you saw many times in Chapter 2 and that has the
following general form:

int variable = readInt(prompt);

You also know how to code the second step.  Adding value to total is an instance of the
shorthand assignment patterns introduced in Chapter 3.  To add value to total, the
idiom is

total += value;

The two patterns—one for reading in an integer and one for adding that integer to a
running total—give you everything you need to code the operations that must occur for
each input value in the Add10Integers program.  For each of the 10 input values, the
program must execute the following statements:

int value = readInt(" ? ");
total += value;

At this point, all you need to do is find some way to make the program execute this set of
statements 10 times.

The repeat-N-times pattern
As you already learned in your encounters with Karel the Robot, Java contains an
idiomatic pattern for repeating a block of code a predetermined number of times.  That
idiom is the repeat-N-times pattern, which has the following form:

for (int i = 0; i < N; i++) {
   statements to be repeated
}

In the repeat-N-times pattern, the value N indicates the number of repetitions you want.
For example, if you replace N with 5, the statements enclosed within the braces will be
executed five times.  To use this pattern in the Add10Integers program, you need to
replace N by 10.  The statements enclosed in the braces are the statements that (1) read an
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integer into value and (2) add that value to total.  If you make these substitutions in the
paradigm, you get the following code:

for (int i = 0; i < 10; i++) {
int value = readInt(" ? ");
total += value;

}

At this point, you are almost set to write the complete Add10Integers program, but
there is a minor wrinkle that must still be addressed.  The variable value is declared as an
integer as part of the pattern for reading in an integer from the user.  The variable total,
however, is not yet declared.  For this loop to work properly, total must be declared
outside the loop and given an initial value of 0.  Thus, before the for loop, you need to
include the declaration

int total = 0;

to make sure that this variable can serve its function as a running total.  Setting a variable
to its proper starting value is called initialization.  In many languages, failure to initialize
variables is a common source of bugs.  Java, however, is pretty good about checking for
uninitialized variables and letting you know that such initialization is needed.

This final piece of the puzzle is all you need to complete the Add10Integers program.
The run method you need would look like this:

public void run() {
println("This program adds ten integers.");
int total = 0;
for (int i = 0; i < 10; i++) {

int value = readInt(" ? ");
total += value;

}
println("The total is " + total + ".");

}

This program, however, is not engineered as well as one would like.  You won’t
always be in the position of adding exactly ten integers, and it should be easy to change
your code so that it added a different number of integers.  As things stand, you would
have to go into the guts of the code and change both the initial message and the limit in
the for loop.  A better approach is to introduce a named constant as described in Chapter
3.  If you choose to call this constant NVALUES, you would come up with a program that
looked something like the AddNIntegers program in Figure 4-4.

The read-until-sentinel pattern
Even with the specification of the number of values as a named constant, the
AddNIntegers program is unlikely to meet the needs of any significant number of users
in its present form.  Although making the change is comparatively easy, updating the
program so that it adds a different number of integers still requires an explicit change in
the program and a recompilation.  What you really need is a more general program that
can add any number of input values, where that number does not have to be specified in
advance.  From the user’s point of view, having to count the numbers in advance is a bad
idea.  If you were using such a program, what you would like to do is enter the numbers
until you’ve finished your list.  At that point, you’d like to be able to tell the program that
you have run out of numbers.
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FIGURE 4-4    Program to add a predefined number of integers

/*
 * File: AddNIntegers.java
 * -----------------------
 * This program adds a predefined number of integers and
 * then prints the sum at the end.  To change the number
 * of integers, change the definition of NVALUES.
 */

import acm.program.*;

public class AddNIntegers extends ConsoleProgram {

/* Specifies the number of values */
private static final int NVALUES = 10;

/* Runs the program */
public void run() {

println("This program adds " + NVALUES + " integers.");
int total = 0;
for (int i = 0; i < NVALUES; i++) {

int value = readInt(" ? ");
total += value;

}
println("The total is " + total + ".");

}

}

A common approach to solving this problem is to define a special input value and let
the user enter that value to signal the end of the input list.  A special value used to
terminate a loop is called a sentinel.  The choice of an appropriate value to use as a
sentinel depends on the nature of the input data.  The value chosen as a sentinel should
not be a legitimate data value; that is, it should not be a value that the user would ever
need to enter as normal data.  For example, when adding a list of integers, the value 0 is
an appropriate sentinel.  There might be some 0s in a column of figures, but the user can
always ignore them because they don’t affect the final total.  Note that the situation
would be different if you were writing a program to average exam scores.  Averaging in a
0 score does change the result, and some students have been known to get 0 scores from
time to time.  In this situation, 0 is a legitimate data value.  To allow the user of the
program to enter 0 as a score, it is necessary to choose a different sentinel value that does
not represent an actual score.  On most exams, it is impossible to have a negative score,
so it would make sense to choose a value like –1 as the sentinel for that application.

To extend AddNIntegers into a new AddIntegerList program, the only change you
need to make is in the loop structure.  The for loop, which is most commonly used to
execute a set of operations a predetermined number of times, is no longer appropriate.
You need a new pattern that reads data until the special input sentinel is found.  That
pattern is the read-until-sentinel pattern and has the following form:

while (true) {
    prompt user and read in a value
    if (value == sentinel) break;
    rest of body
}
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This new pattern for a sentinel-based loop enables you to complete the AddIntegerList
program, which is shown in Figure 4-5.

FIGURE 4-5    Program to add a list of integers where the end is marked by a sentinel

/*
 * File: AddIntegerList.java
 * -------------------------
 * This program reads integers one per line until the
 * user enters a special sentinel value to signal the
 * end of the input.  At that point, the program
 * prints out the sum of the numbers entered so far.
 */

import acm.program.*;

public class AddIntegerList extends ConsoleProgram {

/* Specifies the value of the sentinel */
private static final int SENTINEL = 0;

/* Runs the program */
public void run() {

println("This program adds a list of integers.");
println("Enter values, one per line, using " + SENTINEL);
println("to signal the end of the list.");
int total = 0;
while (true) {

int value = readInt(" ? ");
if (value == SENTINEL) break;
total += value;

}
println("The total is " + total + ".");

}

}

Later in this chapter, you will learn the details of the control statements out of which
the read-until-sentinel pattern is formed.  Even before you understand the details, you will
find the pattern very useful.  As you learn more about programming, however, you will
discover that even expert programmers often use code that they don’t understand in
detail.  In fact, one of the marks of an expert programmer is being able to use a library or
a piece of code without understanding those details.  As programs become more complex,
the ability to use tools you understand only at the holistic level is an increasingly
important skill.
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Syntax for the while statement:

while (condition) {
   statements
}

where:
condition is the conditional test used to

determine whether the loop should
continue for another cycle

statements are the statements to be
repeated

4.7  The while statement
The simplest iterative construct is the while
statement, which repeatedly executes a simple
statement or block until the conditional expression
becomes false .  The template for the while
statement is shown in the syntax box on the right.
As with the if statement, the Java compiler allows
you to eliminate the curly braces surrounding the
body if the body consists of a single statement.  For
the while  loops used in this text, the body is
always enclosed in braces to improve readability.

The entire statement, including both the while
control line itself and the statements enclosed
within the body, constitutes a while loop.  When
the program executes a while statement, it first evaluates the conditional expression to
see if it is true or false.  If it is false, the loop terminates and the program continues
with the next statement after the entire loop.  If the condition is true, the entire body is
executed, after which the program goes back to the top to check the condition again.  A
single pass through the statements in the body constitutes a cycle of the loop.

There are two important principles to observe about the operation of a while loop:

1. The conditional test is performed before every cycle of the loop, including the first.  If
the test is false initially, the body of the loop is not executed at all.

2. The conditional test is performed only at the beginning of a loop cycle.  If that
condition happens to become false at some point during the loop, the program
doesn’t notice that fact until a complete cycle has been executed.  At that point, the
program evaluates the test condition again.  If it is still false, the loop terminates.

Using the while loop
Suppose that you have been asked to write a program that adds up the digits in a positive
integer.  A sample run for this program might then be

DigitSum
This program sums the digits in an integer.
Enter a positive integer: 1729
The sum of the digits is 19

where the result of 19 comes from adding 1 + 7 + 2 + 9.  How would you go about
writing such a program?

In the AddNIntegers program from Figure 4-4 earlier in this chapter, you learned how
to keep a running total.  You need to declare a variable for the sum, initialize it to 0, go
through a loop adding in digits, and finally display the sum at the end.  That much of the
structure, with the rest of the problem left written in English, is shown below:
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public void run() {
println("This program sums the digits in an integer.");
int n = readInt("Enter a positive integer: ");
int dsum = 0;
For each digit in the number, add that digit to dsum.
println("The sum of the digits is " + dsum);

}

The sentence

For each digit in the number, add that digit to dsum.

clearly specifies a loop structure of some sort, since there is an operation that needs to be
repeated for each digit in the number.  If it were easy to determine how many digits a
number contained, you might choose to use a for loop and count up to the number of
digits.  Unfortunately, finding out how many digits there are in an integer is just as hard
as adding them up in the first place.  The best way to write this program is just to keep
adding in digits until you discover that you have added the last one.  Loops that run until
some condition occurs are most often coded using the while statement.

The essence of this problem lies in determining how to break up a number into its
component digits.  The key insight is that the arithmetic operators / and % are sufficient to
accomplish the task.  The last digit of an integer n is simply the remainder left over when
n is divided by 10, which is the result of the expression n % 10.  The rest of the number—
the integer that consists of all digits except for the last one—is given by n / 10.  For
example, if n has the value 1729, the / and % operators can be used to break that number
into two parts, 172 and 9, as shown in the following diagram:

1729
n

172

n / 10

9

n % 10

Thus, in order to add up the digits in the number, all you need to do is add the value
n % 10 to the variable dsum on each cycle of the loop and then divide the number n by 10.
The next cycle will add in the second-to-last digit from the original number, and so on,
until the entire number has been processed in this way.

But how do you know when to stop?  Eventually, as you divide n by 10 in each cycle,
you will reach the point at which n becomes 0.  At that point, you’ve processed all the
digits in the number and can exit from the loop.  In other words, as long as the value of n
is greater than 0, you should keep going.  Thus, the while loop needed for the problem is

while (n > 0) {
dsum += n % 10;
n /= 10;

}

The entire DigitSum program is shown in Figure 4-6.
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FIGURE 4-6    Program to sum the digits in an integer

/*
 * File: DigitSum.java
 * -------------------
 * This program sums the digits in a positive integer.
 * The program depends on the fact that the last digit of
 * a integer n is given by n % 10 and the number consisting
 * of all but the last digit is given by the expression n / 10.
 */

import acm.program.*;

public class DigitSum extends ConsoleProgram {

public void run() {
println("This program sums the digits in an integer.");
int n = readInt("Enter a positive integer: ");
int dsum = 0;
while (n > 0) {

dsum += n % 10;
n /= 10;

}
println("The sum of the digits is " + dsum);

}

}

Think carefully about the conditional
expression you use in a while loop
so that you can be sure the loop will
eventually exit.  A loop that never
finishes is called an infinite loop.

Infinite loops
When you use a while loop in a program, it is
important to make sure that the condition used to
control the loop will eventually become false,
so that the loop can exit.  If the condition in the
while control line always evaluates to true, the
computer will keep executing cycle after cycle
without stopping.  This situation is called an infinite loop.

As an example, suppose that you had carelessly written the while loop in the
DigitSum program with a >= operator in the control line instead of the correct > operator,
as shown below:

while (n >= 0) {
dsum += n % 10;
n /= 10;

}

The loop no longer stops when n is reduced to 0, as it does in the correctly coded
example.  Instead, the computer keeps executing the body over and over and over again,
with n equal to 0 every time.

To stop an infinite loop, you must type a special command sequence on the keyboard
to interrupt the program and forcibly cause it to quit.  This command sequence differs
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from machine to machine, and you should be sure to learn what command to use on your
own computer.

Solving the loop-and-a-half problem
The while loop is designed for situations in which there is some test condition that can
be applied at the beginning of a repeated operation, before any of the statements in the
body of the loop are executed.  If the problem you are trying to solve fits this structure,
the while loop is the perfect tool.  Unfortunately, many programming problems do not fit
easily into the standard while loop template.  Instead of allowing a convenient test at the
beginning of the operation, some problems are structured in such a way that the test you
would like to write to determine if the loop is complete falls most naturally somewhere in
the middle of the loop.

Consider for example, the problem of reading input data until a sentinel value appears,
which was discussed in the section on “Sentinel-based loops” earlier in this chapter.
When expressed in English, the structure of the sentinel-based loop consists of repeating
the following steps:

1. Read in a value.
2. If the value is equal to the sentinel, exit from the loop.
3. Perform whatever processing is required for that value.

Unfortunately, there is no test you can perform at the very beginning of the loop to
determine whether the loop is finished.  The termination condition for the loop is reached
when the input value is equal to the sentinel; in order to check this condition, the program
must have first read in some value.  If the program has not yet read in a value, the
termination condition doesn’t make sense.  Before the program can make any meaningful
test, it must have executed the part of the loop that reads in the input value.  When a loop
contains some operations that must be performed before testing for completion, it
represents an instance of what programmers call the loop-and-a-half problem.

One way to solve the loop-and-a-half problem in Java is to use the break statement,
which, in addition to its use in the switch statement, has the effect of immediately
terminating the innermost enclosing loop.  By using break, it is possible to code the loop
structure for the sentinel problem in a form that follows the natural structure of the
problem:

while (true) {
prompt user and read in a value
if (value == sentinel) break;
process the data value

}

The initial line

while (true)

needs some explanation.  The while loop is defined so that it continues until the
condition in parentheses becomes false.  The symbol true is a constant, so it can never
become false.  Thus, as far as the while statement itself is concerned, the loop will
never terminate.  The only way this program can exit from the loop is by executing the
break statement inside it.
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It is possible to code this sort of loop without using the while (true) control line or
the break statement.  To do so, however, you must change the order of operations within
the loop and request input data in two places: once before the loop begins and then again
inside the loop body.  When structured in this way, the template for the sentinel-based
loop is

prompt user and read in the first value
while (value != sentinel) {

process the data value
prompt user and read in a new value

}

Figure 4-7 shows how this template can be used to implement the AddIntegerList
program presented in Figure 4-5 without using a break statement.

FIGURE 4-7    Rewrite of AddIntegerList without a break statement

/*
 * File: AddIntegerList.java
 * -------------------------
 * This program reads integers one per line until the
 * user enters a special sentinel value to signal the
 * end of the input.  At that point, the program
 * prints out the sum of the numbers entered so far.
 */

import acm.program.*;

public class AddIntegerList extends ConsoleProgram {

/* Specifies the value of the sentinel */
private static final int SENTINEL = 0;

/* Runs the program */
public void run() {

println("This program adds a list of integers.");
println("Enter values, one per line, using " + SENTINEL);
println("to signal the end of the list.");
int total = 0;
int value = readInt(" ? ");
while (value != SENTINEL) {

total += value;
value = readInt(" ? ");

}
println("The total is " + total + ".");

}

}

Unfortunately, there are two drawbacks to using this strategy.  First, the order of
operations in the loop is not what most people would expect.  In any English explanation
of the solution strategy, the first step is to get a number and the second is to add it to the
total.  The while loop template used in Figure 4-5 reverses the order of the statements
within the loop and makes the program more difficult to follow.  The second problem is
that this template requires two copies of the statements that read in a number.
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Duplication of code presents a serious maintenance problem because subsequent edits to
one set of statements might not be made in the other.  Empirical studies have shown that
students who learn to solve the loop-and-a-half problem using the break statement are far
more likely to write correct programs than those who don’t.

Despite the problems that arise when students are unable to code exits from the interior
of a loop, some instructors dislike using break to solve the loop-and-a-half problem.  The
principal reason for doing so is that it is easy to overuse the break statement in Java.
One way to guard against the overuse of the break statement is disallow its use entirely.
To me, such an approach seems overly draconian.  In this text, I use the break statement
within a while loop only to solve the loop-and-a-half problem and not in other, more
complex situations where its use is likely to obscure the program’s structure.

4.8  The for statement

Syntax for the for statement:

for (init; test; step) {
statements

}

where:
init is a declaration that initializes the

loop index variable
test is a conditional test used to determine

whether the loop should continue, just
as in the while statement

step is an expression used to prepare for
the next loop cycle

statements are the statements to be
repeated

One of the most important control statements in
Java is the for statement, which is most often used
in situations in which you want to repeat an
operation a particular number of times.  The
general form of the for statement is shown in the
syntax box to the right.

The operation of the for loop is determined by
the three italicized expressions on the for control
line: init, test , and step.  The init expression
indicates how the for loop should be initialized,
usually by declaring an index variable and setting
its initial value.  For example, if you write

for (int i = 0; . . .

the loop will begin by declaring the index variable
i and setting it to 0.  If the loop begins

for (int i = -7; . . .

the variable i will start as -7, and so on.

The test expression is a conditional test written exactly like the test in a while
statement.  As long as the test expression is true, the loop continues.  Thus, in the loop
that has served as our canonical example up to now

for (int i = 0; i < n; i++)

the loop begins with i equal to 0 and continues as long as i is less than n, which turns out
to represent a total of n cycles, with i taking on the values 0, 1, 2,  and so forth, up to the
final value n – 1.  The loop

for (int i = 1; i <= n; i++)

begins with i equal to 1 and continues as long as i is less than or equal to n.  This loop
also runs for n cycles, with i taking on the values 1, 2,  and so forth, up to n.

The step expression indicates how the value of the index variable changes from cycle
to cycle.  The most common form of step specification is to increment the index variable
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using the ++ operator but this is not the only possibility.  For example, one can count
backward by using the -- operator or count by twos by using += 2 instead of ++.

FIGURE 4-8    Program to count down to 0 as in a rocket launch sequence

/*
 * File: Countdown.java
 * --------------------
 * This program counts backwards from the value START
 * to zero, as in the countdown preceding a rocket
 * launch.
 */

import acm.program.*;

public class Countdown extends ConsoleProgram {

/* Specifies the value from which to start counting down */
private static final int START = 10;

/* Runs the program */
public void run() {

for (int t = START; t >= 0; t--) {
println(t);

}
println("Liftoff!");

}

}

As an illustration of counting in the reverse direction, the Countdown program in
Figure 4-8 counts down from 10 to 0.  When Countdown is run, it generates the following
sample run:

Countdown
10
9
8
7
6
5
4
3
2
1
0
Liftoff!

The Countdown program demonstrates that any variable can be used as an index
variable.  In this case, the variable is called t, presumably because that is the traditional
variable for a rocket countdown, as in the phrase “T minus 10 seconds and counting.”  In
any case, the index variable must be declared at the beginning of the program, just like
any other variable.
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The expressions init, test, and step are each optional, but the semicolons must appear.
If init is missing, no initialization is performed.  If test is missing, it is assumed to be
true.  If step is missing, no action occurs between loop cycles.  Thus the control line

for (;;)

is identical in operation to

while (true)

The relationship between for and while
As it happens, the for statement

for (init; test; step) {
statements;

}

is identical in operation to the while statement

init;
while (test) {

statements;
step;

}

Even though the for statement can easily be rewritten using while, there are
considerable advantages to using the for statement whenever it is possible to do so.
With a for statement, all the information you need to understand exactly which cycles
will be executed is contained in the header line of the statement.  For example, whenever
you see the statement

for (int i = 0; i < 10; i++) {
. . . body . . .

}

in a program, you know that the statements in the body of the loop will be executed 10
times, once for each of the values of i between 0 and 9.  In the equivalent while loop
form

int i = 0;
while (i < 10) {

. . . body . . .
i++;

}

the increment operation at the bottom of the loop can easily get lost if the body is large.

Using for with floating-point data
Because the init, test, and step components of the for loop can be arbitrary expressions,
there is no obvious reason why the loop index in a for loop has to be an integer.  The fact
that it is possible to count from 0 to 10 by twos using the for loop

for (int i = 0; i <= 10; i += 2) . . .
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suggests that it might also be possible to count for 1.0 to 2.0 in increments of 0.1 by
declaring the loop index variable as a double.  For example, you might try to display the
values in this range by writing

for (double x = 1.0; x <= 2.0; x += 0.1) {
println(x);

}

If you run this program in Java, you don’t get a list that begins 1.0, 1.1, 1.2, and so on up
to 2.0, but instead see the following output:

ForLoopWithDoubles
1.0
1.1
1.2000000000000002
1.3000000000000003
1.4000000000000004
1.5000000000000004
1.6000000000000005
1.7000000000000006
1.8000000000000007
1.9000000000000008

There are a lot of seemingly extraneous digits and there is nothing even close to the value
2.0.

Be careful when testing floating-
point numbers for equality.  Because
floating-point numbers are only
approximations, they might not
behave in the same way as real
numbers in mathematics.  In general,
it is best to avoid using a floating-
point variable as a for loop index.

The problem here is that floating-point
numbers are not exact.  The value 0.1 is very
close to the mathematical fraction 1

10 but is almost
certainly not precisely equal to it.  As 0.1 is
added to the index variable x, the inaccuracy can
accumulate to the point that, when x is tested
against 2.0 to determine whether the loop is
finished, its value may be 2.000000001 or
something similar, which is not less than or equal
to 2.0.  The condition in the for loop is therefore
not satisfied, and the loop terminates after running for what seems to be one too few
cycles.  The best way to fix this problem is to restrict yourself to using integers as index
variables in for loops.  Because integers are exact, the problem never arises.

The same warning about comparing floating-point numbers for equality applies in
many other circumstances besides the for loop.  Numbers that seem as if they should be
exactly equal might not be, given the limitations on the accuracy of floating-point
numbers.

Summary
In Chapter 2, you looked at the process of programming from a holistic perspective.
Along the way, you learned about several control statements in an informal way.  In this
chapter, you were able to investigate how those statements work in more detail.  You
were also introduced to a new type of data called Boolean data.  Although this data type
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contains only two values—true and false—being able to use Boolean data effectively
is extremely important to successful programming and is well worth a little extra practice.

The important points introduced in this chapter include:

• Simple statements consist of an expression followed by a semicolon.
• The = used to specify assignment is an operator in Java.  Assignments are therefore

legal expressions, which makes it possible to write embedded and multiple
assignments.

• Individual statements can be collected into compound statements, more commonly
called blocks.

• Control statements fall into two classes: conditional and iterative.
• Java defines a data type called boolean that is used to represent Boolean data.  The

type boolean has only two values: true and false.
• You can generate Boolean values using the relational operators (<, <=, >, >=, ==, and

!=) and combine them using the logical operators (&&, ||, and !).
• The logical operators && and || are evaluated in left-to-right order in such a way that

the evaluation stops as soon as the program can determine the result.  This behavior is
called short-circuit evaluation.

• The if statement is used to express conditional execution when a section of code
should be executed only in certain cases or when the program needs to choose between
two alternate paths.

• The switch statement is used to express conditional execution when a problem has the
following structure: in case 1, do this; in case 2, do that; and so forth.

• The while statement specifies repetition that occurs as long as some condition is met.
• The for statement specifies repetition in which some action is needed on each cycle in

order to update the value of an index variable.

Review questions
1. Is the construction

17;

a legal statement in Java?  Is it useful?

2. Describe the effect of the following statement, assuming that i, j, and k are declared
as integer variables:

i = (j = 4) * (k = 16);

3. What single statement would you write to set both x and y (which you may assume
are declared to be type double) to 1.0?

4. What is a block?  What important fact about blocks is conveyed by the term
compound statement, which is another name for the same concept?

5. What are the two classes of control statements?

6. What does it mean to say that two control statements are nested?
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7. What are the two values of the data type boolean?

8. What happens when a programmer tries to use the mathematical symbol for equality
in a conditional expression?

9. What restriction does Java place on the types of values that can be compared using
the relational operators?

10. How would you write a Boolean expression to test whether the value of the integer
variable n was in the range 0 to 9, inclusive?

11. Describe in English what the following conditional expression means:

(x != 4) || (x != 17)

For what values of x is this condition true?

12. What does the term short-circuit evaluation mean?

13. Assuming that myFlag is declared as a Boolean variable, what is the problem with
writing the following if statement?

if (myFlag == true) . . .

14. What are the four different formats of the if statement used in this text?

15. Describe in English the general operation of the switch statement.

16. Suppose the body of a while loop contains a statement that, when executed, causes
the condition for that while loop to become false.  Does the loop terminate
immediately at that point or does it complete the current cycle?

17. Why is it important for the DigitSum program in Figure 4-6 to specify that the
integer is positive?

18. What is the loop-and-a-half problem?  What two strategies are presented in the text
for solving it?

19. What is the purpose of each of the three expressions that appear in the control line of
a for statement?

20. What for loop control line would you use in each of the following situations:

a) Counting from 1 to 100.
b) Counting by sevens starting at 0 until the number has more than two digits.
c) Counting backward by twos from 100 to 0.

21. Why is it best to avoid using a floating-point variable as the index variable in a for
loop?
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Programming exercises
1. As a way to pass the time on long bus trips, young people growing up in the United

States have been known to sing the following rather repetitive song:

99 bottles of beer on the wall.
99 bottles of beer.
You take one down, pass it around.
98 bottles of beer on the wall.

98 bottles of beer on the wall. . . .

Anyway, you get the idea.  Write a Java program to generate the lyrics to this song.
(Since you probably never actually finished singing it, you should decide how you
want the song to end.)  In testing your program, it would make sense to use some
constant other than 99 as the initial number of bottles.

2. While we’re on the subject of silly songs, another old standby is “This Old Man,” for
which the first verse is

This old man, he played 1.
He played knick-knack on my thumb.
With a knick-knack, paddy-whack,
Give your dog a bone.
This old man came rolling home.

Each subsequent verse is the same, except for the number and the rhyming word at
the end of the second line, which gets replaced as follows:

2—shoe 5—hive 8—pate
3—knee 6—sticks 9—spine
4—door 7—up to heaven 10—shin

Write a program to display all 10 verses of this song.

3. Write a program that reads in a positive integer N and then calculates and displays
the sum of the first N odd integers.  For example, if N is 4, your program should
display the value 16, which is 1 + 3 + 5 + 7.

4. Why is everything either at sixes or at sevens?
— Gilbert and Sullivan, H.M.S. Pinafore, 1878

Write a program that displays the integers between 1 and 100 that are divisible by
either 6 or 7.

5. Repeat exercise 4, but this time have your program display only those numbers that
are divisible by 6 or 7 but not both.

6. Using the AddIntegerList program from Figure 4-5 as a model, write a program
called AverageList that reads in a list of integers representing exam scores and then
prints out the average. Because some unfortunate student might actually get a score
of 0, your program should use –1 as the sentinel to mark the end of the input.
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7. Rewrite the DigitSum program given in Figure 4-6 so that instead of adding the
digits in the number, it generates the number that has the same digits in the reverse
order, as illustrated by this sample run:

ReverseDigits
This program reverses the digits in an integer.
Enter a positive integer: 1729
The reversed number is 9271

8. Rewrite the Countdown program given in Figure 4-8 so that it uses a while loop
instead of a for loop.

9. In mathematics, there is a famous sequence of numbers called the Fibonacci
sequence after the thirteenth-century Italian mathematician Leonardo Fibonacci.  The
first two terms in this sequence are 0 and 1, and every subsequent term is the sum of
the preceding two.  Thus the first several numbers in the Fibonacci sequence are as
follows:

F0 = 0
F1 = 1
F2 = 1 (0 + 1)
F3 = 2 (1 + 1)
F4 = 3 (1 + 2)
F5 = 5 (2 + 3)
F6 = 8 (3 + 5)

Write a program to display the values in this sequence from F0 through F15.

10. Modify the program in the preceding exercise so that instead of specifying the index
of the final term, the program displays those terms in the Fibonacci sequence that are
less than 10,000.

11. Write a GraphicsProgram that uses two nested for loops to create the following
checkerboard diagram in the upper left corner of the canvas:

Checkerboard
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The individual squares are all instances of the class GRect introduced in Chapter 2.
Alternate squares both horizontally and vertically contain a somewhat smaller GOval
to create the checkerboard effect.

12. Using much the same strategy as you did in the preceding exercise, write a
GraphicsProgram that creates a simple calendar diagram similar to the one shown in
the following diagram:

Calendar
1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

Your program should use the following named constants to control the format of the
calendar display:

/* The number of days in the month */
private static final int DAYS_IN_MONTH = 31;

/* The day of the week on which the month starts */
/* (Sunday = 0, Monday = 1, Tuesday = 2, and so on) */
private static final int DAY_MONTH_STARTS = 5;

/* The width in pixels of a day on the calendar */
private static final int DAY_WIDTH = 40;

/* The height in pixels of a day on the calendar */
private static final int DAY_HEIGHT = 30;

Your display should generate exactly the number of rows necessary to display the
days of the month.  Here, in a 31-day month that begins on a Friday, the calendar
needs six rows; if you were generating a calendar for a non-leap-year February that
began on a Sunday, the calendar would require only four rows.



Chapter 5
Methods

With method and logic one can accomplish anything.
— Agatha Christie, Poirot Investigates, 1924

David Parnas

David Parnas is Professor of Computer Science at Limerick University in Ireland, where
he directs the Software Quality Research Laboratory, and has also taught at universities in
Germany, Canada, and the United States. His most influential contribution to software
engineering is his groundbreaking 1972 paper entitled “On the criteria to be used in
decomposing systems into modules,” which laid much of the first structured
programming.  Professor Parnas also attracted considerable public attention in 1985 when
he resigned from a Department of Defense panel investigating the software requirements
of the proposed Strategic Defense Initiative—more commonly known as “Star Wars”—
on the grounds that the requirements of the system were impossible to achieve.
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This chapter examines in more detail the concept of a method, which was first introduced
in Chapter 2.  A method is a set of statements that have been collected together and given
a name.  By allowing the programmer to signify the entire set of operations with a single
name, programs become much shorter and much simpler.  Without methods, simple
programs would become unmanageable as they increased in size and sophistication.

In order to appreciate how methods reduce the complexity of programs, you need to
understand the concept in two ways.  From the reductionistic perspective, you need to
understand how methods work in an operational sense so you can predict their behavior.
At the same time, you must be able to take a step backward and look at methods
holistically, so that you can also understand why they are important and how to use them
effectively.

5.1  A quick overview of methods
You have been working with methods ever since Chapter 2.  Before turning to the details
of how methods work, it helps to review the basic terminology for methods that was
introduced in that chapter.  First of all, a method consists of a set of statements that have
been collected together and given a name.  The act of executing the set of statements
associated with a method is known as calling that method.  To indicate a method call in
Java, you write the name of the method, followed by a list of expressions enclosed in
parentheses.  These expressions are called arguments and allow the caller to pass
information to the method.

As an example, consider the first line from the Add2Integers program that appeared
as Figure 2-2, which looks like this:

println("This program adds two integers.");

This statement represents a call to the println method, which prints out a line of
information on the console.  To make any sense of that idea, however, the println
method has to know what information to display.  Here, that information is provided
through the argument, which consists of the string "This program adds two integers.".

Once called, a method takes the data supplied as arguments, does its work, and then
returns to the point in the program at which the call was made.  Remembering what the
calling program was doing and being able to get back precisely to that point is one of the
defining characteristics of the method-calling mechanism.  The operation of going back
to the calling program is called returning from the method.  As part of the return
operation, methods can also send results back to the calling program, as illustrated by the
readInt method in the now-familiar declaration

int n1 = readInt("Enter n1: ");

After the readInt method performs its task of reading in an integer from the user, it
passes that integer back to the calling program as the value of the call.  This operation is
called returning a value.

Methods as mechanisms for hiding complexity
Take another look at the line

println("This program adds two integers.");
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which begins the Add2Integers program.  When this program first appeared back in
Chapter 2, the text described what the println method does in very simple terms: it
takes the string you have provided as an argument and makes it appear on the console
that is supplied as part of every ConsoleProgram.  The text, however, was silent on the
question of how println accomplishes that operation.  The details of the underlying
implementation remain largely a mystery, which to a certain extent makes the operation
of println seem like magic.

In J. K. Rowling’s Harry Potter and the Chamber of Secrets, Arthur Weasley warns
that you should “never trust anything that can think for itself if you can’t see where it
keeps its brain.”  While that may be sage advice in the wizarding world, programmers
must often do precisely that.  You did not write println and indeed would have no way
of doing so at this point in your study of programming.  It would be extremely difficult
even to understand how it works.  Even so, there is nothing to stop you from using it
effectively.

In fact, one of the great advantages of methods is that you can use them without having
to understand the complexity that goes on underneath.  Methods provide a way of hiding
lower-level implementation details so that the caller need not be bothered by them.  In
computer science, this technique is called information hiding.  The fundamental idea,
which was championed by David Parnas in the early 1970s, is that the complexity of
programming systems is best managed by making sure that details are visible only to
those levels of the program at which they are relevant.  The programmers who implement
println and make sure that it works need to know those details.  The programmers that
merely use println can remain blissfully unaware of all that underlying mechanism.

Methods as tools for programmers rather than users
Students who are just beginning their study of programming sometimes have difficulty
understanding the distinction between methods and programs.  To some extent, both
programs and methods have the effect of collecting a sequence of statements and giving it
a single name.  If you look at the Add2Integers program, it acts as if it is a shorthand for
the set steps contained in its run method.

It is, however, important to keep these concepts distinct.  The principal difference
between a method and a program lies in who or what makes use of it.  When, as a user,
you sit down in front of your computer and start up an application, you are running a
program that performs some action on your behalf.  Thus, programs are invoked by and
serve the needs of an external user.  Methods, on the other hand, provide a mechanism by
which a program can invoke a set of previously defined operations on its behalf.  The
operation of a method is thus internal to the program domain.

Be careful to differentiate in your
mind the ideas of input and output in
the program domain and the related
concepts of arguments and results in
the method domain. Input and output
refer to communication between a
program and its user. Arguments
and results represent communication
between a method and its caller.

A similar confusion often arises between the
arguments and program input on the one hand,
and return values and program output on the
other.  It is easy to see input data entered using
readInt  as analogous to values passed as
arguments.  Both, after all, represent a way of
passing data into some piece of a program.
Despite that conceptual similarity, it is critically
important to make a sharp distinction between
input operations, such as readInt, and the use of
arguments in the method domain.  A method like readInt provides a mechanism for
getting input from the user.  When readInt needs an input value, whoever is sitting in
front of the terminal must physically enter that value on the keyboard.  Arguments to a
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method, on the other hand, provide a means for a method to receive input from its caller,
which is simply another part of the program.  Data passed in the form of arguments may
have been entered by the user at an earlier point in the program, but could just as easily
have been calculated as part of the program operation.  You should also be careful to
differentiate the use of output operations, such as println, from the technique of
returning a result.  When you use println, the output appears on the console.  When a
method returns a result, that information goes back to its caller, which is free to use it in
whatever way makes sense for the program.  New programmers have a tendency to use
input/output operations within methods when the logic of the situation calls for using
arguments and results.

Method calls as expressions
In Chapter 3, method calls were listed as one of the categories of Java expressions.  As
you try to understand how methods fit into the overall Java framework, it will often be
helpful to remember that a method call is simply an expression and can be used in any
context in which an expression can appear.  Moreover, the arguments to a method are
also expressions, which can themselves contain method calls or any other operations that
would be legal in an expression.

To illustrate that methods and their arguments are expressions, it is useful to introduce
several standard methods from the Math class, which are listed in Figure 5-1.  As you can
see from the list of available methods, the Math class includes many of the standard

FIGURE 5-1    Selected methods from the Math class

Math.abs(x)
The absolute value of x, which can be of any numeric type.

Math.min(x, y)
The smaller of x and y.

Math.max(x, y)
The larger of x and y.

Math.sqrt(x)
The square root of the value x.

Math.log(x)
The natural logarithm of x, which uses the mathematical constant e as its base.

Math.exp(x)
The inverse logarithm of x, which is ex.

Math.pow(x, y)
The value x raised to the y power.

Math.sin(theta)
The trigonometric sine of the angle theta; in the Math class, all angles are measured in radians.

Math.cos(theta)
The cosine of the angle theta.

Math.tan(theta)
The tangent of the angle theta.

Math.asin(x)
The angle whose sine is x.

Math.acos(x)
The angle whose cosine is x.

Math.atan(x)
The angle whose tangent is x.

Math.toRadians(degrees)
Converts an angle from degrees to radians.

Math.toDegrees(radians)
Converts an angle from radians to degrees.
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mathematical functions you learned in high-school algebra and trigonometry.  For
example, the Math class includes the method sqrt for taking the square root of its
argument, as well as sin and cos for trigonometric sines and cosines.  Each of these
methods takes a double as an argument and returns a result, also of type double.  You
can use these methods in simple statements, such as

double root3 = Math.sqrt(3.0);

or in more complicated ones.  For example, you can compute the distance from the origin
to the point (x, y) using the standard distance formula for points in a plane:

distance  =  √⎯⎯⎯⎯⎯ x2 + y2

In Java, this formula corresponds to the statement

double distance = Math.sqrt(x * x + y * y);

Similarly, you can compute a tangent using the trigonometric identity

tan θ  =  
sin θ

cos θ

which can be written in Java as

double tangent = Math.sin(theta) / Math.cos(theta);

5.2  Methods and the object-oriented paradigm
The discussion of methods to date, however, has left out one of the most important
characteristics of methods in an object-oriented language.  In Chapter 1, I identified
object-oriented languages as those in which programs are viewed as a collection of
“objects” for which the data and the operations acting on that data are encapsulated into
integrated units.  In Java, operations on data are indeed specified using methods, but there
has been no clear sense so far that these operations are in any way bound together with
data into objects.  It is time to remedy that omission.

Method calls as messages
In an object-oriented language like Java, methods are defined as part of a class.  Any
object that is an instance of that class has access to the methods defined within that class
as well as any public methods it inherits from its superclasses. Within the context of that
object, method calls look precisely as you have seen them in the various examples in the
previous chapters:

name(arguments)

That simple format, however, tells only part of the story.  In the object-oriented world,
objects communicate by sending information and requests from one object to another.
Collectively, these transmissions among objects are called messages. The conceptual act
of sending a message corresponds to having one object invoke a method that belongs to a
different object.  In general, the code is running as part of the sending object.  To make it
possible to send a message, the program must specify the receiving object.  Identifying
the receiver is accomplished by using a slightly different format for the call, as follows:

receiver.name(arguments)
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The only difference here is that the receiver has been made explicit by including it as part
of the call.

In the examples you’ve seen so far, the receiver has always been the current object, in
which case the receiver specification can be omitted.  For example, the println method
is defined as a public method in the Program class.  That means that every subclass of
Program can invoke the println method simply by writing

println(value)

If you wanted to make the receiver explicit—as some instructors do—you could use the
Java keyword this, which refers to the current object, as follows:

this.println(value)

Using GObjects as receivers
The easiest way to illustrate the use of receivers is in the context of a GraphicsProgram.
The very first program in Chapter 2 contained the following run method:

public void run() {
add(new GLabel("hello, world"), 100, 75);

}

Let’s decompose the body of this method into its constituent parts.  The add method—
which is defined in GraphicsProgram and therefore can be called without specifying a
receiver from a GraphicsProgram—has three arguments.  The first is an expression that
creates a new GLabel object, and the other two are integers specifying the coordinates
100 and 75.  The expression

new GLabel("hello, world")

is an example of the invocation of a special form of method called a constructor, which
is used to create a new object.

Objects are values in Java, so it would be possible to take this new GLabel and, instead
of passing it immediately to the add method, assign it to a variable.  Thus, the following
two-line run method gives rise to a program that has the same effect as the original:

public void run() {
GLabel label = new GLabel("hello, world");
add(label, 100, 75);

}

This change, however, enables all sorts of new possibilities.  As soon as you have your
hands on an object—in this case, the GLabel stored in the variable label—you can begin
to do things with it.  In particular, you can send it messages.  Such messages consist of
method invocations that specify label as the receiver.  Moreover, since label is an
instance of the class GLabel, the methods you invoke have to be appropriate to that class,
either because they are defined in GLabel itself or because they are inherited from the
GObject class from which GLabel is derived.

So the question then becomes what methods might you call.  In Chapter 7, you’ll learn
the full set of capabilities offered by the classes in acm.graphics, but for now it’s worth
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experimenting with a few simple ones.  The output of the current version of the program
looks like this:

HelloProgram

hello, world

This output is not so exciting.  The label is so small that it is hard to read.  Perhaps it’s
possible to make it larger.

As with any change you’d like to make in the output, the way you can make the label
larger is to send a message to the object that asks it to do so.  For objects of type GLabel,
the size is controlled by a property called its font.  These days, you’re almost certainly
familiar with fonts from the word processing programs you’ve used.  A font is simply an
encoding that maps characters into images that appear on the screen.  In Java, a font is
determined by a family name (Times, Helvetica, Courier, and so forth), a style (bold or
italic, for example), and a point size (an integer expressing the size of the characters).
The GLabel class includes a method called setFont that takes these properties in the
form of a string.  For example, you could change the font to Helvetica-24 by adding a line
to the run method, as follows:

public void run() {
GLabel label = new GLabel("hello, world");
label.setFont("Helvetica-24");
add(label, 100, 75);

}

After making this change, the display would look like this:

HelloProgram

hello, world

Much more readable, but perhaps not any more exciting.

As you probably know from using your word processor, it can be fun to play around
with different fonts.  On the Macintosh, for example, there is a font called London that
produces Old English script.  Thus, if you were to change the setFont call to

label.setFont("London-36");
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you might see the output

HelloProgram

hello, world

You might see that, but only on a Macintosh.  On most systems, there isn’t a font called
London, and the program would choose some default font instead.  If you’re interested in
writing portable programs that can run on many different architectures, it would be best
to avoid nonstandard fonts.  In fact, if you want to be as portable as possible, it is best to
stick with the following font names:

Serif A traditional newspaper-style font in which the characters are
embellished by various frills called serifs.  The most common
example of a serif font is Times.

SansSerif A simpler, unadorned font style lacking serifs, of which the
most common example is Helvetica.

Monospaced A typewriter-style font in which all characters are the same
width.  The most common monospaced font is Courier.

Dialog The default font for output text in dialogs, which may differ
depending on the platform.

DialogInput The default font for user input in dialogs, which may differ
depending on the platform.

The remaining chapters in this text will use only these standard fonts, but as long as the
London font is already there in the example, it’s probably reasonable to show a few
additional examples starting from where we are.

What else might you want to change?  To generate a fancier display, you might
certainly want to change the color of the text by using the method setColor, which is
defined for all subclasses of GObject.  Although you can work with a wide variety of
colors in Java, the Color class in java.awt defines a set of standard colors that are
sufficient for most purposes.  These predefined colors have the following names:

BLACK, DARK_GRAY, GRAY, LIGHT_GRAY, WHITE
RED, PINK, ORANGE, YELLOW, GREEN, CYAN, BLUE, MAGENTA

Note that these colors are named constants and are therefore written entirely in uppercase
in accordance with the standard conventions of Java.  Also, because these colors are
defined as constants in a separate class, you need to include the name of the defining
class, as in Color.RED.  Finally, you need to be sure that your application has access to
the Color class itself by importing the java.awt package.  For example, to change the
color of the label to magenta by adding yet another line to the run method, like this:
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public void run() {
GLabel label = new GLabel("hello, world");
label.setFont("London-36");
label.setColor(Color.MAGENTA);
add(label, 100, 75);

}

There is, however, one more method that you might like to call to improve the overall
appearance of the display.  At this point, the label is in danger of running off the right
edge of the window.  Things would be considerably more readable if you could move the
label to the center.  At some level, all you need to do is change the coordinates specified
in the add method call.  The only question is how to figure out what values to use.

The most important aspect of any answer to this question is that you shouldn’t figure
out what the appropriate coordinates are, but rather that the computer should figure out
those coordinates according to the specifications you set forth in your program.  In this
case, the desired outcome is that the label be centered in the window.  The coordinates at
which you draw the label therefore depend not only on the size of the window, but also
on the size of the label.  In the x direction, the label needs to start half of its own width to
the left of the center of the window.  In the y direction, the label needs to be moved down
half the distance the characters extend upward from the baseline, which is called their
ascent.  The x and y values for the initial position of the label can therefore be calculated
using the following lines:

double x = (getWidth() - label.getWidth()) / 2;
double y = (getHeight() + label.getAscent()) / 2;

Look carefully at the expression on the first line.  There are two calls to the method
getWidth, the first of which has no receiver and the second is directed to label.  If
getWidth is called with no receiver, it must refer to the object making the call, which is
the FancyHello program itself.  In that context, getWidth returns the width of the
window in which the program is running.  The expression

label.getWidth()

on the other hand, asks label to tell us how wide it is.  If you subtract that width from
the width of the entire window and divide by 2, you get the coordinate value—at least in
the x direction—at which the label should start.  The calculation in the vertical dimension
is similar, but it is important to remember that Java coordinates increase as you move
down the window.  Thus, to shift the baseline down a little, you need to add the
appropriate offset and not subtract it.

The entire set of changes to the original HelloProgram is shown in Figure 5-2, which
produces the following output:

HelloProgram

hello, world
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FIGURE 5-2    Program to draw a fancier version of Hello World

/*
 * File: FancyHello.java
 * ---------------------
 * This program displays a fancier "hello, world" message.
 */

import acm.graphics.*;
import acm.program.*;

public class FancyHello extends GraphicsProgram {

public void run() {
GLabel label = new GLabel("hello, world");
label.setFont("London-36");
label.setColor(Color.MAGENTA);
double x = (getWidth() - label.getWidth()) / 2;
double y = (getHeight() + label.getAscent()) / 2;
add(label, x, y);

}

}

5.3  Writing your own methods
The methods introduced so far in this book have all been defined as part of some library
package.  Library methods are certainly useful, but they do not tell the whole story of
methods.  As a programmer, you will often be content to use library methods without
knowing any of the internal details.  But you will also want to use methods that are not
part of any library.  In those cases, you have no choice but to define the methods yourself.

For example, suppose that you have been assigned the task of writing a program that
generates a conversion table from the Celsius scale used in most countries to the
Fahrenheit scale used in the United States.  You will probably want to define a simple
conversion method that you can then use in other parts of the program.  The computation
is relatively easy, because the process of converting one temperature scale to another is
simply a matter of applying the formula

F =  
9
5 C + 32

Syntax for a method header:

visibility type name(parameters)

where:
visibility is typically public or private
type is the type of value returned, or void

if the method returns no value
name is the name of the method
parameters is a list of parameter

declarations

Format of a method definition
Defining a new method in Java begins by writing
its header, as specified in the syntax box on the
right.  Until you start defining your own classes,
the distinction between public and private methods
doesn’t mean a great deal.  At the same time, it is
usually best to keep things private if possible, so
that any method used only within a single class
should be declared as private.  The type element
in the pattern represents the type of value the
method returns; if the method doesn’t need to
return a value, the type element should be specified
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as void.  The name element specifies the name of the method, which may be any
identifier formed according to the rules given in Chapter 2.  Most importantly, the name
should make it easy for anyone reading the program to determine what the method does.
The code inside the parentheses, which is labeled parameters in this pattern, specifies
what arguments the method requires.  The parameter list has the same form as variable
declarations except that no initial value is assigned.  Methods that take more than one
argument separate these declarations with commas.

In this example, you are writing a method that converts from Celsius to Fahrenheit.
The header line therefore looks like this:

private double celsiusToFahrenheit(double c)

The header line is then followed by the method body, which is always a block and
therefore consists of statements enclosed in curly braces.  The statements in the block
may include variable declarations such as the ones used in the example programs you
have already seen.

Syntax for the return statement:

return expression;

where:
expression is the value to be returned.

If the method has no result, the syntax is:

return;

The return statement
If a method returns a result, the statements in the
method body must include at least one return
statement, which specifies the value to be
returned.  The paradigmatic form for the return
statement is shown in the syntax box to the right.

In most cases, the return statement includes an
expression that indicates the value of the result,
although that expression is omitted if the method
does not return a value.  When it is used in the

return expression;

form, the return statement causes the method to return the indicated value immediately.
As such, the return statement encompasses both of the following English ideas: “I’m
done now” and “Here is the answer.”  In some programming languages, such as Pascal
and Fortran, indicating that the execution of a method is complete and specifying its
result are separate operations.  If you have had experience with such languages, it may
take some time to get used to the return statement in Java.

The return statement completes the list of tools you need to write the implementation
of the celsiusToFahrenheit method:

private double celsiusToFahrenheit(double c) {
return 9.0 / 5.0 * c + 32;

}

To create the table of temperature conversions, you need to create a ConsoleProgram
subclass whose run method calls celsiusToFahrenheit for each entry in the table.  The
complete program to do so is shown in Figure 5-3.

Methods involving internal control structures
Methods are not usually as simple as celsiusToFahrenheit.  In many cases, calculating
a method requires making some tests or writing a loop.  Such details add to the
complexity of the implementation but do not change its basic form.  For example, the abs
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FIGURE 5-3    Program to generate a temperature-conversion table

/*
 * File: TemperatureConversionTable.java
 * -------------------------------------
 * This program creates a table of Celsius to Fahrenheit
 * equivalents using a function to perform the conversion.
 */

import acm.program.*;

public class TemperatureConversionTable extends ConsoleProgram {

/* Lower limit for the table */
private static final int LOWER_LIMIT = 0;

/* Upper limit for the table */
private static final int UPPER_LIMIT = 100;

/* Step size for the table */
private static final int STEP_SIZE = 5;

/* Runs the program */
public void run() {

println("Celsius to Fahrenheit table.");
for (int c = LOWER_LIMIT; c <= UPPER_LIMIT; c += STEP_SIZE) {

int f = (int) celsiusToFahrenheit(c);
println(c + "C = " + f + "F");

}
}

/*
 * Returns the Fahrenheit equivalent of the Celsius temperature c.
 */

private double celsiusToFahrenheit(double c) {
return 9.0 / 5.0 * c + 32;

}
}

method in the Math class computes the absolute value of its argument, which for the
moment you may assume is an integer.  But suppose for a moment that the method did
not exist.  How would you write its implementation?  The definition of absolute value
indicates that if the argument is negative, the method should return its negation, which is
a positive number.  If the argument is positive or zero, the method should simply return
the argument value unchanged.  Thus, you can implement the abs method as follows:

private int abs(int n) {
    if (n < 0) {
        return -n;
    } else {
        return n;
    }
}

As this implementation shows, a return statement can occur anywhere in the method
body, and may appear more than once.
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Similarly, you could define a method min to return the smaller of two floating-point
arguments as follows:

private double min(double x, double y) {
    if (x < y) {
        return x;
    } else {
        return y;
    }
}

The control structure used within a method can be much more complex than the simple
examples above.  Suppose that you want to define a method called factorial that takes
an integer n and returns the product of the integers between 1 and n.  The first several
factorials are shown in the following list:

factorial(0) = 1 (by definition)
factorial(1) = 1 = 1
factorial(2) = 2 = 1 x 2
factorial(3) = 6 = 1 x 2 x 3
factorial(4) = 24 = 1 x 2 x 3 x 4
factorial(5) = 120 = 1 x 2 x 3 x 4 x 5
factorial(6) = 720 = 1 x 2 x 3 x 4 x 5 x 6

Factorials are usually designated in mathematics using an exclamation point, as in n!, and
have extensive applications in statistics, combinatorial mathematics, and computer
science.  A method to compute factorials is a useful tool for solving problems in those
domains.

The factorial method takes an integer and returns an integer, so its header line looks
like this:

int factorial(int n)

Implementing factorial, however, requires some work.  As a programming problem,
the task of computing a factorial is similar in many respects to adding a list of numbers.
In the AddList program from Chapter 4, a variable called total is declared to keep track
of the running total.  At the beginning of the program, total is initialized to 0.  As each
new value comes in, it is added to total so that total continues to reflect the sum of the
numbers entered so far.  In the current problem, the situation is much the same, except
that you have to keep track of a product rather than a sum.  To do so, you can:

1. Declare a variable called result.
2. Initialize it to 1.
3. Multiply it by each of the integers between 1 and n.
4. Return the final value of result as the result of the method.

To cycle through each of the integers required in step 3, you need a for loop, which
begins at 1 and continues until it reaches n.  The for loop will require an index variable,
for which the traditional choice of i seems quite appropriate.  The variable result holds
the running product, and i holds the index.

The implementation of factorial is short enough to present all at once without
explaining the details step by step:
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private int factorial(int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result *= i;
}
return result;

}

Methods that return nonnumeric values
The examples of methods presented so far in this section all return numeric results, but
that is by no means necessary. Methods in Java can return values of any data type. For
example, if you were writing a program to work with dates, it might be useful to have a
method to convert a numeric month between 1 and 12 into the String that indicates the
corresponding month name between January and December. While numeric values are
easier to work with internally (if, for example, you needed to compare two dates to see
which came earlier), the output display may be more readable with the traditional English
names. To solve this problem, you could define the method monthName as follows:

private String monthName(int month) {
switch (month) {

case  1: return ("January");
case  2: return ("February");
case  3: return ("March");
case  4: return ("April");
case  5: return ("May");
case  6: return ("June");
case  7: return ("July");
case  8: return ("August");
case  9: return ("September");
case 10: return ("October");
case 11: return ("November");
case 12: return ("December");
default: return ("Illegal month");

}
}

To use this method, you would call monthName from some other part of the program
and then use println to display the result.  For example, if the integer variables month,
day, and year contain the values 7, 20, and 1969 (the date of the Apollo 11 landing on
the moon), the statement

println(monthName(month) + " " + day + ", " + year);

would generate the output

MonthName
July 20, 1969

In the switch statement within the monthName method, the return statements in each
case clause automatically exit from the entire method and make an explicit break
statement unnecessary.  As indicated in the section on the switch statement in Chapter 4,
you can avoid a lot of pain in the debugging process if you design your programs so that
every case clause ends with either a break or a return statement.
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Predicate methods
The examples in the preceding section illustrate that methods can return values of
different data types.  The method factorial, for example, returns a value of type int,
and the method monthName returns a value of type string.  Although methods in Java
can return values of any type, there is one result type that deserves special attention.  That
type is the data type boolean, which was introduced in Chapter 4 and is defined by
including the genlib library.  Methods that return values of type boolean are called
predicate methods and play an important role in modern programming.

Recall that there are only two values of type boolean: true and false.  Thus a
predicate method—no matter how many arguments it takes or how complicated its
internal processing may be—must eventually return one of these two values.  The process
of calling a predicate method is therefore analogous to asking a yes/no question and
getting an answer.

Consider the following method definition, which, given an integer n, answers the
question “is n an even number?”:

private boolean isEven(int n) {
return (n % 2 == 0);

}

A number is even if there is no remainder when that number is divided by two.  If n is
even, the expression

n % 2 == 0

therefore has the value true, which is returned as the result of the isEven method.  If n is
odd, the method returns false.  Because isEven returns a Boolean result, you can use it
directly in a conditional context.  For example, the following for loop uses isEven to list
all the even numbers between 1 and 100:

for (int i = 1; i <= 100; i++) {
if (isEven(i)) println(i);

}

The for loop runs through each number, and the if statement asks the simple question
“is this number even?”  If it is, println displays it on the screen; if not, nothing happens.

The standard class definitions in Java often include predicate methods. One
particularly important example is the equals method, which is defined in the universal
class Object and can therefore be applied to any object. The equals method asks
whether one object has the same value as another. By contrast, the == operator asks
whether its operands are precisely the same object, which is not ordinarily as useful.

The distinction between equals and == is easiest to illustrate with respect to strings.
Suppose, for example, that your program contains the following statement to ask the user
a simple yes-or-no question:

String answer = readLine("Would you like instructions? ");

Once the user enters a response, the question is how would you determine whether that
answer was "yes" or "no" or perhaps some other string entirely. The following approach
doesn’t work:
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if (answer == "yes") . . .

The value read in from the user may well be a string object composed of the characters
'y', 'e', and 's' but it will not be the same object as the constant string "yes" that
appears in the program. What you need to ask instead is whether the strings contain the
same sequence of characters, which is precisely what the equals method does. Thus, the
statement you need to write is

if (answer.equals("yes")) . . .

Note that this statement uses the receiver syntax and can therefore be interpreted as
sending an equals message to the answer object and then having it send back the result
of the comparison.

When new programmers use predicate methods, they often make the errors described
in the section on “Avoiding redundancy in Boolean expressions” in Chapter 4.  Until you
get more experience with Boolean data and predicate methods, you may find yourself
tempted to put an if statement inside the implementation of isEven or to make
unnecessary comparisons against true, such as

if (isEven(i) == true) . . .

If you find yourself making such errors, you may want to review the discussion of
Boolean data in Chapter 4.

As another example of a predicate method, you could write one that tests whether a
given year is a leap year, as follows:

boolean isLeapYear(int year) {
return ( ((year % 4 == 0) && (year % 100 != 0))
         || (year % 400 == 0) );

}

You encountered the Boolean expression to determine whether year is a leap year in
Chapter 4.  By taking this expression and putting it into a method, you no longer have to
include the entire calculation explicitly to make this test.  Once the method is defined, the
rest of the program can simply use statements of the form:

if (isLeapYear(year)) . . .

5.4  Mechanics of the method-calling process
So far in this chapter, you have looked at methods mostly from a holistic perspective.
Thinking about methods in this way helps you understand how they are used and what
they provide as a programming resource.  To develop confidence that the methods you
write will work as they should, however, you also need to develop an understanding of
how methods operate internally.

As a first step toward understanding the mechanics of methods, consider the program
shown in Figure 5-4, which includes both the factorial method presented earlier in this
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FIGURE 5-4    Program to generate a table of factorials

/*
 * File: FactorialTable.java
 * -------------------------
 * This file generates a table of factorials.
 */

import acm.program.*;

public class FactorialTable extends ConsoleProgram {

/* Lower limit for the table */
private static final int LOWER_LIMIT = 0;

/* Upper limit for the table */
private static final int UPPER_LIMIT = 10;

/* Runs the program */
public void run() {

for (int i = LOWER_LIMIT; i <= UPPER_LIMIT; i++) {
println(i + "! = " + factorial(i));

}
}

/*
 * Returns the factorial of n, which is defined as the
 * product of all integers from 1 up to n.
 */

private int factorial(int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result *= i;
}
return result;

}
}

chapter and a main program that displays a factorial table.  The FactorialTable
program makes good sense if you look at it as two separate pieces.  The main program
simply counts from LOWER_LIMIT to UPPER_LIMIT.  On each cycle, it calls factorial on
the index i and then displays the result.  By this point, you are accustomed to using the
name i to indicate an otherwise unremarkable index variable used to count cycles in a
for loop.  No surprises here.  The factorial method is likewise straightforward.  There
is a little more going on than in the main program, but not much more.  You can easily
understand what this method is doing.  In particular, you should recognize that n is the
number whose factorial we’re computing, that result holds the accumulating product on
each cycle, and that i is once again an unremarkable index variable used to track the
progress of the for loop.  Thus, each piece of the program makes sense in and of itself.

For new students, confusion arises only when looking at the program as a whole.  If
you do that without understanding how to think about methods, you can run into some
interesting problems.  First, there are two variables named i, one in the main program
and one in the factorial method.  Each variable is used as a loop index, but the two
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variables will have different values.  Second—and equally confusing—is the fact that
there are other parts of the program in which two different names are used to refer to the
same value.  In the run method, the number whose factorial you are seeking to compute
is stored in the loop index i.  In the factorial method, that same value is called n.  How
do you make sense out of all this confusion?

Even if the program is confusing as a whole, it is important to remember that the
methods make sense when you look at them one at a time.  As long as you look only at
run  or only at factorial, none of these points of confusion exist.  Each method
definition makes sense by itself.  That fact—as commonplace as it might seem—is of
fundamental importance.  As programs grow, there is no way you can comprehend them
as a whole.  Your only hope of making sense of a large program is to break it down into
pieces, each of which is small enough to make sense by itself.  In the FactorialTable
program, the problem of making a list of factorials has been separated into two easy-to-
understand pieces.

Parameter passing
To understand how the two pieces of the program work together, you will find it helpful
to develop a sense of how Java itself handles the confusion.  That it manages to do so is
important for us as programmers and enables us to think about the individual methods
separately.  How does Java make sense of the facts that the same name may be used for
different values and that a single conceptual value may be represented by different
names?  To help you understand the answer to this question, it is useful to introduce a
semantic distinction between argument values in the caller and the variables used to hold
those values in the context of a method.

When the main program calls factorial (which itself appears as one of the arguments
to the method println), the argument is the expression i.  When this statement is
executed, the effect is to look up the current value of i and pass it to the method
factorial, which has the header line

int factorial(int n)

The header line declares a variable named n of type int—a variable whose purpose is to
serve as a placeholder for the actual argument.  A variable defined in a method header
that serves as a placeholder is called a formal parameter.

When a method is called, the following steps are taken:

1. The values of each argument are computed as part of the operation of the calling
program.  Because the arguments are expressions, this computation can involve
operators and other methods, all of which are evaluated before the new method is
actually called.

2. The value of each argument is copied into the corresponding formal parameter
variable.  If there is more than one argument, the arguments are copied into the
parameters in order; the first argument is copied to the first parameter, and so forth.  If
necessary, automatic type conversions are performed between the argument values
and the formal parameters as in an assignment statement.  For example, if a value of
type int is passed to a method where the parameter is declared as a double, the
integer is converted into the equivalent floating-point value before it is copied into the
parameter variable.

3. The statements in the method body are evaluated until a return statement appears.
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4. The value of the return expression is evaluated and converted, if necessary, to the
result type specified for the method.

5. The calling program continues, with the returned value substituted in place of the call.

Every call to a method results in the creation of a separate set of variables.  When
variables were represented graphically in Chapter 2 as boxes, all the boxes were enclosed
within a larger box representing the method run, which was the only method in the
program.  If you want to follow the computer’s operation for a larger program with more
than one method, you need to draw a new set of variable boxes each time one method
calls another.  As was true in the case of the method run, there must be one box for every
variable that method declares, including the formal parameters.  These variables are
meaningful only within the program that declares them and are therefore called local
variables.

For example, when the main program runs in the FactorialTable example, you first
need to create space for the variables in the method run.  The method run declares only
one variable—the loop index i—so that the variables for run can be represented as
follows:

i

nur

The double lines around the variable boxes are used to enclose all the variables associated
with a particular method call.  This collection of variables is called the frame—or, for
reasons that will soon be apparent, the stack frame—for that method.

Assume that LOWER_LIMIT is defined to be 0, as it was in the program listing.  In this
case, on the first cycle through the for loop, i has the value 0.  As before, you can
represent this condition in the frame by noting the value inside the box for that variable.

i

nur

0

The main program then calls println and, as part of evaluating the arguments to
println, computes the result of the expression

factorial(i)

To represent the computer’s actions in the frame diagram, you begin by looking up the
value of i in the current frame, where you discover that the value is 0.  You must then
create a new frame for factorial, for which the value 0 is the first (and only) argument.
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The factorial method has three variables: the formal parameter n  and the local
variables result and i.  Your frame for factorial therefore needs three variable cells:

n i

lairotcaf

tluser

The first thing that happens is that the formal parameter n is initialized with the value of
the argument, which was 0.  The contents of the frame then look like this:

n i

lairotcaf

tluser

0

When you create the frame for factorial, the frame for run does not go away
entirely.  Instead that frame is set aside temporarily until the operation of factorial is
complete.  To indicate this situation in the conceptual model represented by the box
diagram, the best technique is to draw each new frame diagram on an index card and then
to place the new card on top of the card for the previous frame, thereby covering it up.
For example, when you call the method factorial, the index card representing the
factorial frame goes on top of the frame for run.

tluser

nur

0

n i

lairotcaf

As the diagram shows, the entire set of frames forms a stack with the most recent frame
on top, which is the origin of the term stack frame.  The frame for run is still there; you
just can’t see any of it as long as the method factorial is active.  In particular, the name
i no longer refers to the variable declared in run but to the variable named i in
factorial.

The next step in the process is to execute the body of factorial by running through
each of its steps in the current frame.  The variable result is initialized to 1, and the
program reaches the for loop.  In the for loop, the variable i is initialized to 1, but since
the value is already larger than n, the body of the for loop is not executed at all.  Thus,
when the program reaches the return statement, the frame looks like this:
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tluser

nur

0

n i

lairotcaf

1 1

When factorial returns, the value of result is passed back to the caller as the result of
the method.  Returning from a method also implies throwing away its frame, exposing
once again the variables in run:

i

nur

0

The result, 1, is then passed to the println method.  The println method goes through
the same process; the details of that operation, however, are hidden from you because you
don’t know how println works internally.  Eventually, println displays the value 1 on
the screen and then returns, after which the method run goes on to execute the next for
loop cycle.

Calling methods from within other methods
Much of the power of methods comes from the fact that once a method has been defined,
you can use it not only in the context of a main program, but also as a tool to implement
other methods that can be used as more sophisticated tools.  These methods can then be
called from other methods, and so on, creating an arbitrarily complex hierarchy.

Suppose you have a group of n distinct objects on a table in front of you.  From that
group of objects, you would like to select k objects.  The question you want to answer is:
How many different ways are there to select k objects out of the original collection of n
distinct objects?

To make the problem concrete, suppose that the objects on the table are five U.S.
coins: a penny, a nickel, a dime, a quarter, and a half-dollar.  You want to know how
many different ways there are to take, for example, two coins from the table.  You could
take the penny and the nickel, the penny and the dime, the nickel and the quarter, or any
of several other combinations.  If you list all the possibilities, you discover that there are
10 different combinations, as follows:

penny + nickel nickel + quarter
penny + dime nickel + half-dollar
penny + quarter dime + quarter
penny + half-dollar dime + half-dollar
nickel + dime quarter + half-dollar
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In this example, n is 5 and k is 2.  The solution can be expressed as a method of the
values n and k.  That method comes up frequently in probability and statistics and is
called the combinations function, which is often written in mathematics as

 ⎝
⎛

 ⎠
⎞n

k

or, in functional notation, as

C(n, k)

As it turns out, the combinations method has a simple definition in terms of factorials:

C(n, k) =
n!

k! x (n–k)!

For example, you can verify that c(5, 2) is indeed 10 by working out the mathematics:

C(5, 2) =
5!

2! x 3!

=
120
2 x 6

= 10

If you want to implement this method in Java, it would probably be best to use a longer
name than the single letter C used in mathematics.  The one-character name might well
cause confusion, if for no other reason than that the fact that its name is uppercase
suggests a constant—possibly the speed of light.  As a general rule, method names used
in this text tend to be longer and more expressive than variable names.  Method calls
often appear in parts of the program that are far removed from the point at which those
methods are defined.  Since the definition may be hard to locate in a large program, it is
best to choose a method name that conveys enough information about the method so that
the reader does not need to look up the definition.  Local variables, on the other hand, are
used only within the body of a single method, and it is therefore easier to keep track of
what they mean.  In the interest of having the name of the combinations method make
sense immediately when anyone looks at it, we will use the name combinations as the
method name, rather than the letter C.

To implement the combinations method using the definition based on factorials, you
can take advantage of the fact that you already have an implementation of factorial.
Given factorial, the implementation of combinations is a straightforward translation
of its mathematical definition:

private int combinations(int n, int k) {
return factorial(n) / (factorial(k) * factorial(n - k));

}

You can then write a simple main program to test the combinations method as follows:

public void run() {
int n = readInt("Enter number of objects in the set (n): ");
int k = readInt("Enter number to be chosen (k): ");
println("C(" + n + ", " + k + ") = " + combinations(n, k));

}
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The complete Combinations program is shown in Figure 5-5.  The following output
illustrates one possible sample run of the program:

Combinations
Enter number of objects in the set (n): 5
Enter number to be chosen (k): 2
C(5, 2) = 10

FIGURE 5-5    Program to compute the combinations function C(n, k)

/*
 * File: Combinations.java
 * -----------------------
 * This program computes the mathematical combinations function
 * C(n, k), which is the number of ways of selecting k objects
 * from a set of n distinct objects.
 */

import acm.program.*;

public class Combinations extends ConsoleProgram {

/* Runs the program */
public void run() {

int n = readInt("Enter number of objects in the set (n): ");
int k = readInt("Enter number to be chosen (k): ");
println("C(" + n + ", " + k + ") = " + combinations(n, k));

}

/*
 * Returns the mathematical combinations function C(n, k),
 * which is the number of ways of selecting k objects
 * from a set of n distinct objects.
 */

private int combinations(int n, int k) {
return factorial(n) / (factorial(k) * factorial(n - k));

}

/*
 * Returns the factorial of n, which is defined as the
 * product of all integers from 1 up to n.
 */

private int factorial(int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result *= i;
}
return result;

}
}

What happens inside the computer when this program runs?  Just as in the factorial
example, a frame is created for the method run, which now declares two variables, n and
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k.  After the user enters the two values and the program reaches the println statement,
the variables in the frame have the following values:

n

nur

k

5 2

To execute the println  statement, the computer must evaluate the call to the
combinations method, which results in the creation of a new frame that overlays the
previous one:

nur

snoitanibmoc

n k

5 2

In this example, which has more method calls than the factorial example does, each
new frame must record precisely what the program was doing before it made the call.
Here, for example, the call to combinations comes from the last line in run, as indicated
by the tag R1 in the program text that follows:

{)(nur diov cilbup
;)" :)n( tes eht ni stcejbo fo rebmun retnE"(tnIdaer = n tni

;))k ,n(snoitanibmoc + " = )" + k + " ," + n + "(C"(nltnirp
}

;)" :)k( nesohc eb ot rebmun retnE"(tnIdaer = k tni

R 1

When the computer executes a new method call, it keeps track of where execution should
continue in the calling program once this call is completed.  The point at which execution
should continue is called the return address, which is represented in these diagrams
using a circled tag.  To help you remember where you are in the execution of the
program, you need to record in the frame diagram the point from which the call was
made, like this:

nur

snoitanibmoc

n k

5 2

Returning to R 1
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Once the new frame has been created, the program begins to execute the body of the
combinations method, which is reprinted with each call to factorial noted with a tag
as follows:

irp
;))k - n(lairotcaf * )k(lairotcaf( / )n(lairotcaf nruter

}

{ )k tni ,n tni(snoitanibmoc tni etav

C 1 C 2 C 3

To execute this statement, the computer must make the three indicated calls to the method
factorial.  According to the rules specified by Java, the compiler must make these calls
in left-to-right order.  The first call requests the computer to calculate factorial(n) and
results in the creation of the following frame:

Returning to C 1

nur

snoitanibmoc

lairotcaf

5

n itluser

The factorial method runs through its operation just as it did before and returns the
value 120 to the point in its caller indicated by the tag C1.  The frame for the factorial
method disappears, and you are left in the frame for combinations ready to go on to the
next phase of the computation.  You can illustrate the current state of things by going
back and filling in the returned value in place of the original call like this:

;))k - n(lairotcaf * )k(lairotcaf( / 021  nruter

C 2 C 3

The box around 120 in the diagram indicates that the enclosed value is not part of the
program but the result of a previous computation.

From this point, the computer goes on to evaluate the second call to factorial, where
the argument is k.  Since k has the value 2, this call causes the following frame to be
created:

Returning to C 2

nur

snoitanibmoc

lairotcaf

2

n itluser
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Once again, the factorial method completes its operation without making further
calls, and the method returns to point C2 with the value of 2!, which is 2.  Inserting this
value into the expression that records the result so far shows the computation in the
following state:

;))k - n(lairotcaf * ( / 021  nruter

C 3

2 

There is now only one more call to make, which begins by evaluating the argument
expression n - k.  Given the values of n and k in the combinations frame, the argument
expression has the value 3, which leads to the creation of another frame:

tluser

Returning to C 3

nur

snoitanibmoc

lairotcaf

3

n i

From this point, factorial calculates the value of 3! and returns the value 6 to position
C3 in the caller, resulting in the following position:

;)* ( / 021  nruter 2 6

The combinations method now has all the values it needs to calculate the result,
which is 10.  To find out what to do with this result, you need to consult the
combinations frame, which is once again the top frame on the stack:

nur

snoitanibmoc

n k

5 2

Returning to R 1

The frame indicates that the program should take the return value and substitute it in
place of the call at R1 in the method run.  If you take 10 and substitute it for the call to
combinations in println statement, you get the following state:

;) + " = )" + k + " ," + n + "(C"(nltnirp 01

Given this result, println can happily generate the desired output.
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This exercise of going through all the internal details is intended to help you
understand the method-calling mechanism in Java.  You might find it helpful to trace
through your own programs once or twice at this level of detail, but you should not make
a habit of it.  Instead, you should learn to think about methods more informally and try to
develop an intuitive sense of how they work.  When a program calls a method, the
method performs its operation and the program then continues from the point at which
the call was made.  If the method returns a result, the calling program is free to use that
result in subsequent computation.  As a programmer, you need to get to the point where
you feel comfortable thinking about the process without worrying about the details.  The
computer, after all, is taking care of them for you.

5.5  Algorithmic methods
In addition to their role as a tool for simplifying programs by allowing you to refer to a
set of statements using a single name, methods are important to programming because
they provide a basis for the implementation of algorithms, which were introduced briefly
in Chapter 1.  An algorithm is an abstract strategy; writing a method is the conventional
way to express that algorithm in the context of a programming language.  Thus, when you
want to implement an algorithm as part of a program, you will typically write a method—
which may in turn call other methods to handle part of its work—to carry out that
algorithm.

Although you have seen several simple algorithms implemented in the context of the
sample programs, you have not had a chance to focus on the nature of the algorithmic
process itself.  Most of the programming problems you have seen so far are simple
enough that the appropriate solution technique springs immediately to mind.  As
problems become more complex, however, their solutions require more thought, and you
will need to consider more than one strategy before writing the final program.

As an illustration of how algorithmic strategies take shape, the sections that follow
consider two solutions to a problem from classical mathematics, which is finding the
greatest common divisor of two integers. Given two integers x and y, the greatest
common divisor (or gcd for short) is the largest integer that divides evenly into both.
For example, the gcd of 49 and 35 is 7, the gcd of 6 and 18 is 6, and the gcd of 32 and 33
is 1.

Suppose that you have been asked to write a method that accepts the integers x and y as
input and returns their greatest common divisor.  From the caller’s point of view, what
you want is a method gcd(x, y) that takes two integers as arguments and returns another
integer that is their greatest common divisor.  The header line for this method is therefore

int gcd(int x, int y)

How might you go about designing an algorithm to perform this calculation?

The “brute force” approach
In many ways, the most obvious approach to calculating the gcd is simply to try every
possibility. To start, you simply “guess” that gcd(x, y) is the smaller of x and y, because
any larger value could not possibly divide evenly into a smaller number.  You then
proceed by dividing your guess into x and y and seeing if it divides evenly into both.  If it
does, you have the answer; if not, you subtract 1 from your guess and try again.  A
strategy that tries every possibility is often called a brute force approach.

The brute-force approach to calculating the gcd function looks like this in Java:
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int gcd(int x, int y) {
    int guess = Math.min(x, y);
    while (x % guess != 0 || y % guess != 0) {
        guess--;
    }
    return guess;
}

Before you decide that this implementation is in fact a valid algorithm for computing the
gcd function, you must ask yourself several questions about the code.  Will the brute-
force implementation of gcd always give the correct answer?  Will it always terminate, or
might the method continue forever?

To see that the program gives the correct answer, you need to look at the condition in
the while loop

x % guess != 0 || y % guess != 0

As always, the while condition indicates under what circumstances the loop will
continue.  To find out what condition causes the loop to terminate, you have to negate the
while condition.  Negating a condition involving && or || can be tricky unless you
remember how to apply De Morgan’s law, which was introduced in the section on
“Logical operators” in Chapter 4.  De Morgan’s law indicates that the following
condition must hold when the while loop exits:

x % guess == 0 && y % guess == 0

From this condition, you can see immediately that the final value of guess is certainly
a common divisor.  To recognize that it is in fact the greatest common divisor, you have
to think about the strategy embodied in the while loop.  The critical factor to notice in
the strategy is that the program counts backward through all the possibilities.  The
greatest common divisor can never be larger than x (or y, for that matter), and the brute-
force search therefore begins with that value.  If the program ever gets out of the while
loop, it must have already tried each value between x and the current value of guess.
Thus, if there were a larger value that divided evenly into both x and y, the program
would already have found it in an earlier iteration of the while loop.

To recognize that the method terminates, the key insight is that the value of guess
must eventually reach 1, even if no larger common divisor is found.  At this point, the
while loop will surely terminate, because 1 will divide evenly into both x and y, no
matter what values those variables have.

Euclid’s algorithm
Brute force is not, however, the only effective strategy.  In fact, the brute-force algorithm
used in the gcd implementation presented in the preceding section is a poor choice if you
are at all concerned with efficiency.  Consider what happens, for example, if you call the
method with the integers 1,000,005 and 1,000,000.  The brute-force algorithm will run
through the body of the while loop almost a million times before it comes up with 5—an
answer that you can easily determine just by thinking about the two numbers.

What you need to find is an algorithm that is guaranteed to terminate with the correct
answer but that requires fewer steps than the brute-force approach.  This is where
cleverness and a clear understanding of the problem pay off.  Fortunately, the necessary
creative insight has already been supplied by the Greek mathematician Euclid, whose
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Elements (book 7, proposition II) contains an elegant solution to this problem.  In modern
English, Euclid’s algorithm can be described as follows:

1. Divide x by y and compute the remainder; call that remainder r.
2. If r is zero, the procedure is complete, and the answer is y.
3. If r is not zero, set x equal to the old value of y, set y equal to r, and repeat the entire

process.

You can easily translate this algorithmic description into the following Java code:

int gcd(int x, int y) {
    int r = x % y;
    while (r != 0) {
        x = y;
        y = r;
        r = x % y;
    }
    return y;
}

This implementation of the gcd method also correctly finds the greatest common divisor
of two integers.  It differs from the brute-force implementation in two respects.  On the
one hand, it computes the result much more quickly.  On the other, it is more difficult to
prove correct.

Defending the correctness of Euclid’s algorithm
Although a formal proof of correctness for Euclid’s algorithm is beyond the scope of this
book, you can easily get a feel for how the algorithm works by adopting the mental model
of mathematics the Greeks used.  In Greek mathematics, geometry held center stage, and
numbers were thought of as distances.  For example, when Euclid set out to find the
greatest common divisor of two whole numbers, such as 55 and 15, he framed the
problem as one of finding the longest measuring stick that could be used to mark off each
of the two distances involved.  Thus, you can visualize the specific problem by starting
out with two sticks, one 55 units long and one 15 units long, as follows:

x

y

The problem is to find a new measuring stick that you can lay end to end on top of each
of these sticks so that it precisely covers each of the distances, x and y.

Euclid’s algorithm begins by marking off the large stick in units of the shorter one:

x

y

Unless the smaller number is an exact divisor of the larger one, there is some remainder,
as indicated by the shaded section of the upper stick.  In this case, 15 goes into 55 three
times with 10 left over, which means that the shaded region is 10 units long.  The
fundamental insight that Euclid had is that the greatest common divisor for the original
two distances must also be the greatest common divisor of the length of the shorter stick
and the distance represented by the shaded region in the diagram.
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Given this observation, you can solve the original problem by reducing it to a simpler
problem involving smaller numbers.  Here, the new numbers are 15 and 10, and you can
find their greatest common divisor by reapplying Euclid’s algorithm.  You start by
representing the new values, x′ and y′, as measuring sticks of the appropriate length.  You
then mark off the larger stick in units of the smaller one.

x ′  
y ′

Once again, this process results in a leftover region, which this time has length 5.  If
you then repeat the process one more time, you discover that the shaded region of length
5 is itself the common divisor of x′ and y′ and, therefore, by Euclid’s proposition, of the
original numbers x and y.  That this new value is indeed a common divisor of the original
numbers is demonstrated by the following diagram:

x

y

Euclid supplies a complete proof of his proposition in the Elements.  If you are intrigued
by how mathematicians thought about such problems almost 2500 years ago, you may
find it interesting to look up the original source.

Comparing the efficiency of the two algorithms
To illustrate the difference in efficiency of the two algorithmic strategies for computing
the greatest common divisor, consider once again the integers 1,000,005 and 1,000,000.
To find the greatest common divisor of these two integers, the brute-force algorithm
requires a million steps; Euclid’s algorithm requires only two.  At the beginning of
Euclid’s algorithm, x is 1000005, y is 1000000, and r is set to 5 during the first cycle of
the loop.  Since the value of r is not 0, the program sets x to 1000000, sets y to 5, and
starts again.  On the second cycle, the new value of r is 0, so the program exits from the
while loop and reports that the answer is 5.

The two strategies for computing greatest common divisors presented in this chapter
offer a clear demonstration that the choice of algorithm can have a profound effect on the
efficiency of the solution.  If you continue your study of computer science, you will learn
how to quantify such differences in performance along with several general approaches
for improving algorithmic efficiency.

Summary
In this chapter, you learned about methods, which enable you to refer to an entire set of
operations by using a simple name.  By allowing the programmer to ignore the internal
details and concentrate only on the effect of a method as a whole, methods provide a
critical tool for reducing the conceptual complexity of programs.

The important points introduced in this chapter include:

• A method consists of a set of program statements that have been collected together and
given a name.  Other parts of the program can then call that method, possibly passing
it information in the form of arguments and receiving a result returned by that method.

• A method that returns a value must have a return statement that specifies the result.
Methods may return values of any type.
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• Methods in an object-oriented language like Java are often applied to other objects.
When that occurs, you need to specify a receiver as part of the method call, like this:

receiver.name(arguments)

• Methods that return Boolean values are called predicate methods and play an
important role in programming.

• Within the body of a method, the variables that act as placeholders for the argument
values are called formal parameters.

• Variables declared with a method are local to that method and cannot be used outside
of it.  Internally, all the variables declared within a method, including the parameters,
are stored together in a stack frame.

• When a method returns, it continues from precisely the point at which the call was
made.  The computer refers to this point as the return address and keeps track of it in
the stack frame.

• Because methods tie together a collection of statements so as to have a specific effect,
methods provide the standard framework for expressing algorithms in Java.

• There are often many different algorithms to solve a particular problem.  Choosing the
algorithm that best fits the application is an important part of your task as a
programmer.

Review questions
1. Explain in your own words the difference between a method and a program.

2. Define the following terms as they apply to methods: call, argument, return.

3. What is the difference between passing information to a method by using arguments
and reading input data using methods like readInt?  When would each action be
appropriate?

4. How do you specify the result of a method in Java?

5. Can there be more than one return statement in the body of a method?

6. How do you indicate that you want to apply a method to another object?

7. Why has it been unnecessary to specify receivers in the programs presented in the
earlier chapters?

8. Why was it unnecessary to include a break statement at the end of each case clause
in the monthName method presented in the chapter?

9. What is a predicate method?

10. How do you tell whether two strings contain the same characters?

11. What is the relationship between arguments and formal parameters?

12. Variables declared within a method are said to be local variables.  What is the
significance of the word local  in this context?

13. What does the term return address mean?
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14. What is a brute-force algorithm?

15. Use Euclid’s algorithm to compute the greatest common divisor of 7735 and 4185.
What values does the local variable r take on during the calculation?

16. In the examples of Euclid’s algorithm to calculate gcd(x, y) that appear in this
chapter, x is always larger than y.  Does this condition matter?  What happens if x is
smaller than y?

Programming exercises
1. Write a program that displays the value of the mathematical constant

φ  =  
1 + √⎯ 5

2

This constant φ is called the golden ratio.  Classical mathematicians believed that this
number represented the most aesthetically pleasing ratio for the dimensions of a
rectangle, but it also turns up in computational mathematics.

2. In high-school algebra, you learned that the standard quadratic equation

ax2  +  bx  +  c  =  0

has two solutions given by the formula

x  =  
–b ± √⎯⎯⎯⎯⎯⎯ b2 – 4ac

2a

The first solution is obtained by using + in place of ±; the second is obtained by
using – in place of ±.

Write a Java program that accepts values for a, b, and c, and then calculates the two
solutions.  If the quantity under the square root sign is negative, the equation has no
real solutions, and your program should display a message to that effect.  You may
assume that the value for a is nonzero.  Your program should be able to duplicate the
following sample run:

Quadratic
Enter coefficients for the quadratic equation:
a: 1
b: -5
c: 6
The first solution is 3
The second solution is 2

3. The Fibonacci sequence, in which each new term is the sum of the preceding two,
was introduced in Chapter 4, exercise 9.  Rewrite the program requested in that
exercise, changing the implementation so that your program calls a method
fibonacci(n) to calculate the nth Fibonacci number.  In terms of the number of
mathematical calculations required, is your new implementation more or less
efficient that the one you used in Chapter 4?
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4. Write a method raiseIntToPower that takes two integers, n and k, and returns nk.
Use your method to display a table of values of 2k for all values of k from 0 to 10.

5. Write a method raiseRealToPower that takes a floating-point value x and an integer
k and returns xk.  Implement your method so that it can correctly calculate the result
when k is negative, using the relationship

x-k  =  1
xk

Use your method to display a table of values of πk for all values of k from –4 to 4.

6. Write a method nDigits(n) that returns the number of digits in the integer n, which
you may assume is positive.  Design a main program to test your method.  For hints
about how to write this program, you might want to look back at the DigitSum
program that was given in Figure 4-6.

7. Write a predicate method isPerfectSquare(n) that returns true if the integer n is a
perfect square.  Remember that the method Math.sqrt returns a double, which is
therefore only an approximation of the actual square root.

8. Write a predicate method askYesNoQuestion(str) that prints out the string str as
a question for the user and then waits for a response. If the user enters the string
"yes", the askYesNoQuestion method should return true; if the user enters "no",
the method should return false. If the user enters anything else, askYesNoQuestion
should remind the user that it is seeking a yes-or-no answer and then repeat the
question.  For example, if the program includes the statement

if (askYesNoQuestion("Would you like instructions")) . . .

the interaction with the user might look like this:

YesNoExample
Would you like instructions? maybe
Please answer yes or no.
Would you like instructions? no

9. The values of the combinations method used in the text are often displayed in the
form of a triangle using the following arrangement:

C(0,0)
C(1,0)   C(1,1)

C(2,0)   C(2,1)   C(2,2)
C(3,0)   C(3,1)   C(3,2)   C(3,3)

C(4,0)   C(4,1)   C(4,2)   C(4,3)   C(4,4)

and so on.  This figure is called Pascal’s Triangle after the seventeenth-century
French mathematician Blaise Pascal, who described it, even though it was known by
Chinese mathematicians over 2000 years ago.  Pascal’s Triangle has the interesting
property that every interior entry is the sum of the two entries above it.
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Write a Java GraphicsProgram that uses GLabel objects to display the first eight
rows of Pascal’s Triangle.

10. An integer greater than 1 is said to be prime if it has no divisors other than itself and
one.  The number 17, for example, is prime, because it is divisible only by 1 and 17.
The number 91, however, is not prime because it is divisible by 7 and 13.  Write a
predicate method isPrime(n) that returns true if the integer n is prime, and false
otherwise.  As an initial strategy, implement isPrime using a brute-force algorithm
that simply tests every possible divisor.  Once you have that version working, try to
come up with improvements to your algorithm that increase its efficiency without
sacrificing its correctness.

11. Greek mathematicians took a special interest in numbers that are equal to the sum of
their proper divisors (a proper divisor of n is any divisor less than n itself).  They
called such numbers perfect numbers.  For example, 6 is a perfect number because
it is the sum of 1, 2, and 3, which are the integers less than 6 that divide evenly into
6.  Similarly, 28 is a perfect number because it is the sum of 1, 2, 4, 7, and 14.

Write a predicate method isPerfect(n) that returns true if the integer n is perfect,
and false otherwise.  Test your implementation by writing a main program that uses
the isPerfect method to check for perfect numbers in the range 1 to 9999 by testing
each number in turn.  Whenever it identifies a perfect number, your program should
display that number on the screen.  The first two lines of output should be 6 and 28.
Your program should find two other perfect numbers in that range as well.

12. Although Euclid’s algorithm and the problem of finding perfect numbers from the
preceding exercise are both drawn from the domain of mathematics, the Greeks were
fascinated with algorithms of other kinds as well.  In Greek mythology, for example,
Theseus of Athens escapes from the Minotaur’s labyrinth by taking in a ball of
string, unwinding it as he goes along, and then following the path of string back to
the exit.  Theseus’s strategy represents an algorithm for escaping from a maze, but it
is not the only algorithm he could have used to solve this problem.  For example, if a
maze has no internal loops, you can always escape by keeping your right hand
against a wall at all times.  This algorithm is called the right-hand rule.

For example, imagine that Theseus is in the maze shown below at the position
marked by the Greek letter theta (Θ):

Θ

To get out, Theseus walks along the path shown by the dotted line in the next
diagram, which he can do without taking his right hand off the wall.
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Θ

Suppose you have been asked to write a program for a robot named Theseus to
escape from a maze.  You have access to a library that contains these methods:

void moveForward();     /* Move forward to the next square   */
void turnRight();       /* Turn right without moving         */
void turnLeft();        /* Turn left without moving          */
boolean isFacingWall(); /* True if Theseus is facing a wall  */
boolean isOutside();    /* True if Theseus has left the maze */

Use these methods to write an algorithmic method solveMaze that implements the
right-hand rule.



 



Chapter 6
Objects and Classes

To beautify life is to give it an object.
— José Martí, On Oscar Wilde, 1882

Kristen Nygaard (1926-2002) Ole-Johan Dahl (1931-2002)

Norwegian computer scientists Kristen Nygaard and Ole-Johan Dahl developed the
central ideas of object-oriented programming more than 40 years ago as part of their work
on the programming language SIMULA. Early versions of SIMULA appeared in the
early 1960s, but the stable version of the language that brought these concepts to the
attention of the world appeared in 1967. The initial work on SIMULA was carried out at
the Norwegian Computing Center, a state-f156way focusing on developing better
software-engineering techniques. Both later joined the faculty at the University of Oslo.
Although their work took several decades to become established in the industry, interest
in object-oriented techniques has grown considerably in the last two decades, particularly
after the release of modern object-oriented languages like C++ and Java. For their
contributions, Nygaard and Dahl received both the 2001 Turing Award from the
Association for Computing Machinery and the John von Neumann Medal for the same
year from the Institute of Electrical and Electronic Engineers.
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After starting off with a holistic look at programs in Chapter 2, the three most recent
chapters have taken a reductionistic tack, teaching you how to use the fundamental
building blocks of programming—expressions, statements, and methods—starting from
the ground up.  In a way, this chapter extends that progression by looking at objects and
classes, which form the next level in the hierarchical structure of the Java language.  At
the same time, it is important to recognize that objects and classes are the primary tools
for thinking about programs in a high-level, abstract way.  In its pursuit of that high-level
perspective, this chapter represents a return to the holistic style of Chapter 2.

To emphasize the holistic perspective, this chapter begins with an example that
illustrates the use of classes and is also useful in its own right—the RandomGenerator
class in the acm.util package.  The discussion of RandomGenerator focuses on how one
uses existing classes in a program, deferring the details of writing your own classes to the
next two sections.  Section 6.2 introduces a very simple Stoplight class that models the
behavior of a traffic light.  Section 6.3 then presents a more substantial example in the
form of a Rational class used to represent rational numbers.

Although being able to adopt a holistic perspective about classes and objects is
essential to using them effectively, that perspective is usually not sufficient to understand
how objects behave in practice. For most students, it is also important to develop a mental
model of objects that allows you to visualize how they are represented inside the
machine. To avoid cluttering the high-level vision with too much detail, this book defers
those issues of internal representation to Chapter 7.

6.1 Using the RandomGenerator class
Until now, every program in this text has behaved deterministically, which means that
its actions are predictable given any set of input values.  The behavior of such programs
is repeatable.  If a program produces one result when you run it today, it will produce the
same result tomorrow.

In some programming applications, such as games or simulations, it is important that
the behavior of your programs not be so predictable: a computer game that always had
the same outcome would be boring.  In order to build a program that behaves randomly,
you need some mechanism for representing a random process, such as flipping a coin or
tossing a die, in the context of your programs.  Programs that simulate such random
events are called nondeterministic programs.

Partly because early computers were used primarily for numerical applications, the
idea of generating randomness using a computer is often expressed in terms of being able
to generate a random number in a particular range.  From a theoretical perspective, a
number is random if there is no way to determine in advance what value it will have
among a set of equally probable outcomes.  For example, rolling a die generates a random
number between 1 and 6.  If the die is fair, there is no way to predict which number will
come up.  The six possible values are equally likely.

Although the idea of a random number makes intuitive sense, it is a difficult notion to
represent inside a computer.  Computers operate by following a sequence of instructions
in memory and therefore function in a deterministic mode.  If a number is generated by a
deterministic process, any user should be able to work through that same set of rules and
anticipate the computer’s response.  This situation seems paradoxical.  How is it possible
for a computer to generate unpredictable results by following a deterministic set of rules?

Pseudorandom numbers
In almost all cases, computers today sidestep this paradox by giving up on the notion of
true randomness.  Java programs that use random numbers in fact compute those numbers
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using a deterministic procedure.  Although doing so means that a user could, in theory,
follow the same set of rules and anticipate the computer’s response, the strategy works in
practice because no one actually bothers to perform those calculations.  In most practical
applications, it doesn’t matter if the numbers are random; all that matters is that the
numbers appear to be random.  For numbers to appear random, they should (1) behave
like random numbers from a statistical point of view and (2) be sufficiently difficult to
predict in advance that no user would bother.  “Random” numbers generated by an
algorithmic process inside a computer are formally referred to as pseudorandom
numbers to underscore the fact that no truly random activity is involved.  Informally,
however, it is easier to call them random numbers, despite the fact that this is not
entirely accurate in some philosophical sense.

The techniques for generating random numbers tend to be simple in terms of their
computational requirements but highly sophisticated in terms of their mathematical
underpinnings.  Stanford Professor Don Knuth, author of a landmark series of books
entitled The Art of Computer Programming, devotes well over 100 pages to the question
of how one might code a random number generator whose output appears as random as
possible.  The details of that mathematical analysis are well beyond the scope of an
introductory text.  Fortunately, almost no programmers ever have to write the code to
generate random numbers.  That code has already been developed by someone who has
studied the necessary mathematics and waded through all the complex practical and
theoretical issues necessary to make it work.  Most programmers are interested only in
using random numbers and have no interest in the details how they are calculated.  For
those programmers, it is sufficient to think of the random number generator as a black
box.  You ask it for a random value, and out pops the next one.

The idea of thinking of parts of your programs as black boxes is fundamental to the
concept of object-oriented programming.  To generate random numbers, you need a
random number generator, which can be illustrated by the following black box:

instance
rotareneGmodnaR

In the Java domain, the black box constitutes an object.  Its class is RandomGenerator,
which is defined in the acm.util package.  As the label indicates, the black box is a
particular instance of the RandomGenerator class.  When you want to generate a random
value, you do so by sending a message to the object, which can be represented pictorially
as follows:

instance
rotareneGmodnaRGive me the next random number

The random generator object then replies with the next random number, computed by
some algorithmic process, the details of which are hidden inside the black box.  For
example, given a request for a random number, the random generator object might give
the following reply:

instance
rotareneGmodnaR

5263172067

Give me the next random number
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As is always the case in object-oriented programming, the message takes the form of a
method call.  The reply is simply the value that method returns.  As you will learn in the
next section, the random generator object responds to several different methods,
depending on the type of random value your application needs.

Using the RandomGenerator class
The most important public methods in the RandomGenerator class are listed in Figure
6-1. For the most part, these methods are easy to understand. The only method that seems
to cause confusion is the constructor, which creates a new instance of the
RandomGenerator class. The important thing to remember is that a RandomGenerator is
not itself a random value but rather an object that generates random values.  Although
you will typically want to generate many different random values in the course of a
program, you only need to have one generator.  Moreover, because you will probably
want to use that generator in several methods within your program, it is easiest to declare
it as an instance variable, as follows:

FIGURE 6-1    Useful methods in the RandomGenerator class

RandomGenerator()
Constructs a new random generator.  Your programs should create only one generator.

int nextInt(int n)
Returns a random integer chosen from the n values in the range 0 to n - 1, inclusive.

int nextInt(int low, int high)
Returns a random integer in the range low to high, inclusive.

double nextDouble()
Returns a random double d in the range 0 ≤ d < 1; a range excluding one end is called half-open.

double nextDouble(double low, double high)
Returns a random double d in the half-open range low ≤ d < high.

boolean nextBoolean()
Returns a boolean that is true roughly 50 percent of the time.

boolean nextBoolean(double p)
Returns a boolean that is true with probability p, which must be between 0 and 1.

Color nextColor()
Returns a random Java color.

void setSeed(long seed)
Sets a “seed” to indicate a starting point for the pseudorandom sequence.

private RandomGenerator rgen = new RandomGenerator();

That line both declares and initializes the variable rgen to be a source of random values
for the program as a whole.

Once you’ve declared and initialized the rgen variable, you can then use the other
methods in RandomGenerator to generate the next random value of the appropriate type.
Which method you select depends on the application.  If you want to select a random
integer in a specific range, for example, you use the two-argument version of nextInt.
Thus, you can simulate rolling a standard six-sided die by writing

int die = rgen.nextInt(1, 6);

If you want to generate a random real number between –1.0 and +1.0, you would call

double r = rgen.nextDouble(-1.0, +1.0);
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If you want to simulate the toss of a coin, you could use nextBoolean as follows:

String coinFlip = rgen.nextBoolean() ? "Heads" : "Tails";

The Craps.java program in Figure 6-2 illustrates the use of the RandomGenerator
class in the context of a complete application.  This program simulates the casino game of
Craps, which is played as follows.  You start by rolling two six-sided dice and looking at
the total.  The game then breaks down into the following cases based on that first roll:

• Your first roll is a 2, 3, or 12.  Rolling these numbers on your first roll is called craps
and means that you lose.

• Your first roll is a 7 or an 11.  When either of these numbers comes up on your first
roll, it is called a natural, and you win.

• Your first roll is one of the other numbers (4, 5, 6, 8, 9, or 10).  In this case, the
number you rolled is called your point, and you continue to roll the dice until either (a)
you roll your point a second time, in which case you win, or (b) you roll a 7, in which
case you lose.  If you roll any other number—including 2, 3, 11, and 12, which are no
longer treated specially—you just keep on rolling until your point or a 7 appears.

The program in Figure 6-2 is a straightforward translation of the English rules into Java
code.  The sample runs in Figure 6-3 illustrate each of the possible outcomes.

The Craps.java program in Figure 6-2 illustrates the standard programming pattern
for working with random numbers.  The random number generator is declared and
initialized by the line

private RandomGenerator rgen = new RandomGenerator();

at the end of the program.  That generator is used to create a succession of random values
for the die rolls by the following lines in the method rollDice:

int d1 = rgen.nextInt(1, 6);
int d2 = rgen.nextInt(1, 6);

Each of these declarations uses the random generator rgen to obtain a new random
integer between 1 and 6, inclusive.

The role of the random number seed
Most of the methods shown in Figure 6-1 for the RandomGenerator class return random
values of a particular type, which might be integers, double-precision numbers, Boolean
values chosen with a particular probability, or even random colors for use in graphical
programs.  The one method other than the constructor that does not fit into this
framework is the setSeed method at the very end of the list.  To understand what this
method does, it is necessary to think a little more concretely about what goes on inside
the black box that represents the random number generator.

In Chapter 2, an object was defined as “a conceptually integrated entity that
encapsulates both state and behavior.”  The behavior of the random generator object is
defined by the messages to which it responds.  Although it is not immediately so clear,
the random generator object must also maintain internal state so that it can generate a new
random value each time one of its methods is called.  The typical pseudorandom number
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FIGURE 6-2    Program to play the casino game of Craps

/*
 * File: Craps.java
 * ----------------
 * This program plays the casino game of Craps.  At the beginning of
 * the game, the player rolls a pair of dice and computes the total.
 * If the total is 2, 3, or 12 (called "craps"), the player loses.
 * If the total is 7 or 11 (called a "natural"), the player wins.
 * If the total is any other number, that number becomes the "point."
 * From here, the player keeps rolling the dice until (a) the point
 * comes up again, in which case the player wins or (b) a 7 appears,
 * in which case the player loses.  Note that the numbers 2, 3, 11,
 * and 12, no longer have special significance after the first roll.
 */

import acm.program.*;
import acm.util.*;

public class Craps extends ConsoleProgram {

/* Run the program */
public void run() {

int total = rollTwoDice();
if (total == 7 || total == 11) {

println("That's a natural.  You win.");
} else if (total == 2 || total == 3 || total == 12) {

println("That's craps.  You lose.");
} else {

int point = total;
println("Your point is " + point + ".");
while (true) {

total = rollTwoDice();
if (total == point) {

println("You made your point.  You win.");
break;

} else if (total == 7) {
println("That's a 7.  You lose.");
break;

}
}

}
}

/* Roll two dice and returns their sum. */
private int rollTwoDice() {

int d1 = rgen.nextInt(1, 6);
int d2 = rgen.nextInt(1, 6);
int total = d1 + d2;
println("Rolling dice: " + d1 + " + " + d2 + " = " + total);
return total;

}

/* Create an instance variable for the random number generator */
private RandomGenerator rgen = new RandomGenerator();

}



Objects and Classes 141

FIGURE 6-3    Sample runs illustrating the possible outcomes of a craps game

Craps
Rolling dice: 1 + 2 = 3
That's craps.  You lose.

Craps
Rolling dice: 5 + 2 = 7
That's a natural.  You win.

Craps
Rolling dice: 2 + 3 = 5
Your point is 5.
Rolling dice: 6 + 6 = 12
Rolling dice: 5 + 1 = 6
Rolling dice: 1 + 3 = 4
Rolling dice: 6 + 4 = 10
Rolling dice: 3 + 6 = 9
Rolling dice: 4 + 1 = 5
You made your point.  You win.

Craps
Rolling dice: 5 + 3 = 8
Your point is 8.
Rolling dice: 3 + 2 = 5
Rolling dice: 4 + 2 = 6
Rolling dice: 3 + 1 = 4
Rolling dice: 1 + 3 = 4
Rolling dice: 4 + 2 = 6
Rolling dice: 6 + 3 = 9
Rolling dice: 2 + 5 = 7
That's a 7.  You lose.

generator is implemented so that it produces a sequence of seemingly random values
from a particular starting point.  That starting point is called the seed.  Each time you call
one of the methods that generates a random value, the generator takes the current seed,
applies a mathematical function to generate the next value in the random sequence, and
then stores the result back into the memory reserved for the seed.  The method then
converts the new seed to the specific type and range of values appropriate to the method
call.  For example, if you call

rgen.nextInt(1, 6);

the method converts the current random seed from its internal value as a long into an int
in the range between 1 and 6, inclusive.

Since each call to the random number generator updates the seed, any series of calls to
the methods in that generator will produce a sequence of different random values.  If you
don’t know the starting point for that sequence, the pattern of random numbers will be
impossible to predict.  By default, Java sets the initial seed to the time registered on the
internal system clock.  As a result, the sequence of values will seem to shift each time
you run the program.  You can, however, use the setSeed method to give the random
sequence a specific starting point.  If you do that at the beginning of your program, the
random values will be the same each time.

On the face of it, the idea that it might be useful for a program to generate the same
random sequence each time seems a bit crazy.  If you’re trying to play a computer game,
the last thing you want is to have it behave in exactly the same way each time.  Such a
game would be entirely predictable and would quickly become boring.  Even so, there is
a very important reason why one might want to set a specific random seed even in the
context of a computer game, which is simply that deterministic programs are generally
much easier to debug.

To illustrate this principle, suppose you have just written a program to play an intricate
game, such as Monopoly.  As is always the case with newly written programs, the odds
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are good your program has a few bugs.  In a complex program, bugs can be relatively
obscure, in the sense that they only occur in rare situations.  Suppose you’ve been playing
the game and find that the program starts behaving in a bizarre way, but that you weren’t
alert enough to pay attention to all the relevant symptoms.  You would like to run the
program again and watch more carefully this time.

If your program is running in a nondeterministic way, however, a second run of the
program will behave differently from the first.  Bugs that showed up the first time may
not occur on the second pass.  In general, it is extremely difficult to reproduce the
conditions that cause a program to fail if the program is behaving in a truly random
fashion.  If, on the other hand, your program can be made to operate deterministically, it
will do the same thing each time it is run.  This behavior makes it possible for you to
recreate a problem, which is just what you need during the debugging phase.

Making it possible to force deterministic behavior during debugging is the primary
reason that the RandomGenerator class includes the setSeed method.  For example, if
during the debugging phase of your program development, you include a call

rgen.setSeed(1);

at the beginning of your program, that program will replay the same set of values every
time it is run.  If you set the seed to something else, the program will sequence through a
different set of random values but will still behave deterministically.  Before you ship
your Monopoly program to the world, you will of course want to remove this statement,
but it can be a godsend when you’re getting things to work.

Clients and implementors
The method summary of the RandomGenerator class presented in Figure 6-1 is sufficient
for many applications but does not represent a complete description of the class.  For one
thing, the RandomGenerator class also includes a few specialized methods that novices
are unlikely to use but that may be important for more sophisticated users.  For another,
the descriptions given in Figure 6-1 are limited to the method header and a one-sentence
description.  If you needed more detail about one of these methods, you would have to
look elsewhere for that information.  In the early years of computing before the
development of modern object-oriented languages, the ultimate source for such additional
information would have been the code that implemented the RandomGenerator class.
Looking at that code, however, is not an attractive prospect.  If you are interested only in
using the facilities of a class, you are unlikely to care about how that class is actually
implemented.  The code brings that implementation to the fore where it can easily get in
the way of discovering what you really need to know.  There has to be a better way.

Before discussing the approach Java has adopted to separate the general documentation
from the details of the underlying implementation, it is useful to introduce two terms that
express the difference in perspective between programmers who implement a class and
those who use it.  Naturally enough, a programmer who implements a class is called an
implementor.  Because the word user refers to someone who runs a program rather than
someone who writes part of one, computer scientists have adopted the term client to refer
to a programmer who makes use of the facilities provided by an implementor.

Even though clients and implementors have different perspectives, both must
understand certain aspects of the design of a class.  As a client, you don’t need to know
the details of its operation, but you do need to know how to call the methods it contains.
As an implementor, you are not concerned with how other programmers may use those
methods, but you have to give your clients the information they need to call them.  For
each method in the class, the client must know the following:
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• The name of the method
• The arguments it requires and the types of those arguments
• The type of result it returns
• What the method does in abstract terms, presumably expressed in English or some

other human language rather than in code.

The first three items here are provided by the method header; the last is typically
provided by the comments that are included with the method definition.

The javadoc documentation system
In the Java world, clients are not expected to look at the code to understand how a
particular class behaves. What clients typically do instead is to consult the web-based
documentation for a class, which is produced automatically by a tool called javadoc. The
javadoc system, which is provided as part of the standard Java Development Kit from
Sun, reads through the code for a package and creates documentation for each of the
classes it contains.

Figure 6-4 shows the class overview and method summaries for the RandomGenerator
class.  Figure 6-5 then expands the method summaries to show more detail for each of the
methods.  As you can see from the figures, many of the words in the descriptions are
hyperlinks that take you to other pages or to specific entries on this page.  These
hyperlinks are produced automatically by the javadoc system and make it much easier to
negotiate the documentation.

Layered abstractions
If you look at the start of the javadoc description in Figure 6-4, you will discover that the
RandomGenerator class in the acm.util package is a subclass of the Random class in
java.util. As a subclass, RandomGenerator inherits the structure and methods of the
Random class.  The method summary in Figure 6-4 makes this inheritance explicit.
Although some methods, such as nextColor, are defined by the RandomGenerator class
itself, other methods, such as the simple version of nextBoolean that returns true 50
percent of the time, are inherited from Random.  For the most part, it doesn’t matter at all
which of these two classes actually implements a particular method.  As a client of
RandomGenerator, all that matters to you is that you have ready access to the complete
set of methods.

The situation illustrated by the Random and RandomGenerator classes is common in
object-oriented programming.  You will often encounter situations in which a class
provides some but not all of the functionality you need.  Defining a subclass allows you
to extend those capabilities because the new class inherits the methods of the old one.
The same process can then be repeated so that a class inherits behavior from an entire
chain of superclasses.  Because each new class builds on the framework provided by its
predecessors, such hierarchies are referred to as layered abstractions.

6.2 Defining your own classes
At least to a certain extent, the prospect of defining your own classes in Java should not
be a particularly daunting prospect.  You have, after all, been defining your own classes
ever since Chapter 2.  Every program is a class definition that extends one of the Program
subclasses, which means that you have seen enough examples to get a sense of the
structure of a class definition.
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FIGURE 6-4    Overview and summary for the RandomGenerator javadoc page
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FIGURE 6-5    Detail section for the RandomGenerator javadoc page
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Syntax for a public class definition:

public class name extends super {
   class body
}

where:
name is the name of the new class
super is the name of the superclass
class body is a sequence of definitions that

will typically include constructors,
methods, constants, and instance
variables

The basic structure of a class definition is shown
in the syntax box on the right.  In Java, every class
that is available for use by clients—as opposed to
being defined only within the context of a
package—must be marked with the keyword
public.  Each public class definition, moreover,
should be in a separate source file called
name.java where name is the name of the new
class.  The extends specification indicates the
superclass from which this class extends.  If the
extends specification is missing, the new class
extends the Object class in java.lang, which is
the root of Java object hierarchy.  The body of the
class is a sequence of definitions of various kinds.
In the classes you have seen so far, these
definitions have been limited to methods and
named constants.  More generally, classes will also contain constructors, which specify
how to create new instances of the class, and instance variables, which maintain the
state of the objects.  Constructors are defined the same way as methods, with two
exceptions: (1) the name of the constructor is always the same as that of the class, and (2)
a constructor does not specify a result type.  Instance variable declarations look much the
same as any other variable declarations except that they appear outside of any method
definition at the top level of a class.

Defining a Stoplight class
The role of constructors and instance variables can be illustrated most easily by example.
Suppose, for example, that you want to represent a simple stoplight as a Java class.
Stoplights have internal state, because the light can be in any of three states: green,
yellow, and red.  Stoplights also have behavior.  A stoplight that is green will at some
point turn yellow, then red, and eventually back to green, as illustrated by the following
diagram:

Stoplights, however, never change in the opposite order, so that it would be impossible,
for example, to have a stoplight turn from yellow to green.

A simple definition for a Stoplight class appears in Figure 6-6.  The elements that
make up the class are:

• The named constants GREEN, YELLOW, and RED. In order to determine what color is
showing on the stoplight, the class must specify the possible states for the stoplight.
The simplest strategy for doing so is to define named constants for the green, yellow,
and red states.  In the code in Figure 6-6, the values of these constants are set to the
corresponding constant values in the Color class introduced briefly in Chapter 5.  For
now, the only advantage to using these values—as opposed, for example, to the
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FIGURE 6-6    Implementation of a Stoplight class

import java.awt.*;

/**
 * This class represents a simple implementation of a stoplight.
 * The client can determine the current state of the stoplight by
 * calling stoplight.getState() and change it to the next color
 * in the sequence (GREEN -> YELLOW -> RED -> GREEN) by calling
 * stoplight.advance().
 */

public class Stoplight {

/** Constant indicating the color GREEN */
public static final Color GREEN = Color.GREEN;

/** Constant indicating the color YELLOW */
public static final Color YELLOW = Color.YELLOW;

/** Constant indicating the color RED */
public static final Color RED = Color.RED;

/**
 * Creates a new Stoplight object, which is initially GREEN.
 */

public Stoplight() {
state = GREEN;

}

/**
 * Returns the current state of the stoplight.
 * @return The state of the stoplight (GREEN, YELLOW, or RED)
 */

public Color getState() {
return state;

}

/**
 * Advances the stoplight to the next state.
 */

public void advance() {
if (state == RED) {

state = GREEN;
} else if (state == YELLOW) {

state = RED;
} else if (state == GREEN) {

state = YELLOW;
}

}

/* Private instance variable */

private Color state;

}
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characters 'G', 'Y', and 'R'—lies in the idea that using existing values reduces the
number of new definitions and therefore preserves a certain economy.  If, however,
you wanted to use the Stoplight class in a graphical application, using the standard
Java colors would offer the additional advantage of making it easier to draw the
stoplight elements in the correct color.

• A constructor to create a new Stoplight instance. The first entry in the file after the
named constants is the Stoplight constructor, which creates a new instance of the
class.  Constructors need not be specified unless a class needs to perform some
initialization on new objects.  In this case, the constructor sets the state of the stoplight
to GREEN as specified in the constructor description.

• A method to determine the state of the stoplight. The getState method allows the
client to determine the current state of the stoplight, which is always one of the
constants GREEN, YELLOW, or RED. Internally, the class stores the current state in the
instance variable state, but that variable is not directly accessible to the client for
reasons that are outlined later in this section.

• A method to advance the stoplight to the next state. The advance method changes the
state of the stoplight from GREEN to YELLOW, YELLOW to RED, or RED to GREEN, as
appropriate.

• A private instance variable to store the current state. The instance variable state
keeps track of the current color of the stoplight.  Because the variable is declared to be
private, only the methods in this class have direct access to it.  Clients can determine
the state of a stoplight indirectly by calling getState but cannot change the state other
than by calling advance.  Declaring this variable to be private therefore ensures that
the stoplight object can never change directly from GREEN to RED without going
through YELLOW in between.

If you look closely at the code in Figure 6-6, you may notice one other difference from
the examples in the earlier chapters.  Instead of beginning with /* as every comment has
from the beginning of the book, the comments in the Stoplight class definition begin
with  /**.  Because Java ignores everything between /* and */, the extra asterisk is
simply part of the text of the comment and has no significance for the compiler.  That
extra asterisk, however, indicates that this comment contains information for use by the
javadoc documentation tool described earlier in this chapter.  For now, these comments
include only a brief description of the declaration that follows.  As you will discover later
in this chapter, it is also possible to specify such additional information as details about
the parameters accepted by a particular method or the type of result such a method
returns.

The message-passing model
As discussed in Chapter 5, object-oriented programming uses the metaphor of sending
messages from one object to another.  In practice, message passing is implemented using
method calls, but it is often useful to think in terms of messages when designing an
object-oriented application.  In the stoplight example, the basic model is that the client
will create one or more instances of the Stoplight class and then manipulate those
instances by sending messages.

The simplest example consists of creating a single stoplight, which you can do by
invoking new Stoplight, as follows:

Stoplight myStoplight = new Stoplight();
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This declaration creates a new Stoplight instance and assigns it to myStoplight, which
you could diagram conceptually as follows:

thgilpotSym

As you will discover in Chapter 7, the myStoplight variable is not large enough to hold
all the information associated with the Stoplight object.  That variable instead keeps
track of an internal memory address that allows it to find the data associated with the
actual Stoplight instance.  At the more abstract level reflected in this diagram, that
internal memory address is called a reference.

To advance the stoplight to the next phase in the cycle, all you need to do is send the
“advance” message to myStoplight like this:

myStoplight.advance();

This operation corresponds to the following diagram, which shows the state of the
stoplight before the message takes effect:

Advance to the next state

thgilpotSym

To verify that the light indeed changed, you could then call

Color currentState = myStoplight.getState();

which you could diagram as follows:

Give me the current state

WOLLEY

thgilpotSym

Maintaining conceptual separation between the client and the implementation
In the discussion of the various components of the Stoplight class, the reason offered
for declaring state as private was that doing so ensured that the stoplight would
always advance in the correct order, from GREEN to YELLOW to RED and back to GREEN
again.  Although that argument is powerful in its own right, there are many other reasons
to make instance variables private to a class.  One of the strongest justifications for using
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private instance variables is that doing so gives the implementor greater freedom to
change the implementation of a class.  In the implementation shown in Figure 6-6, the
state of each Stoplight object is stored in the variable state, which keeps track of the
actual color.  The implementation of the Stoplight class becomes slightly shorter if you
change the underlying representation so that the state is maintained as an integer instead,
as shown in Figure 6-7.  The advance method then becomes simpler because it can use
addition to move to the next state.  The getState method, however, becomes more
complex because it has to translate the integer used internally into the Color object that
getState is defined to return.

The important point illustrated by the alternative implementation in Figure 6-7 is that
the client has no way to tell the difference between the two implementations. The
behavior of the two classes is exactly the same. If the implementor decided to replace one
implementation with the other, clients of the Stoplight class shouldn’t even notice. The
same would not be true if the client had access to the details of the internal representation.
Changing the underlying representation would almost certainly upset some group of
clients who had decided to rely on specific characteristics of the original one.

In fact, the advantages of making instance variables private are so compelling that all
instance variables in this book—and indeed all instance variables in the ACM libraries—
are marked using the keyword private.  Although public instance variables have
occasional uses (as do the protected and package private designations that are beyond the
scope of this book), you will develop better programming habits if you adhere to the
convention of using only private instance variables.

6.3 Defining a class to represent rational numbers
Although the stoplight example from the preceding section explores the basic mechanics
of classes, developing a solid understanding of the topic requires you to consider more
sophisticated example.  To get a sense of the importance of the specific example, imagine
yourself back in elementary school facing the problem of adding the following fractions:

1
2

1
3

+
1
6

+ 1=

Basic arithmetic—or even a little intuition—makes it clear that the mathematically exact
answer is 1, but that answer might be difficult to obtain using double-precision arithmetic
on a computer.  Consider, for example, the following run method:

public void run() {
double sum = 1.0 / 2.0 + 1.0 / 3.0 + 1.0 / 6.0;
println("1.0 / 2.0 + 1.0 / 3.0 + 1.0 / 6.0 = " + sum);

}

If you execute a Java program containing this run method, you get the following output:

RoundoffExample
1.0 / 2.0 + 1.0 / 3.0 + 1.0 / 6.0 = 0.9999999999999999

Although the result of 0.9999999999999999 is certainly close enough for practical
purposes, your elementary school teacher would surely suspect the use of impermissible
calculating devices if you suggested this answer in class.
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FIGURE 6-7    Revised implementation of Stoplight using integers to store the state

import java.awt.*;

/**
 * This class represents a simple implementation of a stoplight.
 * The client can determine the current state of the stoplight by
 * calling stoplight.getState() and change it to the next color
 * in the sequence (GREEN -> YELLOW -> RED -> GREEN) by calling
 * stoplight.advance().
 */

public class Stoplight {

/** Constant indicating the color GREEN */
public static final Color GREEN = Color.GREEN;

/** Constant indicating the color YELLOW */
public static final Color YELLOW = Color.YELLOW;

/** Constant indicating the color RED */
public static final Color RED = Color.RED;

/**
 * Creates a new Stoplight object, which is initially GREEN.
 */

public Stoplight() {
state = 0;

}

/**
 * Returns the current state of the stoplight.
 * @return The state of the stoplight (GREEN, YELLOW, or RED)
 */

public Color getState() {
switch (state) {
  case 0:  return GREEN;
  case 1:  return YELLOW;
  case 2:  return RED;
  default: return null;  /* Can't occur but required by Java */
}

}

/**
 * Advances the stoplight to the next state.
 */

public void advance() {
state = (state + 1) % 3;

}

/* Private instance variable */

private int state;

}
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The problem is simply that the memory cells used to store numbers inside a computer
have a limited storage capacity, which in turn restricts the precision they can offer.
Within the limits of double-precision arithmetic, the sum of one-half plus one-third plus
one-sixth is 0.9999999999999999, but such an answer is not mathematically satisfying.
To get an exact answer you need to move out of the realm of double-precision numbers
and into the domain of rational numbers, which are those values that can be represented
as the quotient of two integers.  Rational numbers are well understood as a mathematical
concept and have their own arithmetic rules, which are summarized in Figure 6-8.
Unfortunately, rational numbers are not understood by Java.  If you wanted to use
rational arithmetic in Java, you would have to define a new class to represent them.

FIGURE 6-8 Rules for rational arithmetic
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If you were able to define a Rational class, you could use it in Java programs to
perform mathematically precise calculations.  For example, the following run method
would perform the fraction calculation used in the earlier examples:

public void run() {
Rational a = new Rational(1, 2);
Rational b = new Rational(1, 3);
Rational c = new Rational(1, 6);
Rational sum = a.add(b).add(c);
println(a + " + " + b + " + " + c + " = " + sum);

}

The code declares three variables—a, b, and c—and initializes them to the rational values
corresponding to the fractions in the calculation.  The next line then declares the variable
sum and initializes it to the sum of a, b, and c.  The only possible source of confusion in
this line is that addition for the Rational class must be expressed using the add method
because the + operator is defined only for the primitive types.  The last line then prints
out the three values and their sum.  The output of this program—assuming that the
Rational class operates as it should—would look like this:

TestRational
1/2 + 1/3 + 1/6 = 1

Figure 6-9 shows a scaled-down implementation of a Rational class that implements
the four basic arithmetic operations: addition, subtraction, multiplication, and division.
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FIGURE 6-9    Definition of a class to represent rational numbers

import acm.util.*;

/**
 * The Rational class is used to represent rational numbers, which
 * are defined to be the quotient of two integers.
 */
public class Rational {

/**
 * Creates a new Rational initialized to zero.
 */

public Rational() {
this(0);

}

/**
 * Creates a new Rational from the integer argument.
 * @param n The initial value
 */

public Rational(int n) {
this(n, 1);

}

/**
 * Creates a new Rational with the value x / y.
 * @param x The numerator of the rational number
 * @param y The denominator of the rational number
 */

public Rational(int x, int y) {
if (y == 0) throw new ErrorException("Division by 0");
int g = gcd(Math.abs(x), Math.abs(y));
num = x / g;
den = Math.abs(y) / g;
if (y < 0) num = -num;

}

/**
 * Adds the rational number r to this one and returns the sum.
 * @param r The rational number to be added
 * @return The sum of the current number and r
 */

public Rational add(Rational r) {
return new Rational(this.num * r.den + r.num * this.den,
                    this.den * r.den);

}

/**
 * Subtracts the rational number r from this one.
 * @param r The rational number to be subtracted
 * @return The result of subtracting r from the current number
 */

public Rational subtract(Rational r) {
return new Rational(this.num * r.den - r.num * this.den,
                    this.den * r.den);

}
continued ☞
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FIGURE 6-9    Definition of a class to represent rational numbers (continued)

/**
 * Multiplies this number by the rational number r.
 * @param r The rational number used as a multiplier
 * @return The result of multiplying the current number by r
 */

public Rational multiply(Rational r) {
return new Rational(this.num * r.num, this.den * r.den);

}

/**
 * Divides this number by the rational number r.
 * @param r The rational number used as a divisor
 * @return The result of dividing the current number by r
 */

public Rational divide(Rational r) {
return new Rational(this.num * r.den, this.den * r.num);

}

/**
 * Creates a string representation of this rational number.
 * @return The string representation of this rational number
 */

public String toString() {
if (den == 1) {

return "" + num;
} else {

return num + "/" + den;
}

}

/**
 * Calculates the greatest common divisor using Euclid's algorithm.
 * @param x First integer
 * @param y Second integer
 * @return The greatest common divisor of x and y
 */

private int gcd(int x, int y) {
int r = x % y;
while (r != 0) {

x = y;
y = r;
r = x % y;

}
return y;

}

/* Private instance variables */

private int num;  /* The numerator of this Rational   */
private int den;  /* The denominator of this Rational */

}



Objects and Classes 155

Much of the class definition is straightforward, but the code does illustrate several new
features, as follows:

• Multiple constructors.  The Rational class in Figure 6-9 defines three different
constructors.  Calling new Rational() creates a new rational number whose value is
0, which is represented internally as the fraction 0 / 1.  Calling new Rational(n)
creates a new rational number equal to the integer n, which is simply the fraction n / 1.
Finally, calling new Rational(x, y) creates a new rational number equal to the
fraction x / y.  Java can tell which constructor to call by looking at the arguments
provided by the client.  Constructors and methods that have multiple argument forms
under the same name are said to be overloaded.

• The keyword this.  Within any class, Java defines the keyword this to mean the
current object.  This Rational class uses the keyword this in two contexts.  The first
example is in the first two versions of the constructor, which use this to invoke a
more general version of the constructor. The second example comes up in the methods
that perform arithmetic, where this is used to make it emphasize that the num and den
instance variables are the ones in the current rational number.  Consider, for example,
the definition of the multiply method, which looks like this:

public Rational multiply(Rational r) {
return new Rational(this.num * r.num, this.den * r.den);

}

This method generates a new Rational value whose numerator is the product of this
object’s numerator and r’s numerator and whose denominator is likewise the product
of the denominators of these same two objects.

• The toString method.  The Rational class includes a method called toString that
returns a string showing how this object should be displayed.  The toString method is
integrated into the Java language and libraries and provides a standard approach for
converting values to their string representation.  By overriding the definition in this
class with a toString method appropriate to rational numbers, statements like

println(a + " + " + b + " + " + c + " = " + sum);

in the test program can display the rational values in a reasonable way.

• Public and private methods together in one class.  The public methods in the
Rational class are those that clients of the class will need to call.  These include the
constructors, the methods that implement the arithmetic operators, and the toString
method described in the preceding point.  This class, however, also includes a private
method used in its own implementation that does not need to be exported to clients.
That method is the gcd function from Chapter 5 that implements Euclid’s algorithm
and is used here to reduce the fraction to lowest terms.  As a general rule, methods
should be marked as private whenever you can.

• Error exceptions.  Because it is illegal for the denominator of a rational number to be
zero, the constructor checks for this case and signals an error condition by invoking

throw new ErrorException("Division by zero");

The effect of this statement is to interrupt the execution of the program and report that
an exceptional condition has occurred.  This book uses the ErrorException class
defined in the acm.util package to report error conditions.  A more complete
discussion of exceptions occurs toward the end of the book.
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• Parameter and result tags.  The comments before the constructors and methods in the
Rational class include @param and @result tags that provide information to the
javadoc system about the parameters and result of the method, respectively.  It is good
to get in the habit of including these tags as you write your code, both because doing
so makes it easier to generate the automatic documentation and because these markers
provide useful information to readers of your code.

The Rational class offers even more evidence in support of keeping instance
variables private.  While it might be useful to some clients to be able to obtain the
numerator and denominator of a rational number r by selecting the r.num and r.den
variables within the object, making these variables public compromises the integrity of
the class.  The Rational class makes sure that the following two properties are
maintained:

1. The denominator of the rational number is always positive. If the denominator is zero,
the constructor reports a division-by-zero error. If the denominator is negative, the
constructor transfers the sign to the numerator by negating that value.

2. The fraction represented by the numerator and denominator is always reduced to
lowest terms by dividing both parts of the fraction by their greatest common divisor.
This design decision ensures that rational numbers will always be displayed in their
simplest form.

Properties that are guaranteed to be true throughout a body of code are called invariants.
Maintaining these invariants is only possible if the class can guard against clients that
accidentally or maliciously undermine them.  If the instance variables were public, any
client could violate the first invariant of rational number r by setting r.den to 0 or violate
the second invariant in any of a number of ways.

The implementation of Rational class in Figure 6-9 actually goes even further to
preserve the invariants of the class.  Declaring the instance variables as private ensures
that clients cannot assign new values to them in an assignment statement.  If you look
carefully at the methods in the Rational class, you will discover that none of them ever
assign values to these variables either.  Once instance variables have been assigned values
by the constructor, those values can never be changed during the lifetime of the object.
Classes whose internal state cannot be changed by the client, even through method calls,
are said to be immutable.  Immutable types have several extremely useful properties and
will come up quite often in subsequent chapters.

Summary
The purpose of this chapter is to introduce the ideas of classes and objects at a holistic,
conceptual level. In Java, a class represents a template for a set of values that have a
common structure and behavior; an object is a particular example of that class. Thus,
given a single class definition, there can be arbitrarily many instances of that class.

In addition to offering a more complete definition of objects and classes, the important
points introduced in this chapter include:

• For the most part, computers operate deterministically in the sense that the output
produced by a program is determined by its inputs, with the same inputs always
generating the same results. For applications such as computer games and simulations,
however, it is important to make programs operate nondeterministically by introducing
randomness into their behavior. Because computing hardware typically does not
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support true randomness, most programming environments simulate random behavior
by providing some method to produce pseudorandom numbers.

• The acm.util package includes a RandomGenerator class that offers several methods
for simulating random events. The methods exported by the RandomGenerator class
are listed in Figure 6-1.

• The RandomGenerator class defined in acm.util is actually a subclass of the Random
class in java.util and therefore provides the full set of capabilities offered by the
standard library class along with a few extensions. Because the new extensions of
RandomGenerator are superimposed on top of the underlying capabilities of Random,
these classes represent what is called a layered abstraction.

• Defining new classes in Java makes it possible for one programmer to provide useful
services to other programmers who need to make use of those capabilities. The
programmer who writes the code for the class is called the implementor. Programmers
who use that class as a resource in programs of their own are called clients.

• Clients and implementors have different perspectives about a class. The client needs to
know how to use the capabilities provided by a class but is generally unconcerned
about the details of how those features actually work. The implementor, by contrast,
must understand those details. Moreover, to ensure that the client can work at an
appropriately high level of abstraction, the implementor of a class should try to hide as
much of the underlying detail as possible.

• The usual strategy for giving clients the information they need about a Java class is to
use the javadoc documentation system. The javadoc applications reads through the
code for a class and automatically generates web pages that document the methods in
that class.

• You can define your own classes by enclosing the definitions for that class in a block
identified by the keyword class. Most class definitions specify the name of a specific
superclass that the new class extends; in the absence of a specific superclass, the new
class extends the Object class in java.lang, which is the root of Java hierarchy.

• Class definitions typically contain constructors, methods, named constants, and
instance variables. Constructors specify how to create new objects of that class,
methods define the behavior of that class, named constants provide a mechanism
(already discussed in Chapter 3) to assign more readable names to constant values, and
instance variables allow each object to maintain its internal state. Collectively, these
definitions are called entries.

• Each entry in a class can be marked using the keyword public or the keyword
private to indicate who has access to that entry. Constructors, methods, and constants
should be public only if a client would need to use them. In this book, all instance
variables are marked as private to ensure that the details of the internal state remain
hidden from clients.

• A class can contain several constructors and methods with the same name as long as
they have different argument structures that allows the compiler to determine which
version is required. If more than one method definition exists for a particular name,
that method name is said to be overloaded.

• Java defines the keyword this to mean the current object. You can use this keyword
in expressions to refer to instance variables within the current object if there might
otherwise be ambiguity. You can also use the keyword this in a constructor to invoke
one of the other constructors for this object.

• Classes that do not allow clients to change any properties of an object once it has been
created are called immutable.  The Rational class in section 6-3 is an example of an
immutable class, as are several of the classes introduced in later chapters.



158 The Art and Science of Java

Review questions
1. Why might it be useful for a program to behave nondeterministically?

2. What is meant by the term pseudorandom number?

3. This chapter encourages you to define an instance variable called rgen to hold the
RandomGenerator object that generates each random value. What is the exact syntax
of this line?

4. How would you use the methods in the RandomGenerator class to generate each of
the following values:

a) A random digit between 0 and 9
b) A double between -1.0 and +1.0
c) A boolean value that is true one-third of the time
d) A random color value suitable for setting the color of a graphical object

5. Assuming that d1 and d2 have been declared as variables of type int, can you use
the multiple assignment statement

d1 = d2 = rgen.nextInt(1, 6);

to simulate the process of rolling two dice?

6. In what circumstances is it useful to call the setSeed method?

7. Describe the differences in perspective between clients and implementors.

8. On what aspects of the design of a class do clients and implementors need to agree?

9. What is the role of the javadoc documentation system?

10. What is a layered abstraction?

11. Most class definitions include the keyword extends to specify the superclass.  What
happens if you omit this keyword?

12. What are the most common types of entries in a class definition?

13. How does the implementor of the Stoplight class described in this chapter ensure
that the client cannot change the light from green to red without going through
yellow on the way?

14. True or false: All instance variables in this book and in the ACM library packages
are defined using the keyword private.

15. What is meant by the term overloading?

16. In Java, what does the keyword this signify? In what two contexts is it used in this
chapter?

17. What property makes a class immutable?
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Programming exercises
1. Write a program that displays the name of a card randomly chosen from a complete

deck of 52 playing cards.  Each card consists of a rank (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10,
Jack, Queen, King) and a suit (Clubs, Diamonds, Hearts, Spades).  Your program
should display the complete name of the card, as shown in the following sample run:

RandomCard
This program displays a randomly chosen card.
Queen of Spades

2. Heads. . . .
Heads. . . .
Heads. . . .
A weaker man might be moved to re-examine his faith, if in nothing
else at least in the law of probability.

—Tom Stoppard, Rosencrantz and Guildenstern are Dead, 1967

Write a program that simulates flipping a coin repeatedly and continues until three
consecutive heads are tossed.  At that point, your program should display the total
number of coin flips that were made.  The following is one possible sample run of
the program:

ConsecutiveHeads
Heads
Tails
Heads
Heads
Tails
Tails
Tails
Tails
Heads
Tails
Tails
Heads
Heads
Heads
It took 14 flips to get 3 consecutive heads.

3. Although it is often easiest to think of random numbers in the context of games of
chance, they have other, more practical uses in computer science and mathematics.
For example, you can use random numbers to generate a rough approximation of the
constant π by writing a simple program that simulates a dart board.  Imagine that
you have a dart board hanging on your wall.  It consists of a circle painted on a
square backdrop, as in the following diagram:
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If you throw darts at this board in a random fashion, some will fall inside the circle,
but some will fall outside.  If the tosses are truly random, the ratio of the number of
darts that land inside the circle to the total number of darts hitting the square should
be roughly equal to the ratio between the two areas.  The ratio of the areas is
independent of the actual size of the dart board, as illustrated by the following
formula:

darts falling inside the circle
darts falling inside the square   ≅   

area of the circle
area of the square   =    

πr 2

4r 2    =    π4

To simulate this process in a program, imagine that the dart board is drawn in the
standard Cartesian coordinate plane you learned about in high school.  The process
of throwing a dart randomly at the square can be modeled by generating two random
numbers, x and y, each of which lies between –1 and 1.  This (x, y) point always lies
somewhere inside the square.  The point (x, y) lies inside the circle if

√⎯⎯⎯⎯x2 + y2  <  1

This condition, however, can be simplified considerably by squaring each side of the
inequality, which gives the following more efficient test:

x2 + y2  <  1

If you perform this simulation many times and compute the fraction of darts that fall
within the circle, the result will be somewhere in the neighborhood of π/4.

Write a program that simulates throwing 10,000 darts and then uses the simulation
technique described in this exercise to generate and display an approximate value of
π.  Don’t worry if your answer is correct only in the first few digits.  The strategy
used in this problem is not particularly accurate, even though it occasionally proves
useful as a technique for making rough approximations.  In mathematics, this
technique is called Monte Carlo integration, after the gambling center that is the
capital city of Monaco.

4. I shall never believe that God plays dice with the world.

—Albert Einstein, 1947

Despite Einstein’s metaphysical objections, the current models of physics, and
particularly of quantum theory, are based on the idea that nature does indeed involve
random processes.  A radioactive atom, for example, does not decay for any specific
reason that we mortals understand.  Instead, that atom has a random probability of
decaying within a period of time.  Sometimes it does, sometimes it doesn’t, and there
is no way to know for sure.
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Because physicists consider radioactive decay a random process, it is not surprising
that random numbers can be used to simulate that process.  Suppose you start with a
collection of atoms, each of which has a certain probability of decaying in any unit
of time.  You can then approximate the decay process by taking each atom in turn
and deciding randomly whether it decays, considering the probability.

Write a program that simulates the decay of a sample that contains 10,000 atoms of
radioactive material, where each atom has a 50 percent chance of decaying in a year.
The output of your program should show the number of atoms remaining at the end
of each year, which might look something like this:

RadioactiveDecay
There are 10000 atoms initially
There are 4969 atoms at the end of year 1
There are 2464 atoms at the end of year 2
There are 1207 atoms at the end of year 3
There are 627 atoms at the end of year 4
There are 311 atoms at the end of year 5
There are 166 atoms at the end of year 6
There are 89 atoms at the end of year 7
There are 40 atoms at the end of year 8
There are 21 atoms at the end of year 9
There are 9 atoms at the end of year 10
There are 5 atoms at the end of year 11
There are 2 atoms at the end of year 12
There are 0 atoms at the end of year 13

As the numbers indicate, roughly half the atoms in the sample decay each year.  In
physics, the conventional way to express this observation is to say that the sample
has a half-life of one year.

5. As computers become more common in schools, it is important to find ways to use
the machines to aid in the teaching process.  This need has led to the development of
an educational software industry that has produced many programs that help teach
concepts to children.

As an example of an educational application, write a program that poses a series of
simple arithmetic problems for a student to answer, as illustrated by the following
sample run:

MathQuiz
Welcome to Math Quiz
What is 14 + 2? 16
That's the answer!
What is 17 - 15? 17
That's incorrect - try a different answer: 15
That's incorrect - try a different answer: 3
No, the answer is 2.
What is 20 - 16? 4
That's the answer!
What is 9 + 4? 11
That's incorrect - try a different answer: 13
That's the answer!
What is 11 - 1? 10
That's the answer!
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Your program should meet these requirements:

• It should ask a series of five questions.  As with any such limit, the number of
questions should be coded as a named constant so that it can easily be changed.

• Each question should consist of a single addition or subtraction problem involving
just two numbers, such as “What is 2 + 3?” or “What is 11 – 7?”.  The type of
problem—addition or subtraction—should be chosen randomly for each question.

• To make sure the problems are appropriate for students in the first or second
grade, none of the numbers involved, including the answer, should be less than 0
or greater than 20.  This restriction means that your program should never ask
questions like “What is 11 + 13?” or “What is 4 – 7?” because the answers are
outside the legal range.  Within these constraints, your program should choose the
numbers randomly.

• The program should give the student three chances to answer each question.  If
the student gives the correct answer, your program should indicate that fact in
some properly congratulatory way and go on to the next question.  If the student
does not get the answer in three tries, the program should give the answer and go
on to another problem.

6. Even though the program in exercise 5 was designed to offer encouragement when
the student responds correctly, the monotonous repetition of a sentence like “That’s
the answer!” has the opposite effect after a while.  To add variety to the interaction,
modify your solution to exercise 5 so that it randomly chooses among four or five
different messages when the student gets the right answer, as illustrated in this
sample run:

MathQuiz
Welcome to Math Quiz
What is 14 + 2? 16
Correct!
What is 17 - 15? 2
You got it!
What is 20 - 16? 4
You got it!
What is 9 + 4? 13
Correct!
What is 11 - 1? 10
That's the answer!

7. Implement a new class called Card that includes the following entries:

• Named constants for the four suits (CLUBS, DIAMONDS, HEARTS, SPADES) and the
four ranks that are traditionally represented in words (ACE, JACK, QUEEN, KING).
The values of the rank constants should be 1, 11, 12, and 13, respectively.

• A constructor that takes a rank and a suit and returns a Card with those values.
• Accessor methods getRank and getSuit to retrieve the rank and suit components

of a card.
• An implementation of the toString method that returns the complete name of the

card as in exercise 1. Remember that you can use the + operator to connect the
different parts of the string together, as shown in the toString implementation
for the Rational class in Figure 6-9.
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8. Write the definition for a new class named Employee that stores the following data
for a single employee:

• The name of the employee (a String)
• The name of the employee’s supervisor (also a String)
• The employee’s annual salary (a double)

As with the other classes defined in this book, you should make sure that the instance
variables containing these values are private and instead provide get and set
methods to retrieve or change any of the values. For example, if the variable emp is
an employee, you should be able to retrieve the name of the employee by writing

emp.getName()

or double the employee’s salary by writing

emp.setSalary(emp.getSalary() * 2);

You should also make sure that there is a constructor method that allows clients to
initialize all these fields when a new Employee object is created, as in

new Employee("Bob Cratchit", "Ebenezer Scrooge", 25.00)

9. The implementation of the Rational class given in this chapter is not particularly
useful in practice because it doesn’t allow the numerator and denominator to exceed
the size of an integer, even though larger values tend to occur quite often in rational
arithmetic. One way to avoid the problem is to use the BigInteger class in the
java.math package, which defines an extended type of integer that can take on
arbitrarily large values. Rewrite the implementation of Rational so that the private
instance variables num and den are declared as BigIntegers instead of ints, but
without changing the argument and result types of any of the public methods. To
learn how BigInteger works, consult the javadoc page.



 



Chapter 7
The Object Memory Model

A teacher who can arouse a feeling for one single good
action, for one single good poem, accomplishes more than
he who fills our memory with rows on rows of natural
objects, classified with name and form.

— Goethe, Elective Affinities, 1808

Jay Forrester

After growing up on a Midwestern cattle ranch without electricity, Jay Forrester studied
electrical engineering at the University of Nebraska and MIT, where he became director
of the Navy’s Project Whirlwind in 1944. Along with the ENIAC system at the Moore
School in Philadelphia and the MARK I system at Harvard, Whirlwind played a central
role in the early history of computers as they evolved from earlier analog designs to the
digital systems that are standard in the industry today. Forrester’s most significant
contribution to computer hardware design was the development of core memory, in
which small ferrite disks could be magnetized in one direction or the other to represent a
binary 0 or 1. Magnetic core memory revolutionized hardware designs and was used in
essentially all computers until it was replaced by integrated-circuit memory in the late
1970s. In 1956, Forrester joined the faculty of the Sloan School of Management, where
he founded the new discipline of system dynamics, which attempts to focus holistically
on large-scale systems and their interactions rather than looking only at their individual
parts.
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One of the enormous advantages of high-level languages like Java is that they free you
from having to worry about the details of low-level representation inside the hardware of
the machine. Managing the details of the internal representation is typically time-
consuming, tedious, and susceptible to error; having the language keep track of these
details can therefore increase programmer productivity. The problem, however, is that it
is much more difficult to understand the programming process without having some idea
of how that internal representation works. The structures that programmers have
historically used—and that continue to form the foundation of languages like Java—
reflect the capabilities of the hardware on which programs run. Knowing something about
those low-level machine capabilities provides a conceptual framework for understanding
programming at a higher, more abstract level.

Developing an intuitive feel for how data representation works inside the machine is
particularly important when you begin to work with objects instead of primitive data. In
Java, passing an object as an argument to a method seems very different from the
corresponding process of using primitive types as arguments. If you understand how
objects are represented inside the computer, however, the reasons for that apparent
difference become much clearer and in fact turn out to be far more consistent than it
might initially appear.

7.1 The structure of memory
In Chapter 1, you had the opportunity to learn a little bit about the internal structure of a
computer, but only at a very abstract level. Figure 1-1 identified the major hardware
components of a typical computer system including the CPU, memory, secondary
storage, and I/O devices. To develop a mental model of how objects are stored inside a
computer, it is important to look at the structure of the memory system in more detail.

Bits, bytes, and words
At the most primitive level, all data values inside the computer are stored in the form of
fundamental units of information called bits. A bit records the simplest possible value,
which can be in one of two possible states. If you think of the circuitry inside the machine
as if it were a tiny light switch, you might label those states as on and off. Because the
word bit comes originally from a contraction of binary digit, it is more common to label
those states using the values 0 and 1, which are the two digits used in the binary number
system on which computer arithmetic is based.

Since a single bit holds so little information, the individual bits do not provide a
convenient mechanism for storing data. To make it easier to store such traditional types
of information as numbers or characters, bits are collected together into larger units that
are then treated as integral units of storage. The smallest combined unit is called a byte
and is composed of eight individual bits. On most machines, bytes are assembled into
larger structures called words—defined to be four bytes in Java—that are large enough to
hold an integer value.

The amount of memory available to a particular computer varies over a wide range.
Early machines supported memories whose size was measured in kilobytes (KB); today’s
machines have memory sizes measured in megabytes (MB) or even gigabytes (G172es
kilo, mega, and giga stand for one thousand, one million, and one billion, respectively. In
the world of computers, however, those base-10 values do not fit well into the internal
structure of the machine. By tradition, therefore, these prefixes are taken to represent the
power of two closest to their traditional interpretations. Thus, in programming, the
prefixes kilo, mega, and giga have the following meanings:
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kilo (K) = 210 = 1,024
mega (M) = 220 = 1,048,576
giga (G) = 230 = 1,037,741,824

A 64KB computer from the early 1970s would have had 64 x 1024 or 65,536 bytes of
memory. Similarly, a 512MB machine would have 512 x 1,048,576 or 536,870,912 bytes
of memory.

Binary and hexadecimal representations
Each of the bytes inside a machine holds data whose meaning depends on how the system
interprets the individual bits. Depending on the hardware instructions that are used to
manipulate it, a particular sequence of bits can represent an integer, a character, or a
floating-point value, each of which requires some kind of encoding scheme. The easiest
encoding scheme to describe is that for integers, in which the bits are used to represent an
integer represented in binary notation, in which the only legal values are 0 and 1, just as
is true for the underlying bits. Binary notation is similar in structure to our more familiar
decimal notation, but uses 2 rather than 10 as its base. The contribution that a binary digit
makes to the entire number depends on its position within the number as a whole. The
rightmost digit represents the units field, and each of the other positions counts for twice
as much as the digit to its right.

Consider, for example, the eight-bit byte containing the following binary digits:

0 0 1 0 1 0 1 0

That sequence of bits represents the number forty-two, which you can verify by
calculating the contribution for each of the individual bits, as follows:

0 0 1 0 1 0 1 0
=1 0
=2 2
=4 0
=8 8
=16 0
=32 32
=64 0
=128 0

42

This diagram illustrates how to map an integer into bits using binary notation, but is
not a particularly convenient representation. Binary numbers are cumbersome, mostly
because they tend to be so long. Decimal representations are intuitive and familiar, but
make it difficult to understand how the number translates into bits. For those applications
in which it is useful to understand how a number translates into its binary representation
without having to work with binary numbers that stretch all the way across the page,
computer scientists tend to use hexadecimal (base 16) representation instead.

In hexadecimal notation, there are sixteen digits, representing values from 0 to 15. The
decimal digits 0 through 9 are perfectly adequate for the first ten digits, but classical
arithmetic does not define the extra symbols you need to represent the remaining six
digits. Computer science traditionally uses the letters A through F for this purpose, as
follows:
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Hex digit Value
A 10
B 11
C 12
D 13
E 14
F 15

What makes hexadecimal notation so attractive is that you can quickly move back and
forth between hexadecimal values and the underlying binary representation. All you need
to do is combine the bits into groups of four. For example, the number forty-two can be
converted from binary to hexadecimal like this:

0 0 1 0 1 0 1 0

2 A

The first four bits represent the number 2, and the next four represent the number 10.
Converting each of these to the corresponding hexadecimal digit gives 2A as the base-16
form. You can then verify that this number still has the value 42 by adding up the
independent digit values, as follows:

2 A

=16 32
=1 10

42

2
10

For the most part, the numeric representations that appear in this book use decimal
notation for readability. If the base is not clear from the context, the text follows the usual
strategy of using a subscript to denote the base. Thus, the three most common
representations for the number forty-two—decimal, binary, and hexadecimal—look like
this:

4210  =  1010102  =  2A16

The key point is that the number itself is always the same; the numeric base affects only
the representation. Forty-two has a real-world interpretation that is independent of the
base. That real-world interpretation is perhaps easiest to see in the representation an
elementary school student might use, which is after all just another way of writing it
down:

The number of line segments in this representation is forty-two. The fact that a number is
written in binary, decimal, or any other base is a property of the representation and not of
the number itself.
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...

...

Memory

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
100A
100B
100C
100D
100E
100F

FFF0
FFF1
FFF2
FFF3
FFF4
FFF5
FFF6
FFF7
FFF8
FFF9
FFFA
FFFB
FFFC
FFFD
FFFE
FFFF

Memory addresses
Within the memory system of a typical computer, every byte is identified by a
numeric address. The first byte in the computer is numbered 0, the second is
numbered 1, and so on, up to the number of bytes in the machine. For example,
you can diagram the memory bytes of a tiny 64KB computer as shown along the
right margin of this page. The numbering scheme, however, may seem
unfamiliar at first, but only because the addresses are written using hexadecimal
rather than decimal values. Hexadecimal notation was introduced in the
preceding section, along with techniques for converting a hexadecimal value to
its binary or decimal equivalent. The important thing to remember is that the
addresses are simply numbers and that the base is relevant only to how those
numbers are written down. The final address in the diagram is the address FFFF,
which corresponds to the decimal value 65535. It would have been easy to write
the addresses in decimal notation, which would have made them a little easier to
read as numbers. This text, however, uses hexadecimal for the following
reasons:

1. Address numbers are conventionally written in hexadecimal, and Java
debuggers and runtime environments will generally display addresses in this
form.

2. Writing address numbers in their hexadecimal form and using a sans-serif
font makes it easier to recognize that a particular number represents an
address rather than some unidentified integer.

3. Using hexadecimal values makes it easier to see why particular limits are
chosen. When you write it as a decimal value, the number 65535 seems like
a rather random value. If you express that same number in hexadecimal as
FFFF, it becomes easier to recognize that this value is the largest value that
can be represented in 16 bits.

4. Making the numbers seem less familiar may discourage you from thinking
about them arithmetically. Java does a wonderful job of hiding the
underlying address calculations from the programmer. What is important to
understand is that addresses are represented as numbers. It is completely
unimportant—and indeed usually impossible to determine—what those
numbers are.

In earlier days, byte values were useful in and of themselves because
characters could be represented using a single byte. Today, bytes are too small to
represent the large character sets found in a modern computer. The Unicode
representation discussed in Chapter 8, for example, requires two bytes for each
character. A value of type char therefore takes up two of these byte-sized units
in memory, as illustrated by the shaded bytes in the following diagram:

FFF0
FFF1

Data values requiring multiple bytes are identified by the address of the first
byte, so that the character represented by the shaded area is considered to be at
address FFF0. As a second example, values of type double require eight bytes of
memory, so that a variable of type double stored at address 1000 would take up
all the bytes between addresses 1000 and 1007, inclusive:
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memory for

pool of memory

program code
and static data

available for objects
(the “heap”)

memory for
local variables
(the “stack”)

the heap grows
toward higher addresses

the stack grows
toward lower addresses

Memory regions

1000
1001
1002
1003
1004
1005
1006
1007

Although addresses in memory are usually specified in terms of bytes, the fact that
bytes are too small to be of much use has led hardware designers to group consecutive
bytes  into larger units. Typical architectures today include instructions for manipulating
memory units in the following sizes: one byte (8 bits), two bytes (16 bits), four bytes (32
bits), and eight bytes (64 bits). These units correspond to the built-in Java types byte,
short, int, and long. The four-byte unit used to represent an integer is conventionally
called a word. Because words tend to be much more useful, it is common to draw
memory diagrams in units of words rather than the individual bytes. The double stored in
the bytes numbered between 1000 and 1007 could therefore be diagrammed more
compactly in the following word-based form:

1000
1004

7.2 Allocation of memory to variables
Whenever you declare a variable in a program, the compiler must reserve
memory space to hold its value. The process of reserving memory space
is called allocation. In Java, memory is allocated from one of three
different sources depending on how it is declared, each of which is
illustrated in the diagram to the right. The three allocation strategies are
as follows:

1. Static variables and constants. Any variable whose declaration
includes the static keyword applies to the class as a whole and not
to an individual object. These variables are typically allocated at the
beginning of the memory space allocated to the program alongside
the memory cells used to store the instructions for the program. In the
examples included in this book, the only static declarations are those
for named constants.

2. Dynamically allocated objects. All objects created using the new
keyword are assigned storage from a region of memory called the
heap. Although there is no explicit rule that enforces this convention,
most implementations of the Java Virtual Machine assign heap
memory beginning immediately after the fixed region assigned to the
static declarations in a class, as illustrated in the diagram. The
advantage of doing so is that this allocation strategy ensures that the
program can take advantage of as much memory as possible. Because
the stack and the heap start at opposite ends of memory and grow
toward each other, neither will run out until all available space is
exhausted.

3. Local variables. All variables that are declared as local variables
inside a method are allocated from a region of memory called the
stack, which is typically implemented at least partially in hardware.
In modern architectures, the stack begins at the highest legal address
in memory and grows toward lower addresses as new methods are
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called. Calling a method increases the size of the stack by the amount needed to hold
the local variables that method declares. Collectively, the memory assigned to the
local variables for a method are called a stack frame. When a method returns, its
stack frame is discarded, restoring the frame of its caller.

It is important to recognize that declaring an object variable is likely to reserve
memory in both the stack and the heap. The local variable used to store the object appears
on the stack just like any local variable. That variable, however, holds only the memory
address of the object for which the actual data is stored in the heap. As noted in Chapter
6, that address is called a reference.

At this point, it is useful to consider a simple example to illustrate the relationship
between heap storage and stack storage. Suppose that you have decided to use the
Rational class introduced in section 6.3, which allows for a precise representation of
fraction numbers. Internally, each Rational object declares two instance variables, num
and den, to store the numerator and denominator of the fraction, respectively. The
important question is then what happens inside the computer when you execute a
declaration such as the following:

Rational half = new Rational(1, 2);

The variable half is a local variable and therefore appears in the stack frame for its
caller. That variable, however, contains only enough storage to hold a memory address,
which is typically four bytes on a machine with 32-bit addressing, although the growing
number of 64-bit architectures means that the memory required will presumably grow to
eight bytes over time. In any event, the amount of memory that appears on the stack is
small. No matter how large the object itself turns out to be, a reference to that object can
be stored in a single word.

The complete picture of what happens during the execution of this Java statement
requires looking at what happens in both the heap and the stack. The evaluation of the
initial-value expression on the right-hand side of the equal sign creates a new object in
the heap. The heap storage for that object contains space for the integer values num and
den along with some additional information common to all objects, which is used by the
Java runtime system to manage objects in memory. From your perspective as a
programmer, the details of that additional information are of no consequence, but it
sometimes helps to know that objects take up more memory than you might expect from
looking at the memory requirements of their instance variables. In this book, this extra
management information is called the object overhead and is represented as a shaded
area in memory diagrams. For example, the object created by the call to
new Rational(1, 2) might look like this:

1000overhead

1

2

mun

ned

flah

Once the new Rational object has been allocated in the heap, the next step in the
declaration process is to store the address of that object in the variable half. That
variable is allocated on the stack and therefore appears in a stack frame somewhere
toward the high end of memory on most machines. Although there is no way to know
what other values might exist in the stack frame without seeing the code for the entire
method, the word assigned to half might look like this:
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FFC01000flah

The value 1000 shown in the variable half is not intended as an integer but rather to
signify the address at which the actual object is located. The choice of 1000 for that
address—along with the addresses of every other heap and stack variable used in this
book—is entirely arbitrary. In general, there is no way for you as a Java programmer to
know the address of an object, nor is there any reason for you to do so. It is, however,
important for you to remember that every object has some address and that Java programs
can gain access to the data in the object by keeping track of the address at which that
object lives.

Even after you become more familiar with objects, you will discover that it often helps
to create diagrams that make it easier to follow what’s happening inside the memory. To
illustrate this process, it is useful to try a somewhat more elaborate example. Consider the
following run method, which first appeared in Chapter 6:

public void run() {
Rational a = new Rational(1, 2);
Rational b = new Rational(1, 3);
Rational c = new Rational(1, 6);
Rational sum = a.add(b).add(c);
println(a + " + " + b + " + " + c + " = " + sum);

}

The idea of this program, of course, is to add three Rational variables and display their
sum. Our concern here, however, is simply to understand how these values are
represented inside the machine.

The first three declarations are easy enough. As in the simple example of the variable
half, each of these declarations constructs a new Rational object and assigns its address
to a variable in the stack frame for the run method, giving rise to a memory diagram that
looks like this:
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1

2
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ned
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1040

1

6
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FFC01000a

heap

FFBC1020b

FFB81040c

FFB4 mus

stack

As in most languages, Java creates the complete stack frame for a method at the time the
method is called, so that all four local variables—a, b, c, and sum—have been allocated
on the stack, but only the first three have been initialized at this point in the execution.
The value used to initialize sum is the result of the expression

a.add(b).add(c)

It is worth tracing through this operation step by step.
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The first step in the process is to invoke the add method on the Rational object a,
passing it the value of b as a parameter. Because this operation is a method call, a new
stack frame must be created for it, binding the formal parameters of the method to the
values of the actual arguments included in the call. As you can see from Figure 6-9, the
code for the add method appears as follows:

public Rational add(Rational r) {
return new Rational(this.num * r.den + r.num * this.den,
                    this.den * r.den);

}

The formal parameter is named r inside the add method, which means that r must be
assigned the value of the actual argument, which is named b in the calling frame. The
value currently sitting in the variable b is the number 1020, which is the address of the
corresponding object in the heap. Java initializes the variable r in the new frame simply
by copying the address, which means that the variable r in the new frame will also
contain 1020.

For this example, it is important to note that the stack frame for any method invoked
on a receiving object also contains a reference to that object, which Java identifies using
the keyword this. Intuitively, it is best to think of this as simply a local variable that
refers to the receiving object, which in this case is the value stored in the variable a. As
with the argument value, the identity of the receiver is also copied into the new frame as a
simple address. Thus, the state of the memory once the new frame has been created looks
like this:
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In this diagram, the stack region below the current frame is shown in gray to emphasize
that the shaded region is inaccessible to the add method. The only variables accessible to
add are the references stored in the variables r and this in the current frame. These
reference variables are exactly what the add method needs to perform its computation.
The add method returns a new Rational value whose numerator is given by the
expression

this.num * r.den + r.num * this.den

and whose denominator has the value

this.den * r.den

Each term in these expressions is a selection operation that extracts one of the two fields,
num or den, from the appropriate Rational value. For example, the term r.den specifies
the selection of the den field of the value whose reference is stored in r. Since r contains
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the address 1020, the term r.den indicates the denominator component of the object
stored at address 1020, which is the integer 3. Expanding the value for each term in a
similar fashion reveals that the result of the add method is given by the expression

new Rational(1 * 3 + 1 * 2, 2 * 3)

which can be further simplified to

new Rational(5, 6)

This expression constructs a new Rational object with the indicated components in the
heap and returns the address of that object as the value of the call a.add(b), clearing
away the stack frame for add as it returns.

Unlike the result of most of the computations you have seen so far, the new value
computed by this method does not get stored in a variable. The calculation a.add(b) is
only a subexpression of the longer expression

a.add(b).add(c)

The value of a.add(b) therefore becomes the receiver of a new add call with the
argument c. Setting up the frame for this new method call leaves memory in the
following state, with the new Rational object shown at address 1060 in the heap:
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Once again, the evaluation of the add method requires determining the values of the
fields in the two Rational values accessible from the current frame. This time, the
straightforward expansion of the result expression gives

new Rational(5 * 6 + 1 * 6, 6 * 6)

which works out to

new Rational(36, 36)

Fortunately, the constructor for Rational provides additional simplification of the result
by using Euclid’s algorithm to reduce the fraction to lowest terms. Eliminating the
common factor of 36 from both the numerator and the denominator gives rise to a new
Rational object with 1 as the value of both its num and den field. When that value is
assigned to the variable sum, the heap and stack look like this:



The Object Memory Model 175

1000

1

2

mun

ned

1020

1

3

mun

ned

1040

1

6

mun

ned

heap stack

1060

5

6

mun

ned

1080

1

1

mun

ned

FFC01000a

FFBC1020b

FFB81040c

FFB4mus 1080

Garbage collection
The example from the preceding section illustrates an interesting wrinkle that often arises
when objects are stored in memory. If you look carefully at the most recent diagram, you
will see that the heap contains five different Rational objects even though only four of
those objects have references on the stack. The fraction 5/6 stored at address 1060 was
created during the calculation as the intermediate result from the subexpression

a.add(b)

While that value is necessary to complete the calculation, it becomes irrelevant once the
final addition is performed. In the traditional parlance of computer science, that value is
now garbage. Calculations in object-oriented languages often generate quite a bit of
garbage along the way as intermediate results are computed as part of complex
computations. Unfortunately, those values occupy space in the heap. If that garbage is
allowed to persist, the heap will eventually fill up, even if there is plenty of room for the
active data.

To get around the problem of having the heap fill up with objects that are no longer
useful, the Java runtime system adopts a strategy called garbage collection, which does
pretty much exactly what it sounds like it does. Whenever the memory available in the
heap seems to be running short, Java defers what it’s doing to collect any garbage in the
heap and return that memory to the pool of assignable storage. To do so, Java uses a two-
phase process that operates in more or less the following way, although the strategy
presented here has been simplified to ensure that the basic idea remains clear:

1. Go through every variable reference on the stack and every variable reference in static
storage and mark the corresponding object as being “in use” by setting a flag that
lives in the object’s overhead space. In addition, whenever you set the “in use” flag
for an object, determine whether that object contains references to other objects and
mark those objects as being “in use” as well.

2. Go through every object in the heap and delete any objects for which the “in use” flag
has not been set, returning the storage used for that object to the heap for subsequent
reallocation. It must be safe to delete these objects, because there is no way for the
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program to gain access to them, given that no references to those objects still exist in
the program variables.

Because the garbage-collection algorithm operates in two phases—one to mark the
objects that are in use and one to sweep through memory collecting inaccessible
objects—this strategy is traditionally called a mark-and-sweep collector.

7.3 Primitive types vs. objects
From a high-level conceptual perspective, you can often think about Java objects in much
the same way that you think about the primitive types like int and double. If you declare
an integer variable by writing

int three = 3;

you can diagram that variable by drawing a box named three and writing a 3 in the box,
as follows:

3

eerht

To a certain extent, you can treat objects in the same way. For example, if you create a
new Rational variable using the declaration

Rational third = new Rational(1, 3);

you can think about this variable conceptually as if it held the actual value as shown in
the following diagram:

3

driht

1

It is, however, important to understand at what point this symmetry breaks down. As
you know from the discussion of internal representation earlier in this chapter, the
variable third does not in fact contain the actual object but instead contains the address
of that object. This mode of representing objects has several implications that it is
important for you, as a budding programmer, to understand.

Parameter passing
One of the most important consequences of the representation scheme that Java uses for
objects arises when you pass an object as a parameter to a method. At first glance, the
rules for passing objects as parameters seem different from the corresponding rules for
passing primitive values.  Suppose, for example, that you have written the following pair
of methods:

public void run() {
int x = 17;
increment(x);
println("x = " + x);

}

private void increment(int n) {
n++;
println("n = " + n);

}
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Running this program produces the following output:

SimpleParameterTest
n = 18
x = 17

As you can see from the output, the ++ operator in the increment method affects only
the value of the local variable n and not the value of x in the calling frame. The behavior
simply reflects the way these values are stored on the stack. When increment is called,
the value from the stack entry for the local variable x is copied into a new stack entry for
the variable n, so that the stack looks something like this:

FFC017x

FFC817n

Changing the value of n inside the new frame has no effect on the original value.

But what would happen if these values were objects instead of simple integers? One
way to answer that question is to design a simple class that contains an embedded integer
value, as shown in Figure 7-1. The definition of the EmbeddedInteger class includes a
constructor, a setValue method for setting the internal value, a getValue method for
getting that value back, and a toString method to make it easier to display the object
using println. Given these methods, you can write a similar test program that looks like
this:

public void run() {
EmbeddedInteger x = new EmbeddedInteger(17);
increment(x);
println("x = " + x);

}

private void increment(EmbeddedInteger n) {
n.setValue(n.getValue() + 1);
println("n = " + n);

}

If you run this version of the program, the output is different:

ObjectParameterTest
n = 18
x = 18

In the object-based implementation, changing the value of a field in the underlying object
continues to be reflected after the method returns. This change in behavior follows
directly from the memory structure.  At the beginning of the call to increment in the new
implementation, the heap and stack are in the following state:
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FIGURE 7-1    Implementation of the EmbeddedInteger class

/* Class: EmbeddedInteger */
/**
 * This class allows its clients to treat an integer as an object.
 * The underlying integer value is set using setValue and returned
 * using getValue.
 */
public class EmbeddedInteger {

/* Constructor: EmbeddedInteger(n) */
/**
 * Creates an embedded integer with the value n.
 */

public EmbeddedInteger(int n) {
value = n;

}

/* Method: setValue(n) */
/**
 * Sets the internal value of this EmbeddedInteger to n.
 */

public void setValue(int n) {
value = n;

}

/* Method: getValue() */
/**
 * Returns the internal value of this EmbeddedInteger.
 */

public int getValue() {
return value;

}

/* Method: toString() */
/**
 * Overrides the toString method to make it return the string
 * corresponding to the internal value.
 */

public String toString() {
return "" + value;

}

/* Private instance variable */

private int value;      /* The internal value */

}
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In this case, changing the value field inside the object affects the conceptual value of
both n and x because those two variables contain the same reference.

The intuitive effect of this difference in representation is that objects—in contrast to
primitive values—are shared between the calling method and the method being called.
The underlying mechanism, however, is exactly the same. Whenever a new local variable
is initialized, the old value is copied into the stack location for the new variable. If that
value is an object, what gets copied is the reference and not the underlying value.

Wrapper classes
The EmbeddedInteger class shown in Figure 7-1 is actually somewhat more than a
simple illustration of parameter-passing in the object world. As you will discover in
subsequent chapters, the Java library packages contain quite a few classes that are
designed to work with any type of object. For example, the ArrayList class that you will
learn about in Chapter 10 makes it possible to maintain an ordered list of objects. Given
an ArrayList, you can add new values, remove existing ones, and perform a number of
other useful operations that make sense in the abstract context of a list. The nature of the
operations that manipulate the list turn out to be independent of the type of value the list
contains. Thus, to make it possible to store any kind of object at all, the ArrayList class
uses the universal class Object from which all other classes in the Java class hierarchy
descend.

Unfortunately, being able to store any kind of object in an ArrayList does not provide
quite as much flexibility as you might like. The Java primitive types are not objects and
therefore cannot be used in conjunction with this marvelously convenient class. To get
around this problem, Java defines a class, usually called a wrapper class, to go along
with each of the eight primitive types, as follows:

Primitive type Wrapper class

byte Byte

short Short

int Integer

long Long

float Float

double Double

boolean Boolean

char Character

Each of the wrapper classes has a constructor that creates a new object from the
corresponding primitive type.  For example, if the variable n is an int, the declaration

Integer nAsInteger = new Integer(n)
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creates a new Integer object whose internal value is n and assigns it to nAsInteger.
Each of the wrapper classes also defines an accessor method to retrieve the underlying
value. The name of that method is always the name of the primitive type followed by the
suffix Value. Thus, once you had initialized the variable nAsInteger, you could get back
the value stored inside it by writing

nAsInteger.intValue()

Because nAsInteger is a legitimate object, you can store that value in an ArrayList or
any other compound structure.

Unlike the EmbeddedInteger class from the preceding section, however, the wrapper
classes provide no method to set the value of the underlying variable in an existing
object. The wrapper classes are in fact immutable, as defined in Chapter 6. Immutable
classes have the wonderful property that it is always possible to think about them as if
they represent pure values in the way that Java’s primitive types do. With an immutable
class, you don’t have to worry whether a value is shared or copied when you pass it from
one method to another. Because neither side can change that value, it turns out not to
matter.

The wrapper classes also include several static methods that you are likely to find
useful, particularly those in the Integer class that support numeric conversion in
arbitrary bases. Figure 7-2 lists a few of the most important static methods for the classes
Integer and Double; the even more useful static methods in the Character class are
described in Chapter 9. Because these methods are static, you need to include the name of
the class. Thus, to convert the integer 50 into a hexadecimal string, you would need to
write

Integer.toString(50, 16)

FIGURE 7-2    Numeric conversion methods in the Integer and Double classes

Static methods in the Integer class
static int parseInt(String str)  or  parseInt(String str, int radix)

Converts a string of digits into an int using the specified radix, which defaults to 10.
static String toString(int i)  or  toString(int i, int radix)

Converts an int to its string representation for the specified radix, which defaults to 10.

Static methods in the Double class
static double parseDouble(String str)

Converts the string representation of a number into the corresponding double.
static String toString(double d)

Converts a double to its string representation.

7.4 Linking objects together
The fact that objects are represented internally as references has one more implication
that seems important to consider in the context of this chapter, even though a full
discussion of the topic must wait until much later in the book. Because references are
small, an object can easily contain references to other objects. If objects were stored only
in the complete form in which they appear in the heap, it would obviously be impossible
for a small object to contain a larger one. Moreover, given that every object requires
some amount of overhead, it would even be impossible for one heap object to contain
another object of the same size, because there would no longer be any room in which to
store the bookkeeping information that Java needs. Those restrictions, however, disappear
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completely if objects are stored as references. Although it is true that a small object
cannot physically contain a larger object, there is nothing to prevent one object from
containing a reference to another object no matter how much heap storage those objects
might consume. A reference, after all, is simply the address of an object in memory and
can therefore be represented using just a few bytes. Thus, there is no problem in having
one object contain a reference to another object of a different class, or even an object of
the same class.

Creating an object that contains references to other objects is an extremely powerful
programming technique. Such objects are said to be linked. Although an in-depth
discussion of linked structures lies beyond the scope of this chapter, it is useful to present
a simple example, both because that example will reinforce your understanding of how
linked structures are represented in memory and because it offers a powerful illustration
of the fundamental concept of message-passing, which is the metaphor Java uses to
describe communication among the objects in a system. When an object needs to interact
with some other object, it does so by invoking a method in the receiving object. In the
context of the object-oriented paradigm, however, the act of calling that method is usually
described as one of “sending a message” to the receiver. That message may in turn trigger
a response in the receiver, such as a change in its state or the generation of additional
messages that propagate that message to other objects. Even though the implementation
of message-passing depends on method calls, it is important to keep the underlying
metaphor in mind.

Message passing in linked structures: The beacons of Gondor

For answer Gandalf cried aloud to his horse. “On, Shadowfax! We
must hasten. Time is short. See! The beacons of Gondor are alight,
calling for aid. War is kindled. See, there is the fire on Amon Dîn, and
flame on Eilenach; and there they go speeding west: Nardol, Erelas,
Min-Rimmon, Calenhad, and the Halifirien on the borders of Rohan.”

—J. R. R. Tolkien, The Return of the King, 1955

In adapting this scene for the concluding episode in his trilogy, Peter Jackson created
what may be the most evocative and dramatic example of message-passing ever recorded
on film.  After the first beacon is lit in the towers of Minas Tirith, we see the signal pass
from mountaintop to mountaintop as the keepers of each signal tower, ever vigilant, light
their own fires as they see the triggering fire at the preceding station.  The message of
Gondor’s danger thus passes quickly over the miles that separate it from Rohan, as
illustrated by the following schematic diagram:

Minas Tirith Amon Dîn Eilenach Nardol Erelas Min-Rimmon Calenhad Halifirien Rohan

How would you go about simulating the lighting of the beacons of Gondor using the
method-passing paradigm? Each signal tower is presumably a separate object that
contains such information as the name of the tower. Each tower, however, must also be
able to identify the next tower in the chain so that it knows where to send its message.
The most straightforward strategy is to have each tower contain a reference to its
successor. Thus, the object that represents Minas Tirith contains a reference to the object
used to model Amon Dîn, which in turn contains a reference to the object that represents
Eilenach, and so on.  If you adopt this approach, the private data for each object must
include—possibly along with other information required by the application as a whole—
the following instance variables:
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private String towerName;
private SignalTower nextTower;

The first variable contains the name of the tower, and the second is a reference to the next
tower in sequence.

While this model makes sense for Minas Tirith and the intermediate towers in the
chain, using this strategy to represent Rohan raises a minor issue by virtue of the fact that
Rohan appears at the end of the chain. Like the other towers, Rohan has a nextTower
field that is supposed to contain a reference to the next tower. Rohan doesn’t have one,
and the question is simply how to represent this fact. Fortunately, Java defines a special
value called null for precisely this situation. The constant null represents a reference to
a nonexistent value and can be assigned to any variable that holds an object reference.
Thus, you can record the fact that Rohan is the last tower in the chain simply by making
sure that its nextTower field is null.

Figure 7-3 contains a simple definition of a SignalTower class that implements the
idea of passing a message along a chain of towers. The constructor takes the name of the
tower and a reference to the next tower in sequence. The only other public method is
signal, which is the action associated with the “Light your signal fire” message that
propagates through the towers. When a tower receives the signal message, it lights its
own signal fire and then passes the message along by sending the signal message to its
successor, if any.

In the design of the SignalTower class shown in Figure 7-3, the process of lighting the
current signal tower is the responsibility of the lightCurrentTower method. In this
implementation, lightCurrentTower consists of the code

public void lightCurrentTower() {
System.out.println("Lighting " + towerName);

}

which prints a message including the name of the tower on System.out, which is a
standard output stream that is always available to Java programs.  Unless your signal
tower application is acting only as a test program, simply displaying the name of the
tower is probably not what you want to do at this point. For example, if you were writing
a graphical implementation of the “Beacons of Gondor” program—as you will have a
chance to do in the exercises for Chapter 8—the implementation of this method would
have to take whatever actions were necessary to display the signal fire on the screen.
Given that the point here is to illustrate how including references as links inside each
tower makes it possible to propagate the signal from one tower to the next, the additional
detail required for a graphical implementation would only get in the way.

Even though the lightCurrentTower implementation shown has an effect that is
useful only in test programs, it still makes sense, particularly in the object-oriented
paradigm, to include it as a separate method in the class. A simple implementation that
you intend to replace later is usually called a stub. If you got around to writing a more
elaborate application, you could simply replace this stub with the appropriate code. But
you could probably do better still to create a new subclass that overrides the definition of
lightCurrentTower. The extended class can substitute its own version of this method
but still rely on all the other features provided by the base class for linking the towers
together.
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FIGURE 7-3    Implementation of the SignalTower class

/* Class: SignalTower */
/**
 * This class defines a signal tower object that passes a message
 * to the next tower in a line.
 */

public class SignalTower {

/* Constructor: SignalTower(name, link) */
/**
 * Constructs a new signal tower with the following parameters:
 *
 * @param name The name of the tower
 * @param link A link to the next tower, or null if none exists
 */

public SignalTower(String name, SignalTower link) {
towerName = name;
nextTower = link;

}

/* Method: signal() */
/**
 * This method represents sending a signal to this tower. The effect
 * is to light the signal fire here and to send an additional signal
 * message to the next tower in the chain, if any.
 */

public void signal() {
lightCurrentTower();
if (nextTower != null) nextTower.signal();

}

/* Method: lightCurrentTower() */
/**
 * This method lights the signal fire for this tower. This version
 * supplies a temporary implementation (typically called a "stub")
 * that simply prints the name of the tower to the standard output
 * channel. If you wanted to redesign this class to be part of a
 * graphical application, for example, you could override this
 * method to draw an indication of the signal fire on the display.
 */

public void lightCurrentTower() {
System.out.println("Lighting " + towerName);

}

/* Private instance variables */

private String towerName;         /* The name of this tower    */
private SignalTower nextTower;    /* A link to the next tower  */

}
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The constructor for the SignalTower class is simple and does nothing more than copy
its arguments into the corresponding instance variables. The code looks like this:

public SignalTower(String name, SignalTower link) {
towerName = name;
nextTower = link;

}

Because each invocation of the constructor for SignalTower requires you to specify the
link to the next tower in the chain, it is easiest to create the data structure representing the
chain of beacons in Gondor if you create it starting at the end of the chain with Rohan
and working backwards toward the front of the chain at Minas Tirith. If each of the
towers is declared as an instance variable, the following method initializes each of those
variables to reflect the structure of the signal tower chain:

private void createSignalTowers() {
rohan = new SignalTower("Rohan", null);
halifirien = new SignalTower("Halifirien", rohan);
calenhad = new SignalTower("Calenhad", halifirien);
minRimmon = new SignalTower("Min-Rimmon", calenhad);
erelas = new SignalTower("Erelas", minRimmon);
nardol = new SignalTower("Nardol", erelas);
eilenach = new SignalTower("Eilenach", nardol);
amonDin = new SignalTower("Amon Din", eilenach);
minasTirith = new SignalTower("Minas Tirith", amonDin);

}

The internal representation of linked structures
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FIGURE 7-4 Memory layout for the objects in the SignalTower chain

After you call createSignalTowers to initialize the towers, the internal representation
for the objects in the heap would look something like the diagram in Figure 7-4. Note that
the order in which the signal towers appear is indicated only by the chain of references in
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the final memory cells within each structure and not by the order in which the cells
appear in memory. To emphasize the internal connections within the chain, the diagram
in Figure 7-4 includes arrows that link each cell to its successor. The only value stored in
memory is the numeric address, which is sufficient to find the next object in the chain.

Once you have established the data structure shown in Figure 7-4, all you need to do to
get the process started is send a signal message to the first tower by invoking

minasTirith.signal();

The implementation of the signal method takes whatever action is necessary to simulate
lighting the beacon in Minas Tirith and then passes the signal message to the object
representing Amon Dîn. That object in turn passes the signal message to its successor,
and the process continues until it reaches the Rohan tower, at which point the null in the
nextTower field indicates that the signal has reached the end of the line.

Summary
Even though the object model is designed to promote a more abstract view of data, using
objects effectively requires you to have a mental model of how objects are represented in
memory. In this chapter, you have had a chance to see how those objects are stored and to
get a sense of what goes on “under the hood” as you create and use objects in your
programs.

The important points introduced in this chapter include:

• The fundamental unit of information in a modern computer is a bit, which can be in
one of two possible states. The state of a bit is usually represented in memory diagrams
using the binary digits 0 and 1, but it is equally appropriate to think of these values as
off and on or false and true, depending on the application.

• Sequences of bits are combined inside the hardware to form larger structures, including
bytes, which are eight bits long, and words, which usually contain four bytes or 32 bits.

• The internal memory of a computer is arranged into a sequence of bytes in which each
byte is identified by its index position in that sequence, which is called its address.

• Computer scientists tend to write address values and the contents of memory locations
in hexadecimal notation (base 16) because doing so makes it easy to identify the
individual bits.

• The primitive types in Java require different amounts of memory. A value of type char
requires two bytes, a value of type int requires four, and a value of type double
requires eight. The address of a multibyte value is the address of the first byte it
contains.

• Data values that you create in a Java program are allocated in three different regions of
memory. Static variables and constants that apply to an entire class are allocated in a
region of memory devoted to the program code and static data. Local variables are
allocated in a region called the stack, which is apportioned into structures called
frames that contain all of the local variables for a method. All objects are allocated in a
region called the heap, which is simply a pool of available memory. In most systems,
the stack and the heap start at opposite ends of memory and grow toward each other to
make available as much memory as possible.

• When you declare a local variable of some object class and assign it an initial value by
calling its constructor, memory is allocated in both the heap and the stack. The heap
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contains the storage for the object data itself. The stack entry for the variable contains
only enough memory to hold the address of the object, which is called a reference.

• The stack frame for a method call includes an entry identified by the keyword this
that identifies the receiver, which is the object on which that method is applied.

• As a computation proceeds, objects on the heap are often used as temporary values that
are no longer needed at the end of the computation. Such values, however, continue to
occupy memory in the heap and are referred to as garbage. The Java runtime system
periodically undertakes a process called garbage collection to search through the heap
and reclaim objects that are no longer needed.

• When an object is passed from one method to another, only the reference to that object
is copied into the stack frame for the new method. Because this reference identifies
exactly the same object as the identical reference in the caller, object values are
effectively shared between the calling and called methods.

• The primitive types in Java are not in fact objects and therefore cannot be used in
contexts in which an object is required. To get around this problem, Java defines a set
of wrapper classes that encapsulate each of the primitive types in a full-fledged object.

• Objects in Java can contain references to other objects. Such objects are said to be
linked. Linked structures are used quite often in programming and will be covered in
more detail in later chapters in this book.

Review questions
1. Define the following terms: bit, byte, and word.

2. What is the etymology of the word bit?

3. How many bytes of memory are there in a 384MB machine?

4. Convert each of the following decimal numbers to its hexadecimal equivalent:

a) 17
b) 256
c) 1729
d) 2766

5. Convert each of the following hexadecimal numbers to decimal:

a) 17

b) 64

c) CC

d) FAD

6. What is an address?

7. How many bytes does Java assign to a value of type int? How many bytes are
required for a double?

8. What are the three memory regions in which values can be stored in a Java program?

9. Using the example in section 7.2 as a model, trace the heap and stack operations that
occur in the execution of the following method:
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public void run() {
Rational x = new Rational(4, 5);
Rational y = new Rational(5, 2);
Rational z = x.multiply(y).subtract(z);
println(x + " x " + y + " - " + y + " = " + z);

}

Which objects on the heap are garbage when the println statement is reached.

10. True or false: When you pass a primitive data value from one method to another,
Java always copies that value into the frame of the method being called.

11. True or false: When you pass an object from one method to another, Java copies the
data in that object into the new frame.

12. Describe the two phases in a simple mark-and-sweep garbage collector.

13. What is meant by the term wrapper class? What purpose do wrapper classes serve?

14. What methods can you use to convert between integers and the string representations
of those integers in a particular base?

15. What property identifies a linked structure?

16. Given that objects of a particular class require a certain amount of space in memory,
it is clear that an object in the heap could never physically contain another object of
that same class and still have room for additional data. What can a Java programmer
do to achieve the same effect?

17. What is a stub?

18. Why is important for Java to include the special value null? What does this value
represent?

Programming exercises
1. Use the static methods Integer.parseInt and Integer.toString to write a

program that converts hexadecimal values into their decimal equivalents. Your
program should continue to read hexadecimal values until the user enters a 0. A
sample run of this program might look like this:

HexToDecimalConverter
This program converts hexadecimal to decimal.
Enter 0 to stop.
Enter a hexadecimal number: 10
10 hex = 16 decimal
Enter a hexadecimal number: 2A
2A hex = 42 decimal
Enter a hexadecimal number: FFFF
FFFF hex = 65535 decimal
Enter a hexadecimal number: 0

2. The fact that the Integer.parseInt method makes it possible for a program to read
user input as a string and then convert it to an integer makes it possible to write
programs that use something other than an integer—such as a blank line—as a
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sentinel to signal the end of the input. Rewrite the AverageList program from
exercise 4-6 so that it uses a blank line to mark the end of the input.

3. But don’t panic. Base 8 is just like base 10 really—if you’re missing two fingers.

—Tom Lehrer, “The New Math,” 1965

Rewrite the Math Quiz program from exercise 6-5 so that it poses its questions in
base 8 instead of base 10, as shown in the following sample run:

MathQuiz
Welcome to the octal Math Quiz
What is 3 + 5 in base 8? 10
That's the answer!
What is 17 - 15 in base 8? 2
That's the answer!
What is 20 - 16 in base 8? 4
That's incorrect - try a different answer: 2
That's the answer!
What is 6 + 7 in base 8? 13
That's incorrect - try a different answer: 15
That's the answer!
What is 21 - 6 in base 8? 13
That's the answer!

4. The Runtime class in the java.lang package includes a few simple methods that
may help you get a better sense of what Java’s garbage collector does. A Runtime
object maintains information about the state of the Java Virtual Machine. If you want
to look at that information, you can get the current runtime environment by calling
the static method getRuntime() and storing the result in a variable like this:

Runtime myRuntime = Runtime.getRuntime();

Once you have this variable, you can find out how much free memory is available by
calling

myRuntime.freeMemory();

Because memory sizes can be large, the value returned by freeMemory is a long
rather than an int and indicates the number of bytes available. You can also
explicitly trigger the garbage collector by calling

myRuntime.gc();

Write a program that allocates 10000 Rational objects without saving any of them
in variables so that they all become garbage. Once you’ve done so, measure the
amount of free memory before and after garbage collection and use the difference to
report how many bytes were freed, as shown in the following sample run:

GCTest
Allocating 10000 Rational objects
Garbage collection freed 94140 bytes



Chapter 8
Object-Oriented Graphics

Art, it seems to me, should simplify.  That, indeed, is very
nearly the whole of the higher artistic process; finding what
conventions of form and what details one can do without
and yet preserve the spirit of the whole.

— Willa Cather, On the Art of Fiction, 1920
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Although you have already seen several of the classes and methods in the acm.graphics
package, you have not yet had the chance to consider that collection of classes as a whole.
Rather than continuing to scratch the surface, this chapter examines the entire package as
an integrated set of tools.  Doing so has two main purposes.  First, you will learn a lot
more about the graphical capabilities that the package provides.  That understanding, in
turn, will help you to write more interesting graphics programs, which ought to be an
exciting prospect.  But there is a subtler purpose as well.  The object-oriented approach to
programming has less to do with styles of coding than it does with strategies of design.
By focusing on the acm.graphics package, you can get a sense of what considerations
go into the design of a package.  By studying existing packages, you will gain a more
detailed sense of how to approach the design of your own classes and packages that will
make it easier to write them on your own.

8.1 The acm.graphics model
Before you can appreciate the classes and methods available in acm.graphics, you need
to understand the assumptions, conventions, and metaphors on which the package is
based.  Collectively, these ideas that define the appropriate mental picture for a package
are called a model.  The model for a package allows you to answer various questions
about how you should think about working in that domain.  Before using a graphics
package, for example, you need to be able to answer the following sorts of questions:

• What are the real-world analogies and metaphors that underlie the package design?
• How do you specify positions on the screen?
• What units do you use to specify lengths?

The collage metaphor
In the case of the acm.graphics, the first question—what analogies and metaphors are
appropriate for the package—is perhaps the most important to resolve.  There are many
real-world analogies for computer graphics, because there are many different ways to
create visual art.  One possible metaphor is that of painting, in which the artist selects a
paintbrush and a color and then draws images by moving the brush across a screen that
represents a virtual canvas.  If you instead imagined yourself drawing with a pencil, you
might develop a different style of graphics in which line drawings predominated and in
which it was possible to erase things you had previously drawn.  You might conceivably
design a graphics package around an engraving metaphor in which the artist uses a stylus
to etch out a drawing; erasing would presumably not make sense in that metaphor.  There
are many other possible metaphors, just as there are many styles of art.

To support the notion of object-oriented design, the acm.graphics package uses the
metaphor of a collage.  A collage artist works by taking various objects and assembling
them on a background canvas.  Those objects might be geometrical shapes, words clipped
from newspapers, lines formed from bits of string, or images taken from magazines.  The
acm.graphics package offers counterparts for all of these.  The notion that the image is a
collage has important implications for the way you describe the process of creating a
design.  If you are painting, you might talk about making a brush stroke in a particular
position or filling an area with paint.  In the collage model, the key operations are adding
and removing objects, along with repositioning them on the background.  Collages also
have the property that some objects can be positioned on top of other objects, where they
obscure whatever is behind them.  Removing those objects reveals whatever used to be
underneath.
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The coordinate system
You already know the answers to the questions about specifying positions on the screen
and defining units for length from the discussion of the various GraphicsProgram
examples presented in the preceding chapters.  The fundamental rule is that the
acm.graphics package uses precisely the coordinate model that traditional Java
programs do, so that you will encounter less of a cognitive shift when you learn the more
complex Java model later in this text.  In the Java model, all lengths are expressed in
terms of pixels, which are the individual dots that appear on the screen.  Points on the
screen are identified by specifying their coordinates in both the x and y directions.  Those
coordinates are also measured in pixels, with x values increasing as you move rightward
across the canvas and y values increasing as you move down from the top.  The
interpretation of the x coordinate is therefore the same as in traditional Cartesian
geometry, but the y coordinate is inverted.  That inversion follows from the fact that Java
uses a different starting point, or origin, for its coordinate system.  Instead of placing the
origin in the lower left corner as in the Cartesian world, Java puts it in the upper left
corner.  This reversal of the coordinate system will probably cause some confusion at
first, but it doesn’t take too long to become familiar with the new model.

8.2 The graphics class hierarchy
Once you understand the coordinate system, the next question you might reasonably ask
is what sorts of objects are displayable in the collage.  Again, you have some intuition for
that answer from your holistic explorations of the acm.graphics package in the earlier
chapters.  In fact, you were introduced to most of the important classes in the package
back in Chapter 2, in which Figure 2-7 offered a diagram of the shape classes in the
acm.graphics package as an illustration of class hierarchies.  That figure is reproduced
as Figure 8-1, which shows the shape classes in the hierarchy along with two other
classes—GCanvas and GCompound—that will be important in understanding the detailed
operation of the package.

FIGURE 8-1 Important classes in the acm.graphics package
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The GObject class
As the arrows in the Figure 8-1 emphasize, the central class in the acm.graphics
package is GObject, which represents the universe of all graphical objects.  You may
have noticed that Figure 8-1 specifies the name of this class in italic type.  In class
diagrams, italics are used to identify abstract classes, which are classes that have no
objects of their own but serve as a common template for a variety of concrete subclasses.
Thus, there are no objects that have GObject as their primary class.  Instead, every object
you put on the screen is a GLabel, GRect, GOval, or one of the other subclasses that
extends GObject.  The rules of class formation, however, dictate that any of those objects
is also a GObject, but you will never see a declaration of the form

GObject gobj = new GObject();

because you cannot construct a GObject itself.  At the same time, it is perfectly legal to
construct an instance of a specific GObject subclass and then assign it to a GObject
variable, as in

GObject gobj = new GLabel("hello, world");

The label is a GObject, so the assignment works.

The GObject class itself defines the set of methods shown in Figure 8-2.  As it
happens, you’ve already seen most of these.  Here are a few of the new ones:

• The movePolar(r, theta) method allows you to move an object using polar
coordinates, which are expressed as a distance (r) and an angle (theta).  The angle is
measured in degrees counterclockwise from the +x axis, just as it is in classical
geometry.  Thus, the call

gobj.movePolar(100, 45);

moves the object stored in gobj 100 pixels along a line in the 45° direction, which is
northeast.

• The contains(x, y) method allows you to determine whether an object contains a
particular point.  This is a predicate method and therefore returns true or false.

• The setVisible() method makes it possible to hide an object on the screen.  If you
call setVisible(false), the object disappears until you call setVisible(true).
The predicate method isVisible() allows you to determine whether an object is
visible.

• The various send methods allow you to change the layering arrangement in the
collage. When you add a new object, it goes on top of the other objects and can
therefore obscure the objects behind it.  If you call sendToBack(), the object goes to
the very back of the list.  Conversely, sendToFront() brings it to the foreground.  The
sendForward() and sendBackward() methods move an object one step forward or
backward in the stack.  Because the layering axis corresponds to a third dimension at
right angles to the x-y grid, this dimension is typically called the z axis.

• The mouse-handling methods at the bottom of Figure 8-2 make it possible for objects
to respond to mouse events.  Those capabilities are described in section 8.4.
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FIGURE 8-2    Methods supported by all GObject subclasses

void setLocation(double x, double y)
Sets the location of this object to the specified point.

void move(double dx, double dy)
Moves the object using the displacements dx and dy.

void movePolar(double r, double theta)
Moves the object r units in direction theta, measured in degrees.

double getX()
Returns the x-coordinate of the object.

double getY()
Returns the y-coordinate of the object.

double getWidth()
Returns the width of the object.

double getHeight()
Returns the height of the object.

boolean contains(double x, double y)
Checks to see whether a point is inside the object.

void setColor(Color c)
Sets the color of the object.

Color getColor()
Returns the object color.

void setVisible(boolean visible)
Sets whether this object is visible.

boolean isVisible()
Returns true if this object is visible.

void sendToFront()
Sends this object to the front of the canvas, where it may obscure objects further back.

void sendToBack()
Sends this object to the back of the canvas, where it may be obscured by objects in front.

void sendForward()
Sends this object forward one position in the z ordering.

void sendBackward()
Sends this object backward one position in the z ordering.

void addMouseListener(MouseListener listener)
Specifies a listener to process mouse events for this graphical object.

void removeMouseListener(MouseListener listener)
Removes the specified mouse listener from this graphical object.

void addMouseMotionListener(MouseMotionListener listener)
Specifies a listener to process mouse motion events for this graphical object.

void removeMouseMotionListener(MouseMotionListener listener)
Removes the specified mouse motion listener from this graphical object.

Although it is nice to know about these new methods, it may be momentarily
disturbing to discover that some of the old methods you’ve been using don’t appear in
Figure 8-2.  There is no setFilled method, even though you’ve been filling GOvals and
GRects all along.  Similarly, there is no setFont method, but you’ve been using that in
the context of GLabels.  As the caption on the figure makes clear, the methods defined at
the GObject level are the ones that apply to all the subclasses, and not just some of them.
The setFont method, for example, only makes sense for the GLabel class and is
therefore defined there.  The setFilled method is more interesting.  It makes sense to
fill an oval, a rectangle, a polygon, and an arc, so there are four classes (plus the extended
GRoundRect and G3DRect subclasses) for which setFilled would be appropriate.  It is
not at all clear, however, what one might mean by filling a line, an image, or a label.
Since there are classes that cannot give a meaningful interpretation to setFilled, it is not
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defined at the GObject level.  At the same time, it doesn’t seem ideal to define
setFilled independently in each of the subclasses for which it is defined.  You certainly
would like setFilled to work the same way for each of the fillable classes, for
consistency if nothing else.

In Java, the best way to define a suite of methods that are shared by some but not all
subclasses in a particular hierarchy is to define what Java calls an interface, which is
really just a listing of the method headers that all classes implementing that interface
share.  In the acm.graphics package, the classes GOval, GRect, GPolygon, and GArc all
implement an interface called GFillable, which specifies the behavior of any fillable
object.  In addition to GFillable, there is an interface called GResizable that allows you
to reset the bounds of an object and a somewhat broader interface called GScalable that
allows you to scale an object by a scaling factor.

The methods specified by these three interfaces appear in Figure 8-3.  The most
interesting new method in that list is setFillColor(c), which makes it possible to give
the interior of a fillable shape a different color than its boundary.  For example, if you
execute the code

GRect r = new GRect(70, 20);
r.setColor(Color.RED);
r.setFillColor(Color.GREEN);
r.setFilled(true);

you get a filled rectangle whose interior is green and whose border is red.

FIGURE 8-3    Methods specified by interfaces

GFillable (implemented by GArc, GOval, GPolygon, and GRect)
void setFilled(boolean fill)

Sets whether this object is filled (true means filled, false means outlined).
boolean isFilled()

Returns true if the object is filled.
void setFillColor(Color c)

Sets the color used to fill this object. If the color is null, filling uses the color of the object.
Color getFillColor()

Returns the color used to fill this object.

GResizable (implemented by GImage, GOval, and GRect)
void setSize(double width, double height)

Changes the size of this object to the specified width and height.
void setBounds(double x, double y, double width, double height)

Changes the bounds of this object as specified by the individual parameters.

GScalable (implemented by GArc, GCompound, GImage, GLine, GOval, GPolygon, and GRect)
void scale(double sf)

Resizes the object by applying the scale factor in each dimension, leaving the location fixed.
void scale(double sx, double sy)

Scales the object independently in the x and y dimensions by the specified scale factors.

The GLabel class
The GLabel class is the first class you encountered in this text, even though it is in some
respects the most idiosyncratic entry in the hierarchy of shape classes.  The most
important difference between GLabel and everything else is that the position of a GLabel
is not defined by the upper left corner, but rather by the starting point of the baseline,
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which is an imaginary line on which characters sit.  The origin and baseline properties of
the GLabel class are illustrated in the following diagram:

The quick brown fox jumped over the lazy dog baseline

origin

To set the size, style, and general appearance of a GLabel, you need to specify its font,
using the setFont method as described in Chapter 5.  The structure of this method and
the other methods specific to the GLabel class appear in Figure 8-4.

FIGURE 8-4    Additional methods in the GLabel class

void setFont(Font f)  or  setFont(String description)
Sets the font to a Java Font object or a string in the form "Family-style-size"

Font getFont()
Returns the current font.

double getAscent()
Returns the distance the characters in the current font extend above the baseline.

double getDescent()
Returns the distance the characters in the current font extend below the baseline.

void setLabel(String str)
Changes the string used to display the label.

String getLabel()
Returns the string that this label displays.

The GRect class and its subclasses (GRoundRect and G3DRect)
If GLabel is the most idiosyncratic class in the acm.graphics package, GRect is the most
conventional.  It implements all three of the special interfaces—GFillable, GResizable,
and GScalable—but otherwise defines nothing that is not in GObject.

The two specialized forms of rectangles, GRoundRect and G3DRect, differ only in their
appearance on the display.  The GRoundRect class has rounded corners, and the G3DRect
class supports a raised appearance.  Both of these display styles are included in the
standard Java graphics package, and are therefore included in acm.graphics as well.

The GOval class
The GOval class is almost as straightforward as the GRect and operates in much the same
way.  The only thing that causes confusion about GOval is that its origin is the upper left
corner and not the center.  This convention makes sense when you see that ovals are
specified in terms of their bounding rectangle, but can seem somewhat unnatural,
particularly when the oval is a circle.  Circles in mathematics are conventionally defined
in terms of their center and their radius.  In Java, you need to think of them in terms of
their upper left corner and their diameter.

The GLine class
The GLine class makes it possible to construct line drawings in the acm.graphics
package.  The GLine class implements GScalable (which is performed relative to the
starting point of the line), but not GFillable or GResizable.  It is, moreover, important
to modify the notion of containment for lines, since the idea of being within the boundary
of the line is not well defined.  In the abstract, of course, a line is infinitely thin and
therefore contains no points in its interior.  In practice, however, it makes sense to define
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a point as being contained within a line if it is “close enough” to be considered as part of
that line.  In the acm.graphics package, that distance is specified by the constant
LINE_TOLERANCE in the GLine class, which is defined to be a pixel and a half.

The GLine class also contains several methods for determining and changing the
endpoints of the line.  The setStartPoint method allows clients to change the first
endpoint of the line without changing the second; conversely, setEndPoint gives clients
access to the second endpoint without affecting the first.  These methods are therefore
different in their operation from setLocation, which moves the entire line without
changing its length and orientation.

The GArc class
Arcs are implemented in many different ways in different graphics systems.  The model
used in acm.graphics is chosen—as always—to be consistent with the standard Java
interpretation of arcs.  The bad news is that this interpretation takes some getting used to.
The good news is that you won’t have to use GArcs very often.

In Java, an arc is defined in more or less the same way that an oval is.  The usual form
for calling the constructor is

new GArc(width, height, start, sweep)

The width and height parameters are exactly the same as those for a GOval and specify
the dimensions of the bounding rectangle.  The start parameter specifies the angle at
which the arc starts, and sweep parameter indicates the number of degrees through which
it extends. As is true throughout Java, angles are measured in degrees counterclockwise
from the +x axis.  The effect of these parameters is illustrated by the following diagrams,
which show where various arcs appear inside their bounding rectangle, which is indicated
here by the dotted line but would not appear on the screen:

new GArc(60, 60, 0, 45) new GArc(60, 60, 90, 180) new GArc(60, 60, -90, 270)

Unfilled arc

Filled arc

Java defines filling for arcs in a way that at first seems a little odd.  If you
create an unfilled GArc, only the arc is shown.  If you then fill it by calling
setFilled(true), Java fills the wedge that extends to the center of the circle as
shown in the diagram on the right.  Adopting the standard Java interpretation of
arc filling has implications for the design.  Most notably, the contains method
for the GArc class returns a result that depends on whether the arc is filled.  For
an unfilled arc, containment implies that the arc point is actually on the arc,
subject to the same interpretation of “closeness” as described for lines in the
preceding section.  For a filled arc, containment implies inclusion in the wedge.

The GArc class includes methods that enable clients to manipulate the angles
defining the arc (setStartAngle, getStartAngle, setSweepAngle, and
getSweepAngle) as well as methods to return the points at the beginning and end
of the arc (getStartPoint and getEndPoint).
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The GImage class
The GImage class is used to display an image stored in a recognized format for image data
such as GIF (Graphics Interchange Format) or JPEG (Joint Photographic Experts Group).
The way you use it is simply to put an image file in your workspace and then call

new GImage("filename")

where filename is the name of that file.  This creates for you a GImage object that you can
position on the screen just like any other GObject.  A GImage object is both GResizable
and GScalable, but not GFillable.  Resizing or scaling an image has the effect of
stretching or compressing the pixels in the image and is implemented by the standard
graphics tools in Java.

The GPolygon class
The GPolygon class is the most complex of the shape classes, but it is not that hard to
use.  The primary difference in the design is that the constructor for a GPolygon does not
create the whole thing.  Rather, what you get is an empty GPolygon to which you can
then add vertices or edges using the methods addVertex, addEdge, and addPolarEdge.

These methods are easiest to illustrate by example.  The simplest method to
explain is  addVertex(x, y), which adds a vertex at the point (x, y) relative to the
location of the polygon.  For example, the following code defines a diamond-shaped
polygon in terms of its vertices, as shown in the diagram at the right:

GPolygon diamond = new GPolygon();
diamond.addVertex(-22, 0);
diamond.addVertex(0, 36);
diamond.addVertex(22, 0);
diamond.addVertex(0, -36);

The diamond is drawn so that its center is at the point (0, 0) in the coordinate space of the
polygon.  Thus, if you were to add diamond to a GCanvas and set its location to the point
(300, 200), the diamond would be centered at that location.

The addEdge(dx, dy) method is similar to addVertex, except that the parameters
specify the displacement from the previous vertex to the current one.  One could therefore
draw the same diamond by making the following sequence of calls:

GPolygon diamond = new GPolygon();
diamond.addVertex(-22, 0);
diamond.addEdge(22, 36);
diamond.addEdge(22, -36);
diamond.addEdge(-22, -36);
diamond.addEdge(-22, 36);

Note that the first vertex must still be added using addVertex, but that subsequent ones
can be defined by specifying the edge displacements. Moreover, the final edge is not
explicitly necessary because the polygon is automatically closed before it is drawn.

Some polygons are easier to define by specifying vertices; others are more easily
represented by edges.  For many polygonal figures, however, it is even more
convenient to express edges in polar coordinates.  This mode of specification is
supported in the GPolygon class by the method addPolarEdge, which is identical to
addEdge except that its arguments are the length of the edge and its direction
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expressed in degrees counterclockwise from the +x axis.  This method makes it easy to
create figures with more sophisticated structure, such as the centered hexagon generated
by the following method (as shown on the right using 36 pixels as the value of side):

GPolygon createHexagon(double side) {
GPolygon hex = new GPolygon();
hex.addVertex(-side, 0);
int angle = 60;
for (int i = 0; i < 6; i++) {

hex.addPolarEdge(side, angle);
angle -= 60;

}
return hex;

}

The GPolygon class implements the GFillable and GScalable interfaces, but not
GResizable.  It also supports the method rotate(theta), which rotates the polygon
theta degrees counterclockwise around its origin.

8.3 Facilities available in the GraphicsProgram class
The preceding sections described the various shape classes available in the GObject
hierarchy but did not discuss what you can do with those objects once you have them.
Internally, graphical objects are added to a graphical canvas, which is implemented as the
GCanvas class.  Most of the time, however, you will not need to use GCanvas explicitly
because the GraphicsProgram class you have already seen creates a GCanvas and fills
the program window with it.  It then intercepts all the messages you might send to a
GCanvas and forwards them along.  Those methods are listed in Figure 8-5.

FIGURE 8-5    Methods supported by the GraphicsProgram class (and by GCanvas)

void add(GObject gobj)
Adds a graphical object to the canvas at its internally stored location.

void add(GObject gobj, double x, double y)
Adds a graphical object to the canvas and sets its location as indicated.

void remove(GObject gobj)
Removes the specified graphical object from the canvas.

void removeAll()
Removes all graphical objects from the canvas.

int getWidth()
Returns the width of the canvas in pixels.

int getHeight()
Returns the height of the canvas in pixels.

int getElementCount()
Returns the number of graphical objects contained on the canvas.

GObject getElement(int i)
Returns the graphical object at the specified index, numbering from back to front.

GObject getElementAt(double x, double y)
Returns the frontmost object containing the specified point, or null if no such object exists.

Most of these methods are completely straightforward.  The only one that deserves
special mention is the method

GObject getElementAt(double x, double y)

which returns the object, if any, at the coordinates (x, y).  If there is more than one such
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object, getElementAt returns the one that is in front according to the z ordering
established by the GObject methods like sendToBack and sendToFront.  But what if
there is no object there?  In that case, getElementAt returns the special constant null,
which is a reserved word in Java that indicates that there is in fact no object
corresponding to that value.

The getWidth and getHeight methods make it possible to determine the size of the
graphics canvas.  For example, the constructor

new GLine(0, getHeight(), getWidth(), 0)

creates a GLine object that extends from the lower left corner of the canvas to the upper
right corner.  These methods also make it possible to center graphical objects in the
window because the x- and y-coordinates of the center of the window can be expressed as
getWidth() / 2 and getHeight() / 2, respectively.

8.4 Animation and interactivity
So far, the graphical programs you have seen in this text produce a fixed picture on the
screen that does not change after you have put it together.  Although the facilities in the
graphics library allow you to create wonderful pictures in this way, the programs that you
write won’t be nearly as exciting until you learn how to change those pictures as the
program runs.  You might, for example, want to have particular graphical objects move
across the screen or have them change their size and color.  In computer graphics, the
process of updating a displayed image so that it changes over time is called animation.

Time-based animation
The easiest way to animate graphical programs is to write a loop in your program that
makes a small change to the image and then suspends the program for a very short time
interval.  A very simple example of this style of graphics is shown in Figure 8-6, which
moves a GLabel across the screen from right to left, just the way the headline displays in
New York’s Times Square do.

The first part of the run method is very much like the “hello, world” program from
Chapter 2.  The first three lines are

GLabel label = new GLabel(HEADLINE);
label.setFont("Times-72");
add(label, getWidth(), (getHeight() + label.getAscent()) / 2);

which create a new GLabel, set its font to something appropriately large for a headline,
and then add the label to the window.  The coordinates, however, might seem a little
surprising at first.  The expression for the y-coordinate of the label—cumbersome as it
seems to be—is actually the idiomatic expression for centering a label vertically on the
screen.  The baseline of the label needs to be at the vertical center of the window, but
shifted further towards the bottom by half the vertical ascent of the characters.  It is the
expression for the x-coordinate that is more surprising, because positioning the label so
that its x-coordinate is the width of the window means that the entire label is outside the
visible part of the window.

If the display stayed that way, the TimesSquare program would simply display an
empty canvas.  The rest of the run method, however, has the effect of changing the
display so that the label gradually moves across the window.  The code looks like this:
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FIGURE 8-6    Program to animate a text label

/*
 * File: TimesSquare.java
 * ----------------------
 * This program displays the text of the string HEADLINE
 * on the screen in an animated way that moves it across
 * the display from left-to-right.
 */

import acm.graphics.*;
import acm.program.*;

public class TimesSquare extends GraphicsProgram {

/** Runs the program */
public void run() {

GLabel label = new GLabel(HEADLINE);
label.setFont("Times-72");
add(label, getWidth(), (getHeight() + label.getAscent()) / 2);
while (label.getX() + label.getWidth() > 0) {

label.move(-DELTA_X, 0);
pause(PAUSE_TIME);

}
}

/** The number of pixels to shift the label on each cycle */
private static final double DELTA_X = 2.0;

/** The number of milliseconds to pause on each cycle */
private static final int PAUSE_TIME = 20;

/** The string to use as the value of the label */
private static final String HEADLINE =
  "When in the course of human events it becomes necessary " +
  "for one people to dissolve the political bands which " +
  "connected them with another . . .";

}

while (label.getX() + label.getWidth() > 0) {
label.move(-DELTA_X, 0);
pause(PAUSE_TIME);

}

For the moment, forget about the condition in the while loop and focus on the two
statements that make up the body.  The first is

label.move(-DELTA_X, 0);

which adjusts the x-coordinate of the label to move it DELTA_X pixels to the left, where
DELTA_X is defined to have the value 2.  Thus, on each iteration of the while loop, the
label moves two pixels leftward.  The second line is

pause(PAUSE_TIME);
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which causes the program to suspend its operation for the specified number of
milliseconds.  Sleeping for 20 milliseconds means that the display will be updated 50
times a second, which is well below the threshold at which the eye perceives motion as
continuous.

The call to pause in the TimesSquare program is necessary to achieve the effect of
animation.  Computers today run so quickly that the label would instantly zip off the left
side of the window if you didn’t slow things down enough to bring the operation back to
human speed.  The fact that the label will eventually—even at this slower speed—move
off the left edge makes it easier to understand the condition in the while loop.  The
expression label.getX() + label.getWidth() indicates the x-coordinate of the
rightmost part of the label.  As long as that is still greater than 0, some part of the label
will be visible on the screen.  When the last character shifts off the left edge, the while
loop stops.

You can change the speed of an animation in either of two ways.  First, you can
change the distance that the position of each object is updated on each time step.  For
example, setting DELTA_X to 4 would double the apparent speed of the motion, although it
would probably also begin to appear more jerky.  The second approach is that you can
change the delay time.  Intuitively, you could double the speed of the display by halving
the delay time on each cycle, although that strategy has limits in practice.  The delay that
a program experiences when it calls pause is not guaranteed to be precise.  Moreover,
there is always some overhead associated with pausing a program, and it is impossible to
run the animation with a cycle time that is less than the overhead.  Thus, there is always
some point at which reducing the value of PAUSE_TIME in this example will no longer
have any noticeable effect.

The general pattern for programs that animate the display can be expressed in the
following pseudocode form:

public void run() {
Initialize the graphical objects in the display.
while (as long as you want to run the animation) {

Update the properties of the objects that you wish to animate.
pause(delay time);

}

The TimesSquare program from Figure 8-6 fits this paradigm, as does the code in Figure
8-7, which displays a square whose color changes randomly once a second.

Responding to mouse events
In the preceding section, you learned a simple strategy through which you can animate a
graphical program so that the display changes with time.  If you want to write programs
that operate like the computing applications you use every day, you will also need to
learn how to make those programs interactive by having them respond to actions taken by
the user.  In some ways, the ConsoleProgram examples you have been writing all along
are interactive.  Most of these programs display messages on the console and wait for a
response, which is certainly one style of interaction.  In those examples, however, the
user was asked for input only at certain well-defined points in the program’s execution
history, such as when the program called a console method like readInt and waited for a
response.  This style of interaction is called synchronous, because it occurs in sync with
the program operation.  Modern user interfaces, however, are asynchronous in that they
allow the user to intercede at any point, typically by using the mouse or the keyboard to
trigger a particular action.
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FIGURE 8-7    Program to display a square whose color changes once a second

/*
 * File: ColorChangingSquare.java
 * ------------------------------
 * This program puts up a square in the center of the window
 * and randomly changes its color every second.
 */

import acm.graphics.*;
import acm.program.*;
import acm.util.*;

public class ColorChangingSquare extends GraphicsProgram {

/** Runs the program */
public void run() {

GRect square = new GRect(SQUARE_SIZE, SQUARE_SIZE);
square.setFilled(true);
add(square, (getWidth() - SQUARE_SIZE) / 2,
            (getHeight() - SQUARE_SIZE) / 2);
while (true) {

square.setColor(rgen.nextColor());
pause(PAUSE_TIME);

}
}

/** Size of the square in pixels */
private static final double SQUARE_SIZE = 100;

/** Pause time in milliseconds */
private static final double PAUSE_TIME = 1000;

/** Random number generator */
private RandomGenerator rgen = new RandomGenerator();

}

Events that occur asynchronously with respect to the program operation—mouse
clicks, key strokes, and the like—are represented using a structure called an event.  When
an event occurs, the response is always the invocation of a method in some object that is
waiting to hear about that event.  Such an object is called a listener.  You’ll have the
opportunity to see several more examples of listeners later in the text, but it is wonderful
to be able to use the mouse, even at this early stage in programming.

In Java, objects that listen for user-interface events do so by implementing the methods
in a specific listener interface defined in the package java.awt.event.  This package
contains several interfaces that allow clients to respond to mouse clicks, button presses,
keystrokes, changes in component sizes, and many more.  For the moment, this text will
concentrate only on mouse events, which involve two types of listeners.  The first such
interface is MouseListener, which makes it possible to listen for user actions that
primarily involve clicking the mouse; the second is MouseMotionListener, which is
used to track the mouse as it moves.  The reason for separating these two types of
listeners is that mouse motions generate many more events than click-type actions do.  If
your application is driven only by mouse clicks and never has to track the mouse itself,
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that application will run more efficiently if it does not have to respond to frequent motion
events in which it has no interest.

The listener methods that can be called in response to mouse events are outlined in
Figure 8-8. The GraphicsProgram class declares itself to be both a MouseListener and
a MouseMotionListener by defining implementations for each of these listener methods;
those implementations, however, do nothing at all.  For example, the standard definition
of mouseClicked is simply

FIGURE 8-8    Standard listener methods for responding to mouse events

MouseListener interface
void mousePressed(MouseEvent e)

Called whenever the mouse button is pressed.
void mouseReleased(MouseEvent e)

Called whenever the mouse button is released.
void mouseClicked(MouseEvent e)

Called when the mouse button is “clicked” (pressed and released within a short span of time).
void mouseEntered(MouseEvent e)

Called whenever the mouse enters the canvas.
void mouseExited(MouseEvent e)

Called whenever the mouse exits the canvas.

MouseMotionListener interface
void mouseMoved(MouseEvent e)

Called whenever the mouse is moved with the button up.
void mouseDragged(MouseEvent e)

Called whenever the mouse is moved with the button down.

public void mouseClicked(MouseEvent e) {
/* Empty */

}

Thus, unless you take some action to the contrary, a GraphicsProgram will simply
ignore mouse clicks, along with all the other mouse events.  If you, however, want to
change the behavior for a particular event, all you need to do is add a new definition for
that method.  This new definition supersedes the original definition and will be called
instead of the empty one.  Any methods that you don’t override continue to do what they
did by default, which was nothing.  Thus, you only have to override the methods you
need.

Each of the methods listed in Figure 8-8 takes as its argument an object of type
MouseEvent, which is a class defined as part of Java’s standard window system toolkit.
Like the listener interfaces themselves, the MouseEvent class lives in the package
java.awt.event, which means that you need to add the import statement

import java.awt.event.*;

to the beginning of any program that uses mouse events.

The MouseEvent class includes a rich set of methods for designing sophisticated user
interfaces.  This text, however, uses only two of those methods.  Given a MouseEvent
stored in a variable named e, you can determine the location of the mouse by calling
e.getX() and e.getY().  Being able to detect the location at which a mouse event
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occurred enables you to write many interesting mouse-driven applications, as illustrated
by the examples in the two subsections that follow.

Dragging objects on the canvas
The first example of using the mouse is a program that puts up two objects on the screen
and lets the user drag them around, which appears as Figure 8-9.

FIGURE 8-9    Program to drag objects on the canvas

import java.awt.*;
import java.awt.event.*;
import acm.graphics.*;
import acm.program.*;

/** This class displays a mouse-draggable rectangle and oval */
public class DragObjects extends GraphicsProgram {

/** Runs the program */
public void run() {

GRect rect = new GRect(100, 100, 150, 100);
rect.setFilled(true);
rect.setColor(Color.RED);
add(rect);
GOval oval = new GOval(300, 115, 100, 70);
oval.setFilled(true);
oval.setColor(Color.GREEN);
add(oval);
addMouseListeners();

}

/** Called on mouse press to record the coordinates of the click */
public void mousePressed(MouseEvent e) {

lastX = e.getX();
lastY = e.getY();
gobj = getElementAt(lastX, lastY);

}

/** Called on mouse drag to reposition the object */
public void mouseDragged(MouseEvent e) {

if (gobj != null) {
gobj.move(e.getX() - lastX, e.getY() - lastY);
lastX = e.getX();
lastY = e.getY();

}
}

/** Called on mouse click to move this object to the front */
public void mouseClicked(MouseEvent e) {

if (gobj != null) gobj.sendToFront();
}

/* Instance variables */
private GObject gobj; /* The object being dragged */
private double lastX; /* The last mouse X position */
private double lastY; /* The last mouse Y position */

}
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The first part of the run method in Figure 8-9 should be entirely familiar.  It simply
creates two graphical objects—a red rectangle and a green oval—and then adds them to
the canvas.  It’s the line

addMouseListeners();

that introduces something new. The addMouseListeners method in GraphicsProgram
hides a modest amount of internal complexity, but has the effect of enabling the program
to watch the mouse and respond to its events.  As described in the preceding section, you
specify the actions to take when those events occur by overriding listener methods in
your program.  These listener methods are then called automatically when those events
occur.

The first listener method defined in Figure 8-9 is mousePressed, which is called when
the mouse button first goes down.  That method looks like this:

public void mousePressed(MouseEvent e) {
lastX = e.getX();
lastY = e.getY();
gobj = getElementAt(lastX, lastY);

}

The first two statements simply record the x and y coordinates of the mouse in the
variables lastX and lastY.  As you can see from the program, these variables are
declared as instance variables for the object and not as local variables of the sort that you
have seen in most methods.  It turns out that you will need these values later when you try
to drag the object.  Because local variables disappear when a method returns, you have to
hold onto these in the object itself.

The last statement in mousePressed checks to see what object on the canvas contains
the current mouse position.  Here, it is important to recognize that there are two
possibilities. First, you could be pressing the mouse button on top of an object, which
means that you want to start dragging it.  Second, you could be pressing the mouse button
somewhere else on the canvas at which there is no object to drag.  The getElementAt
method looks at the specified position and returns the object it finds there.  If there is
more than one object covering that space, it chooses the one that is in front of the others
in the z-axis ordering.  If there are no objects at that location, getElementAt returns the
special value null, which signifies an object that does not exist.  The other methods will
check for this value to determine whether there is an object to drag.

The mouseDragged method consists of the following code:

public void mouseDragged(MouseEvent e) {
if (gobj != null) {

gobj.move(e.getX() - lastX, e.getY() - lastY);
lastX = e.getX();
lastY = e.getY();

}
}

The if statement simply checks to see whether there is an object to drag.  If the value of
gobj is null, there is nothing to drag, and the rest of the method is simply skipped.  If
there is an object, you need to move it by some distance in each direction.  That distance
does not depend on where the mouse is in an absolute sense but rather in how far it has
moved from where you last took stock of its position.  Thus, the arguments to the move
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method are—for both the x and y components—the location where the mouse is now
minus where it used to be.  Once you have moved it, you then have to record the mouse
coordinates again so that the location will update correctly on the next mouseDragged
call.

The final listener method specified in Figure 8-9 is mouseClicked, which looks like
this:

public void mouseClicked(MouseEvent e) {
if (gobj != null) gobj.sendToFront();

}

The intent of this method is to allow the user to move an object to the front by clicking on
it, thereby bringing it out from under the other objects on the canvas.  The code is almost
readable as an English sentence

If there is a current object, send it to the front of the canvas display.

The only question you might have is how the variable gobj, which holds the current
object, is initialized in this case.  The answer depends on the fact that the mouseClicked
event is always generated in conjunction with a mousePressed and a mouseReleased
event, both of which precede the mouseClicked event.  The gobj variable is therefore set
by mousePressed, just as if you were going to drag it.

A simple drawing program
Most of you have used drawing programs that allow you to draw shapes on a canvas.  In a
typical drawing program, you create a rectangle by pressing the mouse at one corner and
then dragging it to the opposite corner.  For example, if the user pressed the mouse at the
location in the left diagram and then dragged it to the position in which you see it in the
right diagram, the program would create the rectangle shown:

DrawRectangle DrawRectangle

To make it easy for the user to see the shape as it is drawn, drawing programs typically
update the coordinates of the rectangle on each call to mouseDragged.  When the user
releases the mouse button, the rectangle is complete and stays where it is.  The user can
then go back and add more rectangles to the screen by clicking and dragging in the same
way.

Figure 8-10 shows a simple GraphicsProgram that allows the user to create rectangles
by clicking and dragging as illustrated in the example.  The only part of the program that
might not be immediately obvious is in the calculation of the coordinates for the rectangle
in the mouseDragged method.  The example above illustrates only one possible dragging
operation, in which the initial mouse click is in the upper left corner of the GRect.  The
program, however, has to work just as well if the user drags the mouse in some other
direction besides to the right and down.  For example, it should also be possible to draw a
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FIGURE 8-10    Program to draw rectangles on the canvas

/*
 * File: DrawRectangle.java
 * ------------------------
 * This program allows users to create rectangles on the canvas
 * by clicking and dragging with the mouse.
 */

import java.awt.event.*;
import acm.graphics.*;
import acm.program.*;

/** This class allows users to drag rectangles on the canvas */
public class DrawRectangle extends GraphicsProgram {

/** Runs the program */
public void run() {

addMouseListeners();
}

/** Called on mouse press to record the starting coordinates */
public void mousePressed(MouseEvent e) {

startX = e.getX();
startY = e.getY();
currentRect = new GRect(startX, startY, 0, 0);
currentRect.setFilled(true);
add(currentRect);

}

/** Called on mouse drag to reshape the current rectangle */
public void mouseDragged(MouseEvent e) {

double x = Math.min(e.getX(), startX);
double y = Math.min(e.getY(), startY);
double width = Math.abs(e.getX() - startX);
double height = Math.abs(e.getY() - startY);
currentRect.setBounds(x, y, width, height);

}

/* Private state */
private GRect currentRect; /* The current rectangle   */
private double startX; /* The initial mouse X position */
private double startY; /* The initial mouse Y position */

}

rectangle by dragging to the left, as shown in the following illustration:

DrawRectangle DrawRectangle
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In this example, the origin of the GRect is no longer at the original position of the mouse.
The width and height of a GRect cannot be negative, which means that the program needs
to change the origin of the GRect whenever the mouse is moved to the left or upward.

8.5 Creating compound objects
The class from the acm.graphics hierarchy that has not yet been discussed is the
GCompound class, which turns out to be extraordinarily handy.  The GCompound class
makes it possible to collect several GObjects together into a single unit, which is itself a
GObject.  This ability extends the notion of abstraction as discussed for methods into the
domain of graphical objects.  In much the same way that methods allow you to assemble
many statements into a single unit, the GCompound class allows you to put together
graphical objects into a single unit that has its own integrity as an graphical object.

To understand how the GCompound class works, it is easiest to start with a simple
example.  Imagine that you wanted to assemble the following face on the canvas:

For the most part, this figure would be easy to create.  All you need to do is create a new
GOval for the head, two GOvals for the eyes, a GRect for the mouth, and a GPolygon for
the nose.  If you put each of these objects on the canvas individually, however, it will be
hard to manipulate it as a unit.  Suppose, for example, that you wanted to move the face
around as a unit.  Doing so would require moving every piece independently.  It would be
better simply to tell the entire face to move.

The code in Figure 8-11 uses the GCompound class to do just that.  Figure 8-11 contains
the code for a GFace class that extends GCompound to create a face object that contains the
necessary components.  These components are created and then added in the appropriate
places by the first entry in the GFace class.  This entry is not quite the same as a
traditional method in the following respects:

• Its name matches the name of the class.
• It does not specify a return type

In Java, such methods are called constructors and are used to create new instances of a
particular class.  Here, the GFace constructor makes it possible to create a new GFace
object by specifying the width and height in a statement like

GFace face = new GFace(200, 300);
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FIGURE 8-11    A “graphical face” class defined using GCompound

/*
 * File: GFace.java
 * ----------------
 * This file defines a compound GFace class.
 */

import acm.graphics.*;

public class GFace extends GCompound {

/** Construct a new GFace object with the specified dimensions. */
public GFace(double width, double height) {

head = new GOval(width, height);
leftEye = new GOval(EYE_WIDTH * width, EYE_HEIGHT * height);
rightEye = new GOval(EYE_WIDTH * width, EYE_HEIGHT * height);
nose = createNose(NOSE_WIDTH * width, NOSE_HEIGHT * height);
mouth = new GRect(MOUTH_WIDTH * width, MOUTH_HEIGHT * height);
add(head, 0, 0);
add(leftEye, 0.25 * width - EYE_WIDTH * width / 2,
             0.25 * height - EYE_HEIGHT * height / 2);
add(rightEye, 0.75 * width - EYE_WIDTH * width / 2,
              0.25 * height - EYE_HEIGHT * height / 2);
add(nose, 0.50 * width, 0.50 * height);
add(mouth, 0.50 * width - MOUTH_WIDTH * width / 2,
           0.75 * height - MOUTH_HEIGHT * height / 2);

}

/** Creates a triangle for the nose */
private GPolygon createNose(double width, double height) {

GPolygon poly = new GPolygon();
poly.addVertex(0, -height / 2);
poly.addVertex(width / 2, height / 2);
poly.addVertex(-width / 2, height / 2);
return poly;

}

/* Constants specifying feature size as a fraction of the head size */

private static final double EYE_WIDTH    = 0.15;
private static final double EYE_HEIGHT   = 0.15;
private static final double NOSE_WIDTH   = 0.15;
private static final double NOSE_HEIGHT  = 0.10;
private static final double MOUTH_WIDTH  = 0.50;
private static final double MOUTH_HEIGHT = 0.03;

/* Instance variables */

private GOval head;
private GOval leftEye, rightEye;
private GPolygon nose;
private GRect mouth;

}
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which constructs a new GFace whose width is 200 and whose height is 300 pixels.  Inside
the constructor, the sizes of each component are expressed in terms of the width and
height of the face as a whole, so that small faces have, for example, eyes of the
appropriately small size.  Once the constructor has created each of the features, it then
adds each of them in turn, using calls like

add(nose, 0.50 * width, 0.50 * height);

which adds the nose object half the width and half the height from the upper left corner of
the face, otherwise known as the center.

The first thing to recognize, however, is that this add call is not adding the objects to
the canvas, but rather to the compound.  The add method you’ve been using up to now is
the one defined in GraphicsProgram, which does add objects to the GCanvas that it
installs in the window.  This version of the add method is defined in GCompound; the
GFace class extends GCompound and therefore uses its add method.  Adding things to a
GCompound is intuitively analogous to the same operation at the canvas level except that
the objects stay together as a unit.  You can move everything in the GCompound simply by
moving the GCompound itself.

Another important observation to make is that each GCompound has its own coordinate
system.  In that coordinate system, the point (0, 0) is the upper left corner of the
compound and not of the entire canvas.  This makes it possible for you to define a
GCompound without having to know where it is going to appear on the canvas.  When the
components of a GCompound actually get drawn, they are shifted to the appropriate
position.

Figure 8-12 contains the code necessary to create a GFace and allow the user to drag it
as a unit, just as in the ObjectDrag example from the preceding section.

8.6  Principles of good object-oriented design
In contrast to the individual classes described in Chapter 6, the graphical facilities
described in this chapter are part of a package—acm.graphics—that includes a large set
of classes and interfaces.  The contents of the package as a whole are summarized in the
javadoc documentation, which also includes detailed descriptions of each class and
method in the package.  The package-level documentation appears in Figure 8-13;
clicking on the various links shown on that page will take you to the more detailed
documentation for the classes that comprise the acm.graphics package.

No matter at what level you are working—individual methods, classes that offer a suite
of those methods, or packages that provide a set of classes—you need to think carefully
about design.  If you were programming entirely for your own amusement, design issues
might seem relatively unimportant.  But that situation rarely applies in the computing
industry.  Programs are developed cooperatively, with programmers on different parts of
a large project agreeing to share a common set of stylistic conventions and to coordinate
the ways in which their independent pieces fit together.  In the absence of cooperative
agreements, the programming process would descend—as it all too often does—into
chaos.  The important question, therefore, is how should one design methods, classes, and
packages for other programmers to use.  What are the principles that underlie well-chosen
designs?
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FIGURE 8-12    A program to drag a GFace object

/*
 * File: DragFace.java
 * -------------------
 * This program creates a GFace object and allows the user to drag
 * it around the canvas.
 */

import java.awt.event.*;

import acm.graphics.*;
import acm.program.*;

public class DragFace extends GraphicsProgram {

/** Width of the face */
private static final double FACE_WIDTH = 200;

/** Height of the face */
private static final double FACE_HEIGHT = 300;

/** Runs the program */
public void run() {

GFace face = new GFace(FACE_WIDTH, FACE_HEIGHT);
double x = (getWidth() - FACE_WIDTH) / 2;
double y = (getHeight() - FACE_HEIGHT) / 2;
add(face, x, y);
addMouseListeners();

}

/** Called on mouse press to record the coordinates of the click */
public void mousePressed(MouseEvent e) {

lastX = e.getX();
lastY = e.getY();
gobj = getElementAt(lastX, lastY);

}

/** Called on mouse drag to reposition the object */
public void mouseDragged(MouseEvent e) {

if (gobj != null) {
gobj.move(e.getX() - lastX, e.getY() - lastY);
lastX = e.getX();
lastY = e.getY();

}
}

/** Called on mouse click to move this object to the front */
public void mouseClicked(MouseEvent e) {

if (gobj != null) gobj.sendToFront();
}

/* Private state */
private GObject gobj; /* The object being dragged */
private double lastX; /* The last mouse X position */
private double lastY; /* The last mouse Y position */

}
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FIGURE 8-13    Documentation page for the acm.graphics package

Developing a solid understanding of those principles requires you to understand that
clients and implementors look at the facilities provided by a method, class, or package
from different perspectives.  Clients want to know what operations are available and are
unconcerned about the details of the implementation.  For implementors, the details of
how those operations work are the fundamental issue.

It is, however, essential for implementors to keep the needs of clients in mind.  If you
are trying to design effective resources for others, you need to balance several criteria.
Those criteria are described here at the level of an individual class, but these same
considerations also apply at the lower level of individual methods and the higher level of
complete packages:
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• Unified.  A class should define a consistent abstraction with a clear unifying theme.  If
a class does not fit within that theme, it should not be part of the class.

• Simple.  The class design should try to simplify things for the client. To the extent that
the underlying implementation is itself complex, the class must seek to hide that
complexity.

• Sufficient.  For clients to use a class, it must provide sufficient functionality to meet
their needs.  If some critical operation is missing from a class, clients may decide to
abandon it and develop their own tools.  As important as simplicity is, the designer
must avoid simplifying a class to the point that it becomes useless.

• General.  A well-designed class should be flexible enough to meet the needs of many
different clients.  A class that performs a narrowly defined set of operations for one
client is not nearly as useful as one that can be used in many different situations.

• Stable.  The methods defined in a class should continue to have precisely the same
structure and effect, even as the package that includes it evolves.  Making changes in
the behavior of a class forces clients to change their programs, which reduces the
utility of that class.

The sections that follow discuss each of these criteria in detail.

The importance of a unifying theme

Unity gives strength.

—Aesop, The Bundle of Sticks, 6th century BCE

A central feature of a well-designed class is that it presents a unified and consistent
abstraction.  In part, this criterion implies that the methods within a class should be
chosen so that they reflect a coherent theme.  For example, the Math class consists of
mathematical methods, the ConsoleProgram class provides methods that make it easy to
converse with a user typing at a console, and the various classes in the acm.graphics
package provide methods for arranging graphical objects on a canvas.  Each method
exported by these classes fits the purpose of that class.  For example, you would not
expect to find sqrt in the GObject class, even though graphical applications will often
call sqrt to compute the length of a diagonal line.  The sqrt method fits much more
naturally into the framework of the Math class.

The principle of a unifying theme also influences the design of the methods within a
class.  The methods within a class should behave in as consistent a way as possible.
Differences in the ways its methods operate make using a class much harder for the
client.  For example, all the methods in the acm.graphics package use coordinates
specified in pixels and angles specified in degrees.  If the implementor of the class had
decided to toss in a method that required a different unit of measurement, clients would
have to remember what units to use for each method.

Simplicity and the principle of information hiding

Embrace simplicity.

—Lao-tzu, The Way of Lao-tzu, ca. 550 BCE

Because a primary goal of using classes is to reduce the complexity of the programming
process, it makes sense that simplicity is a desirable criterion in the design of a class.  In
general, a class should be as easy to use as possible.  The underlying implementation may
perform extremely intricate operations, but the client should nonetheless be able to think
about those operations in a simple, more abstract way.
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As noted earlier in this chapter, the documentation that you need to use Java classes
and packages is usually presented on the web.  If, for example, you want to know how to
use the Math class, you go to the web page that contains its javadoc description.  If that
documentation is well-designed, it tells you precisely the information that you need to
know as a client, but no more.  For clients, getting too much information can be as bad as
getting too little, because additional detail is likely to make the class more difficult to
understand.  Often, the real value of a class lies not in the information it reveals but rather
in the information it hides.

When you design a class, you should try to protect the client from as many of the
complicating details of the implementation as possible.  In that respect, it is perhaps best
to think of a class not primarily as a communication channel between the client and the
implementation, but instead as a wall that divides them.

implementationclient

Like the wall that divided the lovers Pyramus and Thisbe in Greek mythology, the wall
representing a class has a small chink that allows the client and the implementation to
communicate.  The main purpose of the wall, however, is to keep the two sides apart.
Because it forms the border between the abstraction perspectives on each side, that wall is
often called an abstraction boundary.  Ideally, all the complexity involved in the
realization of a class lies on the implementation side of the wall.  The design is successful
if it keeps that complexity away from the client side.  Keeping details confined to the
implementation domain is called information hiding.

The principle of information hiding has important practical implications for class
design.  When you write a class, you should be sure you don’t reveal details of the
implementation, even in the commentary.  Especially if you are writing a class and an
implementation at the same time, you may be tempted to document in your class all the
clever ideas you used to write the implementation.  Try to resist that temptation.  The
class is written for the benefit of the client and should contain only what the client needs
to know.

Similarly, you should design the methods in a class so that they are as simple as
possible.  If you can reduce the number of arguments or find a way to eliminate confusing
special cases, it will be easier for the client to understand how to use those methods.
Moreover, it is usually good practice to limit the total number of methods exported by
class, so that the client does not become lost in a mass of methods, unable to make sense
of the whole.

Meeting the needs of your clients

Everything should be as simple as possible, but no simpler.

—attributed to Albert Einstein

Simplicity is only part of the story.  You can easily make a class simple just by throwing
away any parts of it that are hard or complicated.  There is a good chance you will also
make the class useless.  Sometimes clients need to perform tasks that have some inherent
complexity.  Denying your clients the tools they require just to make the class simpler is
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not an effective strategy.  Your class must provide sufficient functionality to serve the
clients’ needs.  Learning to strike the right balance between simplicity and completeness
in class design is one of the fundamental challenges in programming.

In many cases, the clients of a class are concerned not only with whether a particular
method is available but also with the efficiency of the underlying implementation.  For
example, if a programmer is developing a system for air-traffic control and needs to call
methods provided by a class, those methods must return the correct answer quickly.  Late
answers may be just as devastating as wrong answers.

For the most part, efficiency is a concern for the implementation rather than the
abstract design.  Even so, you will often find it valuable to think about implementation
strategies while you are designing the class itself.  Suppose, for example, that you are
faced with a choice of two designs.  If you determine that one of them would be much
easier to implement efficiently, it makes sense—assuming there are no compelling
reasons to the contrary—to choose that design.

The advantages of general tools

Give us the tools and we will finish the job.

—Winston Churchill, radio address, 1941

A class that is perfectly adapted to a particular client’s needs may not be useful to others.
A good class abstraction serves the needs of many different clients.  To do so, it must be
general enough to solve a wide range of problems and not be limited to one highly
specific purpose.  By choosing a design that offers your clients flexibility in how they use
the abstraction, you can create classes that are widely used.

The desire to ensure that a class remains general has an important practical
implication.  When you are writing a program, you will often discover that you need a
particular tool.  If you decide that the tool is important enough to go into a class, you then
need to change your mode of thought.  When you design the class for that class, you have
to forget about the application that caused you to want the tool in the first place and
instead design such a tool for the most general possible audience.

The value of stability

People change and forget to tell each other.  Too bad—causes so many mistakes.

—Lillian Hellman, Toys in the Attic, 1959

Class and package designs have another property that makes them critically important to
programming: they tend to be stable over long periods of time.  Stable classes can
dramatically simplify the problem of maintaining large programming systems by
establishing clear boundaries of responsibility.  As long as the client perspective on a
class does not change, both implementors and clients are free to make changes on their
own side of the abstraction boundary.

For example, suppose that you are the implementor of the Math class.  In the course of
your work, you discover a clever new algorithm for calculating the sqrt method that cuts
in half the time required to calculate a square root.  If you can say to your clients that you
have a new implementation of sqrt that works just as it did before, only faster, they will
probably be pleased.  If, on the other hand, you were to say that the name of the method
had changed or that its use involved certain new restrictions, your clients would be
justifiably annoyed.  To use your “improved” implementation of square root, they would



216 The Art and Science of Java

be forced to change their programs.  Changing programs is a time-consuming, error-prone
activity, and many clients would happily give up the extra efficiency for the convenience
of being able to leave their programs alone.

Summary
In this chapter, you have had the chance to explore the acm.graphics package in more
detail and to develop an appreciation of the entire package as an integrated collection of
tools.  Along the way, you have also had the opportunity to think holistically about the
design of the graphics package and the assumptions, conventions, and metaphors on
which the package is based.

Important points introduced in this chapter include:

• The set of assumptions, conventions, and metaphors that underlie the design of a
package represent its conceptual model.  Before you can use a package effectively, you
must take the time to understand the model on which it is based.

• An essential part of the model for the acm.graphics package is the coordinate system
that it uses.  The acm.graphics package follows the conventions of the standard
graphics packages in Java by specifying coordinates in pixels and placing the origin in
the upper left corner of a canvas.  This coordinate system is different from the
Cartesian plane used in high-school geometry classes, which has its origin in the lower
left.

• The foundation of the acm.graphics package is the GObject class, which is the
common superclass of all objects that can be displayed on a canvas.  The GObject
class itself is an abstract class, which means that there are no objects whose primary
class is GObject.  When you create a graphical image on a canvas, the classes that you
actually use are the subclasses of GObject called shape classes: GArc, GImage,
GLabel, GLine, GOval, GPolygon, GRect, GRoundRect, and G3DRect.

• Each of the shape classes inherits a set of methods from GObject that all graphical
objects share.  In addition, each shape class includes additional methods that define its
particular behavior.  Several of the shape classes also share common behavior by
virtue of implementing one or more of the interfaces GFillable, GResizable, and
GScalable.

• To display a graphical object, you need to add it to a GCanvas, which serves as the
background for a “collage” of GObjects.  In most cases, that GCanvas will be provided
automatically as part of a GraphicsProgram, although you can also create your own
GCanvas objects and use them independently of the acm.program package.

• You can make your program respond to mouse events by implementing one or more of
the following listener methods: mousePressed, mouseReleased, mouseClicked,
mouseMoved, mouseDragged, mouseEntered, and mouseExited.  In most cases, it
makes sense to use the GCanvas as the source of these events; you can enable the event
listeners in the GCanvas by calling addMouseListeners as part of the run method.

• You can use the GCompound type to assemble individual objects into larger structures
that you can then manipulate as a unit.

• A well-designed package must be unified, simple, sufficient, general, and stable.  Since
these criteria sometimes conflict with each other, you must learn to strike an
appropriate balance as you design your programs.
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Review questions
1. Why does the text describe the graphical framework used in the acm.graphics

package as a “collage” model?

2. What unit of measurement is used to specify coordinates in acm.graphics?

3. Where is the origin located in the acm.graphics coordinate system?

4. The text of the chapter emphasizes that GObject is an abstract class.  What is the
significance of that designation?

5. Without looking back at the figure in this chapter, draw a diagram that shows the
class hierarchy formed by the GObject class and the shape classes GArc, GImage,
GLabel, GLine, GOval, GPolygon, GRect, GRoundRect, and G3DRect.

6. What methods are defined by the GFillable interface?  Which of the shape classes
implement GFillable?

7. What is the difference between the GResizable and GScalable interfaces?  Which
of the shape classes are scalable but not resizable?

8. In terms of the geometric characteristics of GLabels displayed on a canvas, explain
the significance of the values returned by each of the following methods: getWidth,
getHeight, getAscent, and getDescent.

9. Describe the significance of the start and sweep parameters in the constructor for
the GArc class?

10. How does the acm.graphics package interpret filling in the case of the GArc class?

11. Describe the arcs produced by each of the following calls to the GArc constructor:

a) new GArc(2.0, 2.0, 0, 270);

b) new GArc(2.0, 2.0, 135, -90);

c) new GArc(2.0, 2.0, 180, -45);

d) new GArc(3.0, 1.0, -90, 180);

12. What does it mean if the sweep argument to the GArc constructor is negative?

13. For the GLine class, how do the methods setLocation and setStartPoint differ?

14. Write the Java statements necessary to create each of the following polygonal shapes
as a single GPolygon:

a) b) c)

15. How can you obtain the coordinates of the center of the drawing canvas used by a
GraphicsProgram?
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16. What is an event listener?

17. Describe the purpose of each of the seven mouse listener methods: mousePressed,
mouseReleased, mouseClicked, mouseMoved, mouseDragged, mouseEntered, and
mouseExited.

18. In what package is the MouseEvent class defined?

19. In your own words, describe the purpose of the GCompound class.

20. What are the five criteria for good package design listed in the last section of this
chapter?

Programming exercises
1. Write a GraphicsProgram subclass that draws a pyramid consisting of bricks

arranged in horizontal rows, so that the number of bricks in each row decreases by
one as you move up the pyramid, as shown in the following sample run:

Pyramid

The pyramid should be centered at the bottom of the window and should use
constants for the following parameters:

BRICK_WIDTH The width of each brick (30 pixels)
BRICK_HEIGHT The height of each brick (12 pixels)
BRICKS_IN_BASE The number of bricks in the base (12)

The numbers in parentheses show the values for this diagram, but you must be able
to change those values in your program.

2. One way to draw a heart-shaped figure is by drawing two semicircles on top of a
square that is positioned so that its sides run diagonally, as illustrated by the
following diagram:
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Write a GraphicsProgram that uses this construction to draw a heart on the screen
using the classes GArc and GLine.  Your program should display the heart without
drawing the interior lines that form the top of the square, so the output looks like
this:

Heart

3. Change your definition of the heart from the preceding exercise so that you can
generate a filled red heart as a single GCompound unit whose origin in the center of
the square.  The pieces of the GCompound are now two GArcs (or GOvals) and a
GPolygon, as shown in the following sample run:

Valentine

4. In the 1960s, this symbol

became universally identified as the peace symbol, and it still shows up from time to
time as a motif for T-shirts or jewelry.  The peace symbol took its form from the
letters N and D—the initial letters in nuclear disarmament—as expressed in the
international semaphore code:
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DN



Object-Oriented Graphics 221

The peace symbol is formed by superimposing the lines in these two diagrams
(without the flags) and enclosing them in a circle.

Implement a method drawPeaceSymbol with the header line

void drawPeaceSymbol(double x, double y, double r)

that draws a peace symbol centered at the point (x, y) with a circle of radius r.  Write
a subclass of GraphicsProgram to test your method.

5. Write a GraphicsProgram to draw your initials on the graphics window using only
the GArc and GLine classes rather than GLabel.  For example, if I wrote this
program, I would want the output to be

Initials

Think about the best decomposition to use in writing the program.  Imagine that
you’ve been asked to design a more general letter-drawing library.  How would you
want the methods in that library to behave in order to make using them as simple as
possible for your clients?

6. Write a GraphicsProgram that draws a picture of the Halloween pumpkin shown in
the following diagram:

The head is an orange circle, and the eyes and mouth are filled polygons.  The stem
is presumably a GRect.  Use named constants in your program to define the sizes of
the various features.

7. Write a GraphicsProgram that draws a line drawing of the house shown in the
following diagram:
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Make sure that you use stepwise refinement to decompose this figure into useful
pieces.

8. If you wanted a house to go along with the Halloween pumpkin you designed in
exercise 5, you might want to draw a diagram of the House of Usher, which Edgar
Allen Poe describes as follows:

I looked upon the scene before me . . . upon the bleak walls—upon the vacant
eye-like windows . . . with an utter desperation of soul . . .

From Poe’s description, you might imagine a house that looks something like this:

Write a GraphicsProgram that draws the house illustrated in the diagram, using
named constants to specify the various dimensions.

9. Write a GraphicsProgram that draws the following stylized picture of the Lincoln
Memorial in Washington, D.C.:
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10. Write a GraphicsProgram that creates GLabels for each of the color names RED,
ORANGE, YELLOW, GREEN, CYAN, BLUE, and MAGENTA, and then puts those labels up on
the screen in a random position and in a random color.  It turns out to be difficult to
identify the color of such a label if the name says one thing, but its color is different.

11. Modify the program you wrote in exercise 10 so that pressing the mouse button on
top of one of the GLabels temporarily resets its color to the one that matches its
name.  Releasing the mouse button should choose a new random color for the label.

12. Extend the DrawRectangle program from Figure 8-10 so that clicking the mouse
inside an existing rectangle allows you to drag that rectangle to a new position on the
canvas.

13. Write a program that animates the “Beacons of Gondor” simulation from section 7.4.
Your program should redefine the SignalTower class so that it extends GCompound
and includes a constructor that fills in all the components of the desired tower shape.
For example, if your signal tower is just a box with the name of the tower underneath
it, the chain of towers might look like this:

BeaconsOfGondor

Minas Tirith Amon Din Eilenach Nardol Erelas Min-Rimmon Calenhad Halifirien Rohan

Redefine the lightCurrentTower method so that it fills in the tower rectangle,
changes its color to red, and then pauses for half a second or so. Finally, define a
mouse listener for the SignalTower objects so that clicking on a tower sends a
signal message to that tower, which in turn propagates to the towers in the chain to
the right. Thus, if you were to click on the tower at Minas Tirith, the beacons should
turn red one at a time as the signal moves down the line.

14. Extend the DrawRectangle program so that the left side of the canvas includes a
palette of the five following shapes: a filled rectangle, an outlined rectangle, a filled
oval, an outlined oval, and a straight line, each of which are enclosed in a small
square as shown in the following diagram:
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SimpleDraw

Clicking on one of the squares in the palette chooses that shape.  Thus, if the user
clicks on the filled oval in the middle of the palette, the program should draw filled
ovals.  Clicking and dragging outside of the palette area should draw the currently
selected shape.

15. Write a GraphicsProgram that draws the message

I Love Java

in 18-point London type (or any font you have that’s close) and bounces it around
the canvas.  Whenever any edge of the GLabel would cross the boundary, reverse its
speed in the appropriate direction.



Chapter 9
Strings and Characters

Surely you don’t think numbers are as important as words.
— King Azaz to the Mathemagician

Norton Juster, The Phantom Tollbooth, 1961

Herman Hollerith (1860-1929)

Herman Hollerith studied engineering at City College of New York and the Columbia
School of Mines.  On completing his degree, Hollerith spent a couple of years working as
a statistician for the U.S. Census Bureau before accepting a teaching position at MIT.
After two years there, Hollerith left academia for a position with the U. S. Patent Office
that helped pave the way for his own later career as an inventor.  While at the Census
Bureau, Hollerith had become convinced that the data produced by the census could be
counted more quickly and accurately by machine.  In the late 1880s, he designed and
built a tabulating machine that was used to conduct the 1890 census in record time.  The
company he founded to commercialize his invention was originally called the Tabulating
Machine Company but changed its name to International Business Machines in 1924.
Hollerith’s card-based tabulating system also pioneered the technique of textual encoding
described in this chapter—a contribution that was reflected in the fact that early versions
of the FORTRAN language used the letter H (for Hollerith) to indicate text data.
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Although you have had a chance to see a number of programs that display graphical
objects on a canvas, the only type of data with which you have actually worked—in the
traditional sense of using as the basis of calculation or similar forms of data
manipulation—has been numeric data, as represented by the types int and double and
numbers as their basic data type.  As Juster’s Mathemagician would insist, numbers are
certainly important, but there are many other kinds of data in the world.  Particularly
since the development of the personal computer in the early 1980s, computers have
worked less with numeric data than they have with text data, which represents
information composed of individual characters that appear on the keyboard and the
screen.  The ability of computers to process text data has led to the development of word
processing systems, electronic mail, the World Wide Web, search engines, and a wide
variety of other useful applications.

The concept of text data was introduced informally in Chapter 2, beginning with the
first line of code in this book, which includes the string

"hello, world"

Since then, you have used string values from time to time but, in each case, have looked
at those strings only as an integrated whole.  This perspective is an essential one, and
indeed will be true most of the time that you use string data.  To unlock the full power of
strings, you need to know how to manipulate strings in more sophisticated ways.

Because a string is composed of individual characters, it is important for you to
understand how characters work and how they are represented inside the computer.
Thus, this chapter focuses on the data type char as well as the data type String.  Before
examining the details of either type, however, it is helpful to begin by taking a more
general look at how data can be represented inside the computer.

9.1  The principle of enumeration
As the use of computing technology grows, more and more information is stored
electronically.  To store information within a computer, it is necessary to represent the
data in a form the machine can use.  The representation of a particular item depends on its
data type.  Integers have one representation inside the computer; floating-point numbers
have a different one.  Even though you do not know exactly what those representations
look like, you have relied on the fact that the computer is able to store numbers in its
internal memory.  There are, however, many types of useful data other than numbers, so
computers must be able to represent nonnumeric data as well.

To gain insight into the nature of nonnumeric data, think for a moment about the
information that you yourself provide to institutions and agencies over the course of a
year.  For example, if you live in the United States, you supply data to the Internal
Revenue Service with your annual tax return.  Much of that information is numeric—
your salary, deductions, taxes, withholdings, and the like.  Some consists of text data,
such as your name, address, and occupation.  But other items on your tax return cannot
easily be classified into either of these forms.  For example, one of the questions is

Filing status (check one):
   single

   married filing joint return

   married filing separate return
   head of household
   qualifying widow(er)
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As with every other entry on the form, your answer represents data.  Your response,
however, is neither numeric data nor text data.  The best way to describe the data type
would be simply to call it filing status data—an entirely new data type whose domain
consists of five values: single, married filing joint return, married filing separate return,
head of household, and qualifying widow(er).

You can easily imagine many other data types that have a similar structure.  For
example, other forms might ask you for your sex, ethnicity, or status as a student.  In each
case, you would choose a response from a list of possibilities that constitutes the domain
of a distinct conceptual type.  The process of listing all the elements in the domain of a
type is called enumeration.  A type defined by listing all of its elements is called an
enumerated type.

Because the title of this chapter is “Strings and Characters,” discussing enumerated
types might seem like a digression.  As it happens, though, characters are similar in
structure to enumerated types.  Understanding how enumerated types work will help you
appreciate how characters work.

At this point, however, enumerated types are an abstract concept.  To understand how
they apply to programming, you need to learn how the computer represents such values
internally.  You must also learn how to use enumerated types in the context of a Java
program.  The next two sections address these issues.

Representing enumerated types inside the machine
If the Internal Revenue Service decides to review your tax return, the first step in the
process is to enter the data from your return into a computer system.  To store that data,
the computer must have a way of representing each of the different data items, including
your filing status.  If you were developing a strategy for recording a taxpayer’s filing
status, what would you do?

The insight you need to solve this problem comes from building on the capabilities you
know computers have.  Computers are good at working with numbers.  That’s how
they’re built.  As part of their basic hardware operation, they can store, add, subtract,
compare, and do all sorts of other things with numbers.  The fact that computers are good
at manipulating numbers suggests a solution to the problem of representing an
enumerated type.  To represent a finite set of values of any type, all you have to do is give
each value a number.  For example, given the list of allowable filing status values, you
could simply count them off, letting single be 1, married filing joint return  be 2, married
filing separate return be 3, and so on.  (In fact, these numeric codes are listed directly on
the tax form.)  Assigning an integer to each of the different possibilities means that you
can use that integer to represent the corresponding filing status.

Thus all you have to do to define a representation for any enumerated type is to
number its elements.  The process of assigning an integer to each element of an
enumerated type is called integer encoding—the integer acts as a coded representation of
the original value.

Representing enumerated types as integers
For most of its history, Java programmers have adopted the strategy of integer encoding
in the most explicit way possible.  Because the language lacked any higher-level support
for enumerated types, the only mechanism that was available was to define named
constants for each value you wanted to represent.  Thus, in a program that needed to
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record the various filing categories offered by the Internal Revenue Service, you might
expect to see the following definitions in a Java program:

public static final int SINGLE = 1;
public static final int MARRIED_FILING_JOINT_RETURN = 2;
public static final int MARRIED_FILING_SEPARATELY = 3;
public static final int HEAD_OF_HOUSEHOLD = 4;
public static final int QUALIFYING_WIDOW_OR_WIDOWER = 5;

These definitions make it possible to use these names in your program.  For example, if
you wanted to perform some code only if the filing status were single, you would use the
following if statement:

if (filingStatus == SINGLE)

In using integer constants to represent enumerated types, there are a few cautions that
you should keep in mind:

• The variables that hold the enumerated values must be declared as being of type int.
In many ways, this fact is unfortunate because the conceptual domain of the value is by
no means everything encompassed by the type int.  It is not at all clear what a filing
status of –1 or 999 might be, although those are legal integers.

• The definition of constants in the program does not permit you to enter these values
externally.  In particular, if your program were to request the filing status by issuing
the command

int filingStatus = readInt("Enter filing status: ");

you could not enter MARRIED_FILING_SEPARATELY in response.
• There is no automatic mechanism for displaying the value of an enumerated type so

that its name appears in the output.  If the value of filingStatus were SINGLE,
calling

println("filing status = " + filingStatus);

would simply display a line indicating that the filing status was 1.

Despite these shortcomings, enumerated types are still valuable because they increase the
readability of the code.

Fortunately, the problems associated with using named constants to achieve the effect
of enumerated types are going away with the introduction of a new facility in Java
Standard Edition 5.0 that supports the creation of programmer-defined enumerated types.
Unfortunately, that facility is too new to use at this point in its development.  It is, for
example, not yet supported on the Macintosh platform or in anything other than the most
recent version of the Java runtime.  Until it matures, we won’t be able to rely on this
facility and continue to support a wide range of platforms.

9.2  Characters
Characters form the basis for all text data processing.  Although strings certainly occur
more often in programs than single characters, characters are the fundamental type—the
“atoms” used to construct all other forms of text data.  Understanding how characters
work is therefore critical to understanding all other aspects of text processing.  In a sense,
characters constitute a built-in enumerated type, although the complete list of possible
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characters is too large to list in its entirety.  It is more appropriate to describe the domain
of all characters as a scalar type, which is any type that can be interpreted as an integer.
Scalar types are extremely useful in Java because you can use them in any context in
which an integer might appear.  For example, a variable of a scalar type can be used as
the control expression in a switch statement.

The data type char
In Java, single characters are represented using the data type char, which is one of the
predefined data types.  Like all the basic types introduced in Chapter 3, the type char
consists of a domain of legal values and a set of operations for manipulating those values.
Conceptually, the domain of the data type char is the set of symbols that can be
displayed on a screen or typed on a keyboard.  These symbols—the letters, digits,
punctuation marks, spacebar, Return key, and so forth—are the building blocks for all
text data.

Because char is a scalar type, the set of operations available for characters is the same
as that for integers.  Understanding what those operations mean in the character domain,
however, requires looking more closely at how characters are represented inside the
machine.

The ASCII and Unicode coding systems
Single characters are represented inside the machine just like any other scalar type.
Conceptually, the central idea is that you can assign every character a number by writing
them all down in a list and then counting them off one at a time.  The code used to
represent a particular character is called its character code.  For example, you could let
the integer 1 represent the letter A, the integer 2 represent the letter B, and so on.  After
you got to the point of letting 26 represent the letter Z, you could then keep going and
number each of the lowercase letters, digits, punctuation marks, and other characters with
the integers 27, 28, 29, and so on.

Even though it is technically possible to design a computer in which the number 1
represents the letter A, it would certainly be a mistake to do so.  In today’s world,
information is often shared between different computers: you might copy a program from
one machine to another on a floppy disk or arrange to have your computer communicate
directly with others over a national or international network.  To make that kind of
communication possible, computers must be able to “talk to each other” in a common
language.  An essential feature of that common language is that the computers use the
same codes to represent characters, so that the letter A on one machine does not come out
as a Z on another.

In the early days of computing, different computers actually used different character
codes.  The letter A might have a particular integer representation on one machine but an
entirely different representation on a computer made by some other manufacturer.  Even
the set of available characters was subject to change.  One computer, for example, might
have the character ¢ on its keyboard, while another computer would not be able to
represent that character at all.  Computer communication was plagued by all the
difficulties that people speaking different languages encounter.

Over time, however, the enormous advantage that comes from enabling computers to
communicate effectively led to the adoption of a coding system for characters called
ASCII, which stands for the American Standard Code for Information Interchange.  The
ASCII coding system became quite widespread in the 1980s and represented something
of a standard.  It was, however, closely tied to the characters one uses to represent
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English and not the many other languages in the world.  Particularly with the rise of the
World Wide Web in the 1990s, it became necessary to expand the domain of the
character type to encompass a much broader collection of languages.  The result of that
expansion was a new coding system called Unicode, which is intended to be more
universal in its application.  Java was one of the first languages to adopt Unicode as its
representation for characters, making it much more appropriate for the international
framework in which computers operate today.

The Unicode system does make it a little harder to illustrate the principle of
enumeration, because there is no way to write down a list of all the characters.  The
ASCII code supported only 256 possible characters, of which only the first 128 were fully
standardized.  A character set of that size was by no means sufficient to represent all
available languages, but it was nonetheless easy to make a table of ASCII values.
Unicode has space for 65,536 characters, although not all of those characters have yet
been defined.  This limit may still prove too small, but it is certainly an improvement in
flexibility over the far more limited range of ASCII.

Fortunately, the designers of Unicode decided to incorporate the standard ASCII
characters as the first 128 elements in the Unicode set. These characters are shown with
their codes in Figure 9-1, which shows the ASCII portion of the Unicode table.  Most of
the entries in the table are familiar characters that appear on the keyboard, but there are
several less familiar entries represented by a backward slash (\), usually called a
backslash, followed by a single letter or a sequence of digits.  These entries are called
special characters and are discussed in a separate section later in this chapter.

FIGURE 9-1    The ASCII portion of the Unicode table

0 1 2 3 4 5 6 7

00x  \000 \001 \002 \003 \004 \005 \006 \007

010  \b \t \n \013 \f \r \016 \017

020  \020 \021 \022 \023 \024 \025 \026 \027

030  \030 \031 \032 \033 \034 \035 \036 \037

040 space ! " # $ % & '
050 ( ) * + , - . /
060 0 1 2 3 4 5 6 7
070 8 9 : ; < = > ?
100 @ A B C D E F G
110 H I J K L M N O
120 P Q R S T U V W
130 X Y Z [ \ ] ^ _
140 ` a b c d e f g
150 h i j k l m n o
160 p q r s t u v w
170 x y z { | } ~ \177
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There is, however, another aspect of the table that is likely to be even more confusing
than the special characters.  The column headings run from 0 to 7 instead of the 0 to 9
one might expect in a table whose entries specify numeric codes.  Similarly, the row
headings at first appear to be increasing at a predictable rate but then jump from 070 to
100.  The reason for this behavior is that ASCII and Unicode values are not typically
presented in decimal (base 10), but rather in a base that is easier to convert to the internal
representation of numbers as a sequence of bits.  The bases that permit this kind of easy
translation are those that derive from a power of two, of which the most common—and
the only ones supported directly by Java—are octal (base 8) and hexadecimal (base 16).
Figure 9-1 uses octal notation, in which the only digits fall in the range from 0 to 7.
Numeric bases were discussed briefly in Chapter 6; for now, the only thing you need to
remember about base-8 notation is that every digit position is worth 8 times as much as
the digit to its right.  For example, the octal number 177 corresponds to the integer

1 x 64  +  7 x 8  +  7

which works out to be 127 in traditional decimal notation.  In this text, numbers that are
written in a base other than decimal will be marked with a subscript indicating the base,
so that 1778 specifies an octal value.

The internal code for each character in Figure 9-1 is the sum of the octal row and
column number associated with that entry.  For example, the letter A halfway down the
chart is in the row labeled 100 and the column labeled 1.  The Unicode value for the letter
A  is therefore 1008 + 18, which works out to be 1018 or 6510. You can use the table to find
the code for any character in this same way.  In most cases, however, you will not need to
do so.  Although it is important to know that characters are represented internally using a
numeric code, it is not generally useful to know what numeric value corresponds to a
particular character.  When you type the letter A, the hardware logic built into the
keyboard automatically translates that character into the Unicode value 65 which is then
sent to the computer.  Similarly, when the computer sends the Unicode value 65 to the
screen, the letter A appears.

Character constants
When you want to refer to a specific character in a Java program, the standard approach
is to specify a character constant, which is written by enclosing the desired character in
single quotation marks.  For example, to indicate the Unicode representation for the letter
A, all you have to write is 'A'.  The Java compiler knows that this notation means to use
the Unicode value for the letter A, which happens to be 65.  Similarly, you can indicate
the space character by writing ' ' or the digit 9 by writing '9'.  Note that the constant
'9' refers to a character and should not be confused with the integer value 9.  As an
integer, the value '9' is the value for that character given in the Unicode table, which is
718 or 57.

Avoid using integer constants to
refer to ASCII characters within a
program.  All character constants
should be indicated by enclosing the
character in single quotation marks,
as in 'A' or '*'.

Since Java represents characters internally as
their integer codes in the Unicode table, you
could in most cases replace the character constant
'A' with the integer 65.  The program would
work in exactly the same way but would be much
harder to read.  You need to keep in mind that
some other programmer will eventually come
along and have to make sense out of what you’ve
written.  Unless that programmer has memorized
the Unicode table, seeing the integer 65 written as part of the program won’t immediately
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conjure up an image of the letter A.  On the other hand, the character constant 'A'
conveys that meaning directly.

This text includes Figure 9-1 to give you a more concrete understanding of how
characters are represented inside the machine.  As soon as you have that idea in mind,
you should forget about the specific character codes and concentrate instead only on the
character itself.

Important properties of the Unicode representation
Even though it is important not to think about specific character codes, the following two
structural properties of the Unicode table are worth remembering:

1. The codes for the characters representing the digits 0 through 9 are consecutive.  Even
though you do not need to know exactly what code corresponds to the digit character
'0', you know that the code for the digit '1' is the next larger integer.  Similarly, if
you add 9 to the code for '0', you get the code for the character '9'.

2. The letters in the alphabet are divided into two separate ranges: one for the uppercase
letters (A–Z), and one for the lowercase letters (a–z).  Within each range, however, the
Unicode values are consecutive, so that you can count through the letters one at a
time in order.

Each of these properties will be useful in programs at various points later in this text.

Special characters
Most of the characters in Figure 9-1 are the familiar ones that can be displayed on the
screen.  These characters are called printing characters.  The Unicode table, however,
also includes various special characters, which are used to perform a particular action,
which are represented by a backslash followed by a character or a sequence of digits.
The combination of the backslash and the characters that follow it is called an escape
sequence.  Figure 9-2 lists the predefined escape sequences.

FIGURE 9-2    Escape sequences used in character and string constants

Sequence Interpretation
\b Backspace
\f Formfeed (starts a new page)
\n Newline (moves to the beginning of the next line)
\r Return (returns to the beginning of the line without advancing)
\t Tab (moves horizontally to the next tab stop)
\0 Null character (the character whose Unicode value is 0)
\\ The character \ itself
\' The character ' (requires the backslash only in character constants)
\" The character " (requires the backslash only in string constants)
\ddd The character whose Unicode value is the octal number ddd

\uxxxx The character whose Unicode value is the hexadecimal number xxxx
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You can include special characters in character constants by writing the escape
sequence as part of the constant.  Although each escape sequence consists of several
characters, each sequence is translated into a single Unicode value inside the machine.
The codes for the special characters are included in Figure 9-1.

When the compiler sees the backslash character, it expects it to be the first character in
an escape sequence.  If you want to represent the backslash character itself, you therefore
have to use two consecutive backslashes inside single quotation marks like this: '\\'.
Similarly, the single quotation mark, when used as a character constant, must also be
preceded by a backslash: '\''.

Special characters can also be used in string constants.  The fact that a double
quotation mark is used to indicate the end of a string means that the double quotation
mark must be marked as a special character if it is part of a string.  For example, if you
write a program containing the line

println("\"Bother,\" said Pooh.");

the output is

Bother
"Bother," said Pooh.

Many of the special characters in Unicode do not have explicit names and are instead
represented in programs by specifying their internal numeric codes.  Those characters can
be specified in octal using the format \ddd or in hexadecimal as \uxxxx.

Character arithmetic
In Java, character values can be manipulated as if they were integers.  You don’t need a
type cast to convert a character to its integer equivalent, although specifying such casts
can sometimes make your programs easier to read.  When character values are used in
expressions, the result is defined according to the internal Unicode values.  For example,
the character 'A', which is represented internally using the Unicode value 65, is treated
as the integer 65 whenever it is used in an arithmetic context.  Conversions from integers
to characters use the same strategy of relying on the internal Unicode values.  In Java,
however, you do need a type cast to convert an integer into a character because the range
of type char is smaller than the range of type int.  Java’s designers were careful to
require explicit type casts in cases where information might be lost in the conversion.

You can use the convertibility of integers and characters to write a randomLetter
method that returns a randomly chosen uppercase letter. The simplest implementation is

private char randomLetter() {
return (char) rgen.nextInt('A', 'Z');

}

where rgen is an instance variable containing a RandomGenerator, as described in
Chapter 6.  This implementation, however, may end up confusing its readers who expect
the call to rgen.nextInt to take integers as parameters rather than characters.  For the
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benefit of those readers, it is probably better to make the conversions explicit by
introducing type casts, as follows:

private char randomLetter() {
return (char) rgen.nextInt((int) 'A', (int) 'Z');

}

Even though it is legal to apply any arithmetic operation to values of type char, not all
operations are meaningful in that domain.  For example, it is legal to multiply 'A' by 'B'
as part of a program.  To determine the result, the computer takes the internal codes, 65
and 66, and multiplies them to get 4290.  The problem is that this integer means nothing
in the character world.  Only a few of the arithmetic operations are likely to be useful
when applied to characters.  The operations that generally make sense are:

• Adding an integer to a character.  If c is a character and n is an integer, the expression
c + n represents the character code that comes n characters after c in the coding
sequence.  For example, the expression '0' + n computes the character code of the nth

digit, if n is between 0 and 9.  Thus '0' + 5 computes the character code for '5'.
Similarly, the expression 'A' + n - 1 computes the character code of the nth letter in the
alphabet, assuming that n is between 1 and 26.  The result of this operation is logically
a char, and I would not use a type cast if that were the intended result.

• Subtracting an integer from a character.  The expression c - n represents the code of
the character that comes n characters before c in the coding sequence.  For example,
the expression 'Z' - 2 computes the character code for 'X' .  The result of this
operation is logically a char.

• Subtracting one character from another.  If c1  and c2  are both characters, the
expression c1  -  c2 represents the distance between those characters in coding
sequence.  For example, if you look back to Figure 9-1 and compute the Unicode
values of each character, you can determine that 'a' - 'A' is 32.  More importantly,
the distance between a lowercase character and its uppercase counterpart is constant,
so that 'z' - 'Z' is also 32.  The result of this operation is logically an int.

• Comparing two characters against each other.  Comparing two character values using
any of the relational operators is a common operation, often used to determine
alphabetical ordering.  For example, the expression c1 < c2 is true if c1 comes before
c2 in the Unicode table.

To see how these operations apply to practical problems, consider how the computer
executes a method like readInt.  When a user types a number, such as 102, the computer
receives the individual keystrokes as characters and must therefore work with the input
values '1', '0', and '2'.  Because the readInt method must return an integer, it needs
to translate the character into the integers they represent.  To do so, readInt takes
advantage of the fact that the digits are consecutive in the Unicode sequence.

As an illustration, suppose that readInt has just read a character from the keyboard
and stored it in the variable ch.  It can convert the character to its numeric form by
evaluating the expression

ch - '0'

Assuming that ch contains a digit character, the difference between its Unicode value and
the Unicode value for the digit '0' must correspond to the decimal value of that digit.
Suppose, for example, that the variable ch contains the character '9'.  If you consult the
Unicode table, you can determine that the character '9' has the internal code 57.  The
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digit '0' has the Unicode value 48, and 57 – 48 is 9.  The key point is that the method
makes no assumption that '0' has the Unicode value 48, which means that the same
method would work even if Java someday decided to use a different character set.  The
only assumption is that the codes for the digits form a consecutive sequence.

But how can readInt determine whether the character ch is in fact a digit?  Once
again, it can take advantage of the fact that the digits are consecutive in the Unicode
table.  The statement

if (ch >= '0' && ch <= '9') . . .

distinguishes the digit characters from the rest of the Unicode set.  Similarly, the
statement

if (ch >= 'A' && ch <= 'Z') . . .

identifies the uppercase letters, and

if (ch >= 'a' && ch <= 'z') . . .

identifies the lowercase letters.

Useful methods in the Character class
As it happens, however, you won’t usually encounter the if statements used at the end of
the preceding section in a typical Java program.  The operations for checking whether a
character is a digit or a letter are so common that the designers of Java made them
methods in the Character class, which is defined in the package java.lang and is
therefore available in any Java program without an import statement.

The Character class declares several useful methods for manipulating character
values, of which the most important are shown in Figure 9-3.  Like the methods in the

FIGURE 9-3    Useful static methods in the Character class

static boolean isDigit(char ch)
Determines if the specified character is a digit.

static boolean isJavaIdentifierPart(char ch)
Determines if the specified character may be part of a Java identifier.

static boolean isJavaIdentifierStart(char ch)
Determines if the specified character is permissible as the first character in a Java identifier.

static boolean isLetter(char ch)
Determines if the specified character is a letter.

static boolean isLetterOrDigit(char ch)
Determines if the specified character is a letter or digit.

static boolean isLowerCase(char ch)
Determines if the specified character is a lowercase character.

static boolean isUpperCase(char ch)
Determines if the specified character is an uppercase character.

static boolean isWhitespace(char ch)
Determines if the specified character is white space according to Java.

static char toLowerCase(char ch)
Converts ch to its lowercase equivalent, if one exists.  If not, ch is returned unchanged.

static char toUpperCase(char ch)
Converts ch to its uppercase equivalent, if one exists.  If not, ch is returned unchanged.
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Math class, these methods are declared to be static, which means that they don’t operate
on an object but instead act more like traditional functions in mathematics.  For example,
you can convert a lowercase character ch into its uppercase equivalent by writing

ch = Character.toUpperCase(ch);

Although toLowerCase and toUpperCase are already available in the Character
class, you will be able to appreciate their operation more if you try to implement them
from scratch.  Once again, you can ignore the actual Unicode values involved and rely
only on the fact that letters are contiguous.  If ch contains a character code for an
uppercase letter, you can convert it to its lowercase form by adding the constant
difference in value that separates the uppercase and lowercase characters.  Rather than
write that difference as an explicit constant, however, the program is easier to read if you
express it using character arithmetic as 'a' - 'A'.  Thus, you could implement the
toLowerCase method as follows:

public static char toLowerCase(char ch) {
if (ch >= 'A' && ch <= 'Z') {

return ch + 'a' - 'A';
} else {

return ch;
}

}

The method toUpperCase has a similar implementation.  Note that this method is
declared here to be public rather than the traditional private.  The corresponding
method in the Character class must certainly be public, or you would not be able to call
it.  Similarly, the method is declared to be static to match the implementation in the
Character class.

Even though the methods defined in the Character class are easy to implement, it is
good programming practice to use the library methods instead of writing your own.
There are four principal reasons for doing so.

1. Because the methods from the Character class are standard, programs you write will
be easier for other programmers to read.  Assuming those programmers are at all
experienced in Java, they will recognize the methods in that class and know exactly
what they mean.

2. It is easier to rely on library methods for correctness than on your own.  Because the
Java libraries are used by millions of client programmers, there is considerable
pressure on the implementors to get the methods right.  If you rewrite library methods
yourself, the chance of introducing a bug is much larger.

3. The code you write yourself will not take advantage of the international applicability
of Unicode.  The do-it-yourself implementation of toLowerCase shown earlier
assumes that the characters are in the Roman alphabet, which is no longer a
reasonable assumption.  Other alphabets also have uppercase and lowercase
characters, and the implementation in the Character class knows how to convert
those as well.

4. The implementations of methods in the library packages are typically more efficient
than those you would write yourself.  How these more efficient implementations work
is beyond the scope of this chapter, but the important point is that you can take
advantage of that added efficiency by using the library forms.
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Control statements involving characters
Because char is a scalar type, you can use it in all the statement forms in which integers
appear.  For example, if ch is declared to be of type char, you can use the following for
header line to execute a loop 26 times, once for each uppercase letter in the alphabet:

for (char ch = 'A'; ch <= 'Z'; ch++)

Similarly, you can use a character as the control expression in a switch statement.  For
example, the following predicate method returns true if its argument is a vowel in the
English language:

private boolean isEnglishVowel(char ch) {
switch (Character.toLowerCase(ch)) {

case 'a': case 'e': case 'i': case 'o': case 'u':
return true;

default:
return false;

}
}

Note that the implementation uses the toLowerCase method to recognize vowels in both
their uppercase and lowercase forms.

9.3  Strings as an abstract idea
The real power of using characters comes from the fact that you can string them together,
one after another, to form a sequence of characters called a string, which is represented
in Java by a class in the always-imported java.lang package called String.  Because
English explanations of strings get much harder to read if every occurrence of the noun
that means a sequence of characters is written in its Java form, I will usually talk about
strings in an abstract sense and just call them strings with no uppercase S and no special
code font.  I leave it to you to remember that strings—as an abstract idea—are
represented in Java by a class named String.  As noted in the introduction to this
chapter, you have been using strings since the very first program in the book to display
messages.  As you will discover, however, there is a lot more you need to learn about
strings in order to unlock the enormous power they bring to programming.  To understand
strings in their entirety, you must consider them from several different perspectives at
differing levels of detail.

As you have found many times in this text, you can approach programming from both
a reductionistic and a holistic perspective.  When you concern yourself with the internal
details of data representation, you are taking the reductionistic view.  From this
perspective, your job is to understand how characters are stored in the computer’s
memory, how a sequence of those characters can be stored to form a string, and how, for
example, a 200-character string can fit inside the same variable that holds a 2-character
string.  These are all interesting questions, and you will discover the answers in due
course.  When you consider strings from the holistic perspective, however, your job is to
understand how to manipulate a string as a single logical unit.  By focusing on the
abstract behavior of strings, you can learn how to use them effectively without getting
bogged down in details.

To a certain extent, Java forces a holistic view of strings because the String class
provides you with very little access to the underlying representation.  Even so, it is
possible to contrast the reductionistic view in which you think about the individual
characters with the more holistic view in which you don’t.  So far in this text, you have
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been working entirely at the holistic level.  The remainder of this chapter describes
methods in the String class that operate at both the character and whole-string level.

The notion of an abstract type
The principal advantage of the String class—and of object-oriented class definitions in
general—is that the definition makes it possible to work with strings as an abstract type
in which the fundamental operations are defined only by their behavior and not in terms
of the underlying representation.  In Java, abstract types correspond to class definitions
that specify the operations that can be performed on objects of that type.  The legal
operations for a particular abstract type are called its primitive operations and are
defined as public methods.  Details of how those operations work and how the
information is represented internally are hidden away in the implementation of the class.
Whenever a client wants to manipulate values of an abstract type, the client must use the
methods provided by the class.

In the context of strings, what are the primitive operations that you might want to
perform?  To begin with, you already know how to specify a string constant in a program,
to combine strings using concatenation, and to perform string input and output using the
println and readLine methods.

What else might you want to do?  When working with strings, you might, for example,
want to perform any of the following operations:

• Find out how long a string is
• Select the first character—or, more generally, the ith character—within a string
• Extract a piece of a string to form a shorter one
• Determine whether two strings are equal
• Compare two strings to see which comes first in alphabetical order
• Determine whether a string contains a particular character or set of characters

There are other operations you might consider, but this list offers an interesting and
useful start.  Each of these operations is provided by a method in the String class, which
gives you the tools you need to use strings without requiring you to comprehend the
details of the underlying representation.  The fact that you do not need to understand
those details is the essence of data abstraction.

9.4  Using the methods in the String class
As noted in Chapter 6, the best way to learn about a class and its methods is to consult the
javadoc documentation.  If you do so, you will find that the String class implements lots
of methods, most of which you will never use.  The ones that you are most likely to
encounter are shown in Figure 9-4 and are described in the sections that follow.

As you read through the descriptions of these methods, it is important to keep in mind
that the String class is immutable, which simply means that none of its methods ever
change its internal state.  For many students, this behavior—which is actually quite
useful—seems counterintuitive.  After discovering that the list in Figure 9-4 includes a
toLowerCase method, most students expect that the line

str.toLowerCase()



Strings and Characters 239

FIGURE 9-4    Important methods in the String class

int length()
Returns the length of the string.

char charAt(int index)
Returns the character at the specified index.

String concat(String s2)
Concatenates s2 to the end of the receiver, returning a new string with the receiver unchanged.

String substring(int p1, int p2)
Returns the substring beginning at p1 and extending up to but not including p2.

String substring(int p1)
Returns the substring beginning at p1 and extending up to the end of the string.

String trim()
Returns the substring formed by deleting any white space at the beginning or end of the string.

boolean equals(String s2)
Returns true if the string s2 is equal to the receiver.

boolean equalsIgnoreCase(String s2)
Returns true if the string s2 is equal to the receiver ignoring distinctions in case.

int compareTo(String s2)
Returns a number whose sign indicates how the strings compare in lexicographic order.

int indexOf(char c)  or  indexOf(String s)
Returns the index of the first occurrence of the character or string, or -1 if it does not appear.

int indexOf(char c, int start)  or  indexOf(String s, int start)
Like indexOf with one argument, but starts at the specified index position.

boolean startsWith(String prefix)
Returns true if the string starts with the specified prefix.

boolean endsWith(String suffix)
Returns true if the string ends with the specified suffix.

string toUpperCase()
Converts the string to uppercase.

string toLowerCase()
Converts the string to lowercase.

will convert the characters in the string str to lower case.  As the bug symbol suggests,
however, this expectation is incorrect.  What the toLowerCase method in fact does is to
return an entirely new string in which those conversions have been performed.  Thus, to
change the value stored in the string variable str so that all letters within it appear in
lowercase, you need to use an assignment statement, such as

str = str.toLowerCase();

Determining the length of a string
When writing programs to manipulate strings, you often need to know how many
characters a particular string contains.  The total number of characters a string contains—
counting all letters, digits, spaces, punctuation marks, and special characters—is called
the length of the string.

Using the String class, you can obtain the length of a string s by calling the method
length.  For example, the first string you encountered in this book was

"hello, world"

This string has length 12—five characters in the word hello, five more in world, one
comma, and one space.  Thus, if you assigned that string to the variable message by
writing
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String message = "hello, world";

you could then compute its length by writing

message.length()

which would return the value 12.  Note that the String class uses the object-oriented
receiver notation.  You have a String variable called message.  To determine its length,
the object-oriented paradigm asks you to send that string a message asking it to give you
back its length.

The following run method for a ConsoleProgram reads in a single line of text from
the user and reports its length:

public void run() {
String line = readLine("Enter a string: ");
println("That string has " + line.length() + " characters.");

}

Selecting characters from a string
In Java, positions within a string are numbered starting from 0.  For example, the
individual characters in the string "hello, world" are numbered as in the following
diagram:

h e l l o  w o r l d,

0 1 2 3 4 5 6 7 8 9 1 0 1 1

The position number written underneath each character in the string is called its index.

To enable you to select a particular character in a string given its index, the String
class provides a method called charAt that takes an integer representing the index and
returns a character.  For example, if the variable str contains the string "hello,
world", calling

str.charAt(0)

returns the character 'h'.  Similarly, calling str.charAt(5) returns ','.  Be sure to
remember that Java numbers characters starting with 0, not 1.  It is easy to forget this rule
and assume that str.charAt(5)  will return the fifth character in the string;
str.charAt(5) returns the character at index position 5, which is the sixth character as
you would number character positions in English.

Concatenation
Figure 9-4 shows that the String class implements a concat method, which takes an
existing string as a receiver and a new string as an argument and connects them, end to
end, with no intervening characters.  Thus, if the variable str contains "hello, world",
you could generate a new string that included an exclamation point on the end by writing

str.concat("!")

It is critical to note, however, that this method call simply returns a new string value and
does not change the value of the variable str.  To do so using the concat method, you
would have to write
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str = str.concat("!");

In Java, no one actually uses the concat method because its function is built into Java
in the form of the + operator.  Thus, what you would be more likely to see is

str = str + "!";

or, even more compactly,

str += "!";

In either form, concatenation always combines the two strings with no intervening
space.  If you want to put a space between two words represented as string values, you
have to perform an additional concatenation step.  For example, if the variable word1
contains "hello" and the variable word2 contains "world", you need to write

word1 + " " + word2

to get the string "hello world".  You could also write this expression using the concat
method as

word1.concat(" ").concat(word2)

which begins to supply powerful evidence of the value of the + operator.

The + operator also has the wonderful property that it converts any operands that are
not strings to their string representation, which is why it works to write statements like

println("The answer is " + answer);

This statement works no matter what type the variable answer  is.  Before Java
concatenates the two values, it will convert answer to its string representation.

As a simple example of the use of concatenation, the following method returns a string
consisting of a specified number of copies of the string passed as the second argument:

private String concatNCopies(int n, String str) {
String result = "";
for (int i = 0; i < n; i++) {

result += str;
}
return result;

}

This method is particularly handy if you want to generate separators in console output.
For example, the statement

println(concatNCopies(72, "-"));

prints out a line of 72 hyphens.

In a way, the implementation strategy used in concatNCopies is similar to that used in
the factorial method presented in Chapter 5.  In both cases, the method uses a local
variable to keep track of the partially computed result during each cycle of a for loop.  In
the concatNCopies method, each cycle in the for loop concatenates the value of str
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onto the end of the previous value of result.  Because each cycle adds one copy of str
to the end of result, the final value of result after n cycles must consist of n copies of
that string.

In each of the two methods—factorial and concatNCopies—the initialization of the
variable used to hold the result is worthy of some note.  In the factorial method, the
variable product is initialized to 1, so that multiplying it by each successive value of i
properly keeps track of the result as the computation proceeds.  In the case of
concatNCopies, the corresponding statement initializes the string variable result so that
it grows through concatenation.  After the first cycle of the loop, the variable result
must consist of one copy of the string str.  Prior to the first cycle, therefore, result
must contain zero copies of the string, which means it has no characters at all.  The string
with no characters at all is called the empty string and is written in Java using adjacent
double quotes: "".  Whenever you need to construct a new string by concatenating
successive parts onto an existing string variable, you should initialize that variable to the
empty string.

Extracting parts of a string
Concatenation makes longer strings from shorter pieces.  You often need to do the
reverse: separate a string into the shorter pieces it contains.  A string that is part of a
longer string is called a substr ing .  The String class provides a method
substring(p1, p2), the effect of which is to extract the characters in s lying between
positions p1 up to but not including p2.  Thus if str contains the string "hello world",
the method call

str.substring(1, 4)

returns the string "ell".  As you know, numbering in Java begins at 0, so the character at
index position 1 is the character 'e'.

The second argument in the substring method is optional.  If it is missing, substring
returns the characters starting at the index position specified by the first argument and
continuing through the end of the string.

As an example of the use of substring, the method secondHalf(s) returns the
substring consisting of the last half of the characters in s, including the middle character
if the length of the string is odd:

private String secondHalf(String str) {
return str.substring(str.length() / 2);

}

Comparing one string with another
At many times in your programming, you will need to check to see whether two strings
have the same value.  When you do, you are almost certain to code this test at least once
in the following incorrect form:

if (s1 == s2) . . .

The problem here is that strings are objects in Java and the relational operators like == are
defined in the conventional mathematical way only for the primitive Java types like int



Strings and Characters 243

and char.  What makes this problem all the more insidious is that the == operator does
something when applied to strings, but not what you’d initially expect.  For objects, the
== operator tests whether the two sides are the same object.  What you need here is to test
whether two different String objects have the same value.

When comparing string values in
Java, remember to use the equals
and compareTo methods, and not the
relational operators.  The compiler
will not detect this error, but the test
will have unpredictable results.

To accomplish what you need, the String
class defines a method called equals, which you
can use to test two strings for equality.  Like the
other methods in the String class, equals is
applied to a receiver object, which means that the
syntax for an equality test looks like this:

if (s1.equals(s2)) . . .

There is also a method equalsIgnoreCase that checks whether two strings are equal
independent of uppercase/lowercase distinctions.

You will sometimes also find it useful to determine how two strings relate to each
other in alphabetical order.  The String class provides the method compareTo for this
purpose.  The compareTo method is called in typical receiver-based fashion

s1.compareTo(s2)

and returns an integer whose sign indicates the relationship between the two strings, as
follows:

• If s1 precedes s2 in alphabetical order, compareTo returns a negative integer.
• If s1 follows s2 in alphabetical order, compareTo returns a positive integer.
• If the two strings are exactly the same, compareTo returns 0.

Thus, if you want to determine whether s1 comes before s2 in alphabetical order, you
need to write

if (s1.compareTo(s2) < 0) . . .

The “alphabetical order” computers use is different from the order that dictionaries use
in certain respects.  When compareTo compares two strings, it compares them using the
numeric ordering imposed by the underlying character codes.  This order is called
lexicographic order and differs from traditional alphabetical order in several respects.
For example, in an alphabetical index, you will find the entry for aardvark before the
entry for Achilles, because traditional alphabetical ordering does not consider uppercase
and lowercase letters separately.  If the compareTo method is called with the arguments
"aardvark" and "Achilles", the method simply compares the Unicode values.  In
Unicode, the lowercase character 'a' comes after an uppercase 'A'.  In lexicographic
order, the string "Achilles" comes first.  Thus the method call

"aardvark".compareTo("Achilles")

returns a positive integer.

When you call compareTo, it compares the strings starting with the first character in
each.  If those characters are different, compareTo considers how the two character values
relate to each other in the Unicode sequence and returns an integer that indicates that
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result.  If the first characters match, compareTo goes on to look at the second characters,
continuing this process until a difference is detected.  If compareTo runs out of characters
in one of the two strings, that string is automatically considered to precede the longer one,
just as in traditional alphabetical ordering.  For example,

"abc".compareTo("abcdefg")

returns a negative integer.  Only if the two strings match all the way down the line and
end at the same place does compareTo return the value 0.

Searching within a string
From time to time, you will find it useful to search a string to see whether it contains a
particular character or substring.  To do so, the String class provides a method called
indexOf, which comes in several forms.  The simplest form of the call is illustrated by
the statement

int pos = str.indexOf(search);

where search is what you are looking for, which can be either a string or a character.
When indexOf is called, the method searches through the string str looking for the first
occurrence of the search value.  If the search value is found, indexOf returns the index
position at which the match begins.  If the character does not appear before the end of the
string, indexOf returns the value –1.

The indexOf method also takes an optional second argument that indicates the index
position at which to start the search.  The effect of both styles of the indexOf method is
illustrated by the following examples, which assume that the variable str contains the
string "hello, world":

str.indexOf('o') returns 4
str.indexOf('o', 5) returns 8
str.indexOf('x') returns –1

As with string comparison, the methods for searching a string consider uppercase and
lowercase characters to be different.

You can use indexOf to implement a method that generates an acronym, which is a
new word formed by combining, in order, the initial letters of a series of words.  For
example, the word scuba is an acronym formed from the first letters in self contained
underwater breathing apparatus.  The method acronym takes a string composed of
separate words and return its acronym.  Thus, calling the method

acronym("self contained underwater breathing apparatus")

returns "scuba".

Provided that the words are separated by a single space and that no extraneous
characters appear, the implementation of acronym can simply take the very first letter and
then go into a loop searching for each space.  Whenever it finds one, it can concatenate
the next character onto the end of the string variable used to hold the result.  When no
more spaces appear in the string, the acronym is complete.  This strategy can be
translated into a Java implementation as follows:
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private String  acronym(String str) {
String result = str.substring(0, 1);
int pos = str.indexOf(' ');
while (pos != -1) {

result += str.substring(pos + 1, pos + 2);
pos = str.indexOf(' ', pos + 1);

}
return result;

}

The Java String class also contains two useful methods for checking to see whether a
string begins or ends with a particular substring.  The startsWith method returns true if
the string on which it is invoked begins with the string passed as an argument.  Thus, the
statements

String answer = readLine("Would you like to play a game? ");
if (answer.startsWith("y") || answer.startsWith("Y")) {

. . . code to play the game . . .
}

executes the body of the if statement only if the user enters an answer to the question
that begins with an upper- or lowercase Y.  The String class also contains a symmetric
endsWith method that returns true if the string ends with the specified substring.

Case conversion
The String class includes two methods, toUpperCase and toLowerCase, that convert
the case of any alphabetic characters to the indicated case.  For example, if str contains
the string "hello, world", calling the method

str.toUpperCase()

returns the string "HELLO, WORLD"  Note that any nonalphabetic characters appearing in
the string—such as the comma, space, and period in this example—are unaffected.

Summary
With this chapter, you have begun the process of understanding how to work with text
data.  In Java, the most common form of text data is a string, which is an ordered
collection of individual characters.  Individual characters are represented using the data
type char, which is one of the primitive types defined in Java.  Characters are represented
inside the hardware as numeric values using an encoding system called Unicode.  Strings
themselves are represented using the class String, which is defined formally as part of
the java.lang package, but is in fact integrated directly into the language in many ways.

In this chapter, you learned how to manipulate strings through the methods provided
by the String class, which allows you to focus on the abstract behavior of a string
without having to be concerned about its concrete representation.

Important points raised in this chapter include:

• Types whose conceptual values are not numbers can usually be represented inside the
computer by numbering the elements in the domain of the type and then using those
numbers as codes for the original values.  Types defined by counting off their elements
are called enumerated types.
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• Java makes it possible to define new enumerated types in two ways.  The older
strategy is simply to use int for such types and to define named constants for the
specific values.  The more modern strategy is to use the enum keyword introduced in
Java 5.0; that strategy, however, is beyond the current scope of this text.

• Characters are represented internally as integers according to a predefined coding
scheme called Unicode, which makes it possible to represent characters from a wide
range of languages.  Those values are represented in Java by the primitive type char.

• Character values can be manipulated using the standard operations of arithmetic.  No
type cast is required to convert a char to an int, but Java does require casts to convert
in the opposite direction.

• The Character class contains several methods for classifying and changing the case of
individual characters.

• The String class makes it possible to work with strings as an abstract type.
• The String class defines several methods for manipulating strings.  These methods

are summarized in Figure 9-4.

Review questions
1. In your own words, state the principle of enumeration.

2. What are the two options mentioned in this chapter for representing enumerated
types in Java?  Why does this text currently rely on the older strategy?

3. What is a scalar type?

4. How do you include a double quotation mark inside a string constant?

5. What does ASCII stand for?

6. What is the relationship between ASCII and Unicode?

7. By consulting Figure 9-1, determine the octal Unicode values of the characters '$',
'@', '\t', and 'x'.  Convert these values to their decimal equivalents.

8. Why is it useful to know that the digit characters are consecutive in the Unicode
table?

9. What four arithmetic operations does this chapter argue make the most sense for
characters?

10. What is the result of calling Character.isDigit(5)?  What is the result of calling
Character.isDigit('5')?  Is it legal to call Character.isDigit("5")?

11. What is the result of calling Character.toUpperCase('5')?

12. What four reasons are given in the chapter for using the methods in the Character
class in preference to writing those methods on your own?

13. True or false: It is legal to use character constants as case expressions within a
switch statement.

14. What effect does the following statement have on the value of str?
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str.trim()

15. What is the correct way to achieve the effect clearly intended by the expression in
the preceding question?

16. What is meant by the term immutable?

17. What is the result of each of the following expressions?

a) "ABCDE".length()

b) "".length()

c) "\t".length()

d) "ABC".charAt(2)

e) "ABCDE".substring(0, 3)

f) "ABCDE".substring(2)

g) "ABCDE".indexOf("C")

h) "ABCDE".indexOf('Z')

i) "XYZZY".indexOf('Z', 3)

j) "ABCDE".toLowerCase()

18. What is the most important caution to keep in mind when comparing strings?

19. What is the result of each of the following expressions?  (For calls to compareTo,
simply indicate the sign of the result.)

a) "ABCDE".equals("abcde")

b) "ABCDE".equalsIgnoreCase("abcde")

c) "ABCDE".compareTo("ABCDE")

d) "ABCDE".compareTo("ABC")

e) "ABCDE".compareTo("abcde")

f) "ABCDE".startsWith("a")

Programming exercises
1. Implement the method isEnglishConsonant(ch), which returns true if ch is a

consonant in English: that is, any letter except one of the five vowels: 'a', 'e', 'i',
'o', and 'u'.  Like isEnglishVowel, your method should recognize consonants of
both cases.  Write a ConsoleProgram that displays all the uppercase consonants.

2. Write a method randomWord that returns a randomly constructed “word” consisting
of randomly chosen letters.  The number of letters in the word should also be chosen
randomly by picking a number between the values of the named constants
MIN_LETTERS and MAX_LETTERS .  Write a ConsoleProgram that tests your method
by displaying five random words.

3. Implement a method capitalize(str) that returns a string in which the initial
character is capitalized (if it is a letter) and all other letters are converted so that they
appear in lowercase form.  Characters other than letters are not affected.  For
example, capitalize("BOOLEAN") and capitalize("boolean") should each
return the string "Boolean".
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4. Write a method dateString(day, month, year) that returns a string consisting of
the day of the month, a hyphen, the first three letters in the name of the month,
another hyphen, and the last two digits of the year.  For example, calling the method

dateString(22, 11, 1963)

should return the string "22-Nov-63".

5. In most word games, each letter in a word is scored according to its point value,
which is inversely proportional to its frequency in English words.  In Scrabble™, the
points are allocated as follows:

Points Letters
1 A, E, I, L, N, O, R, S, T, U
2 D, G
3 B, C, M, P
4 F, H, V, W, Y
5 K
8 J, X

10 Q, Z

For example, the Scrabble word "FARM" is worth 9 points: 4 for the F, 1 each for the
A and the R, and 3 for the M.  Write a ConsoleProgram that reads in words and
prints out their score in Scrabble, not counting any of the other bonuses that occur in
the game.  You should ignore any characters other than uppercase letters in
computing the score.  In particular, lowercase letters are assumed to represent blank
tiles, which can stand for any letter but which have a score of 0.

6. If the designers of the String class had not defined the version of indexOf that takes
a string argument, you could implement it using the other methods available in the
library.  Without calling indexOf directly, implement a method myIndexOf that
behaves in exactly the same way.

7. Write a method regularPluralForm(word) that returns the plural of word formed
by following these standard English rules:

a. If the word ends in s, x, z, ch, or sh, add es to the word.
b. If the word ends in y and the y is preceded by a consonant, change the y to ies.
c. In all other cases, add just an s.

Write a test program and design a set of test cases to verify that your program works.

8. In English, the notion of a present action that is continuing into the future is
expressed using the present progressive tense, which involves the addition of an ing
suffix to the verb.  For example, the sentence I think conveys a sense that one is
capable of thinking; by contrast, the sentence I am thinking conveys the impression
that one is actually in the process of thinking.  The ing form of the verb is called the
present participle.

Unfortunately, creating the present participle is not always as simple as adding the
ing ending.  One common exception is words that end in a silent e, such as cogitate.
In such cases, the e is usually dropped, so that the participle form becomes
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cogitating.  Another common exception involves words that end with a single
consonant, which typically gets doubled in the participle form.  For example, the
verb program becomes programming.

Although there are many exceptions, you can construct a large fraction of the legal
participle forms in English by applying the following rules:

a. If the word ends in an e preceded by a consonant, take the e away before adding
the ing suffix.  Thus, move should become moving.  If the e is not preceded by a
consonant, it should remain in place, so that see becomes seeing.

b. If the word ends in a consonant preceded by a vowel, insert an extra copy of that
consonant before adding the ing suffix.  Thus, jam should become jamming.  If,
however, there is more than one consonant at the end of the word, no such
doubling takes place, so that walk becomes walking.

c. In all other circumstances, simply add the ing suffix.

Write a method presentParticiple that takes an English verb, which you may
assume is entirely lowercase and at least two characters long, and forms the
participle using these rules.  Write a ConsoleProgram to test your method.

9. Like most other languages, English include two types of numbers: cardinal
numbers (such as one, two, three, and four) that are used in counting, and ordinal
numbers (such as first, second, third, and fourth) that are used to indicate a position
in a sequence.  In numeric form, ordinals are usually indicated by writing the digits
in the number, followed by the last two letters of the English word that names the
corresponding ordinal.  Thus, the ordinal numbers first, second, third, and fourth
often appear in print as 1st, 2nd, 3rd, and 4th.

The general rule for determining the suffix of an ordinal can be defined as follows:

Numbers ending in the digit 1, 2, and 3, take the suffixes "st",
"nd", and "rd", respectively, unless the number ends with the two-
digit combination 11, 12, or 13.  Those numbers, and any numbers
not ending with a 1, 2, or 3, take the suffix "th".

Your task in this problem is to write a function ordinalForm(n) that takes an
integer n and returns a string indicating the corresponding ordinal number.  For
example, your function should return the following values:

ordinalForm(1) returns the string "1st"
ordinalForm(2) returns the string "2nd"
ordinalForm(3) returns the string "3rd"
ordinalForm(10) returns the string "10th"
ordinalForm(11) returns the string "11th"
ordinalForm(12) returns the string "12th"
ordinalForm(21) returns the string "21st"
ordinalForm(42) returns the string "42nd"
ordinalForm(101) returns the string "101st"
ordinalForm(111) returns the string "111th"

10. One of the simplest types of codes used to make it harder for someone to read a
message is a letter-substitution cipher, in which each letter in the original message
is replaced by some different letter in the coded version of that message.  A
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particularly simple type of letter-substitution cipher is a Caesar cipher—so named
because the Roman historian Suetonius records that Julius Caesar used such a
cipher—in which each letter is replaced by its counterpart a fixed distance ahead in
the alphabet.  A Caesar cipher is cyclic in the sense that any operations take shift a
letter beyond Z simply circle back to the beginning and start over again with A.

As an example, suppose that you wanted to encode a message by shifting every letter
ahead four places.  In that Caesar cipher, each A becomes an E , B becomes F , Z
becomes D (because it cycles back to the beginning), and so on.

To solve this problem, you should first define a method

private String encodeString(String str, int shift)

that returns a new string formed by shifting every letter in str forward the number of
letters indicated by shift, cycling back to the beginning of the alphabet if necessary.
After you have implemented encodeString, write a ConsoleProgram that
duplicates the examples shown in the following sample run:

CaeserCipher
This program encodes a message using a Caesar cipher.
Enter the number of character positions to shift: 13
Enter a message: This is a secret message.
Encoded message: Guvf vf n frperg zrffntr.

Note that the coding operation applies only to letters; any other character is included
unchanged in the output.  Moreover, the case of letters is unaffected: lowercase
letters come out as lowercase, and uppercase letters come out as uppercase.

Write your program so that a negative value of shift means that letters are shifted
toward the beginning of the alphabet instead of toward the end, as illustrated by the
following sample run:

CaeserCipher
This program encodes a message using a Caesar cipher.
Enter the number of character positions to shift: -1
Enter a message: IBM 9000
Encoded message: HAL 9000

11. When large numbers are written out on paper, it is traditional—at least in the United
States—to use commas to separate the digits into groups of three.  For example, the
number one million is usually written in the following form:

1,000,000

To make it easier for programmers to display numbers in this fashion, implement a
method

private String addCommasToNumericString(String digits)

that takes a string of decimal digits representing a number and returns the string
formed by inserting commas at every third position, starting on the right.  For



Strings and Characters 251

example, if you were to execute the main program

public void run() {
while (true) {

String digits = readLine("Enter a numeric string: ");
if (digits.length() == 0) break;
println(addCommasToNumericString(digits));

}
}

your implementation of the addCommasToNumericString method should be able to
produce the following sample run:

AddCommas
Enter a string of digits: 17
17
Enter a string of digits: 1001
1,001
Enter a string of digits: 12345678
12,345,678
Enter a string of digits: 999999999
999,999,999
Enter a string of digits: 

12. A palindrome is a word that reads identically backward and forward, such as level
or noon.  Write a predicate method isPalindrome(str) that returns true if the
string str is a palindrome.  In addition, design and write a test program that calls
isPalindrome to demonstrate that it works.  In writing the program, concentrate on
how to solve the problem simply rather than how to you make your solution more
efficient.

13. The concept of a palindrome introduced in exercise xxx is often extended to full
sentences by ignoring punctuation and differences in the case of letters.  For
example, the sentence

Madam, I’m Adam.

is a sentence palindrome, because if you only look at the letters and ignore any
distinction between uppercase and lowercase letters, it reads identically backward
and forward.  Write a predicate method isSentencePalindrome(str) that returns
true if the string str fits this definition of a sentence palindrome.  For example, you
should be able to use your method to write a main program capable of producing the
following sample run:

SentencePalindrome
This program checks for sentence palindromes.
Indicate the end of the input with a blank line.
Enter a string: Madam, I'm Adam.
That string is a palindrome.
Enter a string: A man, a plan, a canal: Panama!
That string is a palindrome.
Enter a string: Not a palindrome.
That string is not a palindrome.
Enter a string:



 



Chapter 10
Arrays and ArrayLists

Little boxes on a hillside, little boxes made of ticky-tacky
Little boxes, little boxes, little boxes all the same
There’s a green one and a pink one and a blue one and a yellow one
And they’re all made out of ticky-tacky and they all look just the same

— Malvina Reynolds, “Little Boxes,” 1962

Dan Bricklin and Bob Frankston

In modern computing, one of the most visible applications of the array structure described
in this chapter is the electronic spreadsheet, which uses a two-dimensional array to store
tabular data.  The first electronic spreadsheet was VisiCalc, which was released in 1979
by Software Arts Incorporated, a small startup company founded by MIT graduates Dan
Bricklin and Bob Frankston.  VisiCalc proved to be a popular application, leading many
larger firms to develop competing products, including Lotus 1 2 3 and, more recently,
Microsoft Excel.
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Up to now, most of the programs in this book have worked with individual data items.
Much of the power of computing, however, comes from the ability to work with
collections of data. This chapter introduces the idea of an array, which is an ordered
collection of values of the same type. Arrays are important in programming largely
because such collections occur quite often in the real world. Whenever you want to
represent a set of independent values in which it makes sense to think about those values
as forming a sequence, arrays—or one of the Java library classes that builds on top of the
standard array mechanism—are likely to be the appropriate strategy.

10.1  Introduction to arrays
An array is a collection of individual data values with two distinguishing characteristics:

1. An array is ordered. You must be able to count off the individual components of an
array in order: here is the first, here is the second, and so on.

2. An array is homogeneous. Every value stored in an array must be of the same type.
Thus, you can define an array of integers or an array of floating-point numbers but not
an array in which the two types are mixed.

From an intuitive point of view, it is best to think of an array as a sequence of boxes, one
box for each data value in the array. Each of the values in an array is called an element.
For example, the following diagram represents an array with five elements:

Even before you get around to specifying the values of the individual elements, any
array has two fundamental properties that apply to the array as a whole:

• The element type, which is the type of value that may be stored in the elements of the
array

• The length, which is the number of elements the array contains

In Java, these properties are specified at different times. You define the element type
when you declare the array variable; you indicate the length when you create its initial
value. In most cases, however, you can specify both properties in the same declaration, as
described in the following section.

Typical syntax for array declarations:

    type[] name = new type[length];

where:
type is the type of each element in the

array
name is the name of the variable being

declared as an array
length is the number of elements that are

allocated as part of the array

Array declaration
Like any other variable in Java, an array must be
declared before it is used. The most common form
for an array declaration is shown in the syntax box
to the right. For example, the declaration

int[] intArray = new int[10];

declares an array named intArray  with 10
elements, each of which is of type int. You can
represent this declaration graphically by drawing a
row of 10 boxes and giving the entire collection the
name intArray:

0 1 2 3 4 5 6 7 8 9

yarrAtni
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As you will discover in the section entitled “Internal representation of arrays” later in this
chapter, this picture has been simplified considerably from what is actually stored inside
the machine. It is nonetheless perfectly useful as a model for arrays at a holistic level.

Each element in the array is identified by a numeric value called its index. In Java, the
index numbers for an array always begin with 0 and run up to the length of the array
minus one. Thus, in an array with 10 elements, the index numbers are 0, 1, 2, 3, 4, 5, 6, 7,
8, and 9, as the preceding diagram shows.

Although it is possible to use integer values—such as the 10 in the preceding
example—to specify the length of an array, it is much more common to use named
constants for this purpose. Suppose, for example, that you have been asked to define an
array capable of holding the scores for a sporting event, such as gymnastics or figure
skating, in which scores are assigned by a panel of judges. Each judge rates the
performance on a scale from 0 to 10, with 10 being the highest. Because a score may
include a decimal fraction, as in 9.9, each element of the array must be of type double,
which is the standard floating-point type. Because the number of judges might vary from
application to application, you might want to declare it as a constant to make it easy to
change. In this case, the declaration of an array called scores might look like this:

private static final int N_JUDGES = 5;

double[] scores = new double[N_JUDGES];

This declaration introduces a new array called scores with five elements, as shown in the
following diagram:

0

serocs

1 2 3 4

In Java, the value used to specify the length of an array need not be constant. If you
wanted to make your sports-scoring program more general, you could read the number of
judges from the user, as shown in the following code:

int nJudges = readInt("Enter number of judges: ");
double[] scores = new double[nJudges];

Array selection
To refer to a specific element within an array, you need to specify both the array name
and the index corresponding to the position of that element within the array. The process
of identifying a particular element within an array is called selection and is indicated in
Java by writing the name of the array and following it with the index written in square
brackets. The result is a selection expression, which has the following form:

array[index]

Within a program, a selection expression acts just like a simple variable. You can use
it in an expression, and, in particular, you can assign a value to it. Thus, if the first judge
(judge #0, since Java counts array elements beginning at zero) awarded the contestant a
score of 9.2, you could store that score in the array by writing the assignment statement

scores[0] = 9.2;



256 The Art and Science of Java

The effect of this assignment can be diagrammed as follows:

0

serocs

1 2 3 4

9.2

You could then go ahead and assign scores for each of the other four judges using, for
example, the statements

scores[1] = 9.9;
scores[2] = 9.7;
scores[3] = 9.0;
scores[4] = 9.6;

Executing these statements results in the following picture:

0

serocs

1 2 3 4

9.2 9.9 9.7 9.0 9.6

In working with arrays, it is essential to understand the distinction between the index
of an array element and the value of that element. For instance, the first box in the array
has index 0, and its value is 9.2. It is also important to remember that you can change the
values in an array but never the index numbers.

The real power of array selection comes from the fact that the index value need not be
constant, but can be any expression that evaluates to an integer or any other scalar type.
In many cases, the selection expression is the index variable of a for loop, which makes
it easy to perform an operation on each element of the array in turn. For example, you can
set each element in the scores array to 0.0 with the following statement:

for (int i = 0; i < nJudges; i++) {
    scores[i] = 0.0;
}

Example of a simple array
The program GymnasticsJudge given in Figure 10-1 provides a simple example of array
manipulation. This program asks the user to enter the score for each judge and then
displays the average score.

Running the GymnasticsJudge program with the data used in the examples in the
preceding section produces the following sample run:

GymnasticsJudge
Enter number of judges: 5
Enter score for judge 0: 9.2
Enter score for judge 1: 9.9
Enter score for judge 2: 9.7
Enter score for judge 3: 9.0
Enter score for judge 4: 9.6
The average score is 9.48
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FIGURE 10-1    Program to average an array of gymnastics scores

/*
 * File: GymnasticsJudge.java
 * --------------------------
 * This file reads in an array of scores and computes the
 * average.
 */

import acm.program.*;

public class GymnasticsJudge extends ConsoleProgram {

/** Runs the program */
public void run() {

int nJudges = readInt("Enter number of judges: ");
double[] scores = new double[nJudges];
for (int i = 0; i < nJudges; i++) {

scores[i] = readDouble("Enter score for judge " + i + ": ");
}
double total = 0;
for (int i = 0; i < nJudges; i++) {

total += scores[i];
}
double averageScore = total / nJudges;
println("The average score is " + averageScore);

}

}

Changing the index range
In Java, the first element in every array is at index position 0. In many applications,
however, this design may cause confusion for the user. To a nontechnical person using
the GymnasticsJudge program, the fact that it asks about judge 0 is likely to be
disconcerting. In the real world, we tend to number elements in a list beginning at 1. It
would therefore be more natural for the program to ask the user to enter the scores for
judges numbered from 1 to 5 instead.

There are two standard approaches for solving this problem:

1. Use the indices 0 to 4 internally, but add 1 to each index value when requesting data
from the user or displaying output data. If you adopt this approach, the only part of
the GymnasticsJudge program that needs to change is the readDouble statement that
reads in each input value, which becomes

scores[i] = readDouble("Enter score for judge " + (i + 1) + ": ");

2. Declare the array with an extra element so that its indices run from 0 to 5, and then
ignore element 0 entirely. Using this approach, the run method becomes
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public void run() {
int nJudges = readInt("Enter number of judges: ");
double[] scores = new double[nJudges + 1];
for (int i = 1; i <= nJudges; i++) {

scores[i] = readDouble("Enter score for judge " + i + ": ");
}
double total = 0;
for (int i = 1; i <= nJudges; i++) {

total += scores[i];
}
double averageScore = total / nJudges;
println("The average score is " + averageScore);

}

Note that the declaration of the scores array uses the expression nJudges + 1 to
specify the array size.

The advantage of the first approach is that the internal array indices still begin with 0,
which often makes it easier to use existing methods that depend on that assumption. The
disadvantage is that the program requires two different sets of indices: an external set for
the user and an internal set for the programmer. Even though the user sees a consistent
and familiar index pattern, having to think about both sets of indices can complicate the
programming process. The advantage of the second approach is that the internal indices
match the user’s indices.

10.2  Internal representation of arrays
Although the GymnasticsJudge program in Figure 10-1 is sufficient to solve a specific
problem, it is too simple to illustrate several of the most important issues that arise when
using arrays. The most significant weakness of the GymnasticsJudge example is that it is
written as a single method using none of the techniques of decomposition that you have
learned in the earlier chapters. In order to write more sophisticated programs that use
arrays, you will need to learn how to pass an array as an argument from one method to
another.

Before you can appreciate the details of how array data can be communicated between
two methods, it is essential to understand how arrays are represented in memory. In Java,
passing an array—or any object for that matter as you saw in Chapter 7—as an argument
to a method does not initially appear to be the same as passing a simple variable. If you
understand how arrays are represented inside the computer, Java’s handling of arrays as
arguments makes sense. If you don’t understand the internal representation, Java’s
approach will seem completely baffling.

In Chapter 7, you had the opportunity to learn a little bit about the way memory works.
In particular, you learned that objects are stored in a region of memory called the heap
and that each object is identified by its address in memory. In Java, all arrays are
represented internally as objects and are stored in exactly the same way. The internal
representation of an array value therefore consists of some standard information common
to all objects followed by the memory needed to store the elements of the array in
consecutive locations within the heap.

To illustrate this process, consider what happens when you issue the local variable
declaration

double[] scores = new double[N_JUDGES];
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where N_JUDGES is defined to be the constant 5. Although you can usually think of this
declaration pattern as a single operation, it actually consists of two distinct parts. The
declaration to the left of the equal sign introduces a variable named scores, which, like
all local variables, is stored on the stack. The stack, however, does not include the space
for the actual elements. The array of doubles is created by the initializer that appears to
the right of the equal sign. The expression

new double[N_JUDGES]

allocates an array object in the heap that contains information common to all objects, the
length of the array (in this case, five), and enough space for five values of type double.
The five values themselves consume 40 bytes of memory, which you can calculate as
follows:

8 bytes/element  x  5 elements  =  40 bytes

The scores variable itself is large enough to store only the address of the array object
in the heap. The internal picture of memory therefore looks like the rather complicated
diagram shown in Figure 10-2. This picture contains far more information than necessary
if all you are concerned with is having a mental image of the collection. For that of level
of abstraction, a simple box diagram is sufficient. The more accurate reductionistic
model, however, is essential to understanding how array values are assigned or passed as
parameters, as discussed in the section that follows.

Memory layout of the scores array
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100C
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object
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]0[serocs

]1[serocs

]2[serocs
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serocs 1000

Array storage in the heap Local variable storage on the stack
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FIGURE 10-2
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FFBC
FFB8

10.3  Passing arrays as parameters
As you know from Chapter 5, the key to writing a large program is breaking it down into
many methods, each of which is small enough for you to comprehend it as a unit. The
individual methods communicate by passing parameters from one method to another. If a
large program involves arrays, decomposing that program will often require methods to
pass entire arrays as parameters. In Java, the operation of passing an array as a parameter
is closely tied to the internal representation of arrays in memory and can therefore seem
mysterious. Having become acquainted with that internal representation, you are now
ready to learn how array parameters work and how to use them effectively.
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The issues involved in using arrays as parameters are best illustrated in the context of a
simple example. Suppose that you have been asked to write a program that performs
these steps:

1. Reads in a list of five integers
2. Reverses the elements in that list
3. Displays the list in reverse order

The following sample run illustrates the operation of the program:

ReverseIntArray
This program reverses the elements in an array.
 ? 10
 ? 20
 ? 30
 ? 40
 ? 50
50
40
30
20
10

To illustrate the process of passing arrays as parameters, it is important to decompose
this program into three methods that correspond to the three phases of the program
operation: reading the input values and storing them in an array, reversing the elements of
the array, and displaying the results. Using this decomposition, the run method for the
program has the following structure:

private static final int N_VALUES = 5;

public void run() {
int[] array = new int[N_VALUES];
println("This program reverses the elements in an array.");
readArray(array);
reverseArray(array);
printArray(array);

}

This decomposition makes intuitive sense but works correctly only if Java allows
methods to change the values of array elements that are passed to those methods as
arguments. If you pass a primitive value like an integer, Java copies the value, which
means that it is impossible for a method to change it. As you learned in Chapter 7,
however, passing an object as parameter to a method means that only the reference is
copied, so that the method effectively shares the object with the caller. The important
question that arises in the suggested decomposition of the ReverseArray program is
therefore whether arrays are treated as if they are primitive values or as if they are
objects. The answer is that Java defines all arrays as objects, which in turn means that the
elements of an array are shared between the calling method and the method being called.

Before going a bit more deeply into the details of how Java treats array parameters, it
helps to expand a few of the methods in the proposed decomposition of the
ReverseArray program. The simplest method is printArray, which is implemented like
this:
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private void printArray(int[] array) {
for (int i = 0; i < array.length; i++) {

println(array[i]);
}

}

The declaration of the array parameter looks exactly like the definition of an array
variable, but without the expression that specifies the initial value. That value is supplied
by the caller, so the only thing the method needs to know is the fact that the parameter is
an array of integers. The body of the loop is entirely straightforward except for the
expression used for the for loop bound, which is written as

array.length

Every array in Java has a length field, which tells you how many elements are in the
array. The code for printArray, therefore, simply iterates over the elements in array,
calling println on each one.

In the case of printArray, it doesn’t matter how Java implements the process of
passing an array to a method. If Java were to copy the entire array, the result would be
just what you expect because printArray is merely looking up the values in the array
without attempting to change them. The situation is different for readArray, which has to
assign new values to the elements. The code, however, is very closely parallel to that of
printArray:

private void readArray(int[] array) {
for (int i = 0; i < array.length; i++) {

array[i] = readInt(" ? ");
}

}

Here, correct execution of the readArray method depends on being able to store new
values in the array elements. If you think back to the diagram in Figure 10-2, you will see
that the value being passed as the parameter array is merely the address of the array in
the heap and does not contain the array elements themselves. As is true for any object
passed as a parameter, this address gets copied into the corresponding parameter variable
inside readArray, but continues to refer to the same object in the heap.

Implementing reverseArray
The one piece of the ReverseArray program that you have not yet seen is the
reverseArray method itself. The basic algorithm is simple: to reverse an array, you need
to exchange the first element with the last one, the second element with the next-to-last
one, and so on until all the elements have been exchanged. Because arrays are numbered
beginning at 0, the last element in an array of n items is at index n - 1, the next-to-last
element is at index n - 2, and so forth. In fact, given any integer index i, the array
element that occurs i elements from the end is always at index position

n - i - 1

Thus, in order to reverse the elements of array, all you need to do is swap the values in
array[i] and array[n - i - 1] for each index value i from the beginning of the array up
to the center, which falls at index position n / 2. As soon as you reach the center, the
elements in the second half of the array will already have their correct values because
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each cycle of the for loop correctly repositions two array elements—one in each half. In
pseudocode, the implementation of reverseArray is therefore

private void reverseArray(int[] array) {
for (int i = 0; i < array.length / 2; i++) {

Swap the values in array[i] and array[n - i - 1]
}

}

The operation of swapping two values in an array is useful even beyond the bounds of
this example. For this reason, it makes sense to define that operation as a separate method
and to replace the remaining pseudocode in reverseArray with a single method call.

Although it is tempting to try, the method call that exchanges the two elements cannot
be written as

swapElements(array[i], array[n - i - 1]);

In this call, the arguments to swapElements are individual array elements. Array
elements act like simple variables and are therefore copied to the corresponding formal
parameters. The swapElements method could easily interchange the local copies of these
values but could not make permanent assignments to the calling arguments.

To avoid this problem, you can simply pass the entire array to the method that
performs the swap operation, along with the two indices that indicate the positions that
should be exchanged. For example, the call

swapElements(array, i, n - i - 1);

exchanges the elements at index positions i and n - i - 1 of array, which is precisely
what you need to replace the pseudocode in reverseArray.

Implementing swapElements
Implementing swapElements is a little more complicated than it at first appears. You
cannot simply assign one element to another because the original value of the destination
would then be lost. The easiest way to handle the problem is to use a local variable to
hold one of the values temporarily. If you hold onto the value of one of the elements, you
are then free to assign the other value directly, after which you can copy the first value
from the temporary variable.

Suppose you want to exchange the values in array at positions 0 and 4. The strategy
requires three separate steps.

1. Store the value in array[0] in the temporary variable, as illustrated in the following
diagram:

step 1

0 1 2 3 4

yarra

pmet

10 20 30 40 50

10
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2. Copy the value from array[4] into array[0], leaving the following configuration:

step 2

0 1 2 3 4

yarra

pmet

50 20 30 40 50

10

Because the old value of array[0] has previously been stored in temp, no
information is lost.

3. Assign the value in temp to array[4], as shown in this diagram:

step 3

0 1 2 3 4

yarra

pmet

50 20 30 40 10

10

This three-step strategy is used as the basis for the following implementation of
swapElements:

private void swapElements(int[] array, int p1, int p2) {
int temp = array[p1];
array[p1] = array[p2];
array[p2] = temp;

}

This method fills in the last missing piece of the ReverseArray program, which
appears in its complete form in Figure 10-3.

10.4  The ArrayList class
The ReverseArray program developed in the preceding section is not a very practical
example, in part because the number of values is fixed by the constant N_VALUES in the
program. When you write a program that works with arrays, you often do not know in
advance how many elements there will be. The ReverseArray program would certainly
be more versatile if the user were able to enter some kind of sentinel to indicate the end of
the array. Adopting that strategy, however, requires a reformulation of the ReverseArray
code because there is no longer any way to determine how large the array should be at the
beginning.

Although it is possible to solve this problem without introducing any new classes,
doing so would be much more complicated than most Java programmers would endure.
In the primitive form in which they are implemented in Java, arrays lack many of the
operations that you would like to apply to a list of values. In particular, you can’t add
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FIGURE 10-3    Program to reverse an integer array

/*
 * File: ReverseArray.java
 * -----------------------
 * This file reads in an array of five integers and then displays
 * those elements in reverse order.
 */

import acm.program.*;

public class ReverseArray extends ConsoleProgram {

private static final int N_VALUES = 5;

/** Runs the program */
public void run() {

int[] array = new int[N_VALUES];
println("This program reverses the elements in an array.");
readArray(array);
reverseArray(array);
printArray(array);

}

/** Reads the data into the array */
private void readArray(int[] array) {

for (int i = 0; i < array.length; i++) {
array[i] = readInt(" ? ");

}
}

/** Prints out the data from the array, one per line */
private void printArray(int[] array) {

for (int i = 0; i < array.length; i++) {
println(array[i]);

}
}

/** Reverses the data in the array */
private void reverseArray(int[] array) {

for (int i = 0; i < array.length / 2; i++) {
swapElements(array, i, array.length - i - 1);

}
}

/** Exchanges two elements in an array */
private void swapElements(int[] array, int p1, int p2) {

int temp = array[p1];
array[p1] = array[p2];
array[p2] = temp;

}

}
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elements to an array without allocating a new array at a larger size and then copying all
the elements from the old array into the new one.

To streamline the process of working with dynamic arrays, Java programmers often
avoid using arrays in favor of the ArrayList class defined in the package java.util.
The ArrayList class provides the traditional operations associated with arrays along with
a set of additional operations that turn out to be quite useful. The most important
operations are summarized in Figure 10-4.

FIGURE 10-4    Important methods in the ArrayList class

 int size()
Returns the number of elements in the ArrayList.

 void add(Object element)
Adds a new element to the end of the ArrayList.

 void add(int index, Object element)
Inserts a new element into the ArrayList before the position specified by index.

 void remove(int index)
Removes the element at the specified position.

 void remove(Object element)
Removes the first instance of the specified element, if any.

 void clear()
Removes all elements from the ArrayList.

 Object get(int index)
Returns the object at the specified index.

 void set(int index, Object value)
Sets the element at the specified index to the new value.

 int indexOf(Object value)
Returns the index of the first occurrence of the specified value, or -1 if it does not appear.

 boolean contains(Object value)
Returns true if the ArrayList contains the specified value.

 boolean isEmpty()
Returns true if the ArrayList contains no elements.

Note: Several of the methods shown here as having no return value in fact return something. In most cases, it is
better not to know what these methods return and to use them strictly as procedures.

If you use the ArrayList class, your code will change markedly in its syntax from the
array-based model. The ArrayList is a standard object class, which means that each of
its operations is invoked as a method call. The brackets used for array notation go away.
The resulting code, however, does introduce a number of complexities, of which the
following are the most important:

• The elements of an ArrayList are declared to be of the class Object, which is the
ultimate superclass of every Java class. That means that any Java object can be stored
in an ArrayList, but that you must usually use a type cast to convert that object to a
more specific type.

• Values that are not objects—specifically the primitive Java types—cannot be directly
stored in an ArrayList. This restriction makes it more difficult to use the ArrayList
class when the elements are, for example, integers or characters than it is if those
values are actual objects like strings. You can, however, get around this problem by
using the wrapper classes introduced in Chapter 7 to encapsulate a primitive value
inside an object.

Figure 10-5 shows the implementation of a ReverseArrayList program that uses an
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FIGURE 10-5    Program to reverse an ArrayList of integers

/*
 * File: ReverseArrayList.java
 * ---------------------------
 * This file reads in an array of integers and then displays
 * those elements in reverse order. This version uses an ArrayList
 * to allow the size of the array to vary dynamically.
 */

import acm.program.*;
import java.util.*;

public class ReverseArrayList extends ConsoleProgram {

/** Define the sentinel value */
private static final int SENTINEL = 0;

/** Runs the program */
public void run() {

println("This program reverses the elements in an ArrayList.");
println("Use " + SENTINEL + " to signal the end of the list.");
ArrayList list = readArrayList();
reverseArrayList(list);
printArrayList(list);

}

/** Reads the data into the list */
private ArrayList readArrayList() {

ArrayList list = new ArrayList();
while (true) {

int value = readInt(" ? ");
if (value == SENTINEL) break;
list.add(new Integer(value));

}
return list;

}

/** Prints out the data from the list, one per line */
private void printArrayList(ArrayList list) {

for (int i = 0; i < list.size(); i++) {
Integer valueAsInteger = (Integer) list.get(i);
println(valueAsInteger.intValue());

}
}

/** Reverses the data in an ArrayList */
private void reverseArrayList(ArrayList list) {

for (int i = 0; i < list.size() / 2; i++) {
swapElements(list, i, list.size() - i - 1);

}
}

/** Exchanges two elements in an ArrayList */
private void swapElements(ArrayList list, int p1, int p2) {

Object temp = list.get(p1);
list.set(p1, list.get(p2));
list.set(p2, temp);

}
}
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ArrayList rather than an array to hold the elements. The conceptual effect of this
program is the same as that of the ReverseArray program from Figure 10-3, but the
implementation differs in the following ways:

• The end of the input is indicated by a sentinel and not by counting the number of items.
• The values read in from the user are not stored at a specific index position but are

instead added to the end of the ArrayList using the add method.
• The values stored in the array must be objects of class Integer rather than primitive

values of type int. Using wrapper classes means that the program must explicitly
create the wrapper value using a constructor before storing it into the ArrayList and
call intValue to retrieve the primitive value at the end.

• The ReverseArrayList program uses the get and set methods to read and write
values in the array. The square brackets used to denote selection in an array are not
used for an ArrayList.

• The size method returns the number of elements because the ArrayList class does
not support a length field in the way that arrays do.

10.5  Using arrays for tabulation
The data structure of a program is typically designed to reflect the organization of data in
the real-world domain of the application. If you are writing a program to solve a problem
that involves a list of values, you should probably use an array to represent that list in the
program. For example, in the GymnasticsJudge program shown in Figure 10-1, the
problem involves a list of scores—one for each of five judges. Because the individual
scores form a list in the conceptual domain of the application, it is not surprising that an
array is used to represent the data in the program. The array elements have a direct
correspondence to the individual data items in the list. Thus, scores[0] corresponds to
the score for judge #0, scores[1] to the score for judge #1, and so on.

In general, whenever an application involves data that can be represented in the form
of a list like

a0, a1, a2, a3, a4, . . . , aN-1

an array is the natural choice for the underlying representation. It is also quite common
for programmers to refer to the index of an array element as a subscript, reflecting the
fact that arrays are used to hold data that would typically be written with subscripts in
mathematics.

There are, however, important uses of arrays in which the relationship between the
data in the application domain and the data in the program takes a different form. Instead
of storing the data values in successive elements of an array, for some applications it
makes more sense to use the data to generate array indices. Those indices are then used to
select elements in an array that records some statistical property of the data as a whole.

Understanding how this approach works and appreciating how it differs from more
traditional uses of arrays requires looking at a concrete example. Suppose you want to
write a program that reads lines of text from the user and keeps track of how often each of
the 26 letters appears. When the user types a blank line to signal the end of the input, the
program should display a table indicating how many times each letter appears in the input
data.

In order to generate this kind of letter-frequency table, the program has to search each
line of text character by character. Every time a letter appears, the program must update a
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running count that keeps track of how often that letter has appeared so far in the input.
The interesting part of the problem lies in designing the data structure necessary to
maintain a count for each of the 26 letters.

It is possible to solve this problem without arrays by defining 26 separate variables—
nA, nB, nC, and so forth up to nZ—and then using a switch statement to check all 26
cases:

switch (Character.toUpperCase(ch)) {
case 'A': nA++; break;
case 'B': nB++; break;
case 'C': nC++; break;
. . .
case 'Z': nZ++; break;

}

This process results in a long, repetitive program. A better approach is to combine the 26
individual variables into an array and then use the character code to select the appropriate
element within the array. Each element contains an integer representing the current count
of the letter that corresponds to that index in the array. If you call the array
letterCounts, you can declare it by writing

int[] letterCounts = new int[26];

This declaration allocates space for an integer array with 26 elements, as shown in this
diagram:

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5

stnuoCrettel

Each time a letter character appears in the input, you need to increment the
corresponding element in letterCounts. Finding the element to increment is simply a
matter of converting the character into an integer in the range 0 to 25 by using character
arithmetic as discussed in Chapter 9. The code for the CountLetterFrequencies
program appears in Figure 10-6.

10.6  Initialization of arrays
Like any other variable, array variables can be declared to be either local variables or
instance variables. In either case, an array may also be given an initial set of values using
a very convenient syntax, in which the equal sign specifying the initial value is followed
by a list of the initial values for each element, enclosed in curly braces. For example, the
declaration

int[] digits = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

introduces a local variable called digits in which each of the 10 elements is initialized to
its own index number.

As a second example, imagine you’re writing a program that requires an array
containing the names of all U.S. cities with populations of over 1,000,000. Taking data
from the 1990 census, you could declare that array as a named constant using the
following code:
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FIGURE 10-6    Program to produce a letter-frequency table

/*
 * File: CountLetterFrequencies.java
 * ---------------------------------
 * This program creates a table of the letter frequencies in a
 * paragraph of input text terminated by a blank line.
 */

import acm.program.*;

public class CountLetterFrequencies extends ConsoleProgram {

/** Runs the program */
public void run() {

println("This program counts letter frequencies.");
println("Enter a blank line to indicate the end of the text.");
initFrequencyTable();
while (true) {

String line = readLine();
if (line.length() == 0) break;
countLetterFrequencies(line);

}
printFrequencyTable();

}

/** Initializes the frequency table to contain zeros */
private void initFrequencyTable() {

frequencyTable = new int[26];
for (int i = 0; i < 26; i++) {

frequencyTable[i] = 0;
}

}

/** Counts the letter frequencies in a line of text */
private void countLetterFrequencies(String line) {

for (int i = 0; i < line.length(); i++) {
char ch = line.charAt(i);
if (Character.isLetter(ch)) {

int index = Character.toUpperCase(ch) - 'A';
frequencyTable[index]++;

}
}

}

/** Displays the frequency table */
private void printFrequencyTable() {

for (char ch = 'A'; ch <= 'Z'; ch++) {
int index = ch - 'A';
println(ch + ": " + frequencyTable[index]);

}
}

/** Private instance variables */
private int[] frequencyTable;

}
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private static final String[] CITIES_OVER_ONE_MILLION = {
    "New York",
    "Los Angeles",
    "Chicago",
    "Houston",
    "Philadelphia",
    "San Diego",
    "Detroit",
    "Dallas",
};

If you then want to add the figures from the 2000 census, Phoenix, Las Vegas, and San
Antonio join this list. To do so, you correct the array simply by adding the new names to
the initializer list. The compiler then expands the array size to accommodate the new
values.

Note that the last initializer for the CITIES_OVER_ONE_MILLION array is followed by a
comma. This comma is optional, but it is often makes sense to include it. Doing so allows
you to add new cities at the end without having to change the existing entries.

10.7  Multidimensional arrays
In Java, the elements of an array can be of any type. In particular, the elements of an
array can themselves be arrays. Arrays of arrays are called multidimensional arrays.
The most common form of multidimensional array is the two-dimensional array, which is
most often used to represent data in which the individual entries form a rectangular
structure marked off into rows and columns. This type of two-dimensional structure is
called a matrix. Arrays of three or more dimensions are also legal in Java but occur much
less frequently.

As an example of a two-dimensional array, suppose you wanted to represent a game of
tic-tac-toe as part of a program. As you probably know, tic-tac-toe is played on a board
consisting of three rows and three columns, as follows:

Players take turns placing the letters X and O in the empty squares, trying to line up three
identical symbols horizontally, vertically, or diagonally.

To represent the tic-tac-toe board, the most sensible strategy is to use a two-
dimensional array with three rows and three columns. Although you could also define an
enumeration type to represent the three possible contents of each square—empty, X, and
O—it is probably simpler in this case to use char as the element type and to represent the
three legal states for each square using the characters ' ', 'X', and 'O'. The declaration
for the tic-tac-toe board would then be written as

char[][] board = new char[3][3];

Given this declaration, you could then refer to the characters representing the individual
squares on the board by supplying two separate indices, one specifying the row number
and another specifying the column number. In this representation, each number varies
over the range 0 to 2, and the individual positions in the board have the following names:
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]0[]0[draob ]1[]0[draob ]2[]0[draob

]0[]1[draob ]1[]1[draob ]2[]1[draob

]0[]2[draob ]1[]2[draob ]2[]2[draob

Internally, Java represents the variable board as an array of three elements, each of
which is an array of three characters. The memory allocated to board consists of nine
characters arranged in the following form:

]0[]0[draob

]1[]0[draob

]2[]0[draob

]0[]1[draob

]1[]1[draob

]2[]1[draob

]0[]2[draob

]1[]2[draob

]2[]2[draob

]0[draob

]1[draob

]2[draob

In the two-dimensional diagram of the board array, the first index is assumed to
indicate the row number. This choice, however, is arbitrary because the two-dimensional
geometry of the matrix is entirely conceptual; in memory, these values form a one-
dimensional list. If you wanted the first index to indicate the column and the second to
indicate the row, the only methods you would need to change would be those that depend
on the conceptual geometry, such as a method that displays the current state of the board.
In terms of the internal arrangement, however, it is always true that the first index value
varies least rapidly as the array elements are positioned in memory. Thus all the elements
of board[0] appear in memory before any elements of board[1].

Passing multidimensional arrays to methods
Multidimensional arrays are passed between methods just as single dimensional arrays
are. The parameter declaration in the method header looks like the original declaration of
the variable and includes the index information. For example, the following method
displays the current state of the board array:

private void displayBoard(char[][] board) {
for (int row = 0; row < 2; row++) {

if (row > 0) println("-----+-----+-----");
println("     |     |");
print("  ");
for (int col = 0; col < 2; col++) {

if (col > 0) print("  |  ");
print(board[row][col]);

}
println();
println("     |     |");

}
}
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Much of the code in DisplayBoard is used to format the output so that the board appears
in an easy-to-read form.

Initializing multidimensional arrays
You can use static initialization with multidimensional arrays just like single dimensional
arrays. To emphasize the overall structure, the values used to initialize each internal array
are usually enclosed in additional set of curly braces. For example, the declaration

static double identityMatrix[3][3] = {
    { 1.0, 0.0, 0.0 },
    { 0.0, 1.0, 0.0 },
    { 0.0, 0.0, 1.0 }
};

declares a 3x3 matrix of floating-point numbers and initializes it to contain the following
values:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

This particular matrix comes up frequently in mathematical applications and is called the
identity matrix.

Summary
In this chapter, you have learned about two strategies that Java provides for representing
lists of data: a language-level facility called the array and a class in the java.util
package called ArrayList. These two strategies are similar in many respects, but have
different properties that make each strategy appropriate for particular applications.

Arrays are built into Java and are supported by the syntax of the language. As in most
programming languages, Java uses arrays to represent collections of data that are both
ordered and homogeneous. Each component of an array is called an element and is
identified by a numeric index. In Java, all arrays begin with index number 0. The number
of elements in an array is called its length.

The process of creating an array variable consists of two steps: declaring the array
variable and allocating space for the elements. In most applications, it is easiest to
combine these operations into a single declaration line with the following paradigmatic
form:

type[] name = new type[length];

This declaration creates an array variable called name with length elements, each of
which is an instance of type. You can also allocate an array by listing its elements in curly
braces, as in the following example, which creates a ten-element string array in which
each element is initialized to the English name of that number:

String[] digitNames = {
"zero", "one", "two", "three", "four",
"five", "six", "seven", "eight", "nine"

};
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The process of referring to an individual element in an array is called selection and is
indicated by writing an expression in square brackets after the name of the array. The
index of an array is typically an int, but can also be any scalar type, such as a char.
Selecting an element outside the index bounds of an array generates an error. You can
determine the length of a Java array by selecting its length field.

A Java array is an object, which means that passing an array as an argument to a
method copies a reference to the array into the corresponding formal parameter. Because
this reference refers to the same object as the caller, any changes that are made to
elements of the array within the method will persist after the method returns.

Arrays can be declared with more than one index, in which case they are called
multidimensional arrays. In Java, multidimensional arrays are treated as arrays of arrays.
The first index value selects an element of the outermost array, the second index value
selects an element from that subarray, and so on.

Review questions
1. What are the two characteristic properties of an array?

2. Define the following terms: element, index, element type, array length, selection.

3. Write declarations that create the following array variables:

a) An array doubleArray consisting of 100 values of type double
b) An array inUse consisting of 16 values of type boolean
c) An array lines consisting of 50 strings

4. Write the variable declaration and for loop necessary to create and initialize the
following integer array:

0
0

1
1

4
2

9
3

16
4

25
5

36
6

49
7

64
8

81
9

100
1 0

s serauq

5. What are the two approaches outlined in this chapter for representing an array in
which the natural index values begin at 1 instead of at 0?  What are the tradeoffs
between these two approaches?

6. True or false: Arrays are represented in memory in the way that primitive values are.

7. How do you determine the length of an array?

8. What is the role of the variable temp in the swapElements method?

9. What are some of the advantages of using the ArrayList class as opposed to Java
arrays?

10. Describe the effect of each of the following ArrayList methods: size, add, set,
get, and remove.

11. What strategy do you need to adopt if you want to add a value of a primitive type to
an ArrayList?
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12. How would you declare and initialize an array variable powersOfTwo that contains
the first eight powers of two (1, 2, 4, 8, 16, 32, 64, and 128)?

13. What is a multidimensional array?

14. Assuming that the base address for the array is 1000 and that values of type int
require two bytes of memory, draw a diagram that shows the address of each element
in the array declared as follows:

int[][] rectangular = new int[2][3];

15. What variable declaration would you use to record the state of a chessboard, which
consists of an 8 x 8 array of squares, each of which may contain any one of the
following symbols:

K white king k black king
Q white queen q black queen
R white rook r black rook
B white bishop b black bishop
N white knight n black knight
P white pawn p black pawn
– empty square

How could you initialize this array so that it holds the standard starting position for a
chess game:

r n b q k b n r

p p p p p p p p

– – – – – – – –

– – – – – – – –

– – – – – – – –

– – – – – – – –

P P P P P P P P

R N B Q K B N R

Programming exercises
1. Because individual judges may have some bias, it is common practice to throw out

the highest and lowest score before computing the average. Write a program that
reads in scores from a panel of seven judges and then computes the average of the
five scores that remain after discarding the highest and lowest.

2. In statistics, a collection of data values is usually referred to as a distribution. A
primary purpose of statistical analysis is to find ways to compress the complete set of
data into summary statistics that express properties of the distribution as a whole.
The most common statistical measure is the mean, which is simply the traditional
average. The mean of a distribution is usually represented by the Greek letter μ.

Write a method mean(array) that returns the mean of an array of type double. Test
your method by incorporating it into the GymnasticsJudge program in Figure 10-1.
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3. Another common statistical measure is the standard deviation, which provides an
indication of how much the individual values in the distribution differ from the
mean. To calculate the standard deviation whose elements are x1, x2, . . . , xn you need
to perform the following steps:

a) Calculate the mean of the distribution as in exercise 2.
b) Go through the individual data items in the distribution and calculate the square

of the difference between each data value and the mean. Add all these values to a
running total.

c) Take the total from step b and divide it by the number of data items.
d) Calculate the square root of the resulting quantity, which represents the standard

deviation.

In mathematical form, the standard deviation (σ) is given by the following formula:

σ  =
  √⎯⎯∑i = 1

n
(μ – xi)

2

 n

where μ signifies the mean. The Greek letter sigma (Σ) represents a summation of the
quantity that follows, which in this case is the square of the difference between the
mean and each individual data point.

Write a method stdev(array) that takes an array of doubles and returns the
standard deviation of the data distribution contained in the array.

Note: The procedure given here is used by statisticians to compute the standard
deviation of a complete data distribution. If you want to calculate the standard
deviation based instead on a sample of the distribution, you need to divide by n – 1.

4. In the third century B.C.E., the Greek astronomer Eratosthenes developed an
algorithm for finding all the prime numbers up to some upper limit N. To apply the
algorithm, you start by writing down a list of the integers between 2 and N. For
example, if N were 20, you would begin by writing down the following list:

2    3    4    5    6    7    8    9    10    11    12    13    14    15    16    17    18    19    20

You then begin by circling the first number in the list, indicating that you have found
a prime. You then go through the rest of the list and cross off every multiple of the
value you have just circled, since none of those multiples can be prime. Thus, after
executing the first step of the algorithm, you will have circled the number 2 and
crossed off every multiple of two, as follows:

2    3    4    5    6    7    8    9    10    11    12    13    14    15    16    17    18    19    20

From here, you simply repeat the process by circling the first number in the list that
is neither crossed off nor circled, and then crossing off its multiples. In this example,
you would circle 3 as a prime and cross off all multiples of 3 in the rest of the list,
which would result in the following state:
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2    3    4    5    6    7    8    9    10    11    12    13    14    15    16    17    18    19    20

Eventually, every number in the list will either be circled or crossed out, as shown in
this diagram:

2    3    4    5    6    7    8    9    10    11    12    13    14    15    16    17    18    19    20

The circled numbers are the primes; the crossed-out numbers are composites. This
algorithm for generating a list of primes is called the sieve of Eratosthenes.

Write a program that uses the sieve of Eratosthenes to generate a list of the primes
between 2 and 1000.

5. In May of 1844, Samuel F. B. Morse sent the message “What hath God wrought!” by
telegraph from Washington to Baltimore, heralding the beginning of the age of
electronic communication. To make it possible to communicate information using
only the presence or absence of a single tone, Morse designed a coding system in
which letters and other symbols are represented as coded sequences of short and long
tones, traditionally called dots and dashes. In Morse code, the 26 letters of the
alphabet are represented by the following codes:

A • J • S • • •
B • • • K • T
C • • L • • • U • •
D • • M V • • •
E • N • W •
F • • • O X • •
G • P • • Y •
H • • • • Q • Z • •
I • • R • •

You can easily store these codes in a program by declaring an array with 26 elements
and storing the sequence of characters corresponding to each letter in the appropriate
array entry.

Write a program that reads in a string from the user and translates each letter in the
string to its equivalent in Morse code, using periods to represent dots and hyphens to
represent dashes. Separate words in the output by calling println whenever you
encounter a space in the input, but ignore all other punctuation characters. Your
program should be able to generate the following sample run:

MorseCode
This program translates a line into Morse code.
Enter English text: What hath God wrought
.-- .... .- - 
.... .- - .... 
--. --- -.. 
.-- .-. --- ..- --. .... -
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6. A histogram is a graphical representation of a statistical distribution that shows how
many elements fall into a set of discrete ranges. For example, given a set of exam
scores that contains the following values

100, 95, 47, 88, 86, 92, 75, 89, 81, 70, 55, 80

a traditional histogram would look something like this:

*
*
*

* * *
* * * * * *

0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90–99 100

The asterisks in the histogram indicate one score in the 40s, one score in the 50s, five
scores in the 80s, and so forth.

When you generate a histogram using a computer, it is usually easier to display the
data sideways on the page, as in this sample run:

Histogram
0-9   | 
10-19 | 
20-29 | 
30-39 | 
40-49 | *
50-59 | *
60-69 | 
70-79 | **
80-89 | *****
90-99 | **
100   | *

Write a program that reads in an array of integers and then displays a histogram of
those numbers, divided into the ranges 0–9, 10–19, 20–29, and so forth, up to the
range containing only the value 100. Your program should generate output that looks
as much like the sample run as possible.

7. The mechanism depicted in the following diagram—which has sometimes been
marketed by toy stores as a “probability board”—can be used to demonstrate
important properties of random processes.
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The mechanism works as follows. You start by dropping a marble in the hole at the
top. The marble falls down and hits the uppermost peg, indicated by the small circle
in the diagram. The marble bounces off the peg and falls, with equal probability, to
the left or right. Whichever way it goes, it then hits a peg on the second level and
bounces again, one direction or the other. The process continues until the marble
passes all the pegs and drops into one of the channels at the bottom. For example, the
dotted line in the following diagram shows one possible path for the marble:

Write a program to simulate the operation of dropping 50 marbles into a probability
board with 10 channels along the bottom, as in the diagram. Your program should
display its results pictorially using the acm.graphics package described in Chapter
8. As each marble lands, the program should draw a circle at the appropriate place on
the screen. The following screen image shows one possible sample run:

ProbabilityBoard

Note that the marbles tend to cluster in the center channels. The reason for this
behavior is that there are many more ways in which a marble can reach the center
columns than the ones on the ends. For example, to reach the leftmost column, the
marble must have bounced to the left nine times in a row. In contrast, there are many
paths from the top to the two center columns because the order of the left and right
bounces can be reordered without affecting where the marble ends up. In general, the
likelihood that a random process will end up in a particular state depends on the
number of ways of reaching that state.
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8. When you are trying to represent the behavior of some quantity that varies over time,
one of the usual tools is the line graph, in which a set of data values are plotted on
an x-y grid with each pair of adjacent points connected by a straight line. For
example, given the following set of 10 points:

(0.0, 0.67)
(0.4, 0.68)
(0.8, 0.71)
(1.2, 0.86)
(1.6, 0.86)
(2.0, 1.04)
(2.4, 1.30)
(2.8, 1.81)
(3.2, 1.46)
(3.6, 1.86)

the line graph that represents them looks like this:

LineGraph

Write a method DrawLineGraph that generates a line graph given an array of
x-coordinate values and a second array of the corresponding y-coordinate values.

9. Using the declaration of the tic-tac-toe board given in this chapter, write a method
isWinningPosition(board, player) that returns true if the specified player,
which is either the character 'X' or the character 'O', has won the tic-tac-toe game.
A winning position is one in which three identical symbols are lined up horizontally,
vertically, or diagonally. Test your method by writing a main program that reads in
the current contents of the board array and then reports whether either player has
won the game, as illustrated by this following sample run:

TicTacToe
This program tests the isWinningPosition method.
Enter the state of the board, row by row.

XOX
-XO
X-O

X has won
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10. The initial state of a checkers game is shown in the following diagram:

The dark squares in the bottom three rows are occupied by red checkers; the dark
squares in the top three rows contain black checkers. The two center rows are
unoccupied.

If you want to store the state of a checkerboard in a computer program, you need a
two-dimensional array indexed by rows and columns. The elements of the array
could be of various different types, but a reasonable approach—as illustrated by the
tic-tac-toe example—is to use characters. For example, you could use the letter r  to
represent a red checker and the letter b to represent a black checker. Empty squares
can be represented as spaces or hyphens depending on whether the color of the
square was light or dark.

Implement a method initCheckerboard that initializes a checkerboard array so that
it corresponds to the starting position of a checkers game. Implement a second
method displayCheckerboard that displays the current state of a checkerboard on
the console, like this:

Checkers
   b   b   b   b
 b   b   b   b  
   b   b   b   b
 -   -   -   -  
   -   -   -   -
 r   r   r   r  
   r   r   r   r
 r   r   r   r  

11. Redesign the data structure for the checkerboard described in the previous exercise
so that each of the elements of the checkerboard array is a GCompound object that
draws itself at the appropriate position on the graphics window. For example, the
element in the lower left corner should be a GCompound that contains two graphical
objects:

• A filled GRect to serve as the background square
• A filled red circle to indicate the checker
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Albrecht Dürer’s “Melencolia” containing a magic square (1514)

12. A magic square is a two-dimensional
array of integers in which the rows,
columns, and diagonals all add up to
the same value.  One of the most
famous magic squares appears in the
engraving “Melencolia” by Albrecht
Dürer shown at the right, in which a
4x4 magic square appears in the upper
right, just under the bell.  In Dürer’s
square, which can be read more easily
as

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

all four rows, all four columns, and
both diagonals add up to 34.

A more familiar example is the following 3x3 magic square in which each of the
rows, columns, and diagonals add up to 15, as shown:

=158 1 6
3 5 7
4 9 2

8 1 6
3 5 7
4 9 2

8 1 6
3 5 7
4 9 2

=15

=15

=1
5

=1
5

=1
5

=15

=15

Implement a method isMagicSquare that tests to see whether an NxN array contains
a magic square.



 



Chapter 11
Searching and Sorting

“I weep for you,” the Walrus said:
“I deeply sympathize.”
With sobs and tears he sorted out
Those of the largest size

— Lewis Carroll, Through the Looking Glass, 1872

C. A. R. (Tony) Hoare

Tony Hoare is Professor Emeritus of Computer Science at Oxford University and a senior
researcher at Microsoft’s Research Laboratory in Cambridge, England.  After completing
his first degree in philosophy at Oxford in 1956, Hoare became fascinated by the
emerging world of computer science and refocused his graduate study in that area.
During his graduate-school years, Hoare developed a highly efficient sorting algorithm
called Quicksort, which remains in active use today.  He also led the effort during the
1960s to create the first commercial compiler for Algol 60, a programming language that
served as an important model for subsequent languages, including Java.  Professor Hoare
received the ACM Turing Award—the computing profession’s highest honor—in 1980.
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In Chapter 10, you had the opportunity to learn about most of the fundamental array
operations and to see how arrays are used in a variety of applications.  There are,
however, two important array operations Chapter 10 omits so that they can be covered
more thoroughly in a chapter of their own.  These operations are:

• Searching, which is the process of finding a particular element in an array
• Sorting, which is the process of rearranging the elements in an array so that they are

stored in some well-defined order

Because searching and sorting are closely related to arrays, this chapter is in a sense a
continuation of the array discussion.  This chapter, however, has another central theme
that links it not just to Chapter 10 but also to the discussion of algorithmic methods in
Chapter 5.  Because there are many different strategies for searching and sorting—with
vastly different levels of efficiency—these operations raise interesting algorithmic issues.

11.1  Searching
As noted in the introduction to this chapter, the searching problem consists of finding an
element in an array.  The simplest strategy—although not necessarily the most efficient
one—is captured in the following advice that the King of Hearts gives the White Rabbit
in Lewis Carroll’s Alice’s Adventures in Wonderland:

Begin at the beginning, and go on till you come to the end:
then stop.

Turning that informal statement into an algorithm for searching is not at all difficult.  The
only modification that you need to make is that the algorithm should also stop if it finds
the element it is searching for.  Thus, you might express a more complete account of the
searching example algorithm as follows:

Begin at the beginning, and go on till you either find the
element you’re looking for or you come to the end. If you
find the element, you can report its position; if you reach
the end, that means that the element does not appear.

Because the process starts at the beginning and proceeds through in a straight line
through the elements of the array, this algorithm is called linear search.

Searching in an integer array
Turning this informal description into a Java method requires adding some details to the
specification of precisely what that method should do.  For concreteness, suppose that
you have been asked to write a method findIntInArray that looks for the integer key in
an array of integers.  The header line for such a method would look like this:

private int findIntInArray(int key, int[] array)

The result of the method is the first index at which the key appears as an element of the
array, assuming that the element exists at all.  If the value key does not match any of the
elements in the array, findIntInArray should return –1 to indicate that fact.

The implementation of findIntInArray is a straightforward translation of Lewis
Carroll’s strategy:
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private int findIntInArray(int key, int[] array) {
for (int i = 0; i < array.length; i++) {

if (key == array[i]) return i;
}
return -1;

}

The for loop begins at the beginning and continues until it comes to the end of the array.
The method returns whenever it finds the key along the way or, failing that, at the end of
the entire loop.

The for  loop in findIntInArray that implements the linear search algorithm
represents an important programming pattern that will come up very often in your code.
Whenever you are given a problem that involves searching for a value in an array, you
should be able to write down the for loop that does the job without giving any real
thought to the details.

Searching a table
As a prelude to a discussion of different algorithms for searching, this section introduces
a more sophisticated searching application that will make it easier to describe the issues
that arise.  Suppose that you want to represent in a program the mileage table shown in
Figure 11-1.  The individual entries in the table form a two-dimensional array with 12
rows and 12 columns.  Each entry in the matrix is an integer that indicates the number of
miles between the cities corresponding to that row and column.  The following
declaration introduces an instance variable called mileageTable and uses static
initialization to fill it with the data shown in Figure 11-1:
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Atlanta

Boston

Chicago

Denver

Detroit

Houston

Los Angeles

Miami

New York

Philadelphia

San Francisco

Seattle

1108 708 1430 732 791 2191 663 854 748 2483 2625

1108 994 1998 799 1830 3017 1520 222 315 3128 3016

708 994 1021 279 1091 2048 1397 809 785 2173 2052

1430 1998 1021 1283 1034 1031 2107 1794 1739 1255 1341

732 799 279 1283 1276 2288 1385 649 609 2399 2327

791 1830 1091 1034 1276 1541 1190 1610 1511 1911 2369

2191 3017 2048 1031 2288 1541 2716 2794 2703 387 1134

663 1520 1397 2107 1385 1190 2716 1334 1230 3093 3303

854 222 809 1794 649 1610 2794 1334 101 2930 2841

748 315 785 1739 609 1511 2703 1230 101 2902 2816

2483 3128 2173 1255 2399 1911 387 3093 2930 2902 810

2625 3016 2052 1341 2327 2369 1134 3303 2841 2816 810

Se
at

tle

Source: Rand McNally atlas

FIGURE 11-1 Mileage table for U.S. cities
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private int[][] mileageTable = {
{   0,1108, 708,1430, 732, 791,2191, 663, 854, 748,2483,2625},
{1108,   0, 994,1998, 799,1830,3017,1520, 222, 315,3128,3016},
{ 708, 994,   0,1021, 279,1091,2048,1397, 809, 785,2173,2052},
{1430,1998,1021,   0,1283,1034,1031,2107,1794,1739,1255,1341},
{ 732, 799, 279,1283,   0,1276,2288,1385, 649, 609,2399,2327},
{ 791,1830,1091,1034,1276,   0,1541,1190,1610,1511,1911,2369},
{2191,3017,2048,1031,2288,1541,   0,2716,2794,2703, 387,1134},
{ 663,1520,1397,2107,1385,1190,2716,   0,1334,1230,3093,3303},
{ 854, 222, 809,1794, 649,1610,2794,1334,   0, 101,2930,2841},
{ 748, 315, 785,1739, 609,1511,2703,1230, 101,   0,2902,2816},
{2483,3128,2173,1255,2399,1911, 387,3093,2930,2902,   0, 810},
{2625,3016,2052,1341,2327,2369,1134,3303,2841,2816, 810,   0},

};

Because the city names in this chart are the same for both the rows and columns, they
can be stored in a single array called cityNames, which you can declare and initialize as
follows:

private String[] cityNames = {
"Atlanta",
"Boston",
"Chicago",
"Denver",
"Detroit",
"Houston",
"Los Angeles",
"Miami",
"New York",
"Philadelphia",
"San Francisco",
"Seattle",

};

Now that you have the data, the next question to consider is how to write a program
that reads in the names of two cities and displays the distance between them, as illustrated
by the following sample run:

ComputeMileage
This program looks up intercity mileage.
Enter name of city #1: Seattle
Enter name of city #2: Miami
The distance between Seattle and Miami is 3303 miles.

All your program has to do is execute the following steps:

1. Read in the names of the two cities as strings.
2. Find the index positions at which the city names occur in the cityNames array.
3. Use the index positions to select the result from mileageTable.

If you implement a method findStringInArray that uses the same linear-search pattern
as findIntInArray, the implementation of the entire program is straightforward, and
appears in Figure 11-2.
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FIGURE 11-2    Program to compute the mileage between two cities

/*
 * File: ComputeMileage.java
 * -------------------------
 * This program uses a table of mileage data to calculate
 * the distance between US cities.
 */

import acm.program.*;

public class ComputeMileage extends ConsoleProgram {

/** Runs the program */
public void run() {

println("This program looks up intercity mileage.");
int city1 = getCity("Enter name of city #1: ");
int city2 = getCity("Enter name of city #2: ");
println("The distance between " + cityNames[city1]
        + " and " + cityNames[city2] + " is "
        + mileageTable[city1][city2] + " miles.");

}

/* Method: getCity */
/**
 * Prompts the user for a city name, reads in a string, and returns
 * the index corresponding to that city, if it exists.  If the city
 * name is undefined, the user is given a chance to retry.
 */

private int getCity(String prompt) {
int index = -1;
while (index == -1) {

String name = readLine(prompt);
index = findStringInArray(name, cityNames);
if (index == -1) {

println("Unknown city name -- try again.");
}

}
return index;

}

/* Method: findStringInArray(key, array) */
/**
 * Finds the first instance of the specified key in the array
 * and returns its index.  If key does not appear in the array,
 * findStringInArray returns -1.
 */

private int findStringInArray(String key, String[] array) {
for (int i = 0; i < array.length; i++) {

if (key.equals(array[i])) return i;
}
return -1;

}

Include the definitions of mileageTable and cityNames here.

}
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The linear-search algorithm used in findStringInArray starts at the beginning of the
array and goes straight down the line of elements until it finds a match or reaches the end
of the array.  For an array of 12 city names, looking at every element takes very little
time.  But what if the array instead had thousands or even millions of elements?  At some
point, if the array became large enough, you would begin to notice a delay as the
computer searched through every value.  But is searching every value really necessary?
It’s worth stopping to think for a moment about this question.

Suppose that someone asked you to find the distance between Seattle and Miami in the
mileage table.  To find the entry for Seattle, would you start at the top of the page and
work your way down?  Probably not.  Because the list of cities is in alphabetic order, you
know that  must come somewhere near the end of the list.  Similarly, Miami is likely to
appear near the middle.  The odds are good that your eyes would find these values very
quickly without ever looking at most of the names in the list.

Binary search
To take advantage of the fact that the cityNames array is in alphabetic order, you need to
use a different algorithm.  To illustrate the process as concretely as possible, let’s suppose
that you are looking for Miami in an array with the following values:

Atlanta0

Boston1

Chicago2

Denver3

Detroit4

Houston5

Los Angeles6

Miami7

New York8

Philadelphia9

San Francisco1 0

Seattle1 1

semaNytic

Instead of starting at the top of the array as in linear search, what happens if you start
by picking an element somewhere near the center?  The index of the center element can
be computed by averaging the endpoints of the index range and is therefore

0 + 11
2

When evaluated using integer arithmetic, this expression has the value 5.

The city name stored in cityArray[5] is Houston.  Given that you’re looking for
Miami, what do you know at this point?  You haven’t found Miami yet, so you have to
keep looking.  On the other hand, you know that Miami must come after Houston because
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the array is in alphabetic order.  Thus, you can immediately eliminate all the city names
in index positions 0 through 5, which leaves you in the following position:

Atlanta0

Boston1

Chicago2

Denver3

Detroit4

Houston5

Los Angeles6

Miami7

New York8

Philadelphia9

San Francisco1 0

Seattle1 1

semaNytic

In one step, you’ve managed to cross out half the possibilities.  The really good news,
however, is that you can now do the same thing all over again.  You know that Miami—if
it exists in the list at all—must lie between positions 6 and 11 of cityNames.  The center
of that range can therefore be computed by evaluating

6 + 11
2

using integer arithmetic, which produces the value 8.  Miami comes earlier in the
alphabet than New York does, so you can now cross off four more positions.

Atlanta0

Boston1

Chicago2

Denver3

Detroit4

Houston5

Los Angeles6

Miami7

New York8

Philadelphia9

San Francisco1 0

Seattle1 1

semaNytic

On the next cycle, you look at the element in position 6, which is the result of evaluating
the expression
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6 + 7
2

using integer arithmetic.  Miami comes after Los Angeles, so you can cross off that value
as well.  On the fourth cycle, you have only a single element to check, which is indeed
the entry for Miami at index position 7.

This algorithm—looking at the center element in a sorted array and then determining
which half to search on that basis—is called binary search.  To implement this
algorithm, all you need to do is keep track of two indices that mark the endpoints of the
index range within which the search is limited.  In the method, these indices are stored in
the variables lh and rh, which represent the left-hand (lower) index and right-hand
(upper) index, respectively.  Initially, these index bounds cover the entire array, but move
closer together as possibilities are eliminated.  If the index values ever cross, the key
value does not exist in the array.

The code for the method findStringInSortedArray, which uses the binary search
algorithm, appears in Figure 11-3.

FIGURE 11-3    Implementation of the binary search algorithm for string arrays

/**
 * Finds an instance of the specified key in the array, which must
 * be sorted in lexicographic order.  If the key exists, the method
 * returns an index at which that key appears, but this index will
 * not necessarily be the first if the same key appears multiply.
 * If key does not appear in the array, findStringInSortedArray
 * returns -1.
 *
 * This implementation uses the "binary search" algorithm.  At
 * each stage, the function computes the midpoint of the remaining
 * range and compares the element at that index position to the
 * key.  If there is a match, the function returns the index.
 * If the key is less than the string at that index position, the
 * function searches in the first half of the array; if the key is
 * larger, the function searches in the second half of the array.
 */

private int findStringInSortedArray(String key, String[] array) {
    int lh = 0;
    int rh = array.length - 1;
    while (lh <= rh) {
        int mid = (lh + rh) / 2;
        int cmp = key.compareTo(array[mid]);
        if (cmp == 0) return mid;
        if (cmp < 0) {
            rh = mid - 1;
        } else {
            lh = mid + 1;
        }
    }
    return -1;
}
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Relative efficiency of the search algorithms
The discussion in the previous section suggests that the binary search algorithm is more
efficient than the linear search algorithm.  Even so, it is hard to appreciate just how much
better binary search is without being able to compare the performance of the two
algorithms using some quantitative measure.  For searching, a convenient measure that
provides a good indication of algorithmic performance is the number of times equals or
compareTo is called to compare the key against some element in the array.

Suppose that you execute the linear search algorithm on an array containing N
elements.  How many times will the method call equals?  The answer depends of course
on where the key value shows up in the list.  In the worst case—which occurs when the
key is in the last position or does not appear at all—findStringInArray will call
equals N times, once for each element in the array.

What about the binary search algorithm used in findStringInSortedArray?  After
the first call to compareTo, the algorithm can immediately eliminate half of the array
elements, leaving only N/2 elements to search.  After the second call, it can rule out half
of those elements, leaving N/4 elements.  Each time, the number of possibilities is halved.
Eventually, after you divide an integer N in half enough times, you will eventually end up
with 1, at which point there is only a single comparison left to be made.  The number of
steps required to reach this point is the number of times you can divide N by 2 before you
get 1, which is represented by k in the following formula:

N  /  2 / 2 / .  .  .  /  2 / 2  =  1  

k times

Multiplying by all those 2s gives the equivalent equation

N = 2k

If you remember logarithms from high-school algebra, you can express the value of k as

k = log2N

Thus, to search an array of N elements requires N comparisons if you use linear search
and log2 N comparisons if you use binary search.

Expressing the relative efficiency of these algorithms in mathematical form is useful as
a means of making quantitative predictions about efficiency.  For most people, however,
such formulas do not convey a real sense of how these algorithms compare.  For that, you
need to look at some numbers.  The following table shows the closest integer to log2 N for
various values of N.

N log2N
10 3

100 7
1000 10

1,000,000 20
1,000,000,000 30
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Reflecting on what the values in this table mean, you can see that, for small arrays, both
strategies work reasonably well.  On the other hand, if you have an array with
1,000,000,000 elements, linear search requires 1,000,000,000 comparisons to search that
array in the worst case, whereas the binary search algorithm gets the job done using at
most 30 comparisons.  Clearly, this reduction in the number of required comparisons
represents an overwhelming increase in algorithmic efficiency.

The only problem is that the binary search algorithm requires that the array elements
be listed in sorted order.  If they are not, you may have to resort to linear searching.
Alternatively, you can ensure that the array elements are in the correct order by sorting
the array yourself.  Sorting an array is a slightly more challenging problem than searching
one and is the subject of the remainder of this chapter.

11.2  Sorting
In most commercial applications, computers are used for extremely simple operations
such as adding a sequence of numbers or calculating an average—precisely the sort of
problem you learned to solve in the earlier chapters.  However, several important
operations required for commercial programming are more sophisticated.  Of these, the
most important is sorting, the process of arranging a list of values (usually represented as
an array) into some well-defined order.  For example, you might rank a list of numbers
from lowest to highest based on their numeric value.  Alternatively, you might choose to
alphabetize a list of names.  These two operations turn out to be quite similar.  Despite
differences in detail (one uses numbers and the other uses strings), the problem to be
solved is precisely the same: given a list and a mechanism for comparing two elements in
that list, how can you rearrange the elements of the list so that the elements are properly
ordered?

Sorting an integer array
Let’s consider, for example, the problem of sorting an array of integers.  Suppose that you
have been presented with an array of integers in some random order, such as the
following:

0 1 2 3 4 5 6 7

31 41 59 26 53 58 97 93

What you need to do at this point is to define a new method, which you could call
sortIntegerArray, that would rearrange the elements of this array so that they run from
lowest to highest, as follows:

0 1 2 3 4 5 6 7

26 31 41 53 58 59 93 97

The header line for sortIntegerArray presumably looks like this:

private void sortIntegerArray(int[] array)

Writing the corresponding implementation, however, is trickier than it might seem,
particularly if you are interested in finding an efficient strategy for sorting the data.  As is
the case with many problems in computer science, there are many different algorithms
you can use.  In an advanced computer science course, you might well spend several
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weeks or even months studying various different algorithms for sorting, each of which
has particular advantages or disadvantages.  At this point in your study of computer
science, however, it is best to begin with one algorithm for sorting that you can
understand in detail.

The selection sort algorithm
Of the many possible sorting algorithms, one of the easiest to explain is the selection sort
algorithm.  When you apply the selection sort algorithm, you put the array into its final
order one element at a time.  In the first step, you find the smallest element in the entire
list and put it where it belongs—at the beginning.  In the second step, you find the
smallest remaining element and put it in the second position.  If you continue this process
for the entire array, the final result is in sorted order.

To get a sense of the selection sort approach, watch what happens if you start with the
following array of numbers:

0 1 2 3 4 5 6 7

31 41 59 26 53 58 97 93

Because the smallest element is the value 26 in position 3, you move this element into
position 0.  As with the ReverseIntArray program from Chapter 10, you don’t want to
lose track of the value that was originally in position 0, so the easiest thing to do is
exchange the values in positions 0 and 3.  Doing so leaves the array in the following
state:

correctly positioned

0 1 2 3 4 5 6 7

26 41 59 31 53 58 97 93

After the exchange, position 0 is correctly filled with the smallest value.

From this point, you can proceed with the rest of the list.  The next step is to use the
same strategy to correctly fill the second position in the array.  The smallest value (except
for the value 26 already placed correctly) is the 31, which is now in position 3.  If you
exchange this value with the one at index position 1, you reach the following state, with
the correct values in the first two elements:

0 1 2 3 4 5 6 7

26 31 59 41 53 58 97 93

correctly positioned

On the next cycle, you switch the next smallest value (which turns out to be 41) into
position 2:
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0 1 2 3 4 5 6 7

26 31 41 59 53 58 97 93

correctly positioned 

If you continue on in this way, you can correctly fill up index positions 3, 4, and so on
until the array is completely sorted.

To keep track of which element you are trying to fill at each step in the algorithm, you
can imagine that you use your left hand to point to each of the index positions in turn.
For each left-hand position, you then use your right hand to identify the smallest element
remaining in the rest of the array.  Once you find it, you can just take the values to which
your hands point and exchange them.  In the implementation, your left and right hands
are replaced by variables—lh and rh—that hold the index number of the appropriate
element in the array.

You can turn this intuitive outline into pseudocode as follows:

for (each index position lh in the array) {
    Let rh be the index position of the smallest value between lh and the end of the list
    Swap the elements at index positions lh and  rh
}

Replacing the pseudocode with the correct Java statements is straightforward, mostly
because two of the operations are familiar: the for loop control line is a standard idiom,
and you can accomplish the swap operation at the end of the loop by calling the
swapElements method defined as part of the ReverseIntArray program in Figure 10-3.
The one remaining step is the one that finds the smallest value.  Following the discipline
of stepwise refinement, you can define a new method to perform this operation and
complete the coding of the sortIntegerArray procedure as follows:

private void sortIntegerArray(int[] array) {
for (int lh = 0; lh < array.length; lh++) {

int rh = findSmallestElement(array, lh, array.length - 1);
swapElements(array, lh, rh);

}
}

The findSmallestElement method takes three arguments: the array and two index
numbers indicating the range within the array in which to find the smallest value.  The
method returns the index—not the value—of the smallest element of the array between
the specified index positions.  The simplest implementation of findSmallestElement is
to go through the list, keeping track at each loop cycle of the index of smallest value so
far.  When you reach the end of the list, the smallest value so far will be the smallest
value in the list as a whole.  This suggests the following code, in which the variable
smallestIndex keeps track of the index position of the smallest value so far:

private int findSmallestElement(int[] array, int p1, int p2) {
int smallestIndex = p1;
for (int i = p1 + 1; i <= p2; i++) {

if (array[i] < array[smallestIndex]) smallestIndex = i;
}
return smallestIndex;

}
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At the beginning of the scan, the first value you consider is automatically the smallest
value so far.  Thus, you can initialize smallestIndex to the starting index position,
which is given by the parameter p1.  As you look at each position in turn, you have to see
if the current value is smaller than your previous candidate for the smallest value.  If it is,
the old value can no longer be the smallest in the entire list, and you need to correct the
value of smallestIndex to indicate the new position, which will retain its value until you
find an even smaller value.

The method swapElements is precisely the same method as in the ReverseIntArray
implementation from Chapter 10, and there is no reason to rewrite it.  Whenever you
write a method that implements some generally useful operation, it is wise to keep that
method around so that it is available for future use.  Successful programmers always try
to reuse existing code as much as possible because doing so saves the trouble of writing
and debugging those parts of the program from scratch.

Copying the code for swapElements completes the code for the entire selection sort
algorithm.  The code for the sortIntegerArray method appears in Figure 11-4.

Evaluating the efficiency of selection sort
The selection sort algorithm has several positive qualities.  For one thing, it is relatively
easy to understand.  For another, it gets the job done.  There are, however, sorting
algorithms that are far more efficient.  Unfortunately, the best ones require techniques
beyond your current level of programming knowledge.  At the same time, you certainly
have enough background to evaluate how efficient the selection sort algorithm is, even if
you are not yet in a position to improve it.

One interesting question is how long it takes to execute selection sort on a given set of
input data.  There are two ways you can approach this question:

1. You can run the program and measure how long it takes.  Because programs run very
quickly on modern computers and often finish their work in a fraction of a second,
you might not be able to measure the elapsed time with a stopwatch, but you can
accomplish the same result by using the computer’s internal clock.

2. You can think more generally about the operation of the program and try to develop a
qualitative sense of how it behaves.

Measuring the running time of a program
To determine how long it takes to run a program, the most common approach is to use the
System class in the java.lang package to keep track of the total time required.  The
System class exports a static method called currentTimeMillis that returns the current
time.  The result is expressed as a long that records the number of milliseconds between
the current setting of the system clock and midnight on January 1, 1970, which is defined
as the base for time calculations. Thus, it is possible to obtain a rough assessment of the
time required to perform a calculation as follows:

long start = System.currentTimeMillis();
. . . Perform some calculation . . .
long elapsed = System.currentTimeMillis() - start;

This code, however, requires several cautionary notes:

• Short computations can often be completed in less than a millisecond, which means
that the elapsed time given by comparing two calls to currentTimeMillis may in
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FIGURE 11-4    Implementation of the selection sort algorithm

/**
 * Sorts an integer array into increasing order.  The
 * implementation uses an algorithm called selection sort,
 * which can be described in English as follows.  With your left
 * hand, point at each element in the array in turn, starting at
 * index 0.  At each step in the cycle:
 *
 * <ol>
 * <li>Find the smallest element in the range between your left
 *     hand and the end of the array, and point at that element
 *     with your right hand.
 *
 * <li>Move that element into its correct index position by
 *     switching the elements indicated by your left and right
 *     hands.
 * </ol>
 */

private void sortIntegerArray(int[] array) {
for (int lh = 0; lh < array.length; lh++) {

int rh = findSmallestElement(array, lh, array.length - 1);
swapElements(array, lh, rh);

}
}

/**
 * Returns the index of the smallest element in the array between
 * index positions p1 and p2, inclusive.
 */

private int findSmallestElement(int[] array, int p1, int p2) {
int smallestIndex = p1;
for (int i = p1 + 1; i <= p2; i++) {

if (array[i] < array[smallestIndex]) smallestIndex = i;
}
return smallestIndex;

}

/**
 * Exchanges the elements in an array at index positions p1 and p2.
 */

private void swapElements(int[] array, int p1, int p2) {
int temp = array[p1];
array[p1] = array[p2];
array[p2] = temp;

}
}
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some cases return 0.  Worse yet, the definition of currentTimeMillis does not
guarantee that the result is accurate at the millisecond level, because the internal clock
in some systems does not provide that level of accuracy.

• The currentTimeMillis method returns the total elapsed time, which is not always a
good measure of how much actual processing time has been dedicated to the algorithm
you are seeking to measure.  The Java runtime system introduces a certain amount of
overhead, and there is no reliable way in Java to factor out this additional overhead
time from the calculation.  These variations, moreover, can be quite large in Java.  If,
for example, the Java runtime environment discovers that it needs to reclaim memory
space in the middle of a process that you’re timing, that experiment may take several
times as long as it usually would.

• The time required to perform some calculation may be data dependent.  Depending on
the algorithm, the number of steps required to perform a calculation may depend on
the input data.  To get a reasonable assessment of typical performance, one must
therefore repeat the experiment with different data values.

You can, however, take steps to minimize the effect of these problems.  If you are
trying to measure the time of a computation that is so short that the precision of the
system clock matters, you can simply repeat the computation many times and measure
the elapsed time across those multiple computations.  For example, if you sort the same
array 1000 times and measure the elapsed time from the beginning to the end of that
process, the running time for a single sorting step is presumably approximately one
thousandth of the total elapsed time.  Similarly, to minimize the effect of any overhead
costs that occur in some runs and not others, you can perform the same experiment many
times and average the results after discarding any values that are wildly out of line.
Finally, given the inherent lack of accuracy in the measurement process, it is important
not to estimate the running time of an algorithm with any greater precision than you are
entitled to claim.  It would, for example, be statistically inappropriate to report seven
digits of accuracy on a timing experiment if you have confidence in only two.

FIGURE 11-5    Sort timings for the selection sort algorithm

N Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 μ σ

10 .0021 .0025 .0022 .0026 .0020 .0030 .0022 .0023 .0022 .0025 .0024 .00029

20 .006 .007 .008 .007 .007 .011 .007 .007 .007 .007 .007 .00139

30 .014 .014 .014 .014 .014 .014 .014 .014 .014 .014 .014 .00013

40 .028 .024 .025 .026 .023 .025 .025 .026 .025 .027 .025 .0014

50 .039 .037 .036 .041 .042 .039 .140 .039 .034 .038 .049 .0323

100 .187 .152 .168 .176 .146 .146 .165 .146 .178 .154 .162 .0151

500 3.94 3.63 4.06 3.76 4.11 3.51 3.48 3.64 3.31 3.45 3.69 0.272

1000 13.40 12.90 13.80 17.60 12.90 14.10 12.70 81.60 16.00 15.50 21.05 21.33

5000 322.5 355.9 391.7 321.6 388.3 321.3 321.3 398.7 322.1 321.3 346.4 33.83

10000 1319. 1388. 1327. 1318. 1331. 1336. 1318. 1335. 1325. 1319. 1332. 20.96

These principles are illustrated by the data shown in Figure 11-5.  This table shows the
results of a timing experiment in which sortIntegerArray is called repeatedly on arrays
of various sizes.  For each number of elements, the entries in the table show the measured
time in milliseconds to sort that many integers in each of ten independent trials.  The last
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two columns show the mean and standard deviation over those trials, conventionally
indicated by the Greek letters mu (μ) and sigma (σ), respectively.  As you can see, there is
a reasonable amount of variation in each of the rows, indicating that the timing data is not
as accurate as one might hope.  It is also significantly out of line in the three shaded
entries in the table.  In the various trials for sorting 50 integers, for example, most of the
values come out somewhere in the neighborhood of 40 microseconds, with a good deal of
variation on each side.  Trial 7, however, shows a running time of 140 microseconds,
which is almost three standard deviations away from the mean.  The other shaded items
are also off by a statistically significant amount.  To ensure that these timing
measurements—which probably reflect the cost of Java’s overhead rather than actual
computation time—do not distort the timing data, it is probably best to remove them from
the computation.

The following table summarizes the data from Figure 11-5 in a form that makes
explicit the inherent uncertainty in the measurement:

N running time
10 0.0024 ± 0.0006

20 0.007 ± 0.0007

30 0.014 ± 0.0003

40 0.025 ± 0.003

50 0.039 ± 0.005

100 0.16 ± 0.03

500 3.7 ± 0.5

1000 14.3 ± 3.4

5000 346.0 ± 68.0

10000 1326.0 ± 21.0

The error range shown in each entry corresponds to two standard deviations in each
direction from the mean.  If the data were normally distributed, using two standard
deviations as the error bar would ensure that the actual value of the mean occurs within
the specified range roughly 95 percent of the time.

The table reveals some interesting results.  For small values of N, selection sort runs
reasonably quickly.  As N gets larger, however, the selection sorting algorithm slows
down precipitously.  If the array contains 100 values, for example, sortIntegerArray
can sort the array in a little more than a tenth of a millisecond.  By the time you reach
10,000 items, selection sort takes over a second to run.  Commercial applications often
require sorting 100,000 or 1,000,000 values or more.  With arrays on that scale, selection
sort becomes prohibitively slow.

Analyzing the selection sort algorithm
To understand why these timing numbers come out as they do, it is important to think
about how the algorithm works.  Consider the timing data for selection sort as
summarized in the preceding section.  When N is 50, the algorithm requires 0.039
milliseconds to run.  When N doubles to 100, however, the algorithm requires 0.16
milliseconds, which is approximately four times as long.  The rest of the table shows the
same progression.  Whenever you double the number of data items—from 500 to 1000 or
from 5000 to 10,000, for example—the time required goes up by a factor of
approximately four.  Algorithms of this sort are said to be quadratic, because their
running time grows as the square of the size of the input.
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The fact that selection sort is a quadratic algorithm is not surprising if you think about
how it works.  In sorting a list of eight numbers, the selection sort implementation of
sortIntegerArray executes the outer for loop eight times.  The first cycle finds the
smallest value out of a group of eight numbers, the next cycle finds the smallest value out
of the remaining seven numbers, and so on.  The number of operations the program
executes is proportional to the number of values it must check, which in this specific case
is

8 + 7 + 6 + 5 + 4 + 3 + 2 + 1

More generally, given N elements, the time required to execute the selection sort
algorithm is proportional to the following sum:

N  +  N–1  +  N–2  +  . . .  +  3  +  2  +  1

The sum of the first N integers can be expressed more compactly by applying the
following mathematical formula

N  +  N–1  +  N–2  +  . . .  +  3  +  2  +  1   =   
N2 + N

2

The quadratic behavior comes from the appearance of the N2 term.

The fact that selection sort is quadratic in its performance does not mean that all
sorting algorithms perform with this level of efficiency.  There are many sorting
algorithms that are much, much faster than selection sort.  The best algorithms for
sorting, however, depend on the use of an algorithmic concept called recursion, which
we don’t introduce in detail until CS 106B.  There is, however, a historically interesting
sorting algorithm that will serve as an effective demonstration of the relationship between
algorithms and efficiency, even though it has clear shortcomings in practice.

The radix sort algorithm
Calculating machines have been in use for quite some time and predate significantly the
appearance of the modern computer that can execute the steps of a program stored in its
memory.  For example, the United States census has used tabulating machines ever since
the 1890 census.  Individual responses to the census questionnaires were punched into
cards and tabulated by a machine invented by Herman Hollerith that could count the
number of times a particular punched hole appeared.  Such devices opened up the field of
data processing and led to the creation of companies, such as IBM, that built large and
successful businesses based on machines that could tabulate information mechanically.

The cards that were used for data processing through the 1970s (and which still survive
in voting machines and a few other applications) look something like this:
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The standard punched card is divided up into 80 columns of data.  Numeric values are
represented on the card in the form of rectangular holes covering the appropriate digit.
Thus, the card in the preceding diagram contains the number 42 in columns 1 and 2.

In the 1940s, IBM introduced a electromechanical device called a sorter.  The sorter
was a large machine with a hopper on one end into which the operator would load a stack
of punched cards.  When the machine was activated, it would take cards from the hopper
one at a time and distribute them among a set of numbered output areas—which I’ll call
buckets—depending on what value was punched in a particular column on the card.  If
the sorter, for example, were set to look at column 1, the card shown in the diagram
above would be sent to bucket #4, because column 1 is punched in digit position 4.  If the
card were sorted on column 2 instead, the card would end up in bucket #2.

You could clearly use the sorter to arrange cards containing one-digit numbers into
ascending order.  You just take the entire stack of cards and run it through the sorter.  If
you then pick up the cards from bucket #0, followed by the cards in bucket #1, followed
by the cards in bucket #2, and so on up to bucket #9, the values on the cards will be in
sorted order.  Suppose, however, that the numbers you were sorting contained more than
one digit.  How could you use the sorter to put these cards in order by the entire
multidigit numeric field?

The fundamental insight that made the IBM sorter so useful—and the key to the radix
sort algorithm—is that a set of multidigit numbers can be sorted by making several passes
through the sorter, one for each column in the number.  The trick is that the sorting
operation must start with the last digit of the number and then proceed toward the first.
For example, to sort a set of cards containing two-digit numbers in columns 1 and 2, you
would first sort the data on column 2, collect the individual buckets of cards together, and
then sort again on column 1.

This process is best illustrated by example.  Suppose that the data on the cards
consisted of the following 15 values:

42, 25, 37, 58, 95, 25, 73, 30, 54, 21, 17, 58, 34, 43, 98

The first pass through the sorter would arrange these into ten buckets based on the second
digit, resulting in the configuration shown below:

25 58
43 34 95 17 98

30 21 42 73 54 25 37 58
0 1 2 3 4 5 6 7 8 9

You then pick up the cards from each bucket in turn, being careful to preserve the order
of cards within each bucket.  This process leaves the cards arranged in the following
sequence:

30, 21, 42, 73, 43, 54, 34, 25, 95, 25, 37, 17, 58, 98, 58

You then send this new stack of cards through the sorter, this time dividing up the cards
based on the first digit of the number, which is punched in column 1.  This process results
in the following buckets:

25 37 58
25 34 43 58 98

17 21 30 42 54 73 95
0 1 2 3 4 5 6 7 8 9
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If you then collect these cards from the buckets in order, the sequence is

17, 21, 25, 25, 30, 34, 37, 42, 43, 54, 58, 58, 73, 95, 98

which is correctly sorted from smallest to largest.  The same strategy works for numbers
of any length as long as you start with the last digit position and work your way toward
the first digit position.  This algorithm works because the cards that end up in each bucket
are in the same relative order as they were in the original stack.  Thus, when the final step
sorts the numbers based on their first digit, the values end up sorted within each bucket
just as they were at the end of the preceding step, when they were put in order by the next
most significant digit.

This algorithm is called radix sort because each step in the process sorts the data into
the number of buckets specified by the base, or radix, in which the data values are
expressed.  The IBM sorter worked with numbers in their decimal (base 10) form and
therefore distributed the data among 10 buckets.

Coding the radix sort algorithm is more difficult than coding selection sort, but it is not
too hard if you choose a good decomposition.  Using radix sort, the sortIntegerArray
function itself has the following pseudocode form:

private void sortIntegerArray(int[] array[], int n) {
    for (each digit position starting at the right) {
        Fill up the individual buckets with values from array
        Reassemble array by taking the contents from each bucket in turn
    }
}

The running time for radix sort is proportional to the number of values times the
maximum number of digits, which is far smaller than the O (N2) time required for
selection sort.  Because the number of digits is proportional to the logarithm of the
maximum size of the numbers, the complexity of radix sort is said to be O (N  log N ),
which represents a huge increase in efficiency.  You can get a sense of how much better
by looking at the values of these functions for different values of N, as follows:

N N 2 N log N
10 100 33

100 10,000 664
1000 1,000,000 9965

10,000 100,000,000 132,877

The numbers in both columns grow as N becomes larger, but the N2 column grows much
faster than the N log N column.  Sorting algorithms based on an N log N algorithm are
therefore useful over a much larger range of array sizes.

The process of applying mathematical techniques to predict algorithmic efficiency is
called analysis of algorithms, which is an important research area in theoretical
computer science.  If you go on in computer science, you will learn how to analyze the
performance of algorithms in much more detail.  This knowledge will prove to be a
powerful tool for evaluating which algorithm is best suited for a particular application.



302 The Art and Science of Java

Summary
In this chapter, you have had the opportunity to learn about two of the most important
operations on arrays—searching and sorting—each of which is an interesting algorithmic
problem in its own right.  The important points covered in this chapter include:

• The linear search algorithm operates by looking at each element of an array in
sequential order until the desired element is found.  Linear search is a reasonable
strategy for small arrays but becomes inefficient as the size of the array increases.

• The binary search algorithm is much more efficient than linear search but requires that
the elements of the array be in sorted order.

• Sorting algorithms vary considerably in their efficiency.  For arrays containing a small
number of elements, simple algorithms such as selection sort are perfectly adequate.
For larger arrays, however, such algorithms cease to be cost-effective.

Review questions
1. Define the terms searching and sorting.

2. What changes would you have to make to the findIntInArray method to change it
to a findDoubleInArray method that found a matching value in an array of values
of type double?

3. Describe the linear search and binary search algorithms in simple English.

4. True or false: If the number of data items is large enough, the binary search
algorithm can be millions of times faster than the linear search algorithm.

5. What condition must be true before the binary search algorithm can be applied?

6. Describe the steps that are involved in the selection sort algorithm.

7. The for loop control line in the selection sort implementation of sortIntegerArray
was written as

for (int lh = 0; lh < array.length; lh++)

Would the method still work if you changed this line to

for (int lh = 0; lh < array.length - 1; lh++)

8. What method can you call to determine the current time in milliseconds?

9. What does it mean to say that an algorithm is quadratic?

10. When you apply the radix sort algorithm, do you perform the first sorting pass on the
most significant digit or the least significant digit? Why?

Programming exercises
1. Write a program GuessTheNumber that plays a number-guessing game with its user,

who is presumably an elementary-school child.  The child thinks of a number and
then answers a series of questions from the computer until it correctly guesses the
number.  The following sample run shows what happens when the number is 17:
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GuessTheNumber
Think of a number between 1 and 100 and I'll guess it.
Is it 50? no
Is it less than 50? yes
Is it 25? no
Is it less than 25? yes
Is it 12? no
Is it less than 12? no
Is it 18? no
Is it less than 18? yes
Is it 15? no
Is it less than 15? no
Is it 16? no
Is it less than 16? no
Is it 17? yes
I guessed the number!

2. Write a predicate method isSorted(array) that takes an integer array and returns
true if the array is sorted in nondecreasing order.

3. Modify the code for the selection sort algorithm to produce a method called
alphabetize that sorts an array of strings into lexicographic order.

4. In the exercises for Chapter 10, you had the chance to write two programs to
compute common statistical measures: the mean and the standard deviation.  Another
important statistical measure is the median, the data value that occupies the central
element position in a distribution whose values have been sorted from lowest to
highest.  If the distribution contains an even number of values and therefore has no
central element, the standard convention is to average the two values that fall closest
to the midpoint.

Write a method median(array) that returns the median of an array of doubles.
Your implementation may not assume that the array is in sorted order but may
change the order of elements as it runs.

5. Besides the mean and the median, the third statistical measure designed to indicate
the most representative element of a distribution is the mode, the value that occurs
most often in the array.  For example, in the array

0 1 2 3 4 5 6 7

65 84 95 75 82 79 82 72

8 9 1 0 1 1 1 2

84 94 86 90 84

the mode is the value 84, because it appears three times.  The only other value that
appears more than once is 82, which only appears twice.

Write a method mode(array) that returns the mode of an array of doubles.  If there
are several values that occur equally often and outnumber any of the other values
(such distributions are called multimodal), your method may return any of those
values as the mode.  As in the exercise 4, your implementation may not assume that
the array is in sorted order but may change the order of elements if doing so makes
the solution easier to write.

6. Many algorithmic problems are related to sorting in their solution structure.  For
example, you can shuffle an array by “sorting” it according to a random key value.
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One way to do this is to begin with the selection sort algorithm and then replace the
step that finds the position of smallest value with one that selects a random position.
The result is a shuffling algorithm in which each possible output configuration is
equally likely.

Write a program Shuffle that displays the integers between 1 and 52 in a randomly
sorted order.

7. One of the most famous algorithmic problems taught at the introductory level is the
Dutch National Flag problem, first proposed by Edsger Dijkstra.  Suppose that you
have an array with n elements, each of which is a character—'R', 'W', or 'B'—
representing one of the colors in the Dutch flag.  Initially, these values might be
jumbled in the array, as shown in the following configuration:

0

R

1

B

2

W

3

W

4

B

5

B

6

R

7

W

8

W

9

R

1 0

R

1 1

W

1 2

R

1 3

B

1 4

R

Your job is to rearrange these characters so that they appear in the same order as they
do in the Dutch flag: all the reds, followed by all the whites, followed by all the
blues.

Try to infer the algorithm by studying the following sample run of a program to
solve this problem, which displays the sequence of the colors each time it
interchanges two positions:

DutchNationalFlag
Initial state:
R B W W B B R W W R R W R B W
Swapping positions 1 and 14
R W W W B B R W W R R W R B B
Swapping positions 4 and 13
R W W W B B R W W R R W R B B
Swapping positions 4 and 12
R W W W R B R W W R R W B B B
Swapping positions 1 and 4
R R W W W B R W W R R W B B B
Swapping positions 5 and 11
R R W W W W R W W R R B B B B
Swapping positions 2 and 6
R R R W W W W W W R R B B B B
Swapping positions 3 and 9
R R R R W W W W W W R B B B B
Swapping positions 4 and 10
R R R R R W W W W W W B B B B

Write a program that implements the algorithm on a randomly constructed initial
state.

8. There are several other sorting algorithms besides selection sort that make sense at
your level of programming knowledge.  Unfortunately, those algorithms do not offer
any advantages over selection sort in terms of their algorithm performance.  Even so,
coding these algorithms gives you more practice using arrays.

For example, you can sort an integer array from lowest to highest by applying the
following procedure.  Start by going through the array, looking at adjacent pairs of
values.  If the values forming the pair are correctly ordered, do nothing; if the values
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are out of order, swap them.  In either case, move on to the next pair of values.  The
pairs overlap as you move through the list so that the second element in one pair
becomes the first element of the next pair.  Repeat this operation until you make a
complete pass in which you do not need to exchange any integers.  This algorithm is
called bubble sort, because the values seem to “bubble up” to their eventual
positions.

Reimplement the sortIntegerArray method using the bubble sort algorithm.

9. Another sorting algorithm—insertion sort—operates as follows.  You go through
each element in the array in turn, as with the selection sort algorithm.  At each step in
the process, however, your goal is not to find the smallest value remaining value and
switch it into its correct position, but rather to ensure that the values you’ve covered
so far in the array are correctly ordered with respect to one another.  Although those
values may shift as more elements are processed, they form an ordered sequence in
and of themselves.

For example, if you consider again the data used in the selection sort discussion, the
first cycle of the insertion sort algorithm requires no work because an array of one
element is always sorted:

in order

0 1 2 3 4 5 6 7

31 41 59 26 53 58 97 93

The next two cycles of the main loop also require no rearrangement of the array,
because the sequence 31-41-59 forms an ordered subarray.

The first significant operation occurs on the next cycle, when you need to fit 26 into
this sequence.  To find where 26 should go, you need to move backward through the
earlier elements, which you know are in order with respect to each other, looking for
the position where 26 belongs.  At each step, you need to shift the other elements
over one position to make room for the 26, which winds up in position 0.  Thus, the
configuration after the fourth cycle is

0 1 2 3 4 5 6 7

26 31 41 59 53 58 97 93

in order 

On each subsequent step, you again insert the next element in the array into its
proper position in the initial subarray, which is always sorted at the end of each step.

The insertion sort algorithm is particularly efficient if the array is already more or
less in the correct order.  It therefore makes sense to use insertion sort to restore
order to a large array in which only a few elements are out of sequence.

Reimplement the sortIntegerArray method using the insertion sort algorithm.
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