
Calulus of One Variable

Jerry Shurman

Reed College





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 The Parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Parabola in Eulidean Geometry and in Algebra . . . . . . . . 1

1.1.1 The Geometri De�ning Property . . . . . . . . . . . . . . . . . . . 1

1.1.2 The Algebrai De�ning Equation . . . . . . . . . . . . . . . . . . . . 2

1.2 Quadrature of the Parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 The First Insribed Triangle and Its Key Property . . . . . 7

1.2.3 Adding More Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Arhimedes's Evaluation of a Sum . . . . . . . . . . . . . . . . . . . 11

1.2.5 Solution of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Tangent Slopes of the Parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Di�erene-Quotient and Seant Slope . . . . . . . . . . . . . . . . 13

1.3.2 The Calulation Algebraially and Geometrially . . . . . . 15

1.3.3 The Insribed Triangle Again . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.4 The Reetion Property of the Parabola . . . . . . . . . . . . . 19

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 The Rational Power Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Assumptions About the Number System . . . . . . . . . . . . . 22

2.1.2 The Finite Geometri Sum Formula . . . . . . . . . . . . . . . . . 24

2.2 The Rational Power Funtion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 De�nition of the Rational Power Funtion . . . . . . . . . . . . 26

2.2.2 Inreasing/Dereasing Behavior . . . . . . . . . . . . . . . . . . . . . 31

2.3 Integration of a Partiular Rational Power Funtion . . . . . . . . . . 33

2.3.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 Intuitive Voabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



vi Contents

2.3.3 The Idea to be Demonstrated . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.4 The Problem Again, and the Pending Calulation . . . . . 36

2.3.5 Tools To Be Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.6 The Geometri Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.7 The Intervals and Their Widths . . . . . . . . . . . . . . . . . . . . . 40

2.3.8 The Inner Box-Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.9 The Sum of the Inner Box-Areas . . . . . . . . . . . . . . . . . . . . 41

2.3.10 The Limiting Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Di�erentiation of the Rational Power Funtion . . . . . . . . . . . . . . 44

2.4.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.2 The Calulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.3 A Fundamental Observation . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Integration of the Rational Power Funtion . . . . . . . . . . . . . . . . . 48

2.5.1 The Normalized Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.2 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Sequence Limits and the Integral . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Sets, Funtions, and Sequenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.2 Funtions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.3 Sequenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.4 Previous Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 The Limit of a Real Sequene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.1 Absolute Value and Distane . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.2 The Arhimedean Property of the Real Number System 72

3.2.3 De�nition of Sequene Limit . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.4 Basi Sequene Limit Rules . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.5 Irrelevane of Finite Index-Shifts . . . . . . . . . . . . . . . . . . . . 85

3.2.6 Uniqueness of the Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.7 Progenitive Sequene Limit Rules . . . . . . . . . . . . . . . . . . . 87

3.2.8 Geometri Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2.9 Order Sequene Limit Rules . . . . . . . . . . . . . . . . . . . . . . . . 96

3.3 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.3.1 The Previous Examples Revisited . . . . . . . . . . . . . . . . . . . 99

3.3.2 De�nition of Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3.3 Monotoniity and Integrability . . . . . . . . . . . . . . . . . . . . . . 108

3.3.4 A Basi Property of the Integral . . . . . . . . . . . . . . . . . . . . . 109

3.3.5 Pieewise Monotoniity and Integrability . . . . . . . . . . . . . 111

3.3.6 Progenitive Integral Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



Contents vii

4 Function Limits and the Derivative . . . . . . . . . . . . . . . . . . . . . . . . 119

4.1 The Limit of a Funtion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.1.1 De�nition of Funtion Limit . . . . . . . . . . . . . . . . . . . . . . . . 120

4.1.2 Basi Funtion Limit Rules . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.1.3 Progenitive Funtion Limit Rules . . . . . . . . . . . . . . . . . . . . 126

4.1.4 Order Funtion Limit Rules . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2 The Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2.1 De�nition of the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2.2 A Consequene Worth Noting Immediately . . . . . . . . . . . 131

4.2.3 The Derivative and the Tangent Line . . . . . . . . . . . . . . . . 131

4.2.4 A Basi Derivative: the Power Funtion Revisited . . . . . 133

4.2.5 Progenitive Derivative Rules . . . . . . . . . . . . . . . . . . . . . . . . 136

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 The Logarithm Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.1 De�nition and Properties of the Logarithm . . . . . . . . . . . . . . . . . 145

5.1.1 Integration With Out-of-Order Endpoints . . . . . . . . . . . . 145

5.1.2 The Fundamental Theorem of Calulus . . . . . . . . . . . . . . 146

5.1.3 De�nition of the Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.1.4 The Key Property of the Logarithm . . . . . . . . . . . . . . . . . 147

5.1.5 Proof of the Key Property: A Generality . . . . . . . . . . . . . 148

5.1.6 Proof of the Key Property: A Spei� Argument . . . . . . 150

5.1.7 Proof of the Key Property: End of the Proof . . . . . . . . . . 152

5.1.8 Further Properties of the Logarithm . . . . . . . . . . . . . . . . . 152

5.2 Logarithmi Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3 Di�erentiation of the Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.4 Integration of the Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.4.1 Another Summation Formula . . . . . . . . . . . . . . . . . . . . . . . 162

5.4.2 The Normalized Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.4.3 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.4.4 The Fundamental Theorem of Calulus Again . . . . . . . . . 169

5.5 Signed Integration in General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.5.1 The Integral Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.5.2 Progenitive Integral Rules Revisited . . . . . . . . . . . . . . . . . 172

5.5.3 The Area Between Two Curves . . . . . . . . . . . . . . . . . . . . . 176

6 The Exponential Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.1 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.1.1 De�nition of Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.1.2 Continuity and Integrability . . . . . . . . . . . . . . . . . . . . . . . . 184

6.1.3 The Intermediate Value Theorem . . . . . . . . . . . . . . . . . . . . 185

6.1.4 Appliations of the Intermediate Value Theorem . . . . . . 188



viii Contents

6.2 De�nition and Properties of the Exponential Funtion . . . . . . . 190

6.2.1 De�nition and Basi Properties . . . . . . . . . . . . . . . . . . . . . 190

6.2.2 Raising to Powers Revisited . . . . . . . . . . . . . . . . . . . . . . . . 193

6.3 Exponential Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.4 Di�erentiation of the Exponential . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.5 Integration of the Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.6 The Exponential as a Limit of Powers . . . . . . . . . . . . . . . . . . . . . . 203

6.6.1 The Desription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.6.2 An Interpretation: Compound Interest . . . . . . . . . . . . . . . 205

7 The Cosine and Sine Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.1 The Cirumferene of the Unit Cirle . . . . . . . . . . . . . . . . . . . . . . 209

7.2 De�nition of the Cosine and the Sine . . . . . . . . . . . . . . . . . . . . . . 210

7.3 Identities for the Cosine and the Sine . . . . . . . . . . . . . . . . . . . . . . 211

7.3.1 Basi Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.3.2 Angle Sum and Di�erene Formulas . . . . . . . . . . . . . . . . . 213

7.3.3 Double and Half Angle Formulas . . . . . . . . . . . . . . . . . . . . 214

7.3.4 Produt Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.3.5 Di�erene Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.4 Di�erentiation of the Cosine and the Sine . . . . . . . . . . . . . . . . . . 215

7.5 Integration of the Cosine and the Sine . . . . . . . . . . . . . . . . . . . . . 219

7.5.1 Imaginary Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.5.2 The Integrals Via the Imaginary Exponential . . . . . . . . . 220

7.6 Other Trigonometri Funtions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.7 Inverse Trigonometri Funtions . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8 Polynomial Approximation and Series Representation . . . . . 231

8.1 The Finite Binomial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.2 Preliminaries for the Pending Calulations . . . . . . . . . . . . . . . . . . 236

8.2.1 An Alternative Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.2.2 The Power Funtion Integral With Endpoint 0 . . . . . . . . 237

8.3 The Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

8.4 The Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

8.4.1 A Prealulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

8.4.2 The Calulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

8.5 The Cosine and the Sine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

8.6 The Power Funtion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

8.6.1 The Polynomial and the Remainder . . . . . . . . . . . . . . . . . 253

8.6.2 The In�nite Binomial Theorem . . . . . . . . . . . . . . . . . . . . . 255

8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259



Contents ix

9 Theory and Applications of the Derivative . . . . . . . . . . . . . . . . . 261

9.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

9.1.1 The Extreme Value Theorem . . . . . . . . . . . . . . . . . . . . . . . 262

9.1.2 Conditions for Optimization . . . . . . . . . . . . . . . . . . . . . . . . 264

9.1.3 Optimization Story-Problems . . . . . . . . . . . . . . . . . . . . . . . 266

9.2 The Mean Value Theorem and Its Consequenes . . . . . . . . . . . . . 278

9.2.1 Statement of the Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 278

9.2.2 Consequenes of the Mean Value Theorem . . . . . . . . . . . . 281

9.3 Curve Skething . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

9.4 Related Rates Story-Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

10 Integration via Antidifferentiation . . . . . . . . . . . . . . . . . . . . . . . . . 297

10.1 The Fundamental Theorem of Calulus . . . . . . . . . . . . . . . . . . . . . 297

10.1.1 Inde�nite Integrals, Antiderivatives . . . . . . . . . . . . . . . . . . 297

10.1.2 The Fundamental Theorem, Part I . . . . . . . . . . . . . . . . . . 301

10.1.3 The Fundamental Theorem, Part II . . . . . . . . . . . . . . . . . . 308

10.2 Basi Antidi�erentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

10.3 Antidi�erentiation by Forward Substitution . . . . . . . . . . . . . . . . . 315

10.3.1 The Forward Substitution Formula . . . . . . . . . . . . . . . . . . 315

10.3.2 What the Formula Says and Why It Is True . . . . . . . . . . 315

10.3.3 Using the Formula in its Variable-Free Form . . . . . . . . . . 315

10.3.4 Improvement: the Formula With Variables . . . . . . . . . . . . 316

10.3.5 Seond Improvement: the Proedure Instead of the

Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

10.3.6 Basi Forward Substitution Formulas . . . . . . . . . . . . . . . . 319

10.3.7 Forward Substitution in Integrals . . . . . . . . . . . . . . . . . . . . 321

10.4 Antidi�erentiation by Inverse Substitution . . . . . . . . . . . . . . . . . . 325

10.4.1 The Inverse Substitution Formula and Why It Is True . 325

10.4.2 The Formula With Variables . . . . . . . . . . . . . . . . . . . . . . . . 325

10.4.3 The Proedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

10.4.4 Inverse Substitution in Integrals . . . . . . . . . . . . . . . . . . . . . 328

10.5 Antidi�erentiation by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

A Assumptions About the Real Number System . . . . . . . . . . . . . 341

B Partial List of Named Ideas and Results . . . . . . . . . . . . . . . . . . . 343

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351





Preface

These are ourse notes for Mathematis 111 at Reed College. They are writ-

ten for serious liberal arts students who want to understand alulus beyond

memorizing formulas and proedures. The prerequisite is three years of high

shool mathematis, inluding algebra, eulidean geometry, analyti geome-

try, and (ideally) trigonometry. To pro�t from these notes, the student needn't

be a math genius or possess large doses of the omputational failities that

alulus ourses often selet for. But the student does need suÆient algebra

skills, study habits, energy, and genuine interest to onentrate an investment

in the subjet matter.

I have tried to put enough verbal exposition in these notes to make at

least portions of them readable outside of lass. And I have tried to keep the

alulations short, tidy, and lightly notated, in the hope of rendering them

omprehensible stories that inur belief, rather than rituals to endure. To the

extent that the notes are readable, I hope to use lasstime disussing their

ontents rather than onform to the model of the instrutor transribing a

leture onto the blakboard from whih the students transribe it into their

notebooks in turn. The goal is that the students leave the ourse not having

taken my word about the results, but feeling truly viserally that the results

are inevitable.

Exigenies ditate that Math 111 simultaneously serve students who have

taken a alulus ourse already and students who haven't. These notes at-

tempt to do so in two ways,

� by rebalaning the weight of explanation between mathematial symbols

and natural language,

� and by presenting the omputations of alulus as little more than end-

produts of algebra that one ould imagine naturally working out for one-

self with some nudges in the right diretion.



xii Prefae

The presentation is meant to defamiliarize alulus for those who have seen it

already, by undoing any impression of the subjet as tehnology to use without

understanding, while making alulus familiar to a wide range of readers, by

whih I mean omprehensible in its underlying mehanisms. Thus the notes

will pose di�erent hallenges to students with prior alulus experiene and to

students without it. For students in the �rst group, the task is to onsider the

subjet anew rather than fall bak on invoking rote tehniques. For students

with no prior alulus, the task is to gain faility with the tehniques as well

as the ideas.

These notes address three subjets:

� Integration . What is the area under a urve? More preisely, what is a

proedure to alulate the area under a urve?

� Di�erentiation . What is the tangent line to a urve? And again, whatever

it is, how do we alulate it?

� Approximation . What is a good polynomial approximation of a funtion,

how do we alulate it, and what an we say about the auray of the

approximation?

Part of the ompliation here is that area under a urve and tangent line to

a urve are geometri notions, but we want to alulate them using analyti

methods. Thus the interfae between geometry and analysis needs disussion.

The basi pedagogy is to let ideas emerge from alulations. In suession,

these notes de�ne, integrate, and di�erentiate

� the rational power funtion, f(x) = xα where α is a rational number,

meaning a ratio of whole numbers,

� the logarithm funtion, f(x) = ln(x),

� the exponential funtion, f(x) = exp(x) = ex,

� the osine and sine funtions, f(x) = os(x) and f(x) = sin(x).

The integrals are omputed without using the Fundamental Theorem of Cal-

ulus. Integrating the power funtion leads to the idea that an integral is not

only an area, but more spei�ally an area that is well approximated from

below and from above by suitable sums of box-areas. Although the geomet-

rially natural idea is to integrate nonnegative-valued funtions from a left

endpoint to a right endpoint, the logarithm leads to the idea of integrating a

funtion that ould be negative between endpoints that need not be in order.

The logarithm also illustrates the idea of de�ning a funtion as an integral

and then studying its properties as suh. Similarly, the exponential funtion

illustrates the idea of de�ning and then studying a funtion as the inverse of

another, and it suggests the idea of haraterizing a funtion by a di�erential

equation.
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With the power funtion, the logarithm, the exponential, and the osine

and sine integrated and di�erentiated, we then �nd approximating polynomi-

als for these funtions and estimate the auray of the approximations.

Essentially all of the program just skethed an be arried out onvin-

ingly (if not \fully rigorously") based on only one small but versatile piee

of tehnology, the �nite geometri sum formula. This formula redues our

area alulations, limits of sums of many terms, to limits of quotients of two

terms. In fanier language, the formula redues integration to di�erentiation.

This phenomenon is perhaps unsurprising beause the Fundamental Theo-

rem of Calulus says that integration and di�erentiation are losely related.

But whereas the Fundamental Theorem is often taught as a proedure that

irumvents omputing integrals diretly, a goal of these notes is to see dif-

ferentiation emerge repeatedly from atual integration. Students who learn to

integrate only by using the Fundamental Theorem risk gaining little appreia-

tion of what integration really is, an appreiation worth having if only beause

the Fundamental Theorem is irrelevant to so muh integration in appliations

of mathematis.

Calulus does at some point require the tehnial mahinery of limits.

Limits will be treated lightly after they are used informally. The general

limit de�nition, with its deliate interation between quanti�ers, deserves its

due respet, but �rst working informally with spei� examples is meant to

help the reader tangibly appreiate its eonomy and �nesse.

The last two hapters of these notes, on appliations of the derivative and

on the Fundamental Theorem of Calulus, are traditional. In the footsteps of

so many before us, we will maneuver ladders around orners, drain onial

swimming pools, and generate blizzards of antiderivatives.

These notes are based on a set of notes by Ray Mayer. The motivation for

reating a new set of notes was that when this projet began, the other set of

notes was not available in eletroni form. That situation has now hanged,

and the reader of these notes is enouraged to look at Ray Mayer's notes as

well.

August 2007 Jerry Shurman

Reed College

Portland, OR
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The Parabola

This hapter uses the parabola to illustrate ideas from alulus quikly and

informally. Setion 1.1 haraterizes the parabola geometrially and alge-

braially. Setion 1.2 omputes the area of the region between a parabola

and a hord joining two of its points. The omputation proeeds by system-

atially �lling the region with triangles, adding ever smaller triangles at eah

step. The individual triangle-areas are alulable, and the sum of the areas

after eah step takes a form that lets us determine the value to whih it tends

the more steps we arry out. This value is the desired area. The paraboli

area-alulation is our �rst example of integration , a fundamental proess of

alulus. Setion 1.3 omputes the slope of a tangent line to the parabola, �rst

by algebra and then again by geometry. Here the idea is that although the

tangent line passes through only one point of the parabola, we an approxi-

mate it by seant lines that pass through two parabola points (suh lines ut

the parabola, i.e., they setion it, ergo their name), and the seant slopes are

easy to understand. As the seond parabola point nears the �rst, the value

tended to by the seant slopes is the tangent slope. The paraboli tangent

slope alulation is our �rst example of di�erentiation , another fundamental

proess of alulus.

1.1 The Parabola in Euclidean Geometry and in Algebra

1.1.1 The Geometric Defining Property

Working in the eulidean plane and using artesian oordinates, onsider a

horizontal line alled the directrix, set one quarter of a unit down from the

x-axis,

D = the points (x,−1/4) for all values of x.

We abbreviate the desription of the diretrix by writing
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PSfrag replaements F = (0, 1/4)

D : y = −1/4

x

y

Figure 1.1. Diretrix and fous

D : y = −1/4.

Consider also a point alled the focus, set one quarter of a unit up the y-axis,

F = (0, 1/4).

(See �gure 1.1.) The parabola is de�ned geometrially as the lous of all

points P that are equidistant from the diretrix and from the fous,

PD = PF.

(See �gure 1.2.)
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Figure 1.2. Point equidistant from the diretrix and the fous

1.1.2 The Algebraic Defining Equation

To translate the geometri ondition de�ning the parabola into an algebrai

ondition, note that for any point P = (x, y), the square of the distane from P



1.1 The Parabola in Eulidean Geometry and in Algebra 3

to the diretrix D is the square of the di�erene of the y-oordinates,

PD2 = (y+ 1/4)2. (1.1)

Also, the Pythagorean Theorem (exerise 1.1.1) says that the square of the

distane from P to the fous F is

PF2 = (y− 1/4)2 + x2. (1.2)

(See �gure 1.3.) The left sides of (1.1) and (1.2) are equal by the geometri

de�nition PD = PF of the parabola. Therefore the right sides are equal,

(y+ 1/4)2 = (y− 1/4)2 + x2,

and beause (y± 1/4)2 = y2 ± y/2 + 1/16, we may anel y2
and 1/16, and

add y/2 to both sides, to get simply

y = x2.

That is, the parabola is the graph of the squaring funtion f(x) = x2. The

parabola is shown in �gure 1.4.

PSfrag replaements
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Figure 1.3. Point-to-fous distane by the Pythagorean Theorem

The algebrai equation y = x2 of the parabola is normalized by the hoie

to plae the fous and the diretrix one quarter of a unit away from the x-axis.

For any positive number r, suppose that instead the fous and the diretrix

are

F : (x, y) =

(
0,

1

4r

)
, D : y = −

1

4r
.

Introdue new variables that dilate the original variables by a fator of r,

~x = rx, ~y = ry.
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Figure 1.4. The parabola

In the (~x, ~y)-oordinate system, the fous is

F : (~x, ~y) =

(
r · 0, r · 1

4r

)
= (0, 1/4),

and the diretrix is

D : ~y = r ·
(
−

1

4r

)
= −1/4.

That is, in the (~x, ~y)-oordinate system, the fous and the diretrix are bak

in their normalized positions where we have already studied them, and so the

equation of the parabola is

~y = ~x2.

Returning to the (x, y)-oordinate system, beause ~y = ry and ~x = rx the

parabola with fous F = (0, 1/(4r)) and diretrix D : y = −1/(4r) therefore

has equation ry = (rx)2, or

y = rx2.

If instead r is negative then the parabola opens down instead of up. Similarly,

exhanging the roles of x and y to obtain an equation

x = ry2

desribes a parabola that opens to the right if r is positive, or to the left if r

is negative. More generally, the equations

y− c = r(x− b)2, x− b = r(y− c)2

desribe parabolas that are shifted a horizontal distane b and a vertial

distane c. For the �rst of these, the fous and diretrix are

F =

(
b, c+

1

4r

)
, D : y = c−

1

4r
, (1.3)
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and for the seond they are

F =

(
b+

1

4r
, c

)
, D : x = b−

1

4r
. (1.4)

Exercises

1.1.1. Consider a right triangle with sides a and b and hypotenuse c. The

Pythagorean Theorem states that

a2 + b2 = c2,

i.e., the square of the hypotenuse is the sum of the squares of the other

two sides . Explain why the shaded region in the right side of �gure 1.5 is

a square. Then explain why the �gure proves the theorem. (Your argument

should involve labeling some lengths and angles in the �gure.)

Figure 1.5. Proof of the Pythagorean Theorem

1.1.2. What is the equation of the parabola with fous F = (1, 2) and diretrix

D : x = 3?

1.1.3. Consider the parabola with equation

y = Ax2 + Bx+ C, A 6= 0.

Where are its fous and its diretrix? Solve this problem by using one of (1.3)

or (1.4).

1.1.4. Explain why the equation
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y2 + 2xy+ x2 −
√
2 y+

√
2 x = 0

desribes a parabola. What are its fous and its diretrix? It may help to

onsider the hange of variables

~x =
x+ y√

2
, ~y =

−x+ y√
2

.

(See �gure 1.6.)
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Figure 1.6. Rotated oordinate system

1.2 Quadrature of the Parabola

The earliest example of integration goes bak not to Newton (1642{1727) or

Leibniz (1646{1716) or Barrow (1630{1677) or Desartes (1596{1650), but to

Arhimedes (. 287 BC{. 212 BC).

1.2.1 The Problem

Let a and b be numbers with a < b. Find the area between the parabola

y = x2 and its hord from (a, a2) to (b, b2). (See �gure 1.7.) Note that the

word area informally has two di�erent meanings that an easily blur together

in this ontext. First, area means the shaded portion in �gure 1.7, i.e., a

region . But seond, area means a number that somehow measures the planar

size of the region on a linear sale, despite the fat that the region itself lies

in the plane rather than on the line. For the parabola problem, we are taitly

assuming that indeed some number is the measure of the shaded region.
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PSfrag replaements

a b

Figure 1.7. Region between a parabola and its hord
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Figure 1.8. Triangle as the di�erene of trapezoids

1.2.2 The First Inscribed Triangle and Its Key Property

A �rst approximation to the region is a triangle with its left and right verties

above a and b and its middle vertex above the midpoint (a+b)/2. This trian-

gle an be viewed as a large trapezoid with two smaller trapezoids removed.

(See �gure 1.8.) In general, the area of a trapezoid of base B and heights H1

and H2 is the base times the average of the heights,

A
trap

= B · H1 +H2

2
.
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The trapezoid that ontains the triangle has base b−a and heights a2
and b2

.

(These are the heights beause the points have x-oordinates a and b, and

they lie on the parabola y = x2.) The left trapezoid underneath the triangle

has base (b−a)/2 and heights a2
and (a+b)2/4. (Reall that the x-oordinate

of the third vertex is the average (a+ b)/2.) The right trapezoid underneath

the triangle has the same base (b − a)/2 as the left trapezoid, but heights

(a+ b)2/4 and b2
. It follows that the area of the triangle is

A
tri

= (b− a)
a2 + b2

2
−

b− a

2

[
a2 + 2(a+ b)2/4+ b2

2

]
, (1.5)

and by some algebra (exerise 1.2.1) this works out to

A
tri

=
1

8
(b− a)3. (1.6)

So the area of the triangle in the left part of �gure 1.8 is one eighth of its

width ubed. Now (1.6) allows us to make a ruial observation:

The area of the triangle depends only on the width of the triangle .

That is, (1.6) shows that the area depends on the di�erene b−a but not on

a and b individually, so long as the x-oordinate of the third vertex is their

average (a+ b)/2.

Exercise

1.2.1. Carry out the algebra that leads from (1.5) to (1.6).

1.2.3 Adding More Triangles

This observation that the area of a triangle insribed in the parabola depends

only on the triangle's width, provided that the x-oordinate of its middle

vertex is the average of the x-oordinates of the left and right verties, says

that very di�erent-looking triangles insribed in the parabola will have the

same area.

In partiular, if we add two more triangles to �ll in some of the missing

spae in the left part of �gure 1.9, as shown in the right part of the �gure,

then even though the two new triangles are not ongruent, they have the

same area, one eighth of their width ubed. Beause their width is one half

the width of the �rst triangle, their areas are one eighth the area of the �rst

triangle,

A ′
tri

=
1

8

(
b− a

2

)3
=

1

8
(b− a)3 · 1

8
= A

tri

· 1
8
.
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Adding the two new triangles, eah having one eighth the area of the original

triangle, adds to the original area a new fator of one quarter the original

area, making the total area of the three triangles

S2 = A
tri

+ 2A ′
tri

= A
tri

[
1+

1

4

]
.

We are alling this quantity S2 beause it is the triangle-area sum after the

seond generation of adding triangles. Naturally, S1 is just A
tri

itself.

Figure 1.9. Filling in with two more triangles

Next add four more triangles, eah half as wide as the two just added.

(See �gure 1.10. In the �gure it is not at all visually suggestive to the author

of these notes that the four new triangles all have the same area, and it is

hard to tell the di�erene between three of the four new triangles and the

paraboli region that they partially �ll.) Thus we add twie as many triangles

as at the previous step, eah with one eighth the area of the ones added at

the previous step, so that the new ontribution to the area is one fourth the

ontribution of the previous step, whih in turn was one fourth the area of

the original triangle. So after three generations of adding triangles, the area

of the seven triangles is

S3 = A
tri

+ 2A ′
tri

+ 4A ′′
tri

= A
tri

[
1+

1

4
+

(
1

4

)2]
.

By the same sort of reasoning (exerise 1.2.2), adding eight more triangles

gives fourth-generation area
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Figure 1.10. Four more triangles

S4 = A
tri

+ 2A ′
tri

+ 4A ′′
tri

+ 8A ′′′
tri

= A
tri

[
1+

1

4
+

(
1

4

)2
+

(
1

4

)3]
, (1.7)

and so on. After n generations of adding triangles, eah step has added twie

as many triangles as the previous step, eah triangle having one eighth the

area of those added at the previous step, ontributing in total a quarter of

the previous ontribution. That is, after n generations the area is

Sn = A
tri

[
1+

1

4
+

(
1

4

)2
+ · · ·+

(
1

4

)n−1
]
. (1.8)

The next task is to evaluate the sum in (1.8).
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Exercise

1.2.2. Explain arefully why equation (1.7) is orret.

1.2.4 Archimedes’s Evaluation of a Sum

As mentioned, the alulation being shown here is due to Arhimedes, but

his mathematial environment was purely geometri whereas we have made

heavy use of artesian oordinates and algebra. In partiular, Arhimedes

used a geometri argument to evaluate the sum in (1.8). For the argument

when n = 4, onsider the unit square shown in �gure 1.11. The largest,

lightest L-shaped region has area three quarters. Eah suessive, darker L-

shaped region has linear dimensions half as big as its predeessor's, and hene

area one fourth of its predeessor's. That is, the total area of the four L-shaped

piees is

3

4

[
1+

1

4
+

(
1

4

)2
+

(
1

4

)3]
.

Also, the small, dark square in the upper left orner has sides (1/2)4 and

hene area (1/4)4. And the total area of the square is 1. Thus

3

4

[
1+

1

4
+

(
1

4

)2
+

(
1

4

)3]
+

(
1

4

)4
= 1,

and the geometri argument has given a tidy form to the sum of the �rst four

powers of 1/4 (the zeroth power through the third power),

1+
1

4
+

(
1

4

)2
+

(
1

4

)3
=

4

3

(
1−

(
1

4

)4)
.

The argument generalizes immediately to the sum of the �rst n powers of 1/4,

1+
1

4
+

(
1

4

)2
+ · · ·+

(
1

4

)n−1

=
4

3

(
1−

(
1

4

)n)
. (1.9)

1.2.5 Solution of the Problem

Formulas (1.8) and (1.9) ombine to show that after n generations of adding

triangles, the total area is

Sn = A
tri

· 4
3

(
1−

(
1

4

)n)
.
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Figure 1.11. Subdivided unit square

As n grows very large, the triangles �ll up the region whose area we want,

and so the limiting value of Sn is the region's area. But also, as n grows very

large, (1/4)n gets very lose to 0, and so the limiting value of the area is

S
lim

= A
tri

· 4
3
.

That is, the area between the parabola and the hord is four-thirds times the

area of the �rst insribed triangle. This is how Arhimedes formulated the

solution. Beause A
tri

= 1
8
(b− a)3, another formulation is

S
lim

=
1

6
(b− a)3. (1.10)

The reasoning just given to obtain the boxed formulas for S
lim

alls for

srutiny. To disuss what happens as n grows very large is not to say that any

�nite number of triangles �ll up the paraboli region whose area we want, nor

is it to say that the areas of any �nite number of triangles sum to (4/3)A
tri

.

And we should be deeply skeptial about treating \in�nity" as a number. A

more sophistiated formulation of what is being said is that by our hoie of

on�guration,

the paraboli region is exactly the region that the triangles tend

toward �lling ,
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and that by our alulation,

the number (4/3)A
tri

is exactly the number that the sums of the

triangle-areas tend toward reahing ,

and that

as the triangles tend toward �lling the paraboli region, the sums

of the triangle-areas must tend toward reahing the area of the

paraboli region ,

and therefore

the area of the paraboli region must be (4/3)A
tri

.

This disussion is not at all satisfatory. It will be re�ned over the ourse of

these notes.

Exercises

1.2.3. As in the setion, let a and b be numbers with a < b. Find the area

under the parabola and above the x-axis from a to b by using formula (1.10)

and the formula for the area of a trapezoid.

1.2.4. Let n denote a positive integer. The larger n is, the loser the quantity

1+ 1/n is to 0. Does this mean that the quantity tends to 0? Explain.

1.2.5. The line segment from (0, 0) to (1, 0) and then the line segment

from (1, 0) to (1, 1) an together be viewed as the one-step stairase from (0, 0)

to (1, 1). Sketh this stairase. The line segments from (0, 0) to (1/2, 0)

to (1/2, 1/2) to (1, 1/2) to (1, 1) give the two-step stairase. Sketh it as well.

Similarly, we an make the n-step stairase for any n. What is the total length

of the n-step stairase, independently of n? To what shape do the n-step stair-

ases tend as n grows? What is the length of this shape? Do the lengths of

the stairases tend to the length of the shape that they tend to?

1.2.6. Raise some ritiisms of the \more sophistiated formulation" given at

the end of the setion.

1.3 Tangent Slopes of the Parabola

1.3.1 Difference-Quotient and Secant Slope

The squaring funtion is

f(x) = x2.
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This is the funtion whose graph is the parabola. For any �xed x, the quantity

s2 − x2

s− x
, s 6= x

is a difference-quotient and a secant slope. Di�erene-quotient means

quotient of di�erenes , i.e., the numerator of the previous display is the

di�erene f(s)− f(x) of output-values of f, while the denominator s− x is the

di�erene of the orresponding input-values. Meanwhile, a seant line of the

parabola is a line through two parabola points, and a seant slope is the slope

of a seant line. For the interpretation of the di�erene-quotient as a seant

slope, see �gure 1.12. The problem is: To what value does the di�erene-

quotient (seant slope) tend as s tends to x? The limiting value is alled, for

reasons to be explained soon, the tangent slope of the parabola at (x, x2).

PSfrag replaements
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Figure 1.12. Seant lines through (1, 1)

What makes the problem subtle is that the numerator s2 − x2 and the

denominator s− x of the di�erene-quotient both tend to 0 individually as s

tends to x. If instead they both tended to nonzero values then naturally we

would guess that the limiting value of the quotient exists, beause it should be

the quotient of the limiting values. But the fat that the numerator and the

denominator both tend to 0, and the fat that the quotient 0/0 is unde�ned

(this point will be disussed in hapter 2) doesn't prelude the possibility

that the di�erene-quotient tends to some well de�ned value. The issue is

that determining the value will require a little analysis.
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1.3.2 The Calculation Algebraically and Geometrically

For any �xed real number x, ompute that beause s2 − x2 = (s+ x)(s− x),

s2 − x2

s− x
= s+ x for s 6= x.

As s tends to x, s+ x tends to 2x. It's that simple. And so:

s2 − x2

s− x
tends to 2x as s tends to x.

Geometrially, the result is:

The tangent slope of the parabola y = x2 at the point (x, x2) is 2x.

This is understood to mean that as s tends to x, the seant line of the parabola

through (x, x2) and (s, s2) tends to the tangent line to the parabola at (x, x2),

and therefore the number 2x tended to by the seant slopes must be the

tangent slope. Like the argument about quadrature, this argument is open

to many ritiisms|for example, the phrase tends to apparently now applies

to lines in addition to applying already to regions and to numbers|but we

make do with it for the time being.

We an also obtain the tangent slope of the parabola from a diret geomet-

ri argument, with no tends to in its reasoning. Let x be �xed, and onsider

the tangent line to the parabola at (x, x2). For any value s, moving along the

parabola from (x, x2) to (s, s2) hanges the vertial oordinate by

s2 − x2.

(This distane is the gray portion of the y-axis in �gure 1.13.) On the other

hand, moving from (x, x2) along the tangent line to the point with �rst oor-

dinate s hanges the vertial oordinate by

m(s− x), where m is the slope of the tangent line.

(This is the other gray distane in �gure 1.13.) We want to �nd m in terms

of x. Beause the parabola is onvex (i.e., it bends up everywhere), the tangent

line lies below the parabola everywhere exept at the point of tangeny. The

vertial distane formulas in the previous two displays show that:

Given x, we want m suh that s2 − x2 ≥ m(s− x) for all s.

Equivalently, beause s2 − x2 fators as (s+ x)(s− x):
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Given x, we want m suh that (s+ x)(s− x) ≥ m(s− x) for all s.

By algebra, this is:

Given x, we want m suh that (s+ x−m)(s− x) ≥ 0 for all s.

Guided either by hindsight or insight, we see that the orret hoie is

m = 2x,

beause then (s− x)(s+ x−m) = (s− x)2, and indeed

(s− x)2 ≥ 0 for all s.

That is, the tangent slope to the parabola y = x2 at the point (x, x2) is 2x,

as we already omputed above.
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Figure 1.13. Height di�erenes along the parabola and along a tangent line

Note the di�erenes between the two ways of omputing the tangent slope

of the parabola. The alulus argument is very quik, and it tells us the

answer, but it relies on the nebulous notion of tends to. By ontrast, the

geometri argument stands on �rmer footing, but it requires us to know the

answer somehow and then on�rm it.

Exercise

1.3.1. (a) Make a rough sketh of the ubi urve y = x3. Your sketh should

show that the urve is onvex (bends up) for x > 0, is onave (bends down)

for x < 0, and inets at x = 0.
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(b) Here is a geometri argument similar to the one just given for the

paraboli urve y = x2, but for the ubi urve instead. Let x be �xed, and

onsider the tangent line to the ubi urve at (x, x3). For any value s,

moving along the urve to (s, s3) hanges the vertial oordinate by s3−x3,

and moving along the tangent line to the point with �rst oordinate s

hanges the vertial oordinate by m(s−x), where m is the tangent slope.

We want to �nd m in terms of x. By a little algebra, the di�erene

between the two height-hanges is

s3 − x3 −m(s− x) = (s2 + sx+ x2 −m)(s− x).

Divine inspiration tells us to onsider

m = 3x2.

Doing so makes the di�erene between the two height-hanges

(s2 + sx+ x2 − 3x2)(s− x) = (s+ 2x)(s− x)2. (1.11)

By the geometry of the ubi urve, as desribed in part (a). . .

Complete the argument that m = 3x2 is the orret hoie by explaining

why the height di�erene on the right side of (1.11) is behaving appropriately.

Be lear about the respetive roles and behaviors of x and s. The solution is

not a simple mimiry of what's in the text|the ubi urve requires a more

areful analysis than the parabola. You may assume that x is positive. (But

if you want to be thorough then the ase where x is negative an be handled

similarly, and then the ase where x = 0 an be handled in a speial way.)

() What does the height di�erene on the right side of (1.11) tell us about

where the ubi urve and its tangent line at (x, x3) meet?

(d) Proeed similarly to parts (a) through () but with the quarti urve

y = x4.

1.3.3 The Inscribed Triangle Again

Reall that the quadrature of the parabola began with an insribed triangle,

its left vertex at (x, y) = (a, a2) and its right vertex at (x, y) = (b, b2). (The

triangle is shown in the left parts of �gure 1.8 and �gure 1.9, and it is the

large triangle in �gure 1.10|see pages 7, 9, and 10.) The slope of the paraboli

seant hord between these two verties is

slope between the left and right verties =
b2 − a2

b− a
= a+ b.

Reall also that the triangle's third vertex has x-oordinate (a+b)/2. By our

formula that the tangent slope to the parabola at any point (x, x2) is 2x, we

have in partiular (beause 2 · (a+ b)/2 = a+ b),
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tangent slope to the parabola at the third vertex = a+ b.

That is, the insribed triangle now has a geometri haraterization: The

middle vertex is the point where the tangent line to the parabola is parallel

to the line through the left and right verties . (See �gure 1.14.) And in fat

this haraterization applies to all of the triangles in the quadrature of the

parabola.

Figure 1.14. Tangent line parallel to seant hord

Exercise

1.3.2. Let a and b be real numbers with a < b. Consider two points on the

parabola, P = (a, a2) and Q = (b, b2). For any number c between a and b,

onsider also a third point on the parabola, R = (c, c2). Thus the insribed

triangle used by Arhimedes for the quadrature of the parabola ours when

in partiular c is the average (a + b)/2. Give a geometri argument that of

all triangles PQR where P and Q are the �xed points just mentioned, and R

is some third point between them on the parabola, Arhimedes hose the

triangle of greatest area, i.e., the triangle that �lls as muh as possible of the

region between the parabola and the hord PQ. (Hint: Triangle-area is one

half of base times height. View PQ is the ommon base of all the triangles

in question. The tangent line to the parabola at Arhimedes's hoie of R

lies below the parabola exept at R, and the setion has explained that this

tangent line is parallel to the hord PQ. Your argument should be based on

these ideas and make no referene to the (x, y)-oordinate system.)
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Figure 1.15. Equal angles

1.3.4 The Reflection Property of the Parabola

Let

P = (x, x2)

be a point on the parabola, where x is any number. The geometri de�nition

of the parabola is PD = PF, and PD is the vertial distane x2 + 1/4 from the

point to the diretrix, so that also

PF = x2 + 1/4.

Consider the point vertially above P, also at distane x2 + 1/4 from P,

Q = (x, 2x2 + 1/4)

(see �gure 1.15). The slope from F to Q is the y-oordinate di�erene divided

by the x-oordinate di�erene,

m =
2x2 + 1/4− 1/4

x− 0
= 2x.

This is also the tangent slope of the parabola at P. By Eulidean geometry,

the segments QP and PF therefore form the same angle with the tangent line.

(Again see �gure 1.15.) This gives the reetion property of the parabola:

every vertial ray reets in the parabola to a ray through the fous. The

name fous for this point is now self-evident. (See �gure 1.16.) This property

of the parabola is used to onstrut telesopes and listening devies, and it is

sometimes demonstrated in siene museum exhibits.

Exercise

1.3.3. Explain why the four angles in �gure 1.15 are equal.
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1.4 Summary

Most of the work with the parabola in this hapter was geometri or algebrai.

What gives the material aspets of alulus as well is that we determined

the preise values that approximations tended to as they beame ever more

aurate. However, the entities involved in the alulations, and the reasoning

about them, require loser srutiny. The alulus that we have done so far is

only provisional.
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The Rational Power Function

The rational power funtion is the funtion

fα(x) = xα for x > 0,

where the exponent α is a rational number, meaning a ratio of whole numbers,

e.g., α = 3 or α = −2 or α = 3/2 or α = −17/3. While xα is easy to understand

when α is a positive whole number|it is x · x · · · x (α times)|the meaning

of xα for negative whole α, or frational α, or negative frational α is less

lear.

Setion 2.1 lays out some ideas preliminary to studying the rational power

funtion. Basi assumptions about the real number system are stated infor-

mally, and then a ubiquitously useful formula is introdued, the �nite ge-

ometri sum formula . Setion 2.2 de�nes the rational power funtion fα
and shows that for positive values of α the funtion is always limbing, while

for negative values of α the funtion is always falling. Setion 2.3 �nds the

area under the graph of the spei� rational power funtion f2/3 from x = 1

to x = 8. The proess here is integration, and the exposition tries to onvey a

oneptual sense of it along with the details as it unfolds. Setion 2.4 omputes

the derivative of the rational power funtion, arrying out the alulation in

several steps from a normalized speial ase to full generality. The deriva-

tive alulation reprodues some of the ending work of the integration in the

previous setion, suggesting a onnetion between derivatives and integrals.

Setion 2.5 exploits this onnetion to alulate the integral of the general

power funtion fα (exepting the ase α = −1) between general endpoints

x = a and x = b.



22 2 The Rational Power Funtion

2.1 Preliminaries

2.1.1 Assumptions About the Number System

Among the many tait assumptions permeating hapter 1 were assumptions

about numbers. We need to proeed from some onsensus about how numbers

behave. Thus:

We assume that there is a system of real numbers.

The assumed real number system has properties that should be familiar.

Spei�ally:

� The real number system subsumes the rational number system. An

integer is a whole number suh as 0, 1, −1, 2, −2, 3, . . .. A rational

number is a ratio p/q where p and q are integers and q is not 0. But q

an be 1, so that the rational numbers subsume the integers. All rational

numbers are real, but not all real numbers are rational.

� Real numbers an be added, subtrated, multiplied, and divided, all

subjet to the usual rules of algebra. Division by 0 is prohibited.

� Every real number is �nite. \In�nity" is not a real number.

� Real numbers an be ompared. Given any two real numbers, either the

�rst one given is the lesser, or the two are equal, or the �rst one given is

the greater. In partiular, the positive real numbers are the ones that are

greater than 0, and the negative real numbers are the ones that are less

than 0.

� The real numbers an be interpreted as the points of a line. By on-

vention, greater numbers are loated to the right of lesser ones. Under this

interpretation, the rational numbers are only some of the points of a line,

and the rest of the real numbers somehow �ll the holes. Any segment of the

line having positive length ontains both rational and irrational numbers.

Here are some omments about these assumptions. Eah point reeiving a

omment is �rst repeated in italis.

We assume that there is a system of real numbers. This assumption does

not say what a real number is. Nor does the mere at of using the word real

ause anything to exist. In fat, the notion of the real number system has been

understood in di�erent ways at di�erent times, and the urrent orthodoxy may

well no longer be aepted a generation from now. These matters are beyond

the sope of this ourse.

A rational number is a ratio p/q where p and q are integers and q is

not 0. But 3/2, 15/10, (−60)/(−40), and so on are all the same rational

number, so really eah p/q is only a name of a rational number, and eah
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rational number has in�nitely many names. The usual hoie of name for a

rational number is the one where p and q are in lowest terms (i.e., they have

no ommon fator greater than 1) and q is positive|for example, −5/3 rather

than 15/(−9).

Not all real numbers are rational. The standard example of an irrational

number is the square root of 2. The argument is that if the square root of 2

takes the form p/q then p2/q2 = 2, and so p2 = 2q2
. But p and q eah

take the form of a power of 2 times an odd number (i.e., p = 2e~p where ~p

is odd, and q = 2f~q where ~q is odd), so p2
and q2

eah take the form of an

even power of 2 times an odd number (i.e., p2 = 22e~p2
and ~p2

is odd, and

q2 = 22f~q2
and ~q2

is odd), so p2
is divisible by an even number of 2's while

2q2
is divisible by an odd number of 2's. Therefore p2

an't equal 2q2
, and

the assumption that the square root of 2 takes the form p/q is untenable.

However, this argument relies on a tait assumption that an integer fators

in only one way as a power of 2 times an odd number. The tait assumption

is true, but its proof takes a nontrivial e�ort.

Subjet to the usual rules of algebra. The reiproal of a sum is not the sum

of the reiproals:

In general,

1

a+ b
is not

1

a
+

1

b
.

For example, try a = b = 1: 1/(1+1) = 1/2 is not 1/1+1/1 = 2. But students

whose algebra is rusty sometimes slip up on this point.

Division by 0 is prohibited. This prohibition is not arbitrary or apriious.

� One explanation is that to divide by a number b is to multiply by its

reiproal, the number b ′
suh that bb ′ = 1. But 0 has no reiproal

beause 0b ′ = 0 6= 1 for all b ′
, and so division by 0 makes no sense.

� A seond explanation begins by observing that to say that a/b = c is to

say that c is the number suh that a = bc. So for b = 0, to say that

a/0 = c is to say that c is the number suh that a = 0c. If a 6= 0 then

no suh c exists, while if a = 0 then any c will work, i.e., all values are

equally plausible hoies for 0/0, and so no one value an be preferred.

Nonetheless, the partiular hoies of 0 or 1 as the de�nition of 0/0 are

often put forward as somehow being natural and not ontraditing this

seond explanation.

� But a third explanation shows that any de�nition of 0/0 leads quikly to

nonsense. The general rule for adding frations is

a

b
+

c

d
=

ad+ bc

bd
,

so that, if 0/0 is to have meaning, for any number a,
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a

1
+

0

0
=

a · 0+ 1 · 0
1 · 0 =

0

0
.

Subtrat 0/0 from both sides to get a/1 = 0, i.e., a = 0. That is, if 0/0 is

de�ned then all numbers must be 0.

Truly, division by 0 is a bad idea, even when the numerator is 0 as well.

In�nity is not a real number. There exist extensions of the real number

system that ontain the symbols ∞ and −∞ and rules suh as a + ∞ = ∞
and a−∞ = −∞ for all �nite numbers a. But these extensions ompromise

the integrity of the original system's algebra, requiring vigilane for ases and

leaving new operations unde�ned, suh as ∞−∞. In this ontext, note that

the equality a/b + 0/0 = 0/0 from the previous omment suggests that ∞
or −∞ rather than 0 or 1 might be a plausible de�nition of 0/0. Preditably,

either of these de�nitions leads to its own set of problems.

In fat, our assumptions so far about the real number system are inad-

equate for alulus. The proess of working through alulus examples will

illustrate the various additional assumptions that the subjet requires.

Exercises

2.1.1. Argue similarly to the text that the square root of 3 is irrational. Why

doesn't the argument apply to the square root of 4? In general, for what

positive integers n is the square root of n rational?

2.1.2. Are there numbers a and b for whih is it true that \by aident"

1/(a+ b) does equal 1/a+ 1/b?

2.1.2 The Finite Geometric Sum Formula

For any real number r 6= 1 and any positive integer n, the sum of the �rst

onseutive n powers of r (starting at the 0th power r0 = 1) is

1+ r+ r2 + · · ·+ rn−1 =
rn − 1

r− 1
.

This formula is the �nite geometri sum formula . It redues a sum of many

terms to a quotient of two terms. The quantity whose powers we are summing

is denoted r beause it is the ratio of eah pair of onseutive terms: 1 and r,

r and r2, and so on. When onvenient (espeially when −1 < r < 1, i.e., when

1 is larger in magnitude than r and its powers), we make the numerator and

the denominator of the fration positive by writing instead
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1+ r+ r2 + · · ·+ rn−1 =
1− rn

1− r
.

The two ways of writing the �nite geometri sum formula have the exat same

ontent. To prove the formula, we may verify instead that the left side times

the right side denominator equals the right side numerator,

(1+ r+ r2 + · · ·+ rn−1)(1− r) = 1− rn, (2.1)

and this follows (exerise 2.1.3) from multiplying out the left side of (2.1).

Exercises

2.1.3. Verify formula (2.1) by multiplying out its left side.

2.1.4. Use an appropriate hoie of r to show that the �nite geometri sum

formula reprodues Arhimedes's alulation of the sum in (1.9) on page 11.

2.1.5. Use the geometri sum formula to show that for any real number r 6= 1

and any positive integers n and m,

rn − 1

rm − 1
=

1+ r+ r2 + · · ·+ rn−1

1+ r+ r2 + · · ·+ rm−1
.

2.2 The Rational Power Function

The following notation is onvenient to have at hand:

Z = the integers,

Z≥1 = the positive integers,

Z≥0 = the nonnegative integers,

Z≤−1 = the negative integers,

Q = the rational numbers,

R>0 = the positive real numbers.

All of the symbols just introdued are names of sets. Set means olletion

of elements . We take the notion of a set as something that will be ompre-

hensible in our ontext. In fat set theory leads to slippery issues very quikly

(see exerise 2.2.1), but what matters to us here is that the paradigm and the

notation of set theory are tremendously helpful for organizing one's thoughts

in the proess of doing mathematis.

Also, the following symbol is ubiquitous in mathematis:
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\∈" means in or is in or is an element of .

And similarly,

\/∈" means not in or is not in or is not an element of .

Thus, 1/2 ∈ Q (read one-half is an element of Q) beause indeed 1/2 is a

rational number, but 1/2 /∈ Z (read one-half is not in Z) beause 1/2 is not
an integer. Note: we do not write \Z ∈ Q". Every integer is indeed a rational

number, so that Z is a subset of Q, but the symbol \∈" denotes element

ontainment, not set ontainment. That is, the symbol \∈" is understood to

have an individual element to its left and a set ontaining the element to its

right. The language and notation of set theory will be disussed further in

hapter 3.

2.2.1 Definition of the Rational Power Function

For any rational number α ∈ Q, the αth power funtion is denoted fα,

fα(x) = xα for positive real numbers x ∈ R>0.

The symbol-string \xα" is easy enough to write down, but it is only notation.

Writing xα does not address the question of what|if anything|raising a

positive real number x to a rational power α atually means . We approah

the question systematially.

First, for any positive integer α, de�ne for any positive real number x,

xα = x · x · · · x (α times) for α ∈ Z≥1.

Thus for example, exploiting the fat that 1 is multipliatively neutral,

x3 = 1 · x · x · x,
x2 = 1 · x · x,
x1 = 1 · x,

and this pattern extends naturally to the de�nition

x0 = 1.

So now we have xα for any nonnegative integer α, as ompared to any positive

integer α as at the beginning of this paragraph.

Seond, onsider a negative integer α, so that −α is a positive integer. For

example, if α = −3 then −α = 3. The idea is shown in the de�nition x−3 =

1/x3; here we already understand x3, and 1/x3 denotes the multipliative
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inverse of x3, i.e., the number whose produt with x3 equals 1. In general,

de�ne for all positive real numbers x,

xα = 1/x−α
for α ∈ Z≤−1.

Repeating, if α is a negative integer, so that −α is a positive integer and we

understand x−α
for all positive real numbers x, then xα is the number whose

produt with x−α
is 1. Still xα is positive even though α is negative.

Third, let α be the reiproal of a positive integer, so that 1/α is itself a

positive integer. For example, if α = 1/5 then 1/α = 5. The idea is shown in

the de�nition of x1/5 as the unique positive number y suh that y5 = x. In

general, de�ne for all positive real numbers x,

xα = the unique positive number y suh that y1/α = x for 1/α ∈ Z≥1.

That is,

x1/n = the unique positive number y suh that yn = x for n ∈ Z≥1.

For the just-displayed de�nition of x1/n to make sense, there must be at least

one suitable y, and there must be at most one suh y. For now we assume

that these onditions do hold, so that indeed a unique y exists, making the

de�nition sensible. This y is alled the positive nth root of x. For example,

41/2 unambiguously means 2, even though −2 also squares to 4. The de�nition

of x1/n as the unique positive nth root of x relies on an assumption about

the real number system beyond those that we have already made:

� Every positive real number has a unique positive nth root for any

positive integer n.

Fourth, to �nish de�ning the rational power funtion, let α = p/q be any

rational number whatsoever, where p is an integer and q is a positive integer.

De�ne for any positive real number x,

xα = (x1/q)p for α = p/q ∈ Q, p ∈ Z, q ∈ Z≥1.

One an show (see exerise 2.2.2 for a partial proof) that if also α = p ′/q ′

where p ′
is an integer and q ′

is a positive integer then (x1/q
′

)p
′

= (x1/q)p,

and so the de�nition of xα is independent of how the rational exponent α is

represented. This ompletes the de�nition of the power funtion. Under the

de�nition, xα is positive for all positive real x and all rational α.

The relevant body of algebra in this ontext is the laws of exponents .

These state that for any positive real numbers x and y, and for any rational

numbers α and β,

xαxβ = xα+β, (xα)β = xαβ = (xβ)α, xαyα = (xy)α.
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One an show that the laws of exponents for rational powers are onsequenes

of our de�nition of raising a positive real number to a rational power. To

illustrate with one example of the law xα+β = xαxβ, onsider any positive

real number x, reall that we assume the existene of a unique positive real

10th root of x, note the preliminary alulation that for any positive y we

have y14(1/y15) = y14y(1/y)(1/y15) = y15(1/y)(1/y15) = 1/y, and ompute

(justify the steps),

x7/5x−3/2 = x14/10x−15/10

= (x1/10)14(x1/10)−15

= (x1/10)14(1/(x1/10)15)

= 1/x1/10

= (x1/10)−1

= x−1/10

= x(14−15)/10

= x14/10−15/10

= x7/5−3/2

= x7/5+(−3/2).

Similarly with the law xαyα = (xy)α, for any positive real numbers x and y,

note that the preliminary alulation (x1/2y1/2)2 = x1/2y1/2x1/2y1/2 =

x1/2x1/2y1/2y1/2 = (x1/2)2(y1/2)2 = xy shows that x1/2y1/2 = (xy)1/2,

and then ompute

x−3/2y−3/2 = (x1/2)−3(y1/2)−3

=
1

(x1/2)3
· 1

(y1/2)3

=
1

x1/2 · x1/2 · x1/2 · y1/2 · y1/2 · y1/2

=
1

x1/2y1/2 · x1/2y1/2 · x1/2y1/2

=
1

(x1/2y1/2)3

= (x1/2y1/2)−3

= ((xy)1/2)−3

= (xy)−3/2.

As these painstaking examples show, the thing to appreiate is that the laws

of exponents are uniform ; that is, even though the de�nition of the power
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funtion proeeded by ases, the laws of exponents work the same way regard-

less of whether eah of α and β is a nonnegative integer, a negative integer, a

positive rational number that is not an integer, or a negative rational number

that is not an integer. A full on�rmation of the laws of exponents is symbol-

ially dense, so we don't dwell on it, but we are very glad that the laws work

uniformly aross all ases.

If α is a nonnegative integer then the given de�nition of xα an be extended

to all real numbers x, not only positive ones (e.g., we understand x3 = x ·x ·x
for any x, and we onsidered the squaring funtion f(x) = x2 for any x in

hapter 1). Note that 0n = 0 for n ∈ Z≥1 but 00 = 1. Similarly, if α is

a negative integer then the given de�nition of xα an be extended to all

nonzero real numbers x (e.g., we understand x−3 = 1/x3 for any x 6= 0). And

if α = 1/n for some positive integer n then the de�nition of xα = x1/n an

be extended to 0α = 0 always (beause 0n = 0, i.e., the nth root of 0 is 0)

and also to negative values of x if n is odd (e.g., if y3 = 5 then (−y)3 = −5

beause 3 is odd, so that the ube root of −5 is the negative of the ube root

of 5). Finally, if α = p/q where p is an integer and q is a positive integer

and the fration p/q is in lowest terms, then the de�nition xα = (x1/q)p an

be extended to all x if p is nonnegative and q is odd, to all nonzero x if p is

negative and q is odd, to all nonnegative x if p is nonnegative and q is even,

and to all positive x if p is negative and q is even. This highly nonuniform

multitude of ases is bewildering, to say the least. To avoid onsidering ases

in analyzing the αth power funtion for general rational α, we have simpli�ed

our lives by insisting that its inputs be positive, and we will generally restrit

our analysis of the power funtion to positive inputs . But the reader should

be aware that by standard onvention, the inputs to the αth power funtion

are in fat taken to be

� all real numbers if α is a nonnegative integer (for example, f3(x) = x3 is

de�ned for all x),

� all nonzero real numbers if α is a negative integer (for example, f−2(x) =

x−2
is de�ned for all x 6= 0),

� all nonnegative real numbers if α is a nonnegative rational number that is

not an integer (for example, f3/2(x) = x3/2 is de�ned for all x ≥ 0),

� all positive real numbers if α is a negative rational number that is not an

integer (for example, f−2/5(x) = x−2/5
is de�ned for all x > 0).

Later in these notes, we will de�ne the power funtion for an arbitrary

real exponent α, i.e., the exponent α will no longer be restrited to rational

values.

The last point to be made in this setion is that ertain partiular power

funtions will arise frequently through these notes, and so the reader should

learn to reognize them:
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f0 is the onstant funtion 1, f0(x) = 1 for all x,

f1 is the identity funtion, f1(x) = x,

f−1 is the reiproal funtion, f−1(x) = 1/x.

Similarly, the reader should be quikly able to reognize f2 as the squaring

funtion, f1/2 as the square root funtion, and so on.

Exercises

2.2.1. Let S be the set whose elements are the sets that do not ontain them-

selves as an element. Does the set S ontain itself as an element?

2.2.2. Suppose that a positive rational number α takes the forms α = p/q

and α = p ′/q ′
where p, p ′, q, q ′ ∈ Z≥1. Let x be a positive real number. We

want to show that

(x1/q)p = (x1/q
′

)p
′

.

(a) An assumption in the setion says that it suÆes to show instead that

(
(x1/q)p

)qq ′

=
(
(x1/q

′

)p
′

)qq ′

.

Explain.

(b) Without quoting the laws of exponents, explain why the de�nition of

raising a real number to a positive integer exponent and then the de�nition

of raising a real number to the reiproal of a positive integer imply that

(
(x1/q)p

)qq ′

= (x1/q)pqq
′

=
(
(x1/q)q

)pq ′

= xpq
′

,

and similarly

(
(x1/q

′

)p
′

)qq ′

= (x1/q
′

)p
′qq ′

=
(
(x1/q

′

)q
′

)p ′q

= xp
′q.

() Explain why the quantities on the right sides of the two displays in

part (b) are equal. This ompletes the argument.

2.2.3. Let x be a positive real number, and let α and β be rational numbers.

The symbol-string

xα
β

has two plausible interpretations. Explain. Show by example that the two

interpretations an give di�erent values. Whih interpretation is the preferred

one? Why?



2.2 The Rational Power Funtion 31

2.2.2 Increasing/Decreasing Behavior

A funtion f is alled strictly increasing if for any two input values s and x

with s > x, also f(s) > f(x); that is, larger input values yield larger output

values. Visually the idea is that the graph of a stritly inreasing funtion rises

as it moves to the right. Returning to formulas, an equivalent statement is that

f is stritly inreasing if for any distint input values s and x (distint means

that s 6= x), the input-di�erene s − x and the output-di�erene f(s) − f(x)

have the same sign. Yet a third way to say this is that f is stritly inreasing

if for any distint input values s and x, the quotient (f(s) − f(x))/(s − x) is

positive, whether it is a quotient of two positive numbers when s > x or of

two negative numbers when s < x. Similarly, f is strictly decreasing if for

any distint input values s and x, the quotient (f(s)−f(x))/(s−x) is negative.

We now show that

The power funtion fα for any rational number α is stritly in-

reasing if α is positive and stritly dereasing if α is negative .

Here it is understood that fα is taking only positive input values, even though

some power funtions fα an take other inupts as well. Having a omputer plot

various power funtions illustrates this statement visually, but establshing

it symbolially is a worthwhile intelletual improvement over taking a few

omputer �gures as God-given and as telling the full story. To establish the

statement, we need to determine the sign of the quotient (sα − xα)/(s − x)

where s 6= x.

The argument begins by establishing a normalized ase of the statement,

the ase where x = 1. Let s be a positive real number other than 1. Let α be

a positive integer. By the �nite geometri sum formula,

sα − 1

s− 1
= 1+ s+ s2 + · · ·+ sα−1,

and the quotient on the left side is positive beause the sum on the right side

is a nonempty sum of positive terms.

Next let α be a negative integer, so that −α is a positive integer. By

algebra,

sα − 1

s− 1
= −sα

s−α − 1

s− 1
.

Beause −sα is negative and beause the quotient on the right side is positive

by the previous paragraph, altogether the quotient on the left side is negative.

Now let α = p/q where p is a nonzero integer and q is a positive integer.

To work easily with this rational exponent, introdue the helper variable

~s = s1/q. Thus sα = ~sp and s = ~sq, and so
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sα − 1

s− 1
=

~sp − 1

~sq − 1
=

~sp − 1

~s− 1
· ~s− 1

~sq − 1
.

Beause p is a nonzero integer the previous two paragraphs show that the

�rst quotient on the right side has same sign as p, and beause q is a positive

integer the penultimate paragraph shows that the seond quotient on the right

side is positive. Altogether, noting that α = p/q has the same sign as p, we

have for α 6= 0,
sα − 1

s− 1
has the same sign as α.

For the general ase, onsider any two distint positive real numbers s

and x. Again introdue a helper variable, ~s = s/x, so that s = ~sx and ~s is a

positive real number other than 1. Compute,

sα − xα

s− x
=

(~sα − 1)xα

(~s− 1)x
=

~sα − 1

~s− 1
xα−1.

The rightmost quotient has the same sign as α by the normalized ase, and

xα−1
is positive. Thus the leftmost quotient has the same sign as α, and so

we have our result:

The rational power funtion fα is

{
stritly inreasing if α > 0,

stritly dereasing if α < 0.

In the remaining ase α = 0, the power funtion f0 is the onstant funtion 1.

Exercise

2.2.4. (a) A nonnormalized proof of this setion's result begins by omputing

for any positive real numbers s and x and any positive integer n (using the

laws of exponents and the �nite geometri sum formula),

sn − xn = xn((s/x)n − 1)

= xn((s/x) − 1)(1+ (s/x) + (s/x)2 + · · ·+ (s/x)n−1)

= (s− x)xn−1(1+ (s/x) + (s/x)2 + · · ·+ (s/x)n−1).

Continue this alulation to establish a slight generalization of the �nite geo-

metri sum formula, the di�erene of powers formula : For any positive real

numbers s and x, and any positive integer n,

sn − xn = (s− x)(xn−1 + sxn−2 + s2xn−3 + · · ·+ sn−1). (2.2)

(b) Write out the di�erene of powers formula for n = 2, n = 3, and n = 4.
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2.3 Integration of a Particular Rational Power Function

2.3.1 The Problem

Find the area under the graph of the funtion

f(x) = x2/3

from x = 1 to x = 8. The situation is shown in �gure 2.1. Beause f is the

power funtion fα where α = 2/3 is positive, f is indeed stritly inreasing as

shown in the �gure.
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Figure 2.1. Area under a urve

Reall that we believe that raising any real number between 1 and 8 to the

two-thirds power is a meaningful thing to do. Spei�ally, it is understood to

mean taking the ube root and then squaring. Squaring a number is nonon-

troversial, beause it is a speial ase of multiplying two numbers, something

that we have assumed we an do. Taking ube roots|and taking nth roots

in general|is not part of basi algebra, but it has been appended to the list

of things that we assume we may take for granted.

As with the quadrature of the parabola, a tait assumption in our new

problem that an easily pass unnotied is the assumption that indeed there

is an area-number to be found.

2.3.2 Intuitive Vocabulary

Call a positive real number
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� large if it is very far away from 0,

� small if it is very lose to 0,

� medium-sized if it is moderately far away from or lose to 0.

Yes, these terms are too qualitative to be mathematially preise. So the lan-

guage will need to be understood from ontext. The point is that being able

to trak the qualitative sizes of various quantities failitates insight into the

omputations of alulus. Impreision is not aeptable mathematial method-

ology, but preision is guided by insight. Furthermore, omplete preision is

virtually never attainable, and it is not the goal in and of itself. Preision and

insight omplement eah other in strengthening our understanding.

2.3.3 The Idea to be Demonstrated

The idea is:

Computing a medium-sized number an require alulations that

use large and small numbers en route . Calulus enodes methods

for doing so.

Indeed, a alulus is a stone or pebble. The pebbles of mathematial alulus

are the intermediate small numbers that generate a �nal medium-sized one.

The end-results of alulus oneal the intermediate steps in whih the

large and the small are manipulated to obtain a medium-sized answer. Op-

erationally the onealment is a onveniene beause the alulations are de-

tailed, but in pratie it means that students often learn to apply alulus

mehanially, substituting values into its formulas, without appreiating its

�nesse. A goal of this set of notes is that students do gain some sense of these

matters.

In some situations, rules about numbers are plausibly obvious, but for

other senarios there are no rules. For the following disussion, reall that our

informal taxonomy of large, small, and medium-sized applies only to positive

numbers.

� (Situations with plausible rules.) The sum of two large numbers is a large

number. Similarly for two medium-sized numbers and for two small num-

bers. The sum of a large number and any other positive number is again

large. The sum of a medium-sized number and a small number is again

medium-sized. The produt of a small number and a medium-sized num-

ber is small. The produt of a medium-sized number and a large number

is large. And so on.

These rules are plausible only at the level of intuition beause (again) the

terms large , small , and medium-sized are impreise. To illustrate the

impreision, if the sum of two small numbers is again small, then the sum
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of three numbers should be small too, beause the sum of the �rst two

small numbers is small and then the threefold sum is the sum of the small

twofold sum and the small third number. But by iterating this reasoning,

the sum of a thousand small numbers is small, or of a million, and the

intuition is no longer valid. The intuition of alulus is fragile beause the

atual omputations an be deliate.

� (A situation with no rule.) The sum of many small numbers an be large,

medium-sized, or small. For example,

10−1000 + 10−1000 + · · ·+ 10−1000
(102000 times) = 101000,

while

10−1000 + 10−1000 + · · ·+ 10−1000
(101000 times) = 1,

and

10−1000 + 10−1000 + · · ·+ 10−1000
(10500 times) = 10−500.

In fat, numbers suh as 101000 and 10−500
are unimaginably large and

small in any sort of physial terms. There are some 1077 elementary par-

tiles in the universe, and 77 · 13 = 1001, so 101000 elementary partiles

would make roughly one-tenth of a universe of universes of universes of

universes of universes of universes of universes of universes of universes

of universes of universes of universes of universes, a quantity hopelessly

beyond physial omprehension. But this is of no onsequene, beause

we are treating numbers as purely platoni entities, not as desriptions of

physial quantities.

One master onept of alulus that we will study, the integral,

omes|in its simplest form|from sums of ever more, ever-

smaller numbers .

Thus although this bullet says that we do not know in general how suh

sums behave, the ones that arise in alulus from reasonable situations

will behave well in the sense of produing medium-sized answers as they

should. We have already seen an example of this in hapter 1, where the

�nite geometri sum

1+
1

4
+

(
1

4

)2
+ · · ·+

(
1

4

)n−1

=
4

3

(
1−

(
1

4

)n)
.

visibly tends to 4/3 when we add more and more terms by letting n grow.

� (Another situation with no rule.) The quotient of two small numbers

an be large, or medium-sized, or small. Indeed, the alulations

10−500

10−1000
= 10500,

10−1000

10−1000
= 1,

10−1000

10−500
= 10−500
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provide examples.

The other master onept of alulus that we will study, the

derivative, omes from quotients of two ever-smaller numbers .

This bullet says that suh quotients an behave wildly, but again the ones

that arise in alulus from reasonable situations will produe medium-sized

answers. We have already seen an example of this in hapter 1, where the

di�erene-quotient

s2 − x2

s− x
, s 6= x

is a ratio of terms that both grow small as s tends to x, but beause the

di�erene-quotient is also s + x, it is medium-sized, and it visibly tends

to 2x as s tends to x.

� (Not-really-another situation with no rule.) The produt of a small num-

ber and a large number ould be small, medium-sized, or large. This is

nothing new beause the produt an be interpreted as a quotient of two

small numbers, or as the quotient of two large numbers. Spei�ally, if a is

small and b is large then the reiproals a−1
and b−1

are large and small,

and ab = a/b−1 = b/a−1
.

To repeat, a lear understanding of alulus is an understanding of how to

ompute medium-sized quantities using very large and very small numbers

orretly en route. The intermediate steps will require are beause their

workings are not immediately transparent to our intuition.

Exercise

2.3.1. Desribe more situations with plausible rules.

2.3.4 The Problem Again, and the Pending Calculation

Reall the problem: Find the area under the graph of the funtion

f(x) = x2/3

from x = 1 to x = 8. We are going to approximate the area by alulating

the areas of many boxes, as shown in �gure 2.2. Here are some features to

observe about the �gure:

� The region in question is roughly a trapezoid, so our eventual answer

should be roughly the orresponding trapezoid-area, the base times the

average of the heights, (8− 1) · (1+ 4)/2 = 17.5. But beause the graph is

onave (i.e., it bulges up in the middle, at least aording to the omputer

that drew the �gure), the true answer will be a little larger than this.
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Figure 2.2. Box-areas under a urve

� Eah box-height is determined by the value of the funtion over the left

endpoint of the box-base.

� The boxes do not all have the same width, but their widths seem to be

regular in some way, and beause the graph of the height-determining fun-

tion f(x) = x2/3 is also regular, the box-areas appear regular in turn. The

visual regularity of the box-widths and box-areas will soon be explained

symbolially.

� Figure 2.2 shows twenty boxes in partiular, but the idea is to alulate

for n boxes where n is a general-purpose symbol, and then at the end

of the alulation, let n grow very large. Although right-more boxes are

wider, if n inreases enough then plausibly even the rightmost box will

grow narrow, and so the boxes will tend toward �lling all of the region

under the graph.

We will obtain a formula for the sum of the box-areas. Initially, the formula

will be a sum of many small numbers, and so its nature will be unlear.

But patient alulation will manipulate the formula into an expression that

involves only medium-sized numbers, making it easy to understand. Only

then will we let the number of boxes grow very large and see to what number

the sum of their areas tends.

2.3.5 Tools To Be Used

� The laws of exponents . Again, these state that for any positive real num-

bers x and y, and for any rational numbers α and β,

xαxβ = xα+β, (xα)β = xαβ = (xβ)α, xαyα = (xy)α.
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� The �nite geometri sum formula . Again, the formula is that for any

real number r 6= 1 and any positive integer n,

1+ r+ r2 + · · ·+ rn−1 =
rn − 1

r− 1
,

or

1+ r+ r2 + · · ·+ rn−1 =
1− rn

1− r
.

� Algebra . As mentioned already, the idea is to alulate for n boxes where

n is a general-purpose symbol. Consequently, various other quantities in

the alulation will have to be represented by symbols as well rather than

numbers, beause they depend on n. Only at the end of the alulation,

when we let n grow very large, will the symbols that we are working with

�nally yield an atual number as the answer.

Working through the alulation will also require patiene, attention-span,

persistene, and study-skills. Beause the problem being solved is nontrivial,

the solution is larger than bite-sized, perhaps too muh to proess in one

reading. Even for several readings, having a pen and srath paper at hand

to keep trak of the main quantities in play may be helpful.

2.3.6 The Geometric Partition

We return to the problem of �nding the area under the graph of the funtion

f(x) = x2/3 from x = 1 to x = 8. Again see �gure 2.2. Throughout the

following alulation, one fundamental quantity is driving everything else:

The number of boxes is n.

Thus

n is large.

As already explained, the �gure shows twenty boxes but the idea is to alulate

for a generi number of boxes, and then only after the alulation yields its

result, the number of boxes will then grow very large. Introdue the following

quantity:

The �rst partition point is s = 81/n.

That is, the �rst partition point s is a real number|dependent on the number

of boxes|that is greater than 1. In �gure 2.2, s is the right endpoint of the

base of the leftmost box. To rephrase the de�nition:

The �rst partition point is the positive number s suh that sn = 8.
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Note that 1n = 1, while 2n is large when n is large. So s lies between 1 and 2,

and the more boxes there are, the loser s tends to 1 from the right. Thus

(exerise 2.3.2)

s− 1 is small.

Divide the x-axis from x = 1 to x = 8 into n intervals having the partition

points

x0 = s0 = 1,

x1 = s1 = s,

x2 = s2,

x3 = s3,

.

.

.

xn−1 = sn−1,

xn = sn = 8.

That is, using the symbol j to serve as a ounter:

The partition points are xj = sj for j = 0, . . . , n.

This partition of the x-axis from x = 1 to x = 8 is a geometri partition (see

�gure 2.3, in whih n = 10), as ompared to a uniform partition , where all

intervals have the same width. The geometri partition will lead niely to a

geometri sum in our pending area-alulation. It does so for reasons that rely

on the funtion f(x) = x2/3 of our example being a rational power funtion.

The hoie of a geometri partition rather than a uniform partition to solve

our integration problem is guided by hindsight, an example of the artfulness

of alulus.
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Figure 2.3. A geometri partition

Exercise

2.3.2. This exerise quanti�es the assertion that if s = 81/n then s−1 is small

when n is large. More generally, let b be any real number greater than 1, and

let s = b1/n
. Here b is �xed but the positive integer n varies.
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(a) Use the fat that the power funtion f1/n is inreasing to explain why

s > 1.

(b) Explain why

s− 1 =
b− 1

1+ s+ s2 + · · ·+ sn−1
.

() Explain why

s− 1 <
b− 1

n
,

and therefore s− 1 is small.

(d) If 0 < b < 1 (instead of b > 1) then what is the nature of s − 1 when

n is large?

2.3.7 The Intervals and Their Widths

The intervals determined by the geometri partition are

I0 = the x-axis from x0 to x1,

I1 = the x-axis from x1 to x2,

I2 = the x-axis from x2 to x3,

.

.

.

In−1 = the x-axis from xn−1 to xn.

That is:

The intervals are Ij = the x-axis from xj to xj+1 for j = 0, . . . , n− 1.

Their widths are

∆x0 = x1 − x0 = s− 1,

∆x1 = x2 − x1 = s2 − s = (s− 1)s,

∆x2 = x3 − x2 = s3 − s2 = (s− 1)s2,

.

.

.

∆xn−1 = xn − xn−1 = sn − sn−1 = (s− 1)sn−1,

That is:

The interval-widths are ∆xj = (s− 1)sj for j = 0, . . . , n− 1.

Thus the jth interval-width is the produt of the small number s − 1 with

a medium-sized number sj. This symboli regularity in the formula for the
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interval-widths orresponds to the geometri regularity of the widths in �g-

ure 2.2. Beause s is greater than 1, the formula ∆xj = (s − 1)sj shows that

the intervals are getting wider as j inreases, but even the greatest width,

(s − 1)sn−1
, is less than (s − 1)sn = (81/n − 1) · 8, and as n gets large this

beomes a produt of a small number and a medium-sized number, i.e., it

beomes small.

2.3.8 The Inner Box-Areas

The base of the jth box is ∆xj. The height of the jth box is the value of the

funtion f(x) = x2/3 at the left endpoint of the jth interval,

f(xj) = x
2/3
j = (sj)2/3 for j = 0, . . . , n− 1.

Thus the area of the jth box is

∆xj · f(xj) = (s− 1)sj(sj)2/3 for j = 0, . . . , n− 1.

But by the laws of exponents,

sj(sj)2/3 = (sj)5/3 = (s5/3)j.

And so:

The inner box-areas are (s− 1)(s5/3)j for j = 0, . . . , n− 1.

Thus the jth box-area is the produt of the small number s−1 with a medium-

sized number (s5/3)j. As with the interval-widths, the symboli regularity in

the formula for the inner box-areas orresponds to the geometri regularity

of the areas in �gure 2.2.

2.3.9 The Sum of the Inner Box-Areas

Reall that we have n boxes and that s = 81/n. The sum of the inner box-areas

is

Sn = (s− 1) ·
[
(s5/3)0 + (s5/3)1 + (s5/3)2 + · · ·+ (s5/3)n−1

]

= (s− 1) ·
[
1+ (s5/3) + (s5/3)2 + · · ·+ (s5/3)n−1

]
.

This is a small number, s − 1, times a sum of many medium-sized numbers,

1 + s5/3 + (s5/3)2 + · · · + (s5/3)n−1
. So it is a small number times a large

number, and as suh, it does not have an obvious size. But, as antiipated,

the happy hoie of a geometri partition of the x-axis has redued the sum
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of inner box-areas to a �nite geometri sum. Spei�ally, the sum in square

brakets is a �nite geometri sum with ratio r = s5/3, and so by the �nite

geometri sum formula,

Sn = (s− 1) · (s
5/3)n − 1

s5/3 − 1
.

So we have ollapsed the sum, with its many terms, to a quotient of only

two terms. But still the fator s− 1 out front is small, as is the denominator

s5/3 − 1 of the fration. On the other hand, the numerator is 31, beause

sn = 8 and so (s5/3)n = (sn)5/3 = 85/3 = 32. After rearranging, the sum of

the inner box-areas is

Sn = 31 · s− 1

s5/3 − 1
where s = 81/n. (2.3)

The 31 is quintessentially medium-sized, but the numerator and the denomi-

nator of the fration are both small.

We introdue a helper variable to eliminate the frational exponent 5/3

from our expression for Sn. Let

~s = s1/3 = 21/n.

So ~s is slightly bigger than 1. That is,

~s− 1 is small.

Beause s = ~s3 and s5/3 = ~s5, the sum of the inner box-areas is now

Sn = 31 · ~s
3 − 1

~s5 − 1
, ~s = 21/n,

whih rewrites as

Sn = 31 ·

(
~s3 − 1

~s− 1

)

(
~s5 − 1

~s− 1

) , ~s = 21/n.

Rewriting Sn this way may not seem to help matters, beause ~s3 − 1, ~s − 1,

and ~s5− 1 are all small. But it sets up the �nite geometri sum formula twie

more (beause ~s 6= 1), expanding sums now rather than ollapsing them:

The inner box-area sum is Sn = 31 · 1+ ~s+ ~s2

1+ ~s+ ~s2 + ~s3 + ~s4
, ~s = 21/n.

And beause ~s is lose to 1, the numerator and the denominator of the fration

are now medium-sized. Our presient hoie to use the geometri partition,

and then our patient e�ort of
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� deriving a long geometri sum,

� ollapsing it to a quotient,

� rearranging the quotient,

� and �nally expanding two short geometri sums in the numerator and the

denominator of the quotient

have eliminated all large or small numbers from the formula for the sum of

the box-areas.

2.3.10 The Limiting Value

Finally the alulation an give a meaningful medium-sized answer. As the

number n of boxes grows very large, the helper variable ~s = 21/n will tend

to 1, and so the sum of inner box-areas will tend to an easily alulable

number,

Sn tends to 31 · 1+ 1+ 1

1+ 1+ 1+ 1+ 1
=

93

5
= 18.6.

Beause the boxes are �lling up the region under this urve, this number must

be the area. And indeed, it is slightly larger than the original underestimate

of 17.5. Summarizing,

The area under the graph of f(x) = x2/3 from x = 1 to x = 8 is 18.6.

Or, introduing some notation,

∫8

1

f = 18.6 where f(x) = x2/3.

That is, the integral sign \

∫
" is simply shorthand for the area under the

graph .

This is alulus.

Exercises

2.3.3. Show that in a alulation similar to the one in the setion but using

outer boxes rather than inner boxes gives the following result:

The jth outer box-area is s2/3 times the jth inner box-area, j = 0, . . . , n− 1.

Therefore the sum of the outer box-areas is s2/3 times the sum of the inner

box-areas. To what value does s2/3 tend as the number n of boxes grows? To

what value does the sum of the outer box-areas onsequently tend?



44 2 The Rational Power Funtion
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Figure 2.4. Boxes for exerise 2.3.4

2.3.4. Find the area under the graph of the funtion f(x) = x−1/4 = 1/x1/4

from x = 1 to x = 16, using outer boxes. (See �gure 2.4. Here the power

funtion f = fα is stritly dereasing beause α = −1/4 is negative.) Your

writeup should review the ideas of the setion.

2.3.5. Find the area under the graph of the funtion f(x) = x−7/4
from

x = 1 to x = 16. (For this funtion, the piture still looks qualitatively

like �gure 2.4 beause of the negative exponent, but the algebra involves a

new wrinkle: your alulations should lead you to an expression involving the

quantity 1/(s−3/4 − 1), di�erent from the example in the setion and from

the previous exerise beause of the negative exponent. However, note that

1

s−3/4 − 1
= −

s3/4

s3/4 − 1
,

and now the alulation an ontinue as before.)

2.3.6. Try to apply the same ideas to �nd the area under the graph of the

funtion f(x) = 1/x = x−1
from x = 1 to x = 10. This time, sum thing

goes wrong and the proess breaks down. Where does it do so, and why? For

what rational exponents α will the power funtion f(x) = xα lead to this

breakdown?

2.4 Differentiation of the Rational Power Function

2.4.1 The Problem

Reall that for any rational number α, the αth power funtion is denoted fα,
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fα(x) = xα for positive real numbers x ∈ R>0.

The problem is: For any x > 0, �nd the limiting value of the di�erene-

quotient

fα(s) − fα(x)

s− x

as s tends to x. As with the squaring funtion in hapter 1, the numerator

in the display is the di�erene of the output values of the power funtion fα
at an input s 6= x and at x itself, and the denominator is the di�erene of the

orresponding input values s and x.

2.4.2 The Calculation

Consider the speial ase that α is a nonnegative integer. Let s ∈ R>0 be a

positive number other than 1. Repeating the �rst display of setion 2.2.2 we

have by the �nite geometri sum formula,

sα − 1

s− 1
= 1+ s+ s2 + · · ·+ sα−1,

exept that now the sum on the right side is understood to be 0 if α = 0. As

mentioned above, the left side of the previous display is a di�erene-quotient.

On the other hand, the right side of the display is an α-fold sum. If the

input-di�erene s− 1 is very small then the summands all tend to 1, and so:

For α ∈ Z≥0, the limiting value of

fα(s) − fα(1)

s− 1
as s tends to 1 is α.

(The argument just given supports the statement in the ase α = 0 if we

understand the summands all tend to 1 to be vauous in that ase.) So far

the boxed result holds only if α is a nonnegative integer. The goal of this

setion is to show that the boxed result holds when α is any rational number

whatsoever, and then to generalize the \1" in the formula to any positive

number x ∈ R>0.

Suppose next that α ∈ Z≤−1 is a negative integer. Thus now −α is a

positive integer. That is, the boxed result holds with −α in plae of α, and

we want to re-establish the boxed result for α itself. Repeating the seond

display from setion 2.2.2,

sα − 1

s− 1
= −sα

s−α − 1

s− 1
.

If s tends to 1 then so does sα = 1/s−α
. And the quotient on the right side

of the display tends to −α by the previous alulation. So the entire right



46 2 The Rational Power Funtion

side tends to −(−α) = α. That is, the boxed result has been extended to all

integers:

For α ∈ Z, the limiting value of

fα(s) − fα(1)

s− 1
as s tends to 1 is α.

Now let α = p/q where p and q are integers with q nonzero. As in se-

tion 2.2.2, introdue the helper variable ~s = s1/q, so that sα = ~sp and s = ~sq.

Repeating the third display of setion 2.2.2,

sα − 1

s− 1
=

~sp − 1

~sq − 1
=

~sp − 1

~s− 1
· ~s− 1

~sq − 1
.

As s tends to 1, so does ~s. By the results already established in this setion,

the quotients on the right side of the previous display tend respetively to p

and 1/q as s tends to 1. Thus their produt tends to p/q, i.e., it tends to α.

Now the boxed result has been extended to all rational numbers:

For α ∈ Q, the limiting value of

fα(s) − fα(1)

s− 1
as s tends to 1 is α.

Finally, replae the normalized value 1 by any positive number x ∈ R>0.

Introdue the helper ~s = s/x, so that s = ~sx and so that ~s 6= 1 whenever

s 6= x. Repeating the �fth display of setion 2.2.2

sα − xα

s− x
=

(~sα − 1)xα

(~s− 1)x
=

~sα − 1

~s− 1
xα−1.

If s tends to x then ~s = s/x tends to 1, and so the last quotient in the previous

display tends to α; onsequently the entire quantity in the previous display

tends to αxα−1
. Thus the boxed result has been extended from x = 1 to any

positive real number x ∈ R>0:

For α ∈ Q, the limiting value of

fα(s) − fα(x)

s− x
as s tends to x is αxα−1

.

This ompletes the argument. Again introduing some notation, the onlu-

sion is

For α ∈ Q, f ′α = αfα−1.

That is, the prime is simply shorthand for the limiting value of di�erene-

quotients .

Note that when α = 2, we reover the formula for the tangent slope of

the parabola: the derivative of the squaring funtion f2(x) = x2 for all x > 0

is the funtion 2f1(x) = 2x for all x > 0. Similarly, the derivative of the

identity funtion f1(x) = x for all x > 0 is the onstant funtion f0(x) = 1 for
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all x > 0, and the derivative of the onstant funtion f0(x) = 1 for all x > 0 is

the onstant funtion 0·f−1(x) = 0 for all x > 0. The reader should understand

these last two fats in terms of tangent slopes (exerise 2.4.3).

Beause α is a general rational number in this setion, it an be replaed

by any other rational number, suh as a rational number that happens to be

named α+ 1 instead. In this ase, now speializing again to x = 1:

The limiting value of

sα+1 − 1

s− 1
as s tends to 1 is α+ 1.

We will use this formula freely through the rest of this hapter.

Exercises

2.4.1. Is there a rational power funtion fα whose derivative is f−1? Is there

a rational power funtion fα whose derivative is any onstant multiple of f−1?

2.4.2. The last boxed result in the setion took four steps to derive. Rederive

it in three steps instead by using the di�erene of powers formula (2.2) from

exerise 2.2.4.

2.4.3. (a) Graph the funtion f1(x) = x for all x > 0. For any x, what is the

tangent slope to the graph at the point (x, f(x))? How does your answer relate

to our general formula f ′α = αfα−1?

(b) Graph the funtion f0(x) = 1 for all x > 0. For any x, what is the

tangent slope to the graph at the point (x, f(x))? How does your answer relate

to our general formula f ′α = αfα−1?

2.4.3 A Fundamental Observation

The area alulation in setion 2.3 redued the problem of studying an in-

tegral|the limiting value of sums of many small terms|to the problem of

studying the limiting value of quotients of two small terms. Spei�ally, om-

puting the area under the graph of the power funtion

f2/3(x) = x2/3

from x = 1 to x = 8 led to equation (2.3) on page 42, now slightly rewritten,

Sn = 31
/s5/3 − 1

s− 1
, s = 81/n.

Here Sn is the sum of the inner box-areas for n boxes, and the question was

to what value Sn tends as the number n of boxes grows.
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As n grows, s tends to 1, and so the area alulation is redued to the

derivative alulation of setion 2.4. The normalized ase of that alulation

says that

the limiting value of

s5/3 − 1

s− 1
as s tends to 1 is 5/3,

and so now we an �nish the integration more quikly than we did in se-

tion 2.3,

the limiting value of Sn is 31
/
(5/3) = 18.6.

Indeed, a rereading of setion 2.4 and then setion 2.3 from equation (2.3) to

the end shows that the general derivative alulation enompasses the end-

alulation of the integral as a speial ase.

On the fae of things, the original integration problem is unrelated to any

derivative, and yet the alulation redued to a derivative: not the derivative

of the original power funtion f2/3, but of a di�erent power funtion f5/3
instead. Computing the derivative thus enabled us to ompute the integral. A

result alled the Fundamental Theorem of Calculus will tell us that this

was no uke. Integral-values will ome from derivative-values under a wide

range of irumstanes.

2.5 Integration of the Rational Power Function

The solution of a slightly more general integration problem than the one in

setion 2.3 should be understandable now. The only new issue is that the

left endpoint 1, the right endpoint 8, and the power 2/3 will beome general

symbols a, b, and α. Thus the problem is: Let a and b be real numbers with

0 < a < b, and let α 6= −1 be a rational number. Find the area under the

graph of the funtion

fα(x) = xα

from x = a to x = b. If α > 0 then fα is stritly inreasing, while if α < 0

then fα is stritly dereasing, but this will turn out to be irrelevant. The

odd-seeming restrition that α 6= −1 will emerge naturally from the pending

alulation.

2.5.1 The Normalized Case

First onsider the ase where the left endpoint is still 1 and the right endpoint

is b where b > 1. As before, let n be the number of boxes, and let s = b1/n
,

i.e., s is the positive number suh that sn = b. As shown in exerise 2.3.2,

s− 1 is small. The points of the relevant geometri partition are again
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xj = sj for j = 0, . . . , n,

the intervals determined by the geometri partition are

Ij = the x-axis from xj to xj+1 for j = 0, . . . , n− 1,

and their widths are

∆xj = (s− 1)sj for j = 0, . . . , n− 1.

The base of the jth box is ∆xj. The height of the jth box is the value of the

funtion fα over the left endpoint of the jth interval,

fα(xj) = xαj = (sj)α for j = 0, . . . , n− 1.

Thus the area of the jth box is

∆xj · fα(xj) = (s− 1)sj(sj)α = (s− 1)(sα+1)j for j = 0, . . . , n− 1.

The sum of the box-areas is onsequently

Sn = (s− 1) ·
[
1+ (sα+1) + (sα+1)2 + · · ·+ (sα+1)n−1

]
.

Beause α 6= −1, the ratio sα+1
in the geometri sum is not 1, and so the

�nite geometri sum formula applies,

Sn = (s− 1) ·
[
1+ (sα+1) + (sα+1)2 + · · ·+ (sα+1)n−1

]

= (s− 1) · (s
α+1)n − 1

sα+1 − 1

= ((sn)α+1 − 1) · s− 1

sα+1 − 1

= (bα+1 − 1)
/sα+1 − 1

s− 1
, s = b1/n.

The derivative alulation in setion 2.4 at x = 1 shows that therefore:

The limiting value of Sn as n gets large is

bα+1 − 1

α+ 1
.

We may instead use the right endpoints of the intervals to determine

the box-heights, and this gives the same answer with no need to repeat the

alulation, as follows. Now the box-heights are

f(xj+1) = f(sj+1) = (sj+1)α = sα(sj)α = sαf(sj) = sαf(xj),

whih is to say that eah right endpoint box-area is simply the orresponding

left endpoint box-area multiplied by sα. Consequently the nth sum of right

endpoint box-areas is this multiple of the nth sum of left endpoint box-areas,
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Tn = sαSn.

And beause sα tends to 1 (exerise 2.5.1), Tn tends to the same limiting

value as Sn as the number of boxes grows.

If α > 0, so that fα is stritly inreasing, then the boxes whose areas sum

to Sn lie beneath the graph of fα from 1 to b, and so the values Sn are all less

than the area under the graph; similarly the values Tn are all greater than the

area if α > 0. And if α < 0, so that fα is stritly dereasing, then onversely.

In either ase, the ommon value tended to by Sn and Tn must be the area

trapped between them. Summarizing, for any rational number α 6= −1 and

any real number b > 1,

The area under the graph of fα(x) = xα from x = 1 to x = b is

bα+1 − 1

α+ 1
.

And in more mathematial notation,

∫b

1

fα =
bα+1 − 1

α+ 1
, α ∈ Q, α 6= −1, b > 1. (2.4)

The end of the integration argument, as presented here, has improved

over its prior inarnations in setions 1.2 (quadrature of the parabola) and 2.3

(integration of f2/3 from 1 to 8). In those setions, the argument was that as n

grows, the triangles �ll the paraboli region, or the boxes �ll the region under

the power funtion's graph. Now the argument is less reliant on geometry and

more on numbers: as n grows, box-area sums too small to be the desired area

and box-area sums too large to be the desired area tend to a ommon value,

and so this value must be the desired area. This point is important. So far

we have been using the terms area and integral roughly as synonyms, but a

better approximation to the right idea is that:

An integral is an area that is the ommon limiting value of box-

area sums that are at most big enough and box-area sums that are

at least big enough.

This language will be made quantitative at the end of the next hapter.

Exercises

2.5.1. Let b > 1 be a real number. Let n be a positive integer and let s = b1/n
.

Let α = p/q be a rational number, with p an integer and q a positive integer.

This exerise shows that sα tends to 1 as n grows.

(a) Explain why sα = ~b1/n
where

~b = bα
.

(b) Explain why exerise 2.3.2 (page 39) now ompletes the argument.

2.5.2. What happens in the alulation of

∫b
1
fα when α = 0?
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2.5.2 The General Case

The alulation so far has been normalized in that its left endpoint is 1. To

hange the left endpoint to an arbitrary positive real number a, we �rst give

a geometri argument using boxes to establish the following proposition.

Proposition 2.5.1 (Scaling Result for the Power Function). Let b

and c be real numbers with 1 ≤ b and c > 0. Let α be any rational

number, inluding the possibility α = −1. Then

∫bc

c

fα = cα+1

∫b

1

fα.

See �gure 2.5, in whih α = 2/3. The �gure shows the saled interval [c, bc]

lying entirely to the right of the original interval [1, b], but in general this

need not be the ase: the saled interval an also lie to the right of the original

interval but with overlap, or to the left of the original interval but with overlap,

or entirely to the left of the original interval (exerise 2.5.3).

PSfrag replaements
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y = x2/3

Figure 2.5. The right area is c5/3 times the left one

In our present ontext of integrating the power funtion fα we are assum-

ing that α 6= −1. The proposition is being presented as a self-ontained entity

beause we will refer to it again in hapter 5 for the ase α = −1, to whih it

applies as well.

To establish the proposition, let b ≥ 1, let n be a positive integer, let

s = b1/n
, and reall our mahinery from the normalized alulation|the

partition points xj of [1, b], the interval-widths ∆xj, the heights fα(xj) over the
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left endpoints, and the heights fα(xj+1) over the right endpoints, ulminating

in the box-area sums Sn and Tn = sαSn. The left part of �gure 2.6 illustrates

the boxes whose areas sum to Sn in a ase where α > 0. Here Sn is less than

the true area under the graph from 1 to b, while Tn is greater than the true

area. If instead α < 0 then Sn is greater than the true area and Tn is less

than it. So far this disussion has only repeated ideas from the normalized

alulation.

PSfrag replaements
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Figure 2.6. The right box-area sum is c5/3 times the left one

Now let c > 0. Sale the partition of [1, b] by c to get a partition of [c, bc],

~xj = cxj for j = 0, . . . , n.

These partition points determine subintervals of width

∆~xj = c∆xj,

heights over left endpoints

fα(~xj) = fα(cxj) = cαfα(xj),

and heights over right endpoints

fα(~xj+1) = fα(cxj+1) = cαfα(xj+1).

The box-areas are now ∆~xj · fα(~xj) = cα+1∆xj · fα(xj) and ∆~xj · fα(~xj+1) =

cα+1∆xj · fα(xj+1), and the box-area sums are now

S̃n = cα+1Sn and T̃n = cα+1Tn. (2.5)
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The new boxes whose areas sum to S̃n are shown in the right part of �gure 2.6.

If α > 0 then S̃n is too small to be the true area under the graph of fα from c

to bc, and so on, just as before.

Let n grow large. Then on the one hand, making no referene to the

expliit formulas for Sn and Tn:

The fat that Sn and Tn trap the area under the graph of fα from 1

to b between them, and the fats that Tn = sαSn and sα tends to 1,

ombine to show that Sn and Tn tend to the same limiting value,

that value being the area.

(For the reader who is justi�ably uneasy with the argument just displayed in

italis: it will be shored up at the end of the next hapter.) Beause Sn and Tn
tend to

∫b
1
fα, (2.5) shows that S̃n and T̃n both tend to cα+1

∫b
1
fα. But on

the other hand, the geometry underlying S̃n and T̃n shows that the ommon

value that they tend to must be the area trapped between them,

∫bc
c

fα.

Consequently, Proposition 2.5.1 holds:

If b ≥ 1 and c > 0 then

∫bc

c

fα = cα+1

∫b

1

fα. (2.6)

This ompletes the proof of the proposition. To review, the rux is that for the

power funtion fα, saling a box horizontally by the fator c sales it vertially

by cα, giving an area-saling fator of cα+1
. This observation doesn't depend

on the boxes arising from the geometri partition in partiular, or on our

being able to put the box-area sum into a tidy form. Instead, it depended on

the admittedly hand-waving argument displayed in italis above. Again: we

will return to that argument in the following hapter.

With Proposition 2.5.1 in hand, we an omplete the integration of the

power funtion. Again let α 6= −1 be a rational number, and let 0 < a ≤ b.

Then

∫b

a

fα =

∫ (b/a)a

a

fα by basi algebra

= aα+1

∫b/a

1

fα by (2.6) with a for c and b/a for b

= aα+1 (b/a)
α+1 − 1

α+ 1
by the normalized result (2.4)

=
bα+1 − aα+1

α+ 1
by algebra.

That is,

∫b

a

fα =
bα+1 − aα+1

α+ 1
, α ∈ Q, α 6= −1, 0 < a ≤ b. (2.7)
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This ompletes the integration of the power funtion, exluding the speial

ase of the reiproal funtion f−1. We will return to the integral of the

reiproal funtion in hapter 5.

Exercise

2.5.3. Given a number b > 1, give onditions on the positive number c suh

that

(a) [c, bc] lies entirely to the right of [1, b],

(b) [c, bc] lies partially to the right of [1, b] but with overlap,

() [c, bc] lies partially to the left of [1, b] but with overlap,

(d) [c, bc] lies entirely to the left of [1, b].

2.6 Summary

Having disussed the parabola very informally in the previous hapter and

then the power funtion somewhat informally in this hapter, we now have

raised enough questions to make a loser disussion of alulus neessary,

and we now have worked through enough examples for the disussion to be

omprehensible.
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Sequence Limits and the Integral

A limit is a value that is tended to, whether it is attained or not. The un-

explained notion of tends to, whih has served as the workhorse for �nishing

o� arguments in the previous two hapters, needs to be made quantitative.

A desription of how to do so emerged in the nineteenth entury, long after

Newton and Leibniz. It has sine stimulated generations of alulus students,

for better or for worse.

The de�nition of limit should be enlightening one the student under-

stands it by parsing it, seeing it used, and learning to use it. But beause

the de�nition involves two diagnosti quantities that interat in a deliate

way, and beause working with the de�nition requires skill with symbol-

manipulation and with language in onert with geometri intuition, oming

to terms with it an take some time, a resoure in sant supply during a

alulus ourse. Hene:

The student is enouraged to engage with the limit arguments in

this hapter lightly and to taste.

Said engagement should give some sense of why the de�nition of limit aptures

the right idea, and some sense of what form an argument using the de�nition

should take. But it is muh more important to understand the results|and

their uses|than to understand every detail of every argument that the results

hold.

Setion 3.1 disusses preliminary matters: sets, funtions, and sequenes.

A sequene is a speial kind of funtion, naturally viewed as a list of data,

suh as the lists of suessive area-approximations that we generated during

the ourse of integrating the power funtion. Setion 3.2 de�nes the limit of

a sequene , the value to whih the data are tending. With the limit of a

sequene de�ned, we an prove basi results about sequene limits, and we

an make inferenes about unknown sequene limits in terms of known ones,
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leading to more results. Setion 3.3 uses the results of this hapter to redo

some of the limit alulations from hapters 1 and 2 more satisfyingly. One

we see the methods work, it beomes lear that their sope extends beyond the

partiular instane of the power funtion. A preise and manipulable de�nition

of the integral beomes natural to write down, and results about integration

beome natural to prove. As a payo� on our investment in de�nitions, the

language suddenly, unexpetedly, arries us farther in larity and results, with

no more omputational e�ort. The serendipitous eonomy of ideas is pleasing.

Still, the de�nition of limit given in this hapter is neither the alpha nor

the omega of the idea. Calulus ourished for enturies before this de�nition

evolved. We should not be so arrogant as to presume that the great math-

ematiians of the seventeenth and eighteenth enturies ouldn't understand

their work without the nineteenth entury de�nition of limit. Indeed, a 1980

text alled Calulus Unlimited by Jerrold Marsden and Alan Weinstein de-

velops the subjet matter with no reourse to limits at all. Nor should we

believe that the nineteenth entury de�nition of limit is the end of the story.

It prominently features the phrase there exists , whose meaning is still in on-

tention. Does something exist only if we know an algorithm to ompute it, or

does it exist if its nonexistene seems untenable, i.e., does it exist abstratly as

ompared to omputationally? Do the two di�erent notions of existene lead

to di�erent bodies of mathematis? Sadly, a traditional �rst alulus ourse

has no time for these questions, but the student should be aware that they

are serious ones. A 2001 text alled Computable Calulus by Oliver Aberth

develops alulus using only omputability.

In keeping with this hapter's attempt to be more tehnial mathemat-

ially than hapters 1 and 2, the writing onventions here will be di�erent.

De�nitions and propositions will be numbered, and proofs will be delineated.

The hange in style is not formalism for formalism's sake, but an attempt to

lay the ideas out learly.

3.1 Sets, Functions, and Sequences

3.1.1 Sets

As disussed in setion 2.2, a set is a olletion of elements. A set is often

desribed by listing its elements in urly braes,

S = {elements of S}.

The order in whih the elements are listed is irrelevant, as are repeat listings

of the same element. Thus
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{2, 3} = {3, 2} = {2, 2, 3} = the set with elements 2 and 3.

Some ubiquitous sets in mathematis are

Z = {integers} = {0, 1,−1, 2,−2, 3, . . . },

Z≥0 = {natural numbers} = {0, 1, 2, 3, . . . },

Z≥1 = {positive integers} = {1, 2, 3, . . . },

Z≤−1 = {negative integers} = {−1,−2,−3, . . . },

Q = {rational numbers},

R = {real numbers},

R≥0 = {nonnegative real numbers},

R>0 = {positive real numbers},

R2 = {points in the plane}.

∅ = the empty set = the set ontaining no elements.

The left urly brae reads the set of or the set , so that, for example, the �rst

line in the previous display reads altogether,

Z is the set of integers, the set 0, 1, −1, 2, −2, 3, . . . .

The empty set is not 0, nor is it {0}. In urly braes notation,

∅ = {}.

Perhaps the reason that the empty set is often onfused with 0 is that the

number of elements in the empty set is 0. However, a set is not the same thing

as the number of its elements.

Sets are often de�ned by onditions. In this ontext, a olon \:" reads suh

that . So, for example, the notation

R2 = {(x, y) : x, y ∈ R}.

reads

R2
is the set of ordered pairs (x, y) suh that x and y are real numbers.

Ordered pair means a pair with one of its elements designated as the �rst of

the two. Beause R2
was de�ned a moment ago as the set of points in the

plane, the last two displays give the appearane of a rede�nition. However,

the reader is assumed to be familiar with the representation of points in the

plane as ordered pairs of numbers, so that the last two displays only rephrase

the de�nition of R2
rather than revise it. From now on, the terms point in

the plane and ordered pair of real numbers will be taken as synonyms.
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(An unordered pair of numbers would be, for instane, the set {2, 3},

whih is also {3, 2}. That is, viewing the pair of numbers 2 and 3 as a set

does not onnote that one of them is innately the �rst. By ontrast, the

notation (2, 3) expressly means the number-pair with 2 in its �rst position

and 3 in its seond. It is in fat possible to formulate the notion of ordered

pair in terms of set theory rather than as a new primitive. Consider the

sets {{2, 3}, 2} and {{2, 3}, 3}. Eah of these sets has another set as one of its

elements and a number its other element. Both of them an be understood

to speify the unordered pair {2, 3} and then to speify in addition whih of 2

and 3 should be taken as the �rst element of the orresponding ordered pair.

Similarly, ordered triples suh as (2, 3, 4), ordered quadruples, and so on an

all be de�ned purely in terms of set theory, but one this is done, ontinuing

to drag the resulting umbersome notation around is silly.)

Sets de�ned by onditions also arise from the fat that analyti geometry

desribes geometrial objets by equalities and inequalities. The reader is

assumed to be familiar with suh representations. So, for example, the set

R = {(x, y) ∈ R2 : 1 ≤ x ≤ 8, 0 ≤ y ≤ x2/3}

is the region between the x-axis and the graph of the power funtion f2/3
from x = 1 to x = 8, depited bak in �gure 2.1 on page 33. The last omma

in the previous display is read and , and so the display reads altogether,

R is the set of points (x, y) in the plane suh that 1 ≤ x ≤ 8 and

0 ≤ y ≤ x2/3.

Here it is understood that \1 ≤ x ≤ 8" means that 1 ≤ x and x ≤ 8,

and similarly for any onatenation of inequalities. Inequalities should be

onatenated only if they point in the same diretion, i.e., something like

\1 ≤ x > y" is poor style that an lead to alulation errors.

Another type of set that is de�ned by onditions is the interval . There

are nine types of interval (!):

Definition 3.1.1 (Intervals). Let a and b be real numbers with a ≤ b.

De�ne the following subsets of R:
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(a, b) = {x ∈ R : a < x < b},

(a, b] = {x ∈ R : a < x ≤ b},

[a, b) = {x ∈ R : a ≤ x < b},

[a, b] = {x ∈ R : a ≤ x ≤ b},

(a,∞) = {x ∈ R : a < x},

[a,∞) = {x ∈ R : a ≤ x},

(−∞, b) = {x ∈ R : x < b},

(−∞, b] = {x ∈ R : x ≤ b},

(−∞,∞) = R.

A subset of R is alled an interval if it is a set of one of these nine types.

So, for example, (a, b) is the set of real numbers x suh that a < x < b.

Note that [a, a] = {a} and (a, a) = ∅, showing that a set onsisting of just one
point is an interval and so is the empty set.

The use of the symbols \∞" and \−∞" in the notation for some types

of interval is traditional, and it does uniformize the notations for the nine

types. But it is pedagogially regrettable beause, as already mentioned, ∞
and −∞ are not real numbers. However, note that they our only on the left

sides of the above equalities; that is, truly they are nothing but shorthand

notation to desribe the sets on the right sides of the equalities, where they do

not appear. And in the notation, they always our adjaent to a parenthesis,

never a square braket, so even the shorthand notation does not suggest that

an interval ever ontains ∞ or −∞. In any ase, alternative notations for the

�fth through eighth types of interval are R>a, R≥a, R<b, and R≤b, while

the ninth type of interval really needs no notation beause it is simply R.

Definition 3.1.2 (Endpoints). If I is a nonempty interval of one of the

�rst four types in De�nition 3.1.1 then its endpoints are a and b. If I

is an interval of one of the next two types then its one endpoint is a.

If I is an interval of one of the next two types then its one endpoint

is b. The interval (−∞,∞) has no endpoints. The empty interval has no

endpoints.

Definition 3.1.3 (Open and Closed Intervals). An interval is closed

if it ontains all of its endpoints. An interval is open if it ontains none

of its endpoints.

Note that the mathematial usages of open and losed need not be ex-

lusive or exhaustive. That is, an interval an oneivably be open, losed,

neither, or both. Exerise 3.1.1 is to determine whih of the nine types of

interval are open and/or losed.
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The wording of the previous de�nition (and of many de�nitions to ome

in these notes) deserves a omment. The reader who is parsing grammar with

exeptional are ould raise the following point:

The de�nition says that if an interval ontains all of its endpoints

then it is losed.

But:

The de�nition does not say that if an interval is losed then it

ontains all of its endpoints.

So, if we are told that an interval is losed, are we being told anything at

all? Yes, we are. Within the de�nition, we an not yet talk about an interval

being losed implying anything until we have �rst assigned meaning to the

notion of an interval being losed. But it is a onvention of mathematis that

as soon as the meaning is assigned, the if taitly evolves into an if and only

if . An interval that ontains all of its endpoints is losed, and a losed interval

ontains all of its endpoints. That is:

One the de�nition is stated, saying that an interval is losed is syn-

onymous with saying that it ontains all of its endpoints.

A similar disussion applies to every further de�nition in these notes that

takes the form \A if B": one we are done reading the de�nition, to say that

A holds is to say that B holds, and onversely.

Two sets whose elements are not numbers have already �gured taitly

through these notes. The �rst is

P = {polygons in the plane}.

Elements of P are not numbers or individual planar points, but instead they

are planar regions. The reader should look bak at �gure 1.9, �gure 1.10,

�gure 2.2, and �gure 2.4 (pages 9, 10, 37, and 44) to see that these �gures

show elements of P and that these elements are highly relevant to integration.

As for the seond partiular set to be aware of, de�ne a subset of the plane

to be bounded if some box ontains it, and de�ne

B = {bounded subsets of the plane}.

So elements of B are planar regions too. The reader should look at �gure 1.7

and �gure 2.1 (pages 7 and 33) to see that these �gures show nonpolygonal

elements of B, regions whose areas we wanted to �nd. No �gure in these notes

an aurately depit a planar set that is not an element of B beause the

entire �gure will be ontained in a box: the page.
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Exercise

3.1.1. Let a and b be real numbers.

(a) Assume that a < b. For eah of the �rst four types of interval desribed

in De�nition 3.1.1, is the relevant interval of that type for suh a and b open?

Is it losed?

(b) Now drop the assumption that a < b. For eah of the next �ve types

of interval desribed in De�nition 3.1.1, is the relevant interval of that type

open? Is it losed?

() Is the one-point interval [a, a] open? Is it losed?

(d) Is the empty interval open? Is it losed?

3.1.2 Functions

The reader is presumed to have some experiene with funtions. The basi

idea is that a funtion reeives inputs and produes outputs. We will notate

funtions as follows:

f : A −→ B.

Here A and B are sets, and f is a rule or a proess that assigns to eah element

of A an element of B. The set A is alled the domain of the funtion, and the

set B is a set alled the codomain of the funtion. Thus the domain onsists

of all legal inputs to f, and the odomain onsists of all potential outputs

of f. Stritly speaking, the funtion onsists of all three data, A, B, and f, but

we often abbreviate it to f. The notation f : A −→ B reads f is a funtion

from A to B, or f maps A to B, or f from A to B, or various other phrasings

along these lines.

For example, onsider the funtion

f : R −→ R, f(x) = x2. (3.1)

This is the squaring funtion that takes all real numbers as its inputs and

is understood to produe real numbers as its outputs. Note, however, that

beause the square of any real number is nonnegative, not all points of the

odomain R are atual outputs of f. This is an example of what was meant

a moment ago in desribing the odomain as all potential outputs of f: all

squares are real numbers, but in fat not all real numbers are squares. Beause

a funtion stritly depends on its domain, its odomain, and its rule, the

squaring funtion that takes all real numbers as its inputs and is understood

to produe nonnegative real numbers as its outputs,

f : R −→ R≥0, f(x) = x2,
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is not quite the same objet as the squaring funtion in (3.1). This distintion

is admittedly pedanti, but on the other hand, the squaring funtion from the

integers,

f : Z −→ R, f(x) = x2

is more ompellingly di�erent from (3.1) beause it has a di�erent domain,

i.e., a di�erent set of legal inputs. Thus although f(2) = 4 and f(−2) = 4

as for the squaring funtion (3.1) with domain R, now f(1/2) is not de�ned

beause 1/2 /∈ Z.

The range of a funtion is the set of its atual outputs, a subset of the

odomain,

f(A) = {f(x) : x ∈ A} = {outputs of f}.

Any funtion an have its odomain pruned down to its range and be rewritten

f : A −→ f(A).

Under many irumstanes we don't bother doing this when speifying a

funtion, beause the purpose of the odomain is only to give us some sense

of where the outputs of f are to be found. In fat, when the desription of

a funtion's domain and rule make its odomain lear, the odomain an

go unmentioned. For example, saying \Let f(x) = x2 for x ∈ R" desribes

the squaring funtion on real inputs, whose outputs are understood to be

real numbers or nonnegative real numbers, it doesn't partiularly matter.

(But saying only \Let f(x) = x2" is too vague, unless the ontext has learly

established that the intent here is for x to vary through the real numbers.) On

the other hand, one irumstane where it is worth tightening the odomain

down to the range is when we want to follow f by a seond funtion,

g : B −→ C,

i.e., when we want the outputs of f to serve as inputs to g. Doing so is sensible

only when the range f(A) of f is a subset of the domain B of g. For example, if

we want the squaring funtion f = f2 and the square root funtion g = f1/2 to

undo the e�ets of one another, we need to take are to speify their domains

and odomains ompatibly,

f : R≥0 −→ R≥0 and g : R≥0 −→ R≥0.

A funtion stritly depends on its domain, its odomain, and its rule, but

not on its typography. For example, onsider the two funtions

f : Q −→ Q, f(x) = x2 − 1

and
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g : Q −→ Q, g(y) = (y+ 1)(y− 1).

These two funtions are the same funtion even though their shared rule has

been given two names (f and g) and desribed by di�erent formulas with

di�erent variables (x2 − 1 and (y+ 1)(y− 1)).

A funtion is not the same thing as its graph. Let

f : A −→ B

be a funtion. The graph of f is a set of ordered pairs,

graph(f) = {(x, y) : x ∈ A, y ∈ B, y = f(x)} = {(x, f(x)) : x ∈ A}.

If the domain and odomain of f are subsets of R, then the graph of f an be

identi�ed with a subset of the plane. The language here is entirely onsistent

with the desription in hapter 1 of the parabola as the graph of the squaring

funtion f(x) = x2, other than the fat that the hapter 1 desription didn't

bother making expliit mention of the domain and odomain of f. Again, the

graph of a funtion is not the funtion itself . Students often refer to a

graph as a funtion, and this is understandable beause the graph desribes

the funtion visually, but for purposes of reasoning the distintion is worth

retaining.

An algebraic function is any funtion that an be built up from a �nite

suession of additions, subtrations, multipliations, divisions, and roots.

Thus a typial algebrai funtion is

f(x) =

(
(x2 + 1)1/2 − x

x+ 1

)1/3
.

The tait understanding here is that the domain of f is the set of real num-

bers x for whih the formula is sensible. That is, the domain of f is the set of

real numbers x whih when substituted into the formula do not lead to any

square roots or ube roots of nonpositive numbers, or to a divide by 0. For

the funtion f in the display, the domain is all real numbers x > −1.

Not all funtions are algebrai. A nonalgebrai funtion whose domain is a

suitable subset of R (the meaning of suitable isn't worth going into in detail

right now) and whose odomain is R is alled transcendental. We have

not yet seen any transendental funtions in these notes, but some examples

for the reader who may have seen them elsewhere are the logarithm, the

exponential funtion, and the trigonometri funtions.

The notion of a rule as part of a funtion alls for some explanation. Just

as a funtion is not a graph, a funtion is not a formula . The term funtion

(funtio) was introdued into mathematis by Leibniz, and its meaning has

hanged ever sine. During the seventeenth entury the ideas of funtion and
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urve were usually thought of as being the same, and a urve was often thought

of as the path of a moving point. By the eighteenth entury the idea of funtion

was assoiated with analyti expression . Leonard Euler (1707{1783) gave the

following de�nition:

A funtion of a variable quantity is an analyti expression omposed in

any way whatsoever of the variable quantity and numbers or onstant

quantities.

Hene every analyti expression, in whih all omponent quantities

exept the variable z are onstants, will be a funtion of that z; Thus

a+ 3z; az− 4z2; az+ b
√
a2 − z2; cz; et. are funtions of z

The use of the notation \f(x)" to represent the value of f at x was introdued

by Euler in 1734. Our ontemporary notion of a funtion as a rule is di�erent

from Euler's notion unless every analyti expression is understood it to pro-

due output-values from input-values, and every rule or proess that produes

output-values from input-values is understood to have an analyti expression.

If rules or proesses are not the same thing as analyti expressions, then the

next question is just what rules/proesses are sensible. Must we be able to

arry them out? What does arry them out mean?

Neither the inputs nor the outputs of a funtion need even be numerial.

For examples of nonnumerial output, let P denote the set of all polygons

in the plane, and let a and b be real numbers with a < b. The proess in

setion 1.2 of starting with one triangle insribed in the parabola with its left

and right endpoints over a and b, then adding two more smaller triangles,

then four more smaller-yet triangles, and so on, de�nes a funtion based on

the original endpoints a and b, whose input is the generation-number and

whose output is not a number at all, but rather is the orresponding polygonal

amalgamation of triangles,

pa,b : Z≥1 −→ P.

That is, pa,b(n) is the nth generation polygonal approximation of the region

whose area we wanted to ompute. Similarly, the proess in setion 2.3 of

omputing the area under the graph of the power funtion f2/3 from x = 1

to x = 8 de�nes a funtion taking the number of boxes to the polygonal

amalgamation of boxes,

p : Z≥1 −→ P.

That is, p(n) is the polygon onsisting of n boxes, shown in �gure 2.2 for

n = 20 (page 37).

For an example of nonnumerial input, let B denote the set of bounded

subsets of the plane, introdued on page 60. We would like an area-funtion

Ar : B −→ R≥0
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that assigns to eah bounded subset of the plane a nonnegative real number to

be onsidered its area. Certainly area-funtions exist (we ould simply assign

areas in some random way), but the question is whether area-funtions having

good properties exist. (Going into detail about good properties would take

us too far a�eld, but they are very basi: the area of a box is its base times its

height, the area of two nonoverlapping sets is the sum of their areas, and so

on.) Similarly, let B3 denote the set of all bounded subsets of 3-dimensional

spae. (A subset of spae is bounded if it sits inside some 3-dimensional box.)

A volume-funtion

Vol : B3 −→ R≥0

would assign to eah bounded subset of spae a nonnegative real number

to be onsidered its volume, and would have good properties. Remarkably,

area-funtions exist but volume-funtions do not.

The invoation that area funtions exist will ease our lives onsiderably.

Let a and b be real numbers with a ≤ b. LetM be a nonnegative real number.

Consider a funtion

f : [a, b] −→ [0,M].

The region under the graph of f, a subset of the plane, is

R = {(x, y) ∈ R2 : a ≤ x ≤ b, 0 ≤ y ≤ f(x)},

and by our invoation, it has an area,

Ar

b
a(f) = Ar(R).

Indeed, there may bemore than one plausible area if f is strange enough|too

strange to draw or even to imagine visually, so this point is best not dwelled

on|and if we swith our hoie of area funtion, however we are \hoosing"

one in the �rst plae. The reader would be thoroughly justi�ed in objeting

that the previous sentene amounts to speaking in tongues rather than math-

ematis, but the real point is that we are entering into a soial ontrat: The

question of integrating f is not whether an area under its graph exists|it

abstratly does, granting our invoation of area funtions|but whether

the area is a suitable limit of box-area sums . The invoation of area is

an expedient that lets us �nesse the existene question. Yes, the existene

question is important, but a one-semester alulus ourse has no time to ad-

dress it, espeially beause, as mentioned at the beginning of the hapter, the

mathematial meaning of existene is a live, arguable issue.

Exercise

3.1.2. Sketh the graphs of the following funtions:
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(a) f(x) = (x− 1)2 for all x ∈ [0, 4],

(b) g(x) = (x− 2)2 for all x ∈ [−1, 3],

() h(x) = x2 − 1 for all x ∈ [−2, 2],

(d) k(x) = x2 − 22 for all x ∈ [−2, 2].

3.1.3 Sequences

A sequene is a list of data. More spei�ally, a sequene is one datum per

generation, where there is a starting generation and then an endless suession

of generations thereafter. Formally, a sequene is a funtion whose domain is

the positive integers,

f : Z≥1 −→ S.

The domain Z≥1 is the set of generations. The odomain S is often a subset

of the real numbers, but it need not always be. For instane, we reently

mentioned the sequene of polygons arising from Arhimedes's quadrature

of the parabola in hapter 1, and the sequene of polygons arising from the

integration of the power funtion in hapter 2, both sequenes of the form

f : Z≥1 −→ P.

Any sequene

f : Z≥1 −→ S

an be desribed by listing its outputs, onsonantly with the idea of a sequene

as a list,

(f(1), f(2), f(3), . . .).

Sequenes are usually written this way, with the domain and odomain tait.

Furthermore, sequenes tend to have names suh as s or x or a rather

than f. And �nally, to streamline the notation, outputs are denoted sn rather

than s(n), or xn, or an. Thus a typial sequene is written

(s1, s2, s3, . . .).

More briey, we write

(sn)n≥1

or

(sn)
∞

n=1

even though (yet again) ∞ is not a number|here the notation is meant to

onvey that the terms of the sequene go on and on. One the ontext is lear,

even the notation

(sn)

will do, so long as we understand what is happening: n is varying through Z≥1,

and the sequene is a orresponding list of values sn.
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3.1.4 Previous Examples

In setion 1.2, Arhimedes's quadrature of the parabola led to the triangle-

area sums

S1 = A
tri

,

S2 = A
tri

[1+ 1/4] ,

S3 = A
tri

[
1+ 1/4+ (1/4)2

]
,

S4 = A
tri

[
1+ 1/4+ (1/4)2 + (1/4)3

]
,

and in general for n ∈ Z≥1,

Sn = A
tri

[
1+ 1/4+ (1/4)2 + · · ·+ (1/4)n−1

]
.

And Arhimedes's evaluation of the �nite geometri sum with ratio r = 1/4

gave a losed form (ellipsis-free) expression for the sequene entries, so that

the sequene of triangle-area sums was in fat

(Sn) =
(
A

tri

· (4/3)
(
1− (1/4)n

))

n≥1
. (3.2)

In setion 2.5, integrating the rational power funtion fα (where α 6= −1)

from 1 to b gave rise to the sequene of box-area sums (see page 49)

(Sn) =

(
(bα+1 − 1)

/sα+1
n − 1

sn − 1

)

n≥1

where sn = b1/n. (3.3)

In the previous two hapters, we made assertions about the limiting behaviors

of sequenes (3.2) and (3.3). Later in this hapter we will be able to substan-

tiate the assertions, as well as other matters from the end of hapter 2.

3.2 The Limit of a Real Sequence

3.2.1 Absolute Value and Distance

To desribe quantitatively the idea of two real numbers being near eah other,

regardless of whih is the larger, we �rst desribe the idea of one real number

being near 0, regardless of whether it is positive or negative. The de�nition

innately must be asewise:

Definition 3.2.1 (Absolute Value). The absolute value funtion is

| | : R −→ R≥0, |x| =

{
x if x ≥ 0,

−x if x < 0.
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So, for example, |5| = 5 and | − 1/10| = 1/10. A number is near 0 if its

absolute value is small. It is worth pausing to onvine oneself that indeed the

asewise formula for the absolute value funtion always yields a nonnegative

real value, so that designating the odomain to be R≥0 makes sense.

Cases are a nuisane to drag around, and so our short-term program is to

use the asewise de�nition of the absolute value to establish a olletion of

absolute value properties that no longer make diret referene to ases. One

that is done, absolute values an be manipulated by using the properties

with no further referene to the underlying ases, and indeed, with no further

thought of them.

Proposition 3.2.2 (Basic Absolute Value Properties). Let x and y be

real numbers. Then

(1) |x| = 0 if and only if x = 0.

(2) −|x| ≤ x ≤ |x|.

(3) |xy| = |x| · |y|. In partiular, |− x| = |x| beause −x = x · (−1).

(4) If y 6= 0 then

∣∣∣∣
1

y

∣∣∣∣ =
1

|y|
, and so by (3), also

∣∣∣∣
x

y

∣∣∣∣ =
|x|

|y|
.

Proof. (Sketh.) For instane, to verify (2), note that

if x ≥ 0 then x = |x|, and so −|x| = −x ≤ 0 ≤ x = |x|,

and

if x < 0 then x = −|x|, and so −|x| = x < 0 < −x = |x|.

Verifying the �rst statement in (3) requires heking four ases, beause x

and y an eah be nonnegative or negative independently of the other. Four

ases amount to one small nuisane, but as explained a moment ago, the point

is that after they are heked one and only one, we never have to think about

them again. The reader is enouraged to verify enough of Proposition 3.2.2

to onvine himself or herself that the entire proposition an be veri�ed in a

similar fashion. ⊓⊔

(The symbol \⊓⊔" at the end of the previous line denotes the end of a proof.)

Theorem 3.2.3 (Triangle Inequality). For all real numbers x and y,

|x+ y| ≤ |x|+ |y|, (3.4)

|x− y| ≤ |x|+ |y|, (3.5)

∣∣|x|− |y|
∣∣ ≤ |x+ y|, (3.6)

∣∣|x|− |y|
∣∣ ≤ |x− y|. (3.7)
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The �rst inequality (3.4) of Theorem 3.2.3 is the Basi Triangle Inequal-

ity . The four inequalities an be gathered together as the statement that for

all real numbers x and y,

∣∣|x|− |y|
∣∣ ≤ |x± y| ≤ |x|+ |y|. (3.8)

The reader should beware that (3.8) does not say that |x − y| ≤ |x| − |y| in

general, and the reader should further beware that even after one hears this

and understands it in the abstrat, a frequent alulation error is to write

some spei� version of the false inequality nonetheless.

Proof. For all x and y in R we have by Proposition 3.2.2 (2),

−|x| ≤ x ≤ |x| and − |y| ≤ y ≤ |y|,

and so adding the inequalities gives −|x|− |y| ≤ x+ y ≤ |x|+ |y|, or

−(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|.

If x + y ≥ 0 then |x + y| = x + y, and so the right inequality in the previous

display beomes |x + y| ≤ |x| + |y|. If x + y < 0 then |x + y| = −(x + y), i.e.,

x+y = −|x+y|, and hene the left inequality gives −(|x|+ |y|) ≤ −|x+y|. In

either ase we have the Basi Triangle Inequality (3.4),

|x+ y| ≤ |x|+ |y|.

The other inequalities (3.5) through (3.7) are onsequenes of (3.4) and are

left as an exerise. ⊓⊔

We introdue the symbol \ ⇐⇒ " as shorthand for if and only if . That

is, the symbol \ ⇐⇒ " between two statements means that the statement to

its left is true exatly when the statement to its right is true.

In your writing, do not use the symbol “ ⇐⇒ ” to mean

anything other than if and only if . This, and nothing else,

is its meaning.

Again let x ∈ R be a real number, and let p ∈ R>0 be a positive real

number. Then

|x| < p ⇐⇒ −p < x < p

and

|x| ≤ p ⇐⇒ −p ≤ x ≤ p. (3.9)

To establish (3.9), argue that if x ≥ 0 then beause |x| = x and beause

the statement \−p ≤ x" is true (beause −p < 0 ≤ x),
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|x| ≤ p ⇐⇒ x ≤ p ⇐⇒ −p ≤ x ≤ p.

If x < 0 then beause |x| = −x and beause \x ≤ p" is true (beause x <

0 < p), and beause multiplying eah side of an inequality by −1 swithes its

diretion,

|x| ≤ p ⇐⇒ −x ≤ p ⇐⇒ −p ≤ x ⇐⇒ −p ≤ x ≤ p.

Thus (3.9) holds regardless of whether x ≥ 0 or x < 0.

Proposition 3.2.4 (Relation Between Absolute Values and Inter-

vals). Let a ∈ R and let p ∈ R>0. Then for all x ∈ R,

|x− a| < p ⇐⇒ a− p < x < a+ p,

and

|x− a| ≤ p ⇐⇒ a− p ≤ x ≤ a+ p.

The two statements rephrase as assertions that ertain sets are intervals,

{x ∈ R : |x− a| < p} = (a− p, a+ p)

and

{x ∈ R : |x− a| ≤ p} = [a− p, a+ p].

Proof. For the seond statement of the proposition, use (3.9) and reall that

adding the same quantity to both sides of an inequality preserves the inequal-

ity,

|x− a| ≤ p ⇐⇒ −p ≤ x− a ≤ p ⇐⇒ a− p ≤ x ≤ a+ p.

The �rst statement of the proposition has virtually the same proof. And the

third and fourth statements of the proposition are rephrasings of the �rst

two. ⊓⊔

The geometri distane between two real numbers x and y on the number

line is the absolute value of their di�erene, |x − y|. So, for example, Propo-

sition 3.2.4 says that the set of numbers whose distane from a is smaller

than p is the interval entered at a extending distane p in both diretions,

(a − p, a + p). This is exatly as our visual intuition tells us that it should

be, and it is easiest to remember by seeing the relevant piture in one's mind.

But the fat that it follows readily from our de�nitions by analyti arguments

sends a reassuring message about our methodology.

The following result sometimes provides the punhline of an argument. Its

point is that to show that two quantities are equal we need only show that

they lie arbitrarily lose to eah other.
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Proposition 3.2.5 (Strong Approximation Lemma). Let ℓ and ℓ ′ be

real numbers. Suppose that

|ℓ ′ − ℓ| < ε for every positive number ε.

Then ℓ ′ = ℓ.

Proof. Either |ℓ ′ − ℓ| is positive or it is zero. But the given ondition implies

that

|ℓ ′ − ℓ| 6= ε for every positive number ε.

So |ℓ ′ − ℓ| = 0. Consequently ℓ ′ − ℓ = 0, i.e., ℓ ′ = ℓ. ⊓⊔

Exercises

3.2.1. Prove inequalities (3.5) through (3.7) of Theorem 3.2.3. Prove them

by showing that they are onsequenes of (3.4), not be repeating the e�ort of

proving (3.4) three more times.

3.2.2. Let x and y be nonzero. In eah of (3.4) through (3.7), under what

onditions on the signs of x and y does equality hold?

3.2.3. Desribe eah of the four sets below in terms of intervals. A set may

require more than one interval for its desription. (You may do this problem

by inspetion.)

(a) A1 = {x ∈ R : |x− 1/2| < 3/2},

(b) A2 = {x ∈ R : |x+ 1/2| ≤ 3/2},

() A3 = {x ∈ R : |3/2− x| < 1/2},

(d) A4 = {x ∈ R : |3/2+ x| ≥ 3/2}.

3.2.4. Sketh the graphs of the following funtions from R to R de�ned by

the following equations (no explanations are needed for this problem):

(a) f1(x) = |x|,

(b) f2(x) = |x− 2|,

() f3(x) = |x|− |x− 2|,

(d) f4(x) = |x|+ |x− 2|,

(e) f5(x) = x2 − 1,

(f) f6(x) = |x2 − 1|,

(g) f7(x) = |x2 − 1|2.

3.2.5. Let f1 through f7 be the funtions desribed in the previous exerise.

By looking at their graphs, express eah of the following six sets in terms of

intervals.

(a) S1 = {x ∈ R : f1(x) < 1},
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(b) S2 = {x ∈ R : f2(x) < 1},

() S3 = {x ∈ R : f3(x) < 1},

(d) S4 = {x ∈ R : f4(x) < 3},

(e) S5 = {x ∈ R : f5(x) < 3},

(f) S6 = {x ∈ R : f6(x) < 3}.

Also, let S7 = {x ∈ R : f7(x) < 1/2}. Represent S7 graphially on a number

line.

3.2.2 The Archimedean Property of the Real Number System

Any positive real number, however large, is exeeded by some positive integer:

Proposition 3.2.6 (Archimedean Property of the Real Number Sys-

tem). Let x ∈ R>0 be any positive real number. There exists a positive

integer N ∈ Z≥1 suh that N > x.

The reader may feel that the Arhimedean Property is self-evident and

hardly deserves its own name. But in fat there are number systems other

than the real number system (whih, again, is not innately extant, muh less

unique or preferred among number systems, just beause it is named real) in

whih the property does not hold. Indeed, early attempts at reasoning about

alulus made referene to in�nitesimals , quantities that we now think of as

positive numbers so small that their reiproals exeed all positive integers,

this happening in a hyper-real number system that subsumes the reals. These

ideas of non-standard analysis were made rigorous by Abraham Robinson

only as reently as 1960. A freshman alulus text based on Robinson's in-

�nitesimals, written by H. Jerome Keisler, is online at

http://www.math.wisc.edu/~keisler/calc.html

Here is an attempt to prove the Arhimedean Property rather than assume

it: Suppose that some positive real number x exeeds all the positive integers,

x > N for all N ∈ Z≥1.

Then surely there is a least x at least as big as all the positive integers.

Consider the positive real number x − 1. Beause it is less than x, it is less

than some positive integer, i.e.,

x− 1 < N for some N ∈ Z≥1.

Consequently,

x < N+ 1 for some N ∈ Z≥1.
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But N + 1 is again a positive integer, so that x is not at least as big as

all positive integers after all. Thus the supposition that some positive real

number exeeds all the positive integers must be false.

However, rather than prove the Arhimedean Property, this argument

shows only that it follows from any assumption about the real number sys-

tem that makes valid the Then surely there is a least x. . . statement in the

previous paragraph.

3.2.3 Definition of Sequence Limit

Reall that a sequene is a funtion whose domain is Z≥1,

s : Z≥1 −→ S,

often viewed as a list of data,

(sn) = (s1, s2, s3, . . . ).

In partiular, a real sequence is a sequene whose odomain is R, i.e., a

list of numerial values. From now on, all sequenes in this hapter will be

real sequenes, and so usually they will simply be alled sequenes without

bothering to say real sequene eah time.

A real sequene onverges to a limit ℓ if the terms of the sequene ap-

proah ℓ and stay near ℓ, as losely as desired, although they may or may

not atually reah ℓ, and they may or may not stay at ℓ should they reah it.

Figure 3.1 depits onvergene for a sequene viewed as a funtion,

s : Z≥1 −→ R,

and �gure 3.2 depits the onvergene of the same sequene viewed as a list

of data,

(sn) = (s1, s2, s3, . . . ).

The following de�nition aptures quantitatively and onisely the above-

mentioned notion of approah ℓ and stay near ℓ, as losely as desired,

although they may or may not atually reah ℓ, and they may or may

not stay at ℓ should they reah it .

Definition 3.2.7 (Limit of a Real Sequence, Convergent Sequence,

Divergent Sequence). Let (sn) be a real sequene, and let ℓ be a real

number. We say that (sn) is a convergent sequence with limit ℓ if the

following ondition holds.

For every positive real number ε > 0,

there exists a positive integer N suh that

for all integers n ≥ N, |sn − ℓ| < ε.
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Figure 3.1. A onvergent sequene, viewed as a funtion
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Figure 3.2. A onvergent sequene, viewed as a list of data

When the ondition holds, the fat that (sn) has limit ℓ is notated

lim

n
(sn) = ℓ.

In this ase we also say that (sn) converges to ℓ. If the sequene (sn)

does not onverge then it is divergent.

The typography \limn" is short for \limn→∞", but as usual we try to

eshew the symbol ∞ beause \in�nity" is not part of the number system

that we are using in our study of alulus.

The grammar of De�nition 3.2.7 is sophistiated. Again, the idea of the

de�nition is that a sequene (sn) has limit ℓ if the terms of the sequene

eventually get lose to ℓ and stay lose to ℓ. The numbers ε and N, and

the interation between them, are the mathematial mahinery that together

quantify the idea. To work suessfully with De�nition 3.2.7, one needs some

sense of how the quanti�ation indeed aptures the idea, and one also needs

some pratie with the symbol-based language of the quanti�ation. For this

reason, the �rst few results that we will prove with the de�nition are meant

to be simple and obvious-sounding: their point isn't to be earth-shattering,

but to demonstrate what the de�nition says and how it works. The intent is
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that as the examples arue, the student will see that the de�nition enodes

a natural idea in a way that is sensible, usable, and versatile. Nonetheless,

every alulus teaher understands that for the student, oming to grips with

one's �rst arguments with the de�nition of limit poses the double hallenge of

parsing the de�nition's grammar in general and isolating the key partiular

of eah situation at hand. One gets better at this with time and experiene.

A few words about mathematial proof may be useful here. Proofs in

mathematis are not alienating formalisms, or at least they shouldn't be.

The reader may have heard the maxim that the exeption proves the rule .

Beause a mathematial proof is meant to establish a rule in all ases, with

no exeptions, the maxim doesn't sound sensible in our ontext. But it is.

The word prove is a variant of probe , and rule onnotes a priniple that

holds often but not always; to say that the exeption probes the rule is

to say that knowing when a priniple an break down informs us about the

priniple's sope|its extent and its limitations. In mathematis, we often

prove a statement to the e�et that if ertain onditions A hold then some

other ondition B follows. Proving suh a statement teahes us, beause the

argument will show us how onditions A lead to ondition B. Condition B

may well fail without onditions A in plae|an exeption that probes the

rule that ondition B holds. A mathematial proof is a persuasive expliation

of quantitative ausality, with all the terms in that phrase negotiated soially

with an eye to inreasing our understanding and passing it on.

De�nition 3.2.7 is illustrated in �gures 3.3 and 3.4. In both �gures the idea

is that no matter how narrow the gray zone is, all but �nitely many of the

dots lie in it. A narrower gray zone may exlude more dots, but always only

�nitely many. Both �gures are oversimpli�ed in that they show a sequene

with eah suessive term getting loser to the limit. A onvergent sequene

an behave more oyly, repeatedly approahing its limit and then baking

away, until eventually it approahes the limit and stays lose.

In omplement to geometry, another way to understand De�nition 3.2.7

is to interpret it as legislating a sort of adversarial proess.

To argue that a sequene has limit ℓ, we �rst allow someone who doubts

this to demand how lose the terms of the sequene must get and stay to ℓ.

That is, the skepti provides the error tolerane ε > 0, whih an be very

small but must be positive. One ε is spei�ed, the skepti has to be quiet

as we onsult with the sequene. If, in response to the given ε, we an ome

up with a starting index N ∈ Z≥1 suh that the terms of the sequene from

that index onward,

(sN, sN+1, sN+2, . . .),

are all within ε of ℓ, then we have suessfully responded to the skepti. To

say that that the sequene has limit ℓ is to say that we an so respond to
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Figure 3.3. The de�nition of limit, viewing a sequene as a funtion
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Figure 3.4. The de�nition of limit, viewing a sequene as a list of data

the skepti's spei�ed positive error tolerane with a orresponding starting

index, no matter how small the error tolerane is.

On the other hand, to argue that a sequene does not have limit ℓ, it is

we who play the role of the skepti. After sizing up the sequene, we leverly

presribe an error tolerane ε > 0 for whih there is no starting index N, i.e.,

the terms of the sequene will never get and stay within distane ε of ℓ. In

this ase, we bear the onus of demonstrating that no starting index exists in

response to our presribed error tolerane.

All of this said, geometri and dramati understanding of De�nition 3.2.7

are ultimately developmental stages en route to a symboli understanding

of it, and to an appreiation that its versatility is astonishing. Indeed, we

will see that it is so well designed that it an substantiate the disparate phe-

nomena to be desribed in Proposition 3.2.8, Example 3.2.9, Example 3.2.10,

Proposition 3.2.13, Proposition 3.2.14, Proposition 3.2.15, Proposition 3.2.19,

Proposition 3.2.21, and Proposition 3.2.22.
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Exercise

3.2.6. For eah of the sequenes below, alulate the �rst few terms, and make

a guess as to whether or not the sequene onverges. In some ases you will

need to use a alulator. Try to explain the basis for your guess.

(a) (sn) = (1, 1+ 1/2, 1+ 1/2+ 1/3, 1+ 1/2+ 1/3+ 1/4, . . .).

(b) (sn) = (1, 1− 1/2, 1− 1/2+ 1/3, 1− 1/2+ 1/3− 1/4, . . .).

() (sn) = (1, 1+ 1/22, 1+ 1/22 + 1/32, 1+ 1/22 + 1/32 + 1/42, . . .).

(d) (sn) = (1, 1+ 1/3, 1+ 1/3+ 1/32, 1+ 1/3+ 1/32 + 1/33, . . .).

(e) (sn) = ((1+ 1/1)1, (1+ 1/2)2, (1+ 1/3)3, (1+ 1/4)4, . . .).

3.2.4 Basic Sequence Limit Rules

Here are some examples of how to use De�nition 3.2.7 to prove beginning

results. None of the statements in the following proposition should be the

least bit surprising.

Proposition 3.2.8 (Basic Sequence Limits).

(1) (Constant Sequene Rule.) Let c be any real number. Consider the

sequene s whose terms are sn = c for all n ∈ Z≥1,

(sn) = (c, c, c, . . .) = (c).

This sequene's limit is c,

lim

n
(c) = c for c ∈ R.

(2) (1/n Rule.) Consider the sequene s whose terms are sn = 1/n,

(sn) = (1, 1/2, 1/3, . . .) = (1/n).

This sequene's limit is 0,

lim

n
(1/n) = 0.

(3) (1/nα
Rule.) Let α be a positive rational number. Consider the se-

quene s whose terms are sn = 1/nα
,

(sn) = (1, 1/2α, 1/3α, . . . ) = (1/nα).

This sequene's limit is 0,

lim

n
(1/nα) = 0 for α ∈ Q>0.
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(4) (nth Root Rule.) Let b be a positive real number. Consider the se-

quene s whose terms are sn = b1/n
,

(sn) = (b, b1/2, b1/3, . . .) = (b1/n).

This sequene's limit is 1,

lim

n
(b1/n) = 1 for b ∈ R>0.

(5) (nth Power Rule.) Let r be a real number suh that |r| < 1 (−1 < r < 1).

Consider the sequene s whose terms are sn = rn,

(sn) = (1, r, r2, . . .) = (rn).

This sequene's limit is 0,

lim

n
(rn) = 0 for |r| < 1.

The sequene in the nth Power Rule has domain Z≥0 rather than Z≥1,

but this is not a serious issue. More generally, the terms of a sequene an

start at any index n rather than at n = 1, suh as

(sn)n≥17 = (s17, s18, s19, . . .)

or

(sn)
∞

n=−5 = (s−5, s−4, s−3, . . .).

As before, the idea is that a sequene is one datum per generation where

there is a starting generation (e.g., 17 or −5 as in the two examples just

given) and then an endless suession of generations thereafter. We ould

insist that the initial generation always be indexed 1, but this would lead to

notational ontortions in situations suh as the nth Power Rule where the

initial generation learly warrants the index 0 instead. Stritly speaking, the

de�nitions of a sequene and of a sequene limit should be phrased to take

into aount the freer indexing sheme, but doing so is notationally onerous

to no substantive purpose, espeially in an environment whose grammar is

already so symbol-heavy. In the ase of sequene limits, we are only about

the long-term behavior of the sequene anyhow, and so fussing about a �nite

shift in its indexing, or about aberrant behavior on the part of a small number

of early terms, is patently irrelevant. We will soon quantify this Irrelevane

of Finite Index-Shifts .

Note that eah of the 1/nα
rule, the nth root rule, and the nth power

rule involves a free parameter|α or b or r|but a limit that is independent

of the parameter. In hapter 1 we used the nth power rule with r = 1/4, and

in hapter 2 we used the nth root rule �rst with b = 8 and then with general

b > 1.
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Proof. (1) To argue that limn(sn) = c when sn = c for all n ∈ Z≥1, let

any positive error tolerane ε > 0 whatsoever be given. Then the appropriate

starting index in response to ε is simply N = 1. Indeed, beause sn = c for

all n, we have |sn − c| = 0 for all n, and so ertainly

for all integers n ≥ 1, |sn − c| < ε.

Thus De�nition 3.2.7 is satis�ed.

(2) To argue that limn(1/n) = 0, again let an error tolerane ε > 0 be

given. Note that |1/n − 0| = 1/n for n ∈ Z≥1. So we need to �nd a starting

index N ∈ Z≥1 suh that

for all integers n ≥ N, 1/n < ε.

By algebra, the previous display is equivalent to

for all integers n ≥ N, n > 1/ε,

and to show this, it suÆes to show instead that some suitable starting in-

dex N satis�es

N > 1/ε,

beause then also n > 1/ε for all n ≥ N. Beause ε is positive and presumably

small, 1/ε is positive and presumably big. However, no matter how big 1/ε

is, the Arhimedean Property of the real number system says that there ex-

ists some positive integer N > 1/ε. This ompletes the argument that the

sequene (1/n) has limit 0.

(3) Let α be a positive rational number. To argue that limn(1/n
α) = 0,

again let ε > 0 be given. We want to �nd a orresponding N ∈ Z≥1 suh that

for all integers n ≥ N, 1/nα < ε.

By a little algebra, the previous display is equivalent to

for all integers n ≥ N, n > 1/ε1/α,

and to show this, it suÆes to show instead that some suitable starting in-

dex N satis�es

N > 1/ε1/α,

beause then also n > 1/ε1/α for all n ≥ N. If ε is a small positive real number

and α is a small positive rational number then 1/ε1/α is very big. Nonetheless,

iting the Arhimedean Property of the real number system ompletes the

argument, as in the proof of (2).

(4) Let b be a positive real number. We need to argue that limn(b
1/n) = 1.
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First, if b = 1 then the sequene (b1/n) is the onstant sequene (1), and

the result follows from the Constant Sequene Rule.

Seond, if b > 1 then also b1/n > 1 for eah positive integer n, and so

|b1/n − 1| = b1/n − 1 for eah positive integer n. As shown in exerise 2.3.2,

b1/n − 1 =
b− 1

1+ b1/n + · · ·+ b(n−1)/n
<

b− 1

n
.

Now let an error tolerane ε > 0 be given. If we an produe a positive

integer N suh that (b− 1)/N < ε then it will follow that

for all integers n ≥ N, |b1/n − 1| = b1/n − 1 <
b− 1

n
≤ b− 1

N
< ε,

ompleting the argument in the ase b > 1. As for produing a positive

integer N suh that (b − 1)/N < ε, this inequality is equivalent to N >

(b − 1)/ε, and by the Arhimedean Property there is suh an N. So the

argument for b > 1 is indeed omplete.

Third, if 0 < b < 1 then let

~b = 1/b > 1. So also b = 1/~b, and in fat

b1/n
and

~b1/n
are inverses for all n. Beause 0 < b1/n < 1 and

~b1/n > 1 for

all n,

|b1/n − 1| = 1− b1/n = b1/n(~b1/n − 1) < ~b1/n − 1.

And beause

~b > 1, we know from a moment ago that limn(~b
1/n) = 1. Now

let ε > 0 be given. Then there exists some starting index N suh that

for all integers n ≥ N, ~b1/n − 1 < ε.

It follows from the previous two displays that

for all integers n ≥ N, |b1/n − 1| < ε.

This ompletes the argument.

(5) Let r be a real number suh that |r| < 1. We need to argue that

limn(r
n) = 0.

Let an error tolerane ε > 0 be given. Beause |rn − 0| = |r|n, we need

to show that for some positive integer N, we have |r|n < ε for all n ≥ N.

By (4), the sequene (ε1/n) has limit 1, and so, beause |r| < 1, there is a

positive integer N suh that |r| < ε1/n for all n ≥ N. Consequently |r|n < ε

for all n ≥ N, and this is the desired result. ⊓⊔

Here we proved (5) quikly in onsequene of having established (4). Al-

ternatively, it is possible to establish (5) independently, and then prove (4)

quikly in onsequene. The main idea is that for |r| < 1 and 0 < b < 1, the

nth powers |r|n drop below b exatly when the nth roots b1/n
limb above |r|.

For example, suppose that limn(r
n) = 0 for every real number r suh that
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|r| < 1. Consider any real number b suh that 0 < b < 1. For every r suh that

|r| < 1 we have |r|n < b for all large enough n (here large enough depends

on r), and so |r| < b1/n < 1 for all large enough n. Beause |r| an be as lose

to 1 as desired, this shows that limn(b
1/n) = 1.

Although the proof of Proposition 3.2.8 has been written out in onsider-

able length, one the reader digests its ideas, most of them should not seem

diÆult. The Constant Sequene Rule is an instant onsequene of the de�-

nition of limit, and so are the 1/n Rule and the 1/nα
Rule one one is aware

of the Arhimedean property of the real number system. The proof of the

nth Root Rule relies on the �nite geometri sum formula, and it was already

arried out in exerise 2.3.2, The nth Power Rule follows from the nth Root

Rule, or onversely as disussed in the previous paragraph. Quik mehanial

proofs of the nth Root Rule and the nth Power Rule will beome available

(in exerise 5.1.4 to follow) one we have the logarithm.

Example 3.2.9. For an example of a divergent sequene, onsider

(n) = (1, 2, 3, . . .).

To see that (n) is divergent, suppose instead that it has a limit ℓ, and presribe

the error tolerane ε = 1/3. For any andidate positive integer N to serve as

a suitable starting index, we would need to have

|n− ℓ| < 1/3 for all n ≥ N,

so that in partiular, letting n = N and then letting n = N+ 1,

|N− ℓ| < 1/3 and |N+ 1− ℓ| < 1/3,

It is intuitively impossible that N and N+ 1, whih are distane 1 away from

eah other, ould both be within distane 1/3 of ℓ. To quantify the impossi-

bility, rewrite the previous display to emphasize the distane of ℓ from N and

from N+ 1 rather than their distanes from ℓ

|ℓ−N| < 1/3 and |ℓ− (N+ 1)| < 1/3,

and then note that onsequently, by Proposition 3.2.4,

ℓ ∈ (N− 1/3,N+ 1/3) and ℓ ∈ (N+ 2/3,N+ 4/3),

whih is nonsense. Beause the assumption that limn(n) = ℓ for some ℓ has

led to a ontradition, the sequene (n) has no limit.

Example 3.2.10. For another example of a divergent sequene, onsider
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(sn)n≥0 = ((−1)n)n≥0 = (1, −1, 1, −1, . . .).

Suppose that (sn) has limit ℓ. Let ε = 1/2. Then all terms sn for large

enough n lie within 1/2 of ℓ. Beause there are terms sn = −1 and terms sn =

1 for arbitrarily large n, we have |− 1− ℓ| < 1/2 and |1− ℓ| < 1/2, or

|ℓ− (−1)| < 1/2 and |ℓ− 1| < 1/2,

and so by Proposition 3.2.4,

ℓ ∈ (−3/2,−1/2) and ℓ ∈ (1/2, 3/2),

whih is nonsense. So the supposition that (sn) has a limit is unsustainable.

The sequene (sn) diverges by osillation .

Example 3.2.11. The equalities

4 = 2+ 2

6 = 3+ 3

8 = 3+ 5

10 = 3+ 7

12 = 5+ 7

14 = 3+ 11

show that eah even integer from 4 to 14 is the sum of two prime numbers. The

Goldbah Conjeture (GC) states that in fat every even integer at least 4

is the sum of two primes. The onjeture dates bak to the 18th entury, and

to this day nobody has shown a proof or a ounterexample. De�ne a sequene

(gn)n≥2

as follows:

gn =

{
1 if eah of 4, 6, . . . , 2n is the sum of two primes,

0 if not.

Thus the sequene (gn) begins

(1, 1, 1, 1, 1, 1, . . .),

and either it says at 1 forever, or at some point it hanges to 0 and then stays

at 0 forever. Is (gn) onvergent, and if so then what is its limit? The sequene

is onstruted so that by de�nition its limit is
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lim

n
(gn) =

{
1 if GC is true,

0 if GC is false,

but is this a satisfying answer? Playing the role of the skepti in the frame-

work of De�nition 3.2.7, we set ε = 1/2 and request a orresponding starting

index N. The best response that an advoate of the onvergene of (gn) an

give is to de�ne, onditionally on GC being false, N0 as the smallest integer

at least 2 suh that 2N0 is not the sum of two primes, and then to say that

the starting index is

N =

{
2 if GC is true,

N0 if GC is false.

Again, is this answer satisfatory, or even meaningful? What if GC is neither

provable nor disprovable from the usual starting assumptions about arith-

meti (whatever these may be)? The questions here are questions of logi and

philosophy, not the subjet-matter of these notes, but this example is meant

to show that even the beautifully-rafted grammar of De�nition 3.2.7 does

not answer all questions about sequene limits.

Exercises

3.2.7. (a) Reall the fatorial funtion, denoted by an exlamation mark,

1! = 1, 2! = 2 · 1, 3! = 3 · 2 · 1, . . . .

Consider the sequene

(sn) = (1/n!) = (1/1!, 1/2!, 1/3!, . . .).

Neither the 1/n Rule nor the 1/nα
Rule (Proposition 3.2.8 (2) and (3)) applies

to this sequene, but does either of them suggest anything about it? Explain.

(b) Consider the sequene

(sn) = (n1/n) = lim

n
(1, 21/2, 31/3, . . .).

Explain why the nth Root Rule (Proposition 3.2.8 (4)) does not apply diretly

to this sequene. Does the rule suggest anything about the sequene? Using

suitable omputing power, alulate some terms of (sn) and then make a

onjeture about its long-term behavior.

() Consider the sequene

(sn) = ((n!)1/n) = lim

n
(1, 21/2, 61/3, . . .).
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Explain why the nth Root Rule (Proposition 3.2.8 (4)) does not apply diretly

to this sequene. Does the rule suggest anything about the sequene? Using

suitable omputing power, alulate some terms of (sn) and then make a

onjeture about its long-term behavior.

(d) Consider the sequene

(sn) = (n10/(1.1)n) = (1/1.1, 210/(1.1)2, 310/(1.1)3, . . .).

Using suitable omputing power, alulate some terms of (sn) and then make

a onjeture about its long-term behavior.

3.2.8. (a) Explain why the sequene (rn) is onvergent for r = 1. What is its

limit?

(b) Explain why the sequene (rn) is divergent for r = −1.

3.2.9. The argument given in the text that (n) is divergent showed that the

error tolerane ε = 1/3 has no orresponding starting index N. Show that

ε = 1/2 also works as the error tolerane in the given argument. On the other

hand, ε = 2/3 does not work in the given argument, but it works in a modi�ed

argument. Provide the modi�ation.

3.2.10. Let (sn) be a real sequene, and let ℓ be a real number. Suppose

that as n gets ever larger, sn gets ever nearer to ℓ. That is, suppose that for

all n,m ∈ Z≥1,

if n > m then |sn − ℓ| < |sm − ℓ|.

It does not follow that (sn) onverges to ℓ. Provide a ounterexample.

3.2.11. Take the following result as given: Let x be a nonnegative real num-

ber and let n be a nonnegative integer. Then

(1+ x)n ≥ 1+ nx.

Indeed, the expansion of (1 + x)n = (1 + x)(1 + x) · · · (1 + x) ontains the

term 1 and n ourrenes of the term x along with other nonnegative terms.

(a) Let a �xed real number b > 1 be given. Use the result just given to

show that given any ε > 0, if n > (b − 1)/ε then b1/n − 1 < ε. This gives

another proof of Proposition 3.2.8(4) when b > 1.

(b) Let a �xed real number r suh that 0 < |r| < 1 be given, and set

x = 1/|r| − 1 so that |r| = 1/(1 + x). Use the result given at the beginning of

this exerise to show that given any ε > 0 with ε < 1, if n > (1/ε− 1)/x then

|r|n < ε. This gives another proof of Proposition 3.2.8(5) when r 6= 0.
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3.2.5 Irrelevance of Finite Index-Shifts

A brief disussion will quantify the earlier omment that a �nite shift in a

sequene's indexing is irrelevant to its limiting behavior.

Definition 3.2.12 (Index-Translate of a Sequence). Let

(sn) = (s1, s2, s3, . . .)

be a real sequene, and let p ∈ Z≥1. Then the sequene

(sp+n) = (sp+1, sp+2, sp+3, . . .)

is alled an index-translate of (sn).

For example, the sequene

(
1

9
,

1

16
,

1

25
, . . .

)
=

(
1

n2

)

n≥3

=

(
1

(n+ 2)2

)

n≥1

is an index-translate of the sequene

(
1,

1

4
,
1

9
, . . .

)
=

(
1

n2

)

n≥1

.

Proposition 3.2.13 (Index-Translation Rule for Sequences). Let (sn)

and (tn) be real sequenes, where (tn) is an index-translate of (sn). Then

(sn) onverges and has limit ℓ if and only if (tn) onverges and has the

same limit ℓ. That is, the two sequenes onverge or diverge together,

and if they both onverge then they have the same limit.

Proof. We have

(sn) = (s1, s2, s3, . . . )

and, for some positive integer p,

(tn) = (sp+1, sp+2, sp+3, . . . ).

Suppose that (tn) onverges and has limit ℓ. We need to show that also (sn)

onverges and has limit ℓ. So, let ε > 0 be given. We need to �nd a suitable

starting index N for (sn) in response to ε. On the other hand, we know that

there is a suitable starting index M for (tn) in response to ε. That is,

for all n ≥ M, |tn − ℓ| < ε.

Beause tn = sp+n for all n, the previous display rewrites as
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for all n ≥ M, |sp+n − ℓ| < ε,

or

for all n ≥ M+ p, |sn − ℓ| < ε,

Thus the appropriate starting index for (sn) in response to ε is N = M+ p.

Now suppose that (sn) onverges and has limit ℓ. We need to show that

also (tn) onverges and has limit ℓ. Doing so is exerise 3.2.12 ⊓⊔

For example,

lim

n

(
1

(n+ 2)2

)
= lim

n

(
1

n2

)
= 0 by the 1/nα

rule.

Exercises

3.2.12. Complete the proof of Theorem 3.2.13.

3.2.13. Let (sn) and (tn) be real sequenes. Suppose that limn(sn) = ℓ, and

suppose that

|tn − ℓ| ≤ |sn − ℓ| for all n ∈ Z≥1.

Show that onsequently limn(tn) = ℓ.

3.2.6 Uniqueness of the Limit

De�nition 3.2.7 (page 73) has a subtle worrisome feature: its wording allows

the possibility of a onvergent sequene having more than one limit.

Common sense ditates that a sequene an have at most one limit, but

beause our notion of limit is enoded as the grammar of De�nition 3.2.7, we

an not prove that a sequene has at most one limit by appealing to ommon

sense. In fat, what ommon sense really ditates is that if some sequene

has more than one limit under De�nition 3.2.7, then the de�nition is foolishly

posed. On the other hand, a light, graeful argument that a sequene an have

at most one limit under De�nition 3.2.7 would be evidene that the de�nition

has been well formulated to apture the right ideas in the right way. Here is

the argument.

Proposition 3.2.14 (Uniqueness of Limits). Let (sn) be a real se-

quene, and let ℓ and ℓ ′ be real numbers. Suppose that

lim

n
(sn) = ℓ and lim

n
(sn) = ℓ ′.

Then ℓ ′ = ℓ.
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The idea of the proof is that beause the varying terms of the sequene (sn)

get arbitrarily lose to ℓ and to ℓ ′, neessarily the �xed numbers ℓ and ℓ ′ must

be arbitrarily lose to eah other, making them equal.

Proof. First note that for any positive integer n whatsoever, the Triangle

Inequality gives

|ℓ ′ − ℓ| = |(sn − ℓ) − (sn − ℓ ′)| ≤ |sn − ℓ|+ |sn − ℓ ′|. (3.10)

Next let ε > 0 be given. Then also ε/2 > 0. (This seemingly pointless ob-

servation is a small piee of artfulness, guided by hindsight, that will pay o�

below.) Beause limn(sn) = ℓ, in response to the error tolerane ε/2 there is

a starting index M ∈ Z≥1 suh that

|sn − ℓ| < ε/2 for all n ≥ M. (3.11)

Similarly, beause limn(sn) = ℓ ′ there is a starting index M ′ ∈ Z≥1 suh that

|sn − ℓ ′| < ε/2 for all n ≥ M ′. (3.12)

Let N be the larger of M and M ′
. For n = N, (3.10) and (3.11) and (3.12)

ombine to give

|ℓ ′ − ℓ| ≤ |sN − ℓ|+ |sN − ℓ| < ε/2+ ε/2 = ε.

And now the nie little point is that keeping only the quantities at the two

extreme ends of the previous display gives an inequality that makes no refer-

ene to the index N or to any sequene entry sN that went into establishing

it,

|ℓ ′ − ℓ| < ε.

Beause this inequality holds for all ε > 0, we have ℓ ′ = ℓ by the Strong

Approximation Lemma. ⊓⊔

In the proof just given, we gained insight by simplifying, spei�ally by

letting go of helper fats after they helped us, rather than doggedly insist-

ing that every spei� must ontinue to matter. This is a small instane of

mathematial elegane.

3.2.7 Progenitive Sequence Limit Rules

Thanks to Proposition 3.2.8, we have �ve spei� sequene limits in hand.

But in addition to omputing the limits of partiular sequenes, we an also

ompute the limits of ombinations of sequenes, assuming that we already
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know the limits of the sequenes individually. That is, in addition to omput-

ing limits from srath, we an ompute limits progenitively

The ombinations of real sequenes involved are as follows. Consider two

sequenes

s, t : Z≥1 −→ R.

Let c ∈ R be any number. Then the sequenes

s± t, cs, st : Z≥1 −→ R

are de�ned as follows:

(s± t)n = sn ± tn for all n ∈ Z≥1,

(cs)n = c · sn for all n ∈ Z≥1,

(st)n = sntn for all n ∈ Z≥1.

These sequenes are the sum/di�erene of s and t, a onstant multiple of s,

and the produt of s and t. Also, if tn 6= 0 for all n ∈ Z≥1 then the sequenes

1/t, s/t : Z≥1 −→ R

are de�ned to be

(1/t)n = 1/tn for all n ∈ Z≥1

and

(s/t)n = sn/tn for all n ∈ Z≥1.

These sequenes are the reiproal of t and the quotient of s and t. The

following result gives the limits of these newly-de�ned sequenes in terms of

the limits of s and t.

Proposition 3.2.15 (Progenitive Sequence Limit Rules). Consider

two real sequenes s and t. Let c ∈ R be any number. Suppose that

limn s = ℓ and limn t = m. Then

(1) (Sum/Di�erene Rule.) limn(s± t) exists and is ℓ±m. That is,

lim

n
(sn ± tn) = lim

n
(sn)± lim

n
(tn), if both limits on the right exist.

(2) (Constant Multiple Rule.) limn cs exists and is cℓ. That is,

lim

n
(csn) = c · lim

n
(sn), if the limit on the right exists.

(3) (Produt Rule.) limn st exists and is ℓm. That is,

lim

n
(sntn) = lim

n
(sn) · lim

n
(tn), if both limits on the right exist.
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(4) (Reiproal Rule.) If tn 6= 0 for all n ∈ Z≥1 and m 6= 0 then limn 1/t

exists and is 1/m. That is,

lim

n

(
1

tn

)
=

1

limn(tn)
,

if eah tn is nonzero and the limit

on the right exists and is nonzero.

(5) (Quotient Rule.) If tn 6= 0 for all n ∈ Z≥1 and m 6= 0 then limn s/t

exists and is ℓ/m. That is,

lim

n

(
sn

tn

)
=

limn(sn)

limn(tn)
,

if eah tn is nonzero and both limits

on the right exist and lim

n
(tn) is nonzero.

The Di�erene Rule is a onsequene of the Sum Rule and the Constant

Multiple Rule, and so perhaps it doesn't deserve its own name. The fussy

ondition in the Reiproal Rule and the Quotient Rule that tn 6= 0 for

all n ∈ Z≥1 an handwaved away: if limn(tn) 6= 0 then neessarily all tn
are nonzero past some starting index, and �nite index-shifts are irrelevant to

limits.

Proof. (Sketh.) (1) To prove the Sum Rule by arguing that limn(sn+ tn) =

limn(sn) + limn(tn) provided both limits on the right exist, let ℓ = limn(sn)

and let m = limn(tn). First note that for any positive integer n,

|(s+ t)n − (ℓ+m)| = |sn + tn − ℓ−m|

= |sn − ℓ+ tn −m|

≤ |sn − ℓ|+ |tn −m|.

Now let any error tolerane ε > 0 be given for s + t. Presribe the error

tolerane ε/2 for s to get a starting index Ns suh that

for all n ≥ Ns, |sn − ℓ| < ε/2.

Similarly, there is a starting index Nt suh that

for all n ≥ Nt, |tn −m| < ε/2.

Let N be the larger of Ns and Nt. Then, using the previous three displays,

for all n ≥ N, |(s+ t)n − (ℓ+m)| < ε.

Thus N is a suitable starting index in response to ε.

(2) The argument for the Constant Multiple Rule is very similar. The key

alulation is
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|(cs)n − cℓ| = |c| |sn − ℓ|.

Let ε > 0 be given. For all large enough n, we have |sn − ℓ| < ε/(|c|+ 1), and

so |(cs)n − cℓ| < ε. Using the denominator |c| + 1 avoids dividing by 0 even

when c = 0.

(3) For the Produt Rule, the argument is a bit more elaborate. This time

the key alulation is not purely mehanial: an auxiliary term is subtrated

and added bak before things arrange themselves niely,

|(st)n − ℓm| = |sntn − ℓm| = |sntn − snm+ snm− ℓm|

≤ |sntn − snm|+ |snm− ℓm|

= |sn| |tn −m|+ |sn − ℓ| |m|.

Let ε > 0 be given. For large enough n, we have simultaneously that sn is so

lose to ℓ and tn is so lose to m that plausibly the right side is less than ε.

The details of the argument work as follows. We an ensure that for all large

enough n,

� |sn| < |ℓ|+ 1 and |tn −m| < ε/(2(|ℓ|+ 1)), so that |sn| |tn −m| < ε/2;

� |sn − ℓ| < ε/(2(|m|+ 1)), so that |sn − ℓ| |m| < ε/2.

It follows that for all large enough n,

|(st)n − ℓm| ≤ |sn| |tn −m|+ |sn − ℓ| |m| < ε.

(4) For the Reiproal Rule, the key alulation is again mehanial,

|(1/t)n − 1/m| =

∣∣∣∣
1

tn
−

1

m

∣∣∣∣ =
∣∣∣∣
m− tn

mtn

∣∣∣∣ =
|tn −m|

|m| |tn|
.

For large enough n, simultaneously |tn −m| < ε|m|2/2 and |tn| > |m|/2, and

so

|tn −m|

|m| |tn|
<

ε|m|2/2

|m| |m|/2
= ε.

Conatenating the previous two displays gives the desired result.

(5) The Quotient Rule follows from the Produt Rule and the Reiproal

Rule. ⊓⊔

For example, onsider the limit

lim

n

(
n3 − 2n2

3n3 + 4

)
.

The Quotient Rule does not apply immediately, beause the limits of the

numerator and denominator do not exist. (As always, ∞ is not a number.)
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However, fator the highest power of n out of the numerator and denominator

of eah term of the sequene,

n3 − 2n2

3n3 + 4
=

n3(1− 2/n)

n3(3+ 4/n3)
=

1− 2/n

3+ 4/n3
for all n ∈ Z≥1.

It is now lear what the limit is.

lim

n

(
n3 − 2n2

3n3 + 4

)
= lim

n

(
1− 2/n

3+ 4/n2

)
=

1− 2 · 0
3+ 4 · 0 =

1

3
.

The seond equality in the last display omes from applying the Constant

Sequene Rule, the 1/n Rule, the Constant Multiple Rule, and the Di�erene

Rule in the numerator, the Constant Sequene Rule, the 1/nα
Rule with

α = 2, the Constant Multiple Rule, and the Sum Rule in the denominator,

and �nally the Quotient Rule. The main feature of this example is that the

original numerator and denominator had the same highest power of n, and

the limit was the ratio of the relevant oeÆients.

Earlier we ontended with the subtle issue of the uniqueness of limits. The

existene of limits, or lak thereof, is another subtle point that raises possible

misappliations of the various sequene rules.

Example 3.2.16. The Produt Rule says that a sequene that is the produt

of two onvergent sequenes is again onvergent. But the onverse is not true.

That is, the produt of two sequenes, at least one of whih diverges, still an

onverge, although it may well diverge.

For a very easy example, the produt of any divergent sequene what-

soever of nonzero real numbers with its reiproal sequene is the onstant

sequene (1), as niely onvergent as an be. For more interesting examples,

onsider the sequenes

(sn) = ((−1)n(1/2)n) and (tn) = ((−1)n(1/2)1/n).

Eah of these sequenes is a produt,

(sn) = ((−1)n) · ((1/2)n) and (tn) = ((−1)n) · ((1/2)1/n).

And we know that the sequene ((−1)n) diverges. But as just explained, it

does not follow that the sequenes (sn) and (tn) diverge in onsequene.

Indeed, note that

(sn) = ((−1/2)n) = (rn) where r = −1/2,

and so limn(sn) exists and is 0 by the nth Power Rule. But on the other

hand, we know that limn((1/2)
1/n) = 1 by the nth Root Rule, and so the

terms of (tn) tend ever more losely to alternating between 1 and −1. Thus

limn(tn) does not exist.
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Example 3.2.17. Let r be a real number suh that |r| < 1. Consider the

sequene s whose terms are sn = rn,

(sn) = (1, r, r2, . . .),

and onsider a onstant multiple of the sequene, t = rs,

(tn) = (r, r2, r3, . . .),

By the Constant Multiple Rule,

lim

n
(tn) = r · lim

n
(sn).

But also, beause (tn) is an index-translate of (sn), the Irrelevane of Finite

Index-Shifts gives

lim

n
(tn) = lim

n
(sn).

Therefore

lim

n
(sn) = r · lim

n
(sn),

and beause r 6= 1, this gives

lim

n
(sn) = 0,

whih is preisely the nth Power Rule,

lim

n
(rn) = 0.

So apparently the earlier proof of the nth Power Rule was unneessary.

However, there must be a aw in the reasoning here. The argument used

only the assumption that r 6= 1, not that |r| < 1. So it purports to show, for

example, that the sequene for r = −1,

(1, −1, 1, −1, . . .),

has limit 0, whih it does not. Furthermore, the argument purports to show

that the sequene for r = 2,

(1, 2, 4, 8, . . .),

also has limit 0, whih it most ertainly does not. The aw in the reasoning is

the assumption that limn(sn) exists at all. What the argument has orretly

shown is that if limn(r
n) exists and r 6= 1 then limn(r

n) = 0.
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Example 3.2.18. Consider the sequene (sn) de�ned by the rules






s1 = 1,

s2 = 1,

sn =
1+ sn−1

sn−2
for n > 2.






(3.13)

Thus

s3 =
1+ 1

1
= 2, s4 =

1+ 2

1
= 3,

and so on. Note that sn is positive for eah n ∈ Z≥1. Let

ℓ = lim

n
(sn).

By the Quotient Rule, the Sum Rule, and the Index-Translation Rule, also

ℓ =
1+ limn(sn)

limn(sn)
=

1+ ℓ

ℓ
.

Thus ℓ2 = 1+ ℓ, so that by the Quadrati Formula

ℓ =
1±

√
5

2
.

Beause eah sn is positive, ℓ must be the positive root. (We will formalize

this assertion in the Inequality Rule for sequenes, Proposition 3.2.21, later

in this hapter.) That is, the sequene (sn) has limit

ℓ =
1+

√
5

2
.

This example has the same aw in its reasoning as the previous one, and its

onlusion is at-out wrong (exerise 3.2.16).

Exercises

3.2.14. Find the following limits, or explain why they don't exist.

(a) limn

(
7+ 6/n+ 8/

√
n
)
.

(b) lim

n

(
4+ 1/n

5+ 1/n

)
.

() lim

n

(
3n2 + n+ 1

1+ 3n+ 4n2

)
.

(d) lim

n

(
(2+ 1/n)2 + 4

(2+ 1/n)3 + 8

)
.

(e) lim

n

(
(2+ 1/n)2 − 4

(2+ 1/n)3 − 8

)
.
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(f) lim

n

(
8n3 + 13n

17+ 12n3

)
.

(g) lim

n

(
8(n+ 4)3 + 13(n+ 4)

17+ 12(n+ 4)3

)
.

(h) lim

n

(
n+ 1

n2 + 1

)
.

3.2.15. (a) Consider the following argument: The onstant sequene (0) is

(0) = (0, 0, 0, 0, . . .)

= (1− 1, −1+ 1, 1− 1, −1+ 1, . . .)

= (1, −1, 1, −1, . . .) + (−1, 1, −1, +1, . . .).

But both of the last two sequenes diverge by osillation, and so the on-

stant sequene (0) diverges . The argument must be wrong beause limn(0) =

0 by the Constant Sequene Rule. What is the aw in the reasoning?

(b) Consider the following argument: The onstant sequene (1) has

limit

lim

n
(1) = lim

n
(1, 1, 1, 1, . . .)

= lim

n
(1− 0, 2− 1, 3− 2, 4− 3, . . .)

= lim

n
(1, 2, 3, 4, . . .) − lim

n
(0, 1, 2, 3, . . .)

= ∞−∞

= 0.

But also limn(1) = 1 by the Constant Sequene Rule, and so 0 = 1. What

is the aw in the reasoning?

3.2.16. List the �rst ten terms of the sequene (3.13). What is the sequene's

long-term behavior? Explain the aw in the reasoning that sequene's limit

is (1+
√
5)/2.

3.2.17. Similarly to the sequene (3.13), onsider the sequene






s1 = 1,

sn+1 =
s2n + 2

2sn
for n ≥ 1.






Assuming that this sequene has a limit ℓ, what is ℓ? Compute some terms of

the sequene and use them to onjeture its atual behavior.
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3.2.8 Geometric Series

Definition 3.2.19 (Geometric Series). Let r be a real number. The

sequene

(sn) = (1, 1+ r, 1+ r+ r2, . . .) = (1+ r+ · · ·+ rn−1)n≥1

is the geometric series with ratio r.

It is ruial here to understand that the terms of the geometri series are

ever-longer sums , spei�ally, ever-longer �nite geometri sums.

Proposition 3.2.20 (Geometric Series Formula). Let r be a real num-

ber suh that |r| < 1. Then the geometri series with ratio r onverges,

and its limit is

lim

n
(1+ r+ r2 + · · ·+ rn−1) =

1

1− r
.

Proof. By the �nite geometri sum formula,

1+ r+ r2 + · · ·+ rn−1 =
1− rn

1− r
for r 6= 1.

Beause in fat |r| < 1, various sequene rules give the result immediately. ⊓⊔
The Geometri Sum Formula is often written as follows:

1+ r+ r2 + · · ·+ rn + · · · = 1

1− r
for |r| < 1.

Note the seond \+ · · · " on the left side of the equality, onnoting that the

sum does not stop after any �nite number of terms. That is, the formula is

giving the value of an in�nite sum , understood to be the limit of �nite sums

having more and more terms.

When r = 1/4, the Geometri Series Formula enodes the end-alulation

of Arhimedes's quadrature of the parabola from setion 1.2

Exercises

3.2.18. (a) Let (sn) = (1+ 9/10+(9/10)2+ · · ·+(9/10)n−1). Find limn(sn).

(b) Let (sn) = (1 − 9/10 + (9/10)2 − · · · + (−1)n−1(9/10)n−1). Find

limn(sn).

3.2.19. (a) The \in�nite deimal"

0.111 . . . = lim

n
(0.1, 0.11, 0.111, . . .)

Is naturally viewed as a ertain rational number. What rational number?

Explain.

(b) Similarly, what rational number is 0.123123123 . . . ?
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3.2.9 Order Sequence Limit Rules

Proposition 3.2.21 (Inequality Rule for Sequences). Let (sn) and (tn)

be onvergent sequenes. Suppose that

sn ≤ tn for all n ∈ Z≥1.

Then

lim

n
(sn) ≤ lim

n
(tn).

Proof. Introdue a sequene (un) = (tn − sn). Beause both (sn) and (tn)

onverge, limn(un) exists and equals limn(tn) − limn(sn). And so it suÆes

to prove that beause un ≥ 0 for all n ∈ Z≥1, also limn(un) ≥ 0.

For eah ε > 0 there is a starting index N suh that

for all n ≥ N, un < lim

n
(un) + ε.

But eah un ≥ 0, i.e., 0 ≤ un for all n, and onatenating this with the

previous display gives

for all n ≥ N, 0 < lim

n
(un) + ε.

The onstants 0 and limn(un) and ε are independent of the generation-

ount n, so in fat we have a relation among onstants,

0 < lim

n
(un) + ε,

or

−ε < lim

n
(un).

That is, limn(un) is greater than eah negative number, no matter how lose

the negative number is to 0. Therefore limn(un) ≥ 0. ⊓⊔

The most ommon use of the Inequality Rule is in situations where

0 ≤ tn for all n,

and we onlude that

0 ≤ lim

n
(tn).

Indeed, the proof of the rule proeeded by reduing it to this ase.

Proposition 3.2.22 (Squeezing Rule for Sequences). Let (sn), (tn),

and (un) be three real sequenes. Suppose that

sn ≤ un ≤ tn for all n ∈ Z≥1.

Suppose further that (sn) and (tn) both onverge to the same limit ℓ.

Then (un) also onverges to ℓ.
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The nie point here is existene: the Squeezing Rule says that the middle

sequene has a limit, and furthermore the limit is the shared limit ℓ of the

outer sequenes. If the middle sequene were already known to have a limit,

then the limit would be ℓ by two appliations of the Inequality Rule. The

Squeezing Rule improves on the Inequality Rule in that it does not require

us to know that the middle sequene has a limit. But on the other hand, it

requires bounds on a sequene from both sides.

Proof. Let ε > 0 be given. For some starting index Ns,

for all n ≥ Ns, ℓ− ε < sn.

And for some starting index Nt,

for all n ≥ Nt, tn < ℓ+ ε.

Let N be the larger of Ns and Nt. Then by the previous two displays and the

hypothesis that sn ≤ un ≤ tn for all n ∈ Z≥1,

for all n ≥ N, ℓ− ε < un < ℓ+ ε.

That is,

for all n ≥ N, |un − ℓ| < ε.

⊓⊔

By the Irrelevane of Finite Reindexing, the Inequality Rule holds if in-

stead:

For some N ∈ Z≥1, sn ≤ tn for all n ≥ N.

And the Squeezing Rule holds if instead:

For some N ∈ Z≥1, sn ≤ un ≤ tn for all n ≥ N.

But the more simply stated versions are tidier to prove.

Exercises

3.2.20. Exerise 3.2.7 asks about the limits of four sequenes whose limits do

not follow from the �ve basi sequene limit rules. One of those four sequenes

has a limit that now an be found quikly by using the Squeezing Rule. Whih

sequene is it, and how does the Squeezing Rule tell us its limit?

3.2.21. For eah of the statements to follow: if the statement is true then

justify it by means of limit rules; if the statement is false then give a oun-

terexample.
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(a) Let (sn) be a onvergent real sequene. If sn > 0 for all n ∈ Z≥1 then

limn(sn) > 0.

(b) Let (sn) and (tn) be real sequenes. If limn(sn) = 0 then limn(sntn) =

0.

() Let (sn) be a real sequene. If limn(s
2
n) = 1 then either limn(sn) = 1

or limn(sn) = −1.

(d) Let (sn) and (tn) be real sequenes. If limn(sntn) = 0 then either

limn(sn) = 0 or limn(tn) = 0.

3.2.22. (a) Suppose that we know the 1/n Rule (Proposition 3.2.8 (2)) but do

not know the 1/nα
Rule (Proposition 3.2.8 (3)). Suppose further that α ∈ Q

and α > 1. Use a result or results from this setion to establish the 1/nα
Rule,

i.e., limn(1/n
α) exists and is 0. Where does the argument require α > 1?

(b) Again suppose that we know the 1/n Rule but do not know the 1/nα

Rule. This time suppose further that α ∈ Q and 0 < α < 1. Explain whyNα >

1 for some N ∈ Z≥1. Now reason as follows. By N appliations of the Produt

Rule, the Nth power of the limit is the limit of the Nth powers,

(lim
n
(1/nα))N = lim

n

(
(1/nα)N

)
,

and the alulation ontinues,

(lim
n
(1/nα))N = lim

n

(
(1/nα)N

)
as just explained

= lim

n
(1/nNα) by algebra

= 0 by part (a), beause Nα > 1.

Therefore, limn(1/n
α) = 0 as well, and so the 1/nα

Rule holds for 0 < α < 1

in onsequene of the 1/n Rule as well. But there is a aw in the reasoning

here. What is it?

3.2.23. Consider the following variant of the Squeezing Rule: Let (sn), (tn),

and (un) be three real sequenes. Suppose that

sn ≤ un ≤ tn for all n ∈ Z≥1

and that

lim

n
(tn − sn) = 0.

Then (un) also onverges to the ommon limit ℓ of (sn) and (tn), whih

exists beause limn(tn) − limn(sn) = limn(tn − sn) = 0. Is this variant

orret? Either prove it, or explain the aw in the reasoning and provide a

ounterexample.
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3.3 Integrability

3.3.1 The Previous Examples Revisited

Setion 3.1 realled two sequenes from hapters 1 and 2. The �rst was the

sequene of triangle-area sums arising from Arhimedes's quadrature of the

parabola,

(Sn) =
(
A

tri

· (4/3)
(
1− (1/4)n

))
n≥1

.

Now we an analyze this sequene quantitatively. By the Constant Sequene

Rule and the nth Power Rule,

lim

n
(1) = 1 and lim

n
((1/4)n) = 0,

and so by the Di�erene Rule,

lim

n
(1− (1/4)n) = 1,

and then by the Constant Multiple Rule,

lim

n
(Sn) = A

tri

· 4
3
.

Of ourse this is the value that we already obtained for the limiting value,

but now it is on a muh �rmer footing.

The seond sequene was a sequene of box-area sums arising from the

integration of the rational power funtion,

(Sn) =

(
(bα+1 − 1)

/sα+1
n − 1

sn − 1

)

n≥1

where sn = b1/n.

Here b > 1, and α ∈ Q but α 6= −1. We know by the nth Root Rule and

beause b > 1 that

� sn ∈ R>0 for all n ∈ Z≥1,

� limn(sn) = 1,

� sn 6= 1 for eah n ∈ Z≥1.

These properties of (sn) are all that we need to arry out an analysis that

formalizes the derivative alulation in setion 2.4. Beause the analysis will

be ited again in the next hapter, we isolate it. The general symbol α in the

following proposition is not the spei� α of the ambient disussion that has

been broken o� momentarily in order to establish the proposition.
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Proposition 3.3.1. Let α ∈ Q be any rational number. Let (sn) be any

sequene of positive real numbers suh that limn(sn) = 1 but sn 6= 1 for

eah n ∈ Z≥1. For eah n ∈ Z≥1, let

tn =
sαn − 1

sn − 1
.

Then

lim

n
(tn) = α.

Proof. As explained in setion 2.4,

tn =






1+ sn + s2n + · · ·+ sα−1
n if α ∈ Z≥0,

−
1

s−α
n

· s
−α
n − 1

sn − 1
if α ∈ Z≤−1,

~spn − 1

~sn − 1
· ~sn − 1

~sqn − 1
where ~sn = s1/qn if α = p/q, p ∈ Z, q ∈ Z≥1.

In the ase α ∈ Z≥0, beause limn(1) = 1 by the Constant Sequene Rule,

and beause we know that limn(sn) = 1, many appliations of the Produt

Rule and then the Sum Rule give

lim

n
(tn) = lim

n

(
1+ sn + s2n + · · ·+ sα−1

n

)
= α.

Here the sum, and therefore the limit, are understood to be 0 if α = 0.

Next onsider the ase α ∈ Z≤−1, so that −α ∈ Z≥1. In this ase,

tn = −
1

s−α
n

· s
−α
n − 1

sn − 1
.

Beause limn(sn) = 1, �nitely many appliations of the Produt Rule say

that limn(s
−α
n ) = 1, and then, beause eah s−α

n is nonzero and 1 is nonzero,

the Reiproal Rule gives limn(1/s
−α
n ) = 1/1 = 1, and so by the argument

from a moment ago for α ∈ Z≥1, and by the Constant Multiple Rule and the

Produt Rule,

lim

n
(tn) = −1 · 1 · (−α) = α.

Thus limn(tn) = α for all α ∈ Z.
For general α = p/q ∈ Q where p ∈ Z and q ∈ Z≥1, the formula for tn is

tn =
~spn − 1

~sn − 1
· ~sn − 1

~sqn − 1
where ~sn = s1/qn .

By the �nite geometri sum formula, and by the fat that eah ~sn ∈ R>0

beause eah sn ∈ R>0,
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|~sn − 1| =

∣∣∣∣∣
sn − 1

1+ ~sn + ~s2n + · · ·+ ~sq−1
n

∣∣∣∣∣ =
|sn − 1|

1+ ~sn + ~s2n + · · ·+ ~sq−1
n

≤ |sn − 1|.

And so beause limn(sn) = 1, also limn(~sn) = 1 by exerise 3.2.13 (page 86).

Now the formula

lim(tn) = p/q = α

follows in this ase from the previous two ases, the Reiproal Rule, and the

Produt Rule. ⊓⊔

With the proposition proved, let the symbol α again take on its meaning

from the sequene (Sn) and apply the proposition with α+ 1 as the α of the

proposition. That is, now α 6= −1 again, and if we let

tn =
sα+1
n − 1

sn − 1
, n ∈ Z≥1,

then the sequene that we want to analyze is

(Sn) =

(
bα+1 − 1

tn

)
.

The proposition, the Reiproal Rule, and the Constant Multiple Rule give

the desired result,

lim

n
(Sn) =

bα+1 − 1

α+ 1
.

The following onsequene of the Squeezing Rule was taitly used twie

in hapter 2.

Proposition 3.3.2 (The Trapped Quantity is the Common Limit).

Let (sn) and (tn) be real sequenes, and let u be a real number. Suppose

that

sn ≤ u ≤ tn for all n ∈ Z≥1,

and suppose that (sn) and (tn) onverge to the same limit,

lim

n
(sn) = lim

n
(tn) = ℓ.

Then u = ℓ.

Proof. Consider the onstant sequene (un) = (u), eah of whose terms un

is the number u. By the Constant Sequene Rule, limn(u) = u. Also, we are

given that

sn ≤ un ≤ tn for all n ∈ Z≥1,

so that by the Squeezing Rule, limn(u) = ℓ. Thus u = ℓ. ⊓⊔
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Proposition 3.3.2 is useful when u is some unknown area that we want to

�nd and ℓ is the ommon limit of two sequenes of box-area sums, one too

small to be the area and one too big. Our �rst tait use of the proposition was

in setion 2.5, where in addition to the sequene (Sn) from a moment ago, a

seond sequene appeared,

(Tn) = (sαnSn), sn = b1/n.

For this sequene, the box-heights were determined by the values of the power

funtion fα over the right endpoints of their bases, rather than the left end-

points. And beause (using the nth Root Rule for the last step in the display

to follow)

lim

n
(sαn) = lim

n
((b1/n)α) = lim

n
((bα)1/n) = 1,

it follows that (assuming α 6= −1)

lim

n
(Tn) = lim

n
(Sn) =

bα+1 − 1

α+ 1
.

Let

Ar

b
1 (fα)

denote the area under the graph of fα from 1 to b, a onstant. Beause the

power funtion is inreasing for α > 0 and dereasing for α < 0, we have

{
Sn ≤ Ar

b
1 (fα) ≤ Tn for all n ∈ Z≥1, if α > 0,

Tn ≤ Ar

b
1 (fα) ≤ Sn for all n ∈ Z≥1, if α < 0.

In either ase, Proposition 3.3.2 now gives �rm footing to the familiar result

that onsequently the normalized power funtion area is

Ar

b
1 (fα) =

bα+1 − 1

α+ 1
, b > 1, α ∈ Q, α 6= −1.

And beause the area is the limit of box-area sums from above and below,

De�nition 3.3.6 to follow (page 106) will say that it is in fat an integral,

∫b

1

fα =
bα+1 − 1

α+ 1
, b > 1, α ∈ Q, α 6= −1.

The ase α = −1, where we don't know that limn(Sn) and limn(Tn) exist,

muh less have a ommon value for whih we have a formula, is more subtle.

We will return to it shortly.

Our seond tait use of Proposition 3.3.2 was in omputing the non-

normalized power funtion integral, also in setion 2.5. Given b and c with

1 ≤ b and c > 0, we de�ned the sequenes
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(S̃n) = cα+1(Sn)

and

(T̃n) = cα+1(Tn).

By the Constant Multiple Rule, and the fat that limn(Sn) = limn(Tn) =∫b
1
fα,

lim

n
(S̃n) = lim

n
(T̃n) = cα+1

∫b

1

fα.

But by the geometry that led to (S̃n) and (T̃n), also

{
S̃n ≤ Ar

bc
c (fα) ≤ T̃n for all n ∈ Z≥1, if α > 0,

T̃n ≤ Ar

bc
c (fα) ≤ S̃n for all n ∈ Z≥1, if α < 0.

And so it follows from Proposition 3.3.2 that

Ar

bc
c (fα) = cα+1

∫b

1

fα.

Furthermore, as the ommon limit of box area sums from above and below,

the area will aquire the status of an integral in De�nition 3.3.6, and so the

previous equation rewrites, as in (2.6) (page 53),

∫bc

c

fα = cα+1

∫b

1

fα.

This result holds for all α ∈ Q suh that limn(Sn) = limn(Tn). For α 6= −1,

the limits were shown to be equal by the simple expedient of evaluating them.

But for α = −1 they are not yet established, and it turns out that they don't

evaluate to anything yet in our ken. So in the ase α = −1, we need to argue

that the limits exist and are equal even though we an't �nd a formula for

them. This is the last point that this setion will disuss.

Reall the verbal argument on page 53, whih was made for all values of α:

The fat that Sn and Tn trap the area under the graph of fα from 1

to b between them, and the fats that Tn = sαSn and sα tends to 1,

ombine to show that Sn and Tn tend to the same limiting value,

that value being the area.

With sequene limit results in hand, we now an quantify the reasoning. For

onveniene, assume that α > 0. Let

A = Ar

b
1 (fα)

denote the area under the graph of fα from 1 to b, a onstant. Then we have

the following information:
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(1) Sn ≤ A ≤ Tn for all n ∈ Z≥1.

(2) Tn = (bα)1/nSn for all n ∈ Z≥1.

From (1), then (2), and then (1) again,

0 ≤ Tn − Sn = ((bα)1/n − 1)Sn ≤ ((bα)1/n − 1)A for all n ∈ Z≥1.

That is,

0 ≤ Tn − Sn ≤ ((bα)1/n − 1)A for all n ∈ Z≥1.

By various sequene limit rules, inluding the Squeezing Rule, it follows (ex-

erise 3.3.1) that

lim

n
(Tn − Sn) exists and equals 0. (3.14)

But also from (1),

0 ≤ A− Sn ≤ Tn − Sn for all n ∈ Z≥1,

and so again by the Squeezing Rule, using (3.14),

lim

n
(A− Sn) exists and equals 0. (3.15)

Beause A is onstant, the Constant Sequene Rule says that also

lim

n
(A) exists and equals A. (3.16)

Now, note that (using square brakets rather than parentheses to group two

numbers without overloading the sequene notation)

Sn = A− [A− Sn] for all n ∈ Z≥1,

and so the de�nition of the di�erene of two sequenes gives

(Sn) = (A) − (A− Sn).

Aording to the Di�erene Rule, now (3.15) and (3.16) give

lim

n
(Sn) exists and equals A = Ar

b
1 (fα).

And beause

(Tn) = (Tn − Sn) + (Sn),

(3.14) and the previous display ombine in turn via the Sum Rule to give

lim

n
(Tn) exists and equals Ar

b
1 (fα).

The argument in italis is now fully quanti�ed, for all values of α.

Note the �nesse of the argument: deftly using the Squeezing Rule twie

to show that auxiliary limits exist subtly but inexorably ornered our desired

limits until they were fored to exist as well, and to be equal. And again,

the reasoning was arried out with no reourse to expliit formulas, meaning

that it should apply in ontexts beyond the power funtion in partiular. The

remainder of this hapter will expand its sope.
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Exercise

3.3.1. Show that (3.14) follows from the display immediately preeding it.

3.3.2 Definition of Integrability

Definition 3.3.3 (Lower Sum, Upper Sum). Let a and b be real num-

bers with a ≤ b. Let M be a nonnegative real number. Consider a funtion

f : [a, b] −→ [0,M].

The region under the graph of f, a subset of the plane, is

R = {(x, y) ∈ R2 : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}.

and it has an area,

Ar

b
a(f) = Ar(R).

Suppose that a number S is a sum of �nitely many box-areas, where the

base of eah box lies on the x-axis, the top of eah box (at least as high

as the base) lies under the graph of f, the overlap of any two boxes is at

most a vertial line segment, and the bases ombine to over the x-axis

from a to b. Then S is a lower sum for Arba(f). Suppose that a number T

is a sum of �nitely many box-areas, where the boxes satisfy the same

onditions exept that their tops lie over the graph of f. Then T is an

upper sum for Ar

b
a(f).

We saw lower sums and upper sums throughout the integration of the

rational power funtion. The sums Sn were lower sums and the sums Tn
were upper sums only for α > 0; unfortunately, the Sn were upper sums and

the Tn were lower sums for α < 0, but this is only a notational irritant of no

onsequene.

Retaining the terminology of the de�nition, beause any lower sum for

Ar

b
a(f) = Ar(R) is the area of a polygon that is a subset of R, and any upper

sum for Ar

b
a(f) is the area of a polygon that is a superset of R, the following

result is automati from the basi properties of area.

Proposition 3.3.4 (Basic Property of Lower and Upper Sums). Let

a ≤ b, and let M ≥ 0. Consider a funtion

f : [a, b] −→ [0,M].

Let S be any lower sum for Ar

b
a(f), and let T be any upper sum for Ar

b
a(f).

Then

S ≤ Ar

b
a(f) ≤ T.
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Now we an generalize the reent argument that a minimal good property

of lower and upper sums, that the limit of their di�erenes is zero, has further

good onsequenes, that the lower and the upper sums themselves have limits,

that the two limits are equal, and that they equal the area.

Proposition 3.3.5 (Bootstrap Result for Lower and Upper Sums).

Let a ≤ b, and let M ≥ 0. Consider a funtion

f : [a, b] −→ [0,M].

Suppose that a sequene (Sn) of lower sums for Ar

b
a(f) and a sequene (Tn)

of upper sums for Ar

b
a(f) satisfy the ondition

lim

n
(Tn − Sn) exists and equals 0.

Then limn(Sn) and limn(Tn) both exist, and

lim

n
(Sn) = lim

n
(Tn) = Ar

b
a(f).

The proof (exerise 3.3.2) is similar to the argument reently given in the

speial ase of the power funtion. It requires the Squeezing Rule one to

make a limit exist, and then basi and progenitive results to reah the desired

onlusions.

Definition 3.3.6 (Integral). Let a ≤ b, and let M ≥ 0. Consider a fun-

tion

f : [a, b] −→ [0,M].

If there exist a sequene (Sn) of lower sums for Ar

b
a(f), and a se-

quene (Tn) of upper sums for Ar

b
a(f), suh that

lim

n
(Tn − Sn) exists and equals 0

then f is integrable from a to b. The integral of f from a to b is the

area under its graph, ∫b

a

f = Ar

b
a(f).

Equivalently, ∫b

a

f = lim

n
(Sn) = lim

n
(Tn),

beause by Proposition 3.3.5 both limits exist and equal Ar

b
a(f).
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Note how neatly the de�nitions and propositions of this setion quanti-

tatively apture our earlier desription of the integral in natural language,

displayed in italis on page 50.

Certainly, if there exist a sequene (Sn) of lower sums for Ar

b
a(f) and a

sequene (Tn) of upper sums for Ar

b
a(f) suh that

lim

n
(Sn) and lim

n
(Tn) both exist, and they are equal

then f is integrable from a to b. The point of Proposition 3.3.5 is that these

onditions follow from the seemingly-weaker onditions required in De�ni-

tion 3.3.6. But it is perfetly �ne to establish these onditions instead.

To review some of the ideas, again let f : [a, b] −→ [0,M] be a funtion.

� Does Ar

b
a(f) exist? Yes, always. The reader should be aware that many

alulus ourses treat all existene issues as obvious, perhaps not even rais-

ing them, whereas many beginning real analysis ourses derive existene

results from a property of the real number system alled ompleteness . In

ontrast to both of these approahes, our method is to invoke the existene

of area funtions but then derive further onsequenes of the invoation

arefully.

� Are there sequenes (Sn) and (Tn) of lower and upper sums for Ar

b
a(f)

both with Ar

b
a(f) as their limit? Sometimes. The Bootstrapping Result

shows that there are suh sequenes if there are sequenes of lower and

upper sums suh that lim(Tn − Sn) = 0, and the previous paragraph

(starting Certainly . . . ) observed that the onverse holds as well. Under

these irumstanes, we view f as integrable. Thus, integrability means

not that the area exists, but that the area is the limit of suitable box-area

sums.

� When f is integrable, an we put the ommon limit of (Sn) and (Tn)

into some onvenient form, suh as an expression in terms of fun-

tions that we already know? Not always. In the ase of the power fun-

tion fα, we an do so for all α 6= −1 but not for α = −1.

� When f is integrable but the area under its graph does not take a

onvenient form that we already understand, what good does the in-

tegrability do us? We an still study the integral as a limit in order to

learn more about its properties. To know a funtion's properties is to un-

derstand it. For example, in hapter 5 we will study the logarithm as an

integral.

Exercise

3.3.2. Prove Proposition 3.3.5.



108 3 Sequene Limits and the Integral

3.3.3 Monotonicity and Integrability

Definition 3.3.7 (Monotonic Function). Let a ≤ b, and let M ≥ 0.

Consider a funtion

f : [a, b] −→ [0,M].

The funtion f is increasing if for all x1, x2 ∈ [a, b] with x2 > x1, also

f(x2) ≥ f(x1). The funtion f is decreasing if for all x1, x2 ∈ [a, b] with

x2 > x1, also f(x2) ≤ f(x1). The funtion f is monotonic if it is inreasing

or it is dereasing.

Thus a funtion is inreasing if its graph, traversed from left to right, is

everywhere rising or level, never falling. The or level distinguishes between

an inreasing funtion and a stritly inreasing funtion as disussed earlier.

And similarly, a funtion is dereasing if its graph is everywhere falling or

level, never rising.

Theorem 3.3.8 (Monotonic Functions are Integrable). Let a ≤ b, and

let M ≥ 0. Let

f : [a, b] −→ [0,M]

be monotoni. Then f is integrable.

Proof. Now we use a uniform partition rather than a geometri one. The

relevant partition-widths are

δn =
b− a

n
for eah n ∈ Z≥1,

and the partition points are

x0 = a, x1 = a+ δn, x2 = a+ 2δn, . . . , xn = a+ nδn = b.

Assume that f is inreasing. Then (exerise 3.3.3 (a)) the quantity

Sn = δn(f(x0) + f(x1) + · · · f(xn−1))

is a lower sum for Ar

b
a(f), and the quantity

Tn = δn(f(x1) + f(x2) + · · · f(xn))

is an upper sum. In their di�erene, nearly all the terms anel,

Tn − Sn = δn(f(xn) − f(x0)),

and beause x0 = a and xn = b, their di�erene is in fat

Tn − Sn = δn(f(b) − f(a)).
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Consequently, by various sequene limit rules (exerise 3.3.3 (b)),

lim

n
(Tn − Sn) exists and equals 0.

This shows that f is integrable from a to b, as desired.

The proof when f is dereasing is virtually idential. ⊓⊔

Beause the power funtion is monotoni, Theorem 3.3.8 enompasses it,

even though the theorem's proof used uniform lower and upper sums rather

than the geometri ones that we used earlier to analyze the power funtion.

The uniform lower and upper sums used to prove the theorem do not read-

ily ompute the integral of the power funtion, but they do reon�rm its

existene .

Exercise

3.3.3. In the proof of Theorem 3.3.8:

(a) Explain why Sn is a lower sum for Ar

b
a(f) and Tn is an upper sum.

(b) Explain why limn(Tn − Sn) exists and equals 0.

3.3.4 A Basic Property of the Integral

Proposition 3.3.9 (Horizontal Additivity of the Integral). Let a, b,

and c be real numbers with a ≤ b ≤ c. Let M ≥ 0 be a positive real

number. Let

f : [a, c] −→ [0,M]

be a funtion. Then

∫c

a

f exists ⇐⇒
∫b

a

f exists and

∫c

b

f exists,

and when the various integrals exist,

∫c

a

f =

∫b

a

f+

∫c

b

f.

Proof. The region under the graph of f from a to c is a bounded subset of

the plane, and so it has an area. Similarly for the regions from a to b and

from b to c. By the fat that area has basi sensible properties,

Ar

c
a(f) = Ar

b
a(f) + Ar

c
b(f).

Granting momentarily that the three integrals in the proposition exist, it

follows that
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∫c

a

f = Ar

c
a(f) = Ar

b
a(f) + Ar

c
b(f) =

∫b

a

f+

∫c

b

f.

This gives the last equality in the proposition. Thus what needs to be proved

is that if

∫c
a
f exists then so do

∫b
a
f and

∫c
b
f, and onversely.

Suppose that

∫c
a
f exists. This means that there are sequenes of lower

sums Sn for Ar

c
a(f), and sequenes of upper sums Tn for Ar

c
a(f), suh that

lim

n
(Tn − Sn) = 0.

For eah n, if the boxes whose areas sum to Sn inlude a box whose base

straddles the intermediate point b, then subdivide that box into two by adding

a vertial line segment at b. This has no e�et on Sn beause the areas of

two subboxes just reated total the area of the box that was subdivided. And

similarly for the upper sums Tn. That is, we may assume that eah Sn and

eah Tn is the sum of box-areas for boxes whose bases omprise the x-axis

from a to b and then more boxes whose bases omprise the x-axis from b

to c. The sums deompose aordingly,

Sn = S ′
n + S ′′

n and Tn = T ′
n + T ′′

n for n ∈ Z≥1.

Here eah S ′
n is a lower sum for Ar

b
a(f), eah S ′′

n is a lower sum for Ar

c
b(f),

and similarly for T ′
n and T ′′

n , so that S ′
n ≤ T ′

n and S ′′
n ≤ T ′′

n . Beause

Tn − Sn = (T ′
n − S ′

n) + (T ′′
n − S ′′

n),

if follows that

0 ≤ T ′
n − S ′

n ≤ Tn − Sn and 0 ≤ T ′′
n − S ′′

n ≤ Tn − Sn,

and so by the Squeezing Rule for sequenes,

lim

n
(T ′

n − S ′
n) = 0. and lim

n
(T ′′

n − S ′′
n) = 0.

Thus

∫b
a
f and

∫c
b
f exist.

Now suppose that

∫b
a
f and

∫c
b
f exist. This means that there are sequenes

of lower sums S ′
n for Ar

b
a(f), sequenes of lower sums S ′′

n for Ar

c
b(f), sequenes

of upper sums T ′
n for Ar

b
a(f), and sequenes of upper sums T ′′

n for Ar

c
b(f), suh

that

lim

n
(T ′

n − S ′
n) = 0 and lim

n
(T ′′

n − S ′′
n) = 0.

For eah n, the sum Sn = S ′
n + S ′′

n is a lower sum for Ar

c
a(f) and the sum

Tn = T ′
n + T ′′

n is an upper sum for Ar

c
a(f). Beause

Tn − Sn = (T ′
n − S ′

n) + (T ′′
n − S ′′

n),

if follows that

lim(Tn − Sn) = 0.

Thus

∫c
a
f exists. ⊓⊔
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3.3.5 Piecewise Monotonicity and Integrability

Definition 3.3.10 (Piecewise Monotonic Function). Let a and b be

real numbers with a ≤ b, and let M ≥ 0 be a real number. A funtion

f : [a, b] −→ [0,M]

is alled piecewise monotonic if there is a partition of [a, b],

a = x0 < x1 < · · · < xn = b,

suh that f is monotoni on eah interval [xj−1, xj] for j = 1, . . . , n.

For example, the absolute value funtion is pieewise monotoni on [−1, 1],

but it is not monotoni there.

Proposition 3.3.11 (Piecewise Monotonic Functions are Integrable).

Let a and b be real numbers with a ≤ b, and let M ≥ 0 be a real number.

Any pieewise monotoni funtion

f : [a, b] −→ [0,M]

is integrable from a to b.

This follows from Theorem 3.3.8 and Proposition 3.3.9.

Example 3.3.12. We give two funtions, neither of whih is pieewise mono-

toni, but one of whih is integrable. For any nonnegative integers k and ℓ,

de�ne two sets of points, both subsets of the interval [0, 1],

Pk =

{
0

2k
,

1

2k
,

2

2k
, . . . ,

2k − 1

2k
,
2k

2k

}
,

Qℓ =

{
0

3ℓ
,

1

3ℓ
,

2

3ℓ
, . . . ,

3ℓ − 1

3ℓ
,
3ℓ

3ℓ

}
.

That is, the points of Pk are spaed aross [0, 1] in uniform steps of size 1/2k,

and similarly for Qℓ with step-size 1/3ℓ. For a point to lie simultaneously in

some Pk and some Qℓ requires

a

2k
=

b

3ℓ
, 0 ≤ a ≤ 2k, 0 ≤ b ≤ 3ℓ,

or

3ℓa = 2kb, 0 ≤ a ≤ 2k, 0 ≤ b ≤ 3ℓ.

Beause positive integers fator uniquely into prime powers, the only solutions

are a = b = 0, i.e., the ommon point is the left endpoint 0, and a = 2k, b =
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3ℓ, i.e., the ommon point is the right endpoint 1. Exluding the endpoints,

there is no overlap among the sets Pk and Qℓ.

Now onsider two funtions,

f : [0, 1] −→ [0, 1],

where

f(x) =

{
1 if x ∈ Pk for some k,

0 if x /∈ Pk for all k,

and

g : [0, 1] −→ [0, 1],

where

g(x) =

{
1/2k if k is the smallest integer suh that x ∈ Pk,

0 if x /∈ Pk for all k.

An approximation of the graph of f is shown in �gure 3.5. Rather than hek

whether a point x ∈ [0, 1] lies in Pk for all k ∈ Z≥0, the �gure was generated

by heking only up to k = 6. A similar approximation of the graph of g is

shown in �gure 3.6. The �gure shows why g is alled the ruler funtion .

To see that neither f nor g is pieewise monotoni, note that any subin-

terval [a, b] of [0, 1] having positive width ontains points i/2k and (i+ 1)/2k

onseutive in Pk for some k, and then a point j/3ℓ of Qℓ for some ℓ suh that

i/2k < j/3ℓ < (i + 1)/2k. Beause f(i/2k) > 0 and f((i + 1)/2k) > 0 while

f(j/3ℓ) = 0, f is not monotoni on [a, b]. And similarly for g.

Beause any subinterval [a, b] of [0, 1] having positive width ontains a

point i/2k of Pk for some k, and a point j/3ℓ of Qℓ for some ℓ, it follows that

every lower sum S and every upper sum T for Ar

1
0(f) must satisfy

S = 0, T ≥ 1.

Therefore there are no sequenes (Sn) of lower sums and (Tn) of upper sums

satisfying the ondition limn(Tn − Sn) = 0 that is neessary for f to be

integrable (see De�nition 3.3.6). That is,

∫1

0

f does not exist.

On the other hand, g is integrable. Every lower sum S for Ar

1
0(g) is 0, and

so by De�nition 3.3.6, the question is whether a sequene (Tn) of upper sums

has limit 0. It does. The idea is to over �nitely many high spikes eÆiently

with very narrow boxes, so that overing the in�nitely many remaining low
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Figure 3.5. Approximation of the funtion that is 1 at values i/2k

spikes ineÆiently still produes a small upper sum. Quantitatively, given

any ε > 0, there is a positive integer k suh that

1

2k+1
<

ε

2
.

Let w = ε/(2(2k + 1)), a positive value. Then

(2k + 1)w+
1

2k+1
< ε.

Cover the 2k+1 spikes over the points 0/2k, 1/2k, . . . , 2k/2k of Pk with boxes

of width w and height 1. Cover the remainder of the graph of g with boxes

of height 1/2k+1
and total width less than 1. This gives an upper sum T suh

that

T < (2k + 1)w+
1

2k+1
< ε.

(Figure 3.7 shows the retangles for suh an upper sum T that is slightly

bigger than 1/8.) Beause ε is arbitrarily, we an reate a sequene (Tn) of



114 3 Sequene Limits and the Integral

Figure 3.6. Approximation of the funtion that is 1/2k at values i/2k

suh upper sums with limit 0. Therefore,

∫1

0

g = 0.

Exercises

3.3.4. Consider two funtions,

f : [0, 2] −→ [0, 1], f(x) =

{
x if 0 ≤ x ≤ 1,

x− 1 if 1 < x ≤ 2,

and

g : [0, 2] −→ [0, 1], g(x) =

{
x if 0 ≤ x < 1,

x− 1 if 1 ≤ x ≤ 2.
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Figure 3.7. Small upper sum for the area under the ruler funtion

(a) Graph f and g side by side, in a way that shows the di�erene between

them.

(b) Is f pieewise monotoni? Is g? Is any funtion

h : [0, 2] −→ R, h(x) =






x if 0 ≤ x < 1,

c if x = 1,

x− 1 if 1 < x ≤ 2

pieewise monotoni?

() Figure 3.8 shows two arrangements of boxes. Explain why the sum of

box-areas arising from one arrangement is a lower sum for Ar

2
0(f) or for Ar

2
0(g),

and the sum of box-areas arising from the other arrangement is an upper sum

for Ar

2
0(f) or for Ar

2
0(g), but it is not the ase that the �gure shows a lower{

upper sum pair for either f or g.

(d) Draw two more arrangements of boxes, similar to the �gure, so that

the �gure and your piture give you a lower{upper sum pair for f and a
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Figure 3.8. Box-arrangements

lower{upper sum pair for g. Using these �gures, disuss qualitatively whether

f and g are integrable, and if so, whether their integrals are equal.

3.3.5. Show by example that if f, g : [a, b] −→ [0,M] are pieewise monotoni

then their sum f+g : [a, b] −→ [0, 2M] need not again be pieewise monotoni.

(An explanation that involves some mixture of formulas, pitures, and words

is �ne.)

3.3.6 Progenitive Integral Rules

Proposition 3.3.13 (Progenitive Integral Rules). Consider two inte-

grable funtions

f : [a, b] −→ [0,M], ~f : [a, b] −→ [0, M̃].

Then the funtion

f+ ~f : [a, b] −→ [0,M+ M̃], (f+ ~f)(x) = f(x) + ~f(x)

is integrable, and ∫b

a

(f+ ~f) =

∫b

a

f+

∫b

a

~f.

Let c ∈ R≥0 be a nonnegative real number. Then the funtion

cf : [a, b] −→ [0, cM], (cf)(x) = c · f(x)

is integrable, and ∫b

a

(cf) = c

∫b

a

f.

Proof. There exist a sequene (Sn) of lower sums for Ar

b
a(f) and a sequene

of (Tn) of upper sums for Ar

b
a(f) suh that
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lim

n
(Tn − Sn) = 0.

And there exist similar sequenes (S̃n) and (T̃n) for Ar
b
a(
~f) with

lim

n
(T̃n − S̃n) = 0.

Consequently, (Sn + S̃n) is a sequene of lower sums for Ar

b
a(f +

~f) (exer-

ise 3.3.6) and (Tn + T̃n) is a sequene of upper sums for Ar

b
a(f +

~f), and by

the Sum Rule for sequenes,

lim

n
((Tn + T̃n) − (Sn + S̃n)) = lim

n
((Tn − Sn) + (T̃n − S̃n))

= lim

n
(Tn − Sn) + lim

n
(T̃n − S̃n)

= 0+ 0 = 0.

Thus

∫b
a
(f+ ~f) exists, and its value is

∫b

a

(f+ ~f) = lim

n
(Sn + S̃n) = lim

n
(Sn) + lim

n
(S̃n) =

∫b

a

f+

∫b

a

~f.

The seond part of the proposition is proved similarly (exerise 3.3.7). ⊓⊔

In onnetion with Proposition 3.3.13, it deserves note that the formula

Ar

b
a(f+

~f) = Ar

b
a(f) + Ar

b
a(
~f)

is not geometrially immediate. The problem is that the region under the

graph of f+~f does not naturally deompose into two piees with one ongruent

to the area under the graph of f and the other similar but for

~f.

Proposition 3.3.14 (Inequality Rule for Integrals). Consider two in-

tegrable funtions

f, g : [a, b] −→ [0,M]

suh that

f ≤ g,

meaning that f(x) ≤ g(x) for all x ∈ [a, b]. Then

∫b

a

f ≤
∫b

a

g.

Proof. This follows from the fat that area has sensible properties, beause

∫b

a

f = Ar

b
a(f) ≤ Ar

b
a(g) =

∫b

a

g.

⊓⊔
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Exercises

3.3.6. The proof of Proposition 3.3.13 taitly ites the following assertion:

Consider two funtions

f : [a, b] −→ [0,M], ~f : [a, b] −→ [0, M̃],

and onsider their sum,

f+ ~f : [a, b] −→ [0,M+ M̃], (f+ ~f)(x) = f(x) + ~f(x).

If S is a lower sum for Ar

b
a(f), and S̃ is a lower sum for Ar

b
a(
~f), then

S+ S̃ is a lower sum for Ar

b
a(f+

~f). While this assertion is orret, it is not

quite automati.

(a) For onveniene, let a = 0 and b = 1, and let f(x) = x and

~f(x) = x.

Draw the graph of f, and then draw three boxes whose areas add up to a lower

sum S for Ar

1
0(f). Separately, draw the graph of

~f, and then draw four boxes

whose areas add up to a lower sum S̃ for Ar

1
0(
~f). Make the breakpoints that

determine the bases of the four boxes be di�erent from those that determine

the three boxes from a moment ago (exept for the breakpoints 0 and 1, of

ourse).

(b) Draw a graph that shows the funtion f+ ~f. Although the seven boxes

from part (a) have total area S+ S̃, it may not be possible to show that this

total area is a lower sum for f+ ~f by �tting the seven boxes nonoverlappingly

under the graph of f + ~f, staking the four boxes on top of the three. Use

natural language and a piture to demonstrate this problem learly, explaining

its ause.

() Explain how to �x the problem, illustrating the solution with another

piture.

3.3.7. Prove the seond part of Proposition 3.3.13.

3.4 Summary

The notion of a sequene limit leads to a more preise understanding of the

integral than we ould attain in hapters 1 and 2. In the next hapter, the

related notion of a funtion limit will similarly larify the derivative.
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Function Limits and the Derivative

A funtion f has limit ℓ at the point x if its output-values f(s) approah ℓ

as its input-values s approah x ontinuously . To say that s approahes x

ontinuously is to say that s approahes x sequentially in any way whatsoever,

exept that s should never atually reah x. The funtion limit will thus be a

ommon value of sequene limits, the limits of the output-sequenes (f(sn))

orresponding to all suitable input-sequenes (sn) approahing x. A bit more

fanifully, to say f has limit ℓ as its input glides to x is to say that f has limit ℓ

as its input hops to x, no matter how the hopping ours. This hapter begins

by de�ning funtion limits and establishing some of their properties.

After the examples of the �rst two hapters, the theory has amassed during

the most reent hapter and will ontinue to do so during this one. So the

reader should periodially step bak from details in order to appreiate the

umulative arrangement of the ideas. One the previous hapter's de�nition

of sequene limit was in plae, it led to basi results and progenitive results.

This hapter's de�nition of funtion limit will be phrased in terms of the

de�nition of sequene limit, and then it too will lead to basi and progenitive

results, based on their ounterparts for sequenes. All of this is arried out in

setion 4.1. With funtion limits in plae, the derivative an be be de�ned as

a partiular funtion limit. Basi derivative results and progenitive derivative

results thus follow from orresponding funtion limit results, as shown in

setion 4.2.

So far, the only spei� derivative that we know is that of the power

funtion, but we will ompute other spei� derivatives in the hapters to

follow.
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4.1 The Limit of a Function

4.1.1 Definition of Function Limit

As just mentioned, the suitable input-sequenes for the de�nition of fun-

tion limit are those sequenes that tend to a point but never reah it. For

onveniene, we name the phenomenon.

Definition 4.1.1 (Approaches, Approachable). Let (sn) be a real se-

quene, and let x be a real number. Then (sn) approaches x if

lim

n
(sn) = x but sn 6= x for eah index n.

Let A be a set of real numbers, and let x be a real number. Then x is

approachable from A if some sequene (sn) in A approahes x.

Whether a point x is approahable from a set A is in general independent

of whether x is an element of A. That is, there are situations where x is

approahable from A and lies in A, where x is approahable from A but does

not lie in A, where x is not approahable from A but lies in A, and where

x is not approahable from A and does not lie in A. Exerise 4.1.1 asks for

examples.

Definition 4.1.2 (Limit of a Function). Let A be a subset of R, and let

f : A −→ R

be a funtion. Let x ∈ R, and let ℓ ∈ R. Then f has limit ℓ as s goes

to x, notated

lim

s→x
f(s) = ℓ,

if

(1) The point x is approahable from A.

(2) For every sequene (sn) in A that approahes x, limn(f(sn)) = ℓ.

To be clear about the notation, observe that the symbol-

string “limn” refers to a sequence limit, whereas “lims→x”

refers to a function limit.

As in the introdution to this hapter, De�nition 4.1.2 enodes the notion

of the input s approahing x ontinuously as enompassing all ways that s

an approah x sequentially, and the funtion limit is the ommon value of

all the orresponding output-sequene limits, if onditions are suitable and a

ommon value exists. In natural language:
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The funtion limit of f at x is the output-value that the behavior

of f near x suggests that f should take at x.

Note that this natural language desription uses the symbols f and x but not s.

The reader is autioned that if a alulation of lims→x f(s) in some partiular

instane seems to give an answer involving the symbol s then something has

gone wrong.

On the other hand, although De�nition 4.1.2 of lims→x f(s) aptures the

value that f(s) tends to as s tends to x, the de�nition makes no referene

to f(x) itself. Indeed, x need not even be in the domain of f. That is:

The funtion limit of f at x is independent of the value of f at x,

and even of whether f(x) exists.

So there is a range of possibilities:

If lim

s→x
f(s) exists then






f(x) ould exist and equal lims→x f(s),

f(x) ould exist and not equal lims→x f(s),

f(x) ould fail to exist.

The de�nition's insistene on sequenes (sn) that approah x but never reah

it prevents any aidental referene to f(x).

The de�nition is of most interest to us when the domain A of f exludes a

point x where we want to know what value f should take. For example, let x

be any real number, let

R 6=x = {s ∈ R : s 6= x},

and onsider the funtion

f : R 6=x −→ R, f(s) =
s2 − x2

s− x
.

Then also this funtion is

f : R 6=x −→ R, f(s) = s+ x,

but even though the formula s+ x is sensible for s = x, the funtion f is not

de�ned there. (Figure 4.1 shows the graph of f.) Nonetheless, x is approahable

from R 6=x, e.g., by the sequene (sn) = (x+1/n), and so the �rst ondition of

De�nition 4.1.2 is met. Furthermore, for any sequene (sn) that approahes x

we have limn(sn) = x by De�nition 4.1.1, and so the Sum Rule rule for

sequenes and the Constant Sequene Rule ombine to give

lim

n
(f(sn)) = lim

n
(sn + x) = 2x.
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Thus the seond ondition of De�nition 4.1.2 is also satis�ed (with ℓ = 2x),

and so we have established a funtion limit,

lim

s→x
f(s) = 2x.

Visually, the idea is that the limit mahinery has plugged the gap in �gure 4.1.

This little argument has essentially repeated the derivation of the tangent

slope of the parabola in setion 1.3, but now using the more preise language

at hand to buttress the ideas. Note that the alulated value 2x of lims→x f(s)

does not ontain the symbol s, as remarked after De�nition 4.1.2.

PSfrag replaements

x
s

2x

f(s)

Figure 4.1. The graph of a di�erene-quotient funtion

The next result illustrates the idea that universalizing over all sequene-

approahes aptures ontinuous approah.

Proposition 4.1.3 (Persistence of Inequality). Let A be a subset of R,

let f : A −→ R be a funtion, and let x be a point of A that is approahable

from A. Suppose that

lim

s→x
f(s) > 0 and f(x) > 0.

Then for all s ∈ A lose enough to x, also f(s) > 0.

Proof. If f(s) > 0 for all s ∈ A suh that |s − x| < 1 then we are done.

Otherwise there exists some s1 ∈ A suh that

|s1 − x| < 1 and f(s1) ≤ 0.
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And s1 6= x beause f(x) > 0. If f(s) > 0 for all s ∈ A suh that |s − x| <

|s1 − x|/2 then we are done. Otherwise, beause |s1 − x|/2 < 1/2, there exists

some s2 ∈ A suh that

|s2 − x| < 1/2 and f(s2) ≤ 0.

And s2 6= x beause f(x) > 0. If f(s) > 0 for all s ∈ A suh that |s − x| <

|s2 − x|/2 then we are done. Otherwise, beause |s2 − x|/2 < 1/4, there exists

some s3 ∈ A suh that

|s3 − x| < 1/4 and f(s3) ≤ 0.

And s3 6= x beause f(x) > 0. Continue in this fashion. Unless the proess

proves the proposition after �nitely many steps, it produes a sequene (sn)

that approahes x but (beause f(sn) ≤ 0 for eah n) fails to satisfy the

ondition limn(f(sn)) > 0. This ontradits the hypothesis that lims→x f(s) >

0, and so the proess must prove the proposition after �nitely many steps. ⊓⊔

We end this setion with one more remark. Let f be a funtion and let ℓ

be a real number. Beause

|f(s) − ℓ| =
∣∣|f(s) − ℓ|− 0

∣∣,

it follows immediately that

lim

s→x
f(s) exists and equals ℓ ⇐⇒ lim

s→x
|f(s) − ℓ| exists and equals 0. (4.1)

Like the Strong Approximation Lemma (page 71), this priniple an be handy

to have available in isolated form for the sake of smoothing out the endgames

of arguments. As a speial ase,

lim

s→x
f(s) exists and equals 0 ⇐⇒ lim

s→x
|f(s)| exists and equals 0. (4.2)

Exercises

4.1.1. (a) Find a subset A of the real numbers and a real number x suh that

x is approahable from A and lies in A.

(b) Find a subset A of the real numbers and a real number x suh that x

is approahable from A but does not lie in A.

() Find a subset A of the real numbers and a real number x suh that x

is not approahable from A but lies in A.

(d) Find a subset A of the real numbers and a real number x suh that x

is not approahable from A and does not lie in A.
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4.1.2. Let x be any positive real number. Let R 6=x = {s ∈ R : s 6= x}. Consider

the funtion

f : R 6=x −→ R, f(s) =
s3 − x3

s− x
.

Does lims→x f(s) exist, and if so, what is it? Explain. (The di�erene of powers

formula on page 32 may help.)

4.1.2 Basic Function Limit Rules

Two examples of funtion limits are eminently believable but still deserve to

be stated learly.

Proposition 4.1.4 (Basic Function Limits). Let A be a subset of R,

and let x ∈ R be approahable from A. Consider the funtions

f0 : A −→ R, f0(s) = 1 for all s

and

f1 : A −→ R, f1(s) = s.

Then

lim

s→x
f0(s) = 1

and

lim

s→x
f1(s) = x.

Less pedantially, the limits in the proposition are written

lim

s→x
1 = 1

and

lim

s→x
s = x.

Note that here the power funtions f0 and f1 have an arbitrary subset of R
(not R>0) as their domain. This point was disussed on page 29.

Proof. For any sequene (sn) in A that approahes x,

lim

n
(f0(sn)) = lim

n
(1, 1, 1, . . .) = 1

and

lim

n
(f1(sn)) = lim

n
(sn) = x.

⊓⊔
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For another basi funtion limit, reall (from page 29) that the domain of

the power funtion fα is






R if α ∈ Z≥0,

R 6=0 if α ∈ Z≤−1,

R≥0 if α ∈ Q≥0 but α /∈ Z≥0,

R>0 if α ∈ Q<0 but α /∈ Z≤−1.

Note that in for all α ∈ Q, 0 is approahable from the domain of fα, even

though 0 atually lies in the domain only for α ∈ Q≥0.

Proposition 4.1.5 (Limit of the Power Function at Zero). Let α ∈
Q>0 be any positive rational number. Then

lim

s→0
fα(s) = 0.

Let α ∈ Q<0 be any negative rational number. Then

lim

s→0
fα(s) does not exist.

Finally,

lim

s→0
f0(s) = 1.

Proof. Let A denote the domain of fα.

Suppose that α ∈ Q>0. Consider any sequene (sn) in A that ap-

proahes 0. Let an arbitrary ε > 0 be given. De�ne in turn ~ε = ε1/α. Beause

limn(sn) = 0, there is a starting index N suh that:

For n ≥ N, |sn| < ~ε.

It follows that

For all n ≥ N, |fα(sn)| = |sαn| = |sn|
α < ~εα = ε.

Here sn an be negative only if α ∈ Z≥1, in whih ase |(−1)α| = 1 and so

|sαn| = |(−|sn|)
α| = |(−1)α|sn|

α| = | |sn|
α | = |sn|

α
, giving the seond equality

in the display. For positive sn, the seond equality in the display is trivial. The

\<" in the display follows from its ounterpart in the previous one, beause fα
is stritly inreasing on R>0|here is where we use the ondition that α > 0.

With the display justi�ed, note that it says that limn(fα(sn)) = 0. And

beause the argument applies to any sequene (sn) in A that approahes 0,

we have shown that lims→0 fα(s) = 0.

Now suppose that α ∈ Q<0, so that −α ∈ Q>0. For any positive integer n,
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fα(1/n) = (1/n)α = 1/(1/n−α).

By the 1/nα
Rule for sequenes, where the α in the rule is the −α here,

limn(1/n
−α) = 0, and so fα(1/n) grows without bound as n grows. Thus

lims→0 fα(s) does not exist.

Finally, the result that lims→0 f0(s) = 1 is the �rst part of the previous

proposition. ⊓⊔

Exercise

4.1.3. Disuss the meaning, the existene, and the value of lims→x s
2
.

4.1.3 Progenitive Function Limit Rules

Let A be a subset of R, and onsider two funtions

f, g : A −→ R.

Let c ∈ R be any number. Then the funtions

f± g, cf, fg : A −→ R

are de�ned as follows:

(f± g)(x) = f(x)± g(x) for all x ∈ A,

(cf)(x) = c · f(x) for all x ∈ A,

(fg)(x) = f(x)g(x) for all x ∈ A.

As with sequenes, these funtions are the sum/di�erene of f and g, a on-

stant multiple of f, and the produt of f and g. Also, onsider the subset of A

where g is nonzero,

A ′ = {x ∈ A : g(x) 6= 0}.

Then the funtions

1/g, f/g : A ′ −→ R
are de�ned to be

(1/g)(x) = 1/g(x) for all x ∈ A ′

and

(f/g)(x) = f(x)/g(x) for all x ∈ A ′.

These funtions are the reiproal of g and the quotient of f and g.

For example, given two rational power funtions on the positive real num-

bers,
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fα, fβ : R>0 −→ R,

their produt is

(fαfβ)(x) = fα(x)fβ(x) = xαxβ = xα+β, x ∈ R>0,

whih is to say that their produt is

fαfβ = fα+β : R>0 −→ R.

The following result gives the limits of the newly-de�ned funtions above

in terms of the limits of f and g.

Theorem 4.1.6 (Progenitive Function Limit Rules). Let A be a subset

of R, and onsider two funtions

f, g : A −→ R.

Let c ∈ R be any number. Suppose that the point x ∈ R is approahable

from A. Suppose that lims→x f(s) and lims→x g(s) exist. Then

(1) (Sum/Di�erene Rule.) lims→x(f± g)(s) exists and is

lim

s→x
(f± g)(s) = lim

s→x
f(s)± lim

s→x
g(s).

(2) (Constant Multiple Rule.) lims→x(cf)(s) exists and is

lim

s→x
(cf)(s) = c · lim

s→x
f(s).

(3) (Produt Rule.) lims→x(fg)(s) exists and is

lim

s→x
(fg)(s) = lim

s→x
f(s) · lim

s→x
g(s).

(4) (Reiproal Rule.) Let A ′ = {s ∈ A : g(s) 6= 0}. If x is approahable

from A ′
and lims→x g(s) 6= 0 then lims→x(1/g)(s) exists and is

lim

s→x
(1/g)(s) = 1/ lim

s→x
g(s).

(5) (Quotient Rule.) Let A ′ = {s ∈ A : g(s) 6= 0}. If x is approahable

from A ′
and lims→x g(s) 6= 0 then lims→x(f/g)(s) exists and is

lim

s→x
(f/g)(s) = lim

s→x
f(s)/ lim

s→x
g(s).

The reader is reminded that the boxed formulas apply only when the limits

on their rights sides exist (and are nonzero when neessary).
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Proof. (Sketh.) Eah of these follows immediately from the orresponding

progenitive rule for sequene limits. However, the yoga of the grammar is

elaborate enough to all for an example. So, let

ℓ = lim

s→x
f(s), m = lim

s→x
g(s).

Let (sn) be any sequene in A that approahes x. Then from De�nition 4.1.2,

lim

n
(f(sn)) = ℓ, lim

n
(g(sn)) = m.

To prove the Sum Rule for funtions, note that by the Sum Rule for sequenes,

also

lim

n
(f(sn) + g(sn)) = ℓ+m,

whih is to say, by de�nition of the funtion f+ g,

lim

n
((f+ g)(sn)) = ℓ+m.

Beause this last display is valid for every sequene (sn) in A that ap-

proahes x, De�nition 4.1.2 now gives the Sum Rule for funtions,

lim

s→x
(f+ g)(s) = ℓ+m.

The other parts of the proposition are proved virtually identially. ⊓⊔
For example, onsider any rational funtion

f : A −→ R, f = g/h,

where g is a polynomial and h is a polynomial other than the zero polynomial,

and A = {x ∈ R : h(x) 6= 0}. Beause h has only �nitely many roots, any point

x ∈ A is approahable from A. In onsequene of the proposition,

lim

s→x
f(s) = f(x).

4.1.4 Order Function Limit Rules

Proposition 4.1.7 (Inequality Rule for Functions). Let A be a subset

of R, and onsider two funtions

f, g : A −→ R.

Suppose that the point x ∈ R is approahable from A, and that the limits

lims→x f(s) and lims→x g(s) exist. Suppose further that

f(s) ≤ g(s) for all s ∈ A.

Then

lim

s→x
f(s) ≤ lim

s→x
g(s).
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Proof. Take any sequene (sn) in A approahing x. Then limn(f(sn)) ex-

ists and equals lims→x f(s), and limn(g(sn)) exists and equals lims→x g(s).

Beause f(sn) ≤ g(sn) for eah n, the Inequality Rule for Sequenes gives

limn(f(sn)) ≤ limn(g(sn)). That is, lims→x f(s) ≤ lims→x g(s) as desired.

⊓⊔

Proposition 4.1.8 (Squeezing Rule for Functions). Let A be a subset

of R, and onsider three funtions

f, g, h : A −→ R.

Suppose that the point x ∈ R is approahable from A, and that the limits

lims→x f(s) and lims→x g(s) exist and are equal to a ommon value ℓ.

Suppose further that

f(s) ≤ h(s) ≤ g(s) for all s ∈ A.

Then lims→x h(s) also exists and equals ℓ.

Proof. Take any sequene (sn) in A approahing x. Then limn(f(sn)) exists

and equals lims→x f(s) = ℓ, and limn(g(sn)) exists and equals lims→x g(s) =

ℓ. Beause f(sn) ≤ h(sn) ≤ g(sn) for eah n, also limn(h(sn)) = ℓ by the

Squeezing Rule for Sequenes. This argument holds for all sequene (sn) in A

approahing x, and so lims→x h(s) = ℓ as desired. ⊓⊔

Analogues of various remarks about the Inequality Rule and the Squeezing

Rule for Sequenes apply to these rules for funtions as well. First, if g(s) ≥ 0

for all s ∈ A and lims→x g(s) exists then also lims→x g(s) ≥ 0. Seond, again

a point of the Squeezing Rule is that the middle limit exists. And third, the

hypothesis that f(s) ≥ g(s) (or f(s) ≤ h(s) ≤ g(s)) for all s ∈ A an be

weakened: the inequalities need to hold only for all s ∈ A lose enough to x.

But similarly to reindexing sequenes, we an shrink the domains of funtions,

and in partiular A an be made small enough so that the additional fussing

required to quantify and trak the lose enough to x through statements and

proofs is not worth the e�ort.

The basi funtion limit rules and progenitive funtion limit rules have

been established by working with De�nition 4.1.2 of a funtion limit as the

ommon value of all relevant sequene limits. But now that some funtion

limit rules are in plae, the idea is to use them whenever we an do so rather

than making unneessary further arguments that refer bak to the de�nition

and universalize over sequenes. The proess here is similar to establishing

properties of the absolute value that make no referene to ases and then

using the properties with no further referene to the asewise de�nition. And

it is similar to reasoning about sequenes by reourse to the sequene limit
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rules rather than the de�nition of a sequene limit. Often in mathematis, we

want our de�nition to give rise quikly to desirable, handy onsequenes that

we an then use and build on further, with little need to work diretly with

the de�nition thereafter.

4.2 The Derivative

4.2.1 Definition of the Derivative

Definition 4.2.1 (Derivative). Let

f : A −→ R

be a funtion. Let x be a point of A that is approahable from A. Let

A6=x = {s ∈ A : s 6= x}.

Consider an auxiliary funtion

g : A6=x −→ R, g(s) =
f(s) − f(x)

s− x
.

If the funtion limit

lim

s→x
g(s) = lim

s→x

f(s) − f(x)

s− x

exists, then its value is the derivative of f at x, denoted f ′(x). That is,

f ′(x) = lim

s→x

f(s) − f(x)

s− x
, if the limit exists.

If f ′(x) exists then f is differentiable at x.

Exercise

4.2.1. Let R 6=0 = {s ∈ R : s 6= 0}. Consider the funtion

g : R 6=0 −→ R, g(s) =
|s|− |0|

s− 0
.

(a) De�ne a sequene in R 6=0, (sn) = (1/n). Does limn(sn) exist? If so,

what is it?

(b) De�ne a sequene in R 6=0, (sn) = (−1/n). Does limn(sn) exist? If so,

what is it?

() Is the absolute value funtion di�erentiable at 0? Explain.
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4.2.2 A Consequence Worth Noting Immediately

Proposition 4.2.2. Let A be a subset of R, let x be a point of A, and

suppose that the funtion

f : A −→ R
is di�erentiable at x. Then

lim

s→x
f(s) = f(x).

Exercise

4.2.2. Use progenitive funtion limit rules to prove Proposition 4.2.2. The

argument ould start from the fat that for s 6= x,

f(s) − f(x) =
f(s) − f(x)

s− x
· (s− x),

and the argument should address the existene issue.

4.2.3 The Derivative and the Tangent Line

The notion of a tangent slope as a limit of seant slopes is unsatisfying. Yes,

the formula

f ′(x) = lim

s→x

f(s) − f(x)

s− x

enodes the idea of the derivative as the limit of the seant slopes, but alling

the left side of the display the tangent slope �nesses the question of what

the tangent slope really is oneptually, of why the limit gives us something

that we already are about rather than something on whih we bestow a

geometrially suggestive name to make ourselves are about it. Perhaps the

tangent line is somehow the limit of the seant lines, and perhaps it follows

that the tangent slope is the limit of the seant slopes, but any suh argument

is well beyond the sope of our grammar.

As a better formulation, a reharaterization of the derivative de�nition|

really just a small algebrai rearrangement|gives us the quantitative lan-

guage to show that the derivative has a property that aptures the idea of

tangent slope analytially .

Proposition 4.2.3 (Recharacterization of the Derivative). Let A be a

subset of R. Let f : A −→ R be a funtion. Consider a point x ∈ A that

is approahable from A. Then for any real number ℓ,

f ′(x) exists and equals ℓ ⇐⇒ lim

s→x

f(s) − f(x) − ℓ(s− x)

s− x
= 0.
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Proof. Given ℓ, ompute for any s ∈ A suh that s 6= x,

f(s) − f(x)

s− x
− ℓ =

f(s) − f(x) − ℓ(s− x)

s− x
.

The result follows immediately. ⊓⊔

To apply the proposition, set up its environment by taking a subset A

of R, a funtion f : A −→ R, and a point x ∈ A that is approahable from A.

For any real number ℓ, the funtion

Lℓ : R −→ R, Lℓ(s) = f(x) + ℓ(s− x)

is the funtion whose graph is the line through the point (x, f(x)) having

slope ℓ. The quantity

f(s) − Lℓ(s) = f(s) − f(x) − ℓ(s− a), s ∈ A

is the vertial distane between the graph of f and Lℓ over points s ∈ A.

Assuming that lims→x f(s) = f(x), we have

lim

s→x
(f(s) − Lℓ(s)) = lim

s→x
(f(s) − f(x)) − lim

s→x
ℓ(s− a) = 0− 0 = 0.

That is, the vertial distane over s between the graph and the line goes to 0

as s moves toward x. But by the proposition, only when f ′(x) exists and ℓ

is set to f ′(x) do we also have

lim

s→x

f(s) − Lℓ(s)

s− x
= 0.

That is:

Only when f ′(x) exists is there a line through (x, f(x)) that �ts the

graph of f so well that the vertial distane from the graph to the

line tends to 0 faster than s−x as s tends to x. The line is unique,

and its slope is f ′(x).

In other words, we now have an analyti desription of the tangent line to

the graph of f at the point (x, f(x)). It is the best-�tting line , in the sense

just quanti�ed in the displayed text. These ideas lead onward to a geometri

desription of the tangent line, to be presented in the following exerise.

Exercise

4.2.3. Let A be a subset of R, let f : A −→ R be a funtion, and suppose

that f is di�erentiable at the point x of A. For any real number ℓ, de�ne a

funtion (as in the setion)
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Lℓ : R −→ R, Lℓ(s) = f(x) + ℓ(s− x).

(a) Show that

lim

s→x

(
f(s) − f(x) − ℓ(s− x)

s− x

)
= f ′(x) − ℓ.

(b) Suppose that ℓ < f ′(x), so that f ′(x)−ℓ > 0. What does the limit in (a)

say about the vertial di�erene f(s) − Lℓ(s) for all s lose enough to x suh

that s > x? What does this say about the graphs of Lℓ and f in relation to

one another near (x, f(x))? What does the limit in (a) say about the vertial

di�erene f(s) − Lℓ(s) for all s lose enough to x suh that s < x? What does

this say about the graphs of Lℓ and f in relation to one another near (x, f(x))?

() Now suppose that ℓ > f ′(x), so that f ′(x) − ℓ < 0. Now what holds for

the graphs of Lℓ and f in relation to one another near (x, f(x))?

(d) Let x be a point of A suh that there exist other points s of A as lose

to x as desired with s < x, and there exist other points s of A as lose to x as

desired with s > x. Complete the following sentene by replaing eah of X,

Y, Z and W by \above" or \below": This exerise has shown that f ′(x) is

plausibly the tangent slope of the graph of f at (x, f(x)) in the geometri

sense that any line through (x, f(x)) with shallower slope uts the graph

there from X to Y moving left to right, while any line through (x, f(x))

with steeper slope uts the graph from Z to W moving left to right .

(e) What needs to be said, similarly to (d), if x is a point of A that

is approahable from A only from the right? Same question but with left

instead of right .

4.2.4 A Basic Derivative: the Power Function Revisited

To apply the de�nition of the derivative to the power funtion from hapter 2,

fα : R>0 −→ R, fα(x) = xα (where α ∈ Q),

�rst let

R+
6=1 = {s ∈ R>0 : s 6= 1},

and onsider the funtion

g : R+
6=1 −→ R, g(s) =

fα(s) − fα(1)

s− 1
.

Consider any sequene (sn) in R+
6=1 that approahes 1. This is exatly the

sort of sequene required by Proposition 3.3.1 (page 100), whih says that for

any suh sequene,

lim

n
(g(sn)) = α.
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That is, f ′α exists at x = 1 and is f ′α(1) = α.

For general x ∈ R>0 rather than x = 1, de�ne

R+
6=x = {s ∈ R>0 : s 6= x},

and onsider the funtion

h : R+
6=x −→ R, h(s) =

fα(s) − fα(x)

s− x
.

Then by a little algebra as on page 46 (exerise 4.2.4(a)),

h(s) = xα−1g(t) where t = s/x. (4.3)

It follows (exerise 4.2.4(b)) that, as we found less formally in setion 2.4,

lim

s→x
h(s) = αxα−1.

That is, for eah x ∈ R>0, f
′
α(x) exists and is αfα−1(x). And so:

For α ∈ Q, f ′α = αfα−1.

Beause the power funtion is di�erentiable, it follows as a speial ase of

Proposition 4.2.2 (page 131) that also:

For α ∈ Q and x ∈ R>0, lim

s→x
fα(s) = fα(x).

In the previous paragraph, if α is an integer, then the argument applies to

any nonzero x ∈ R, not only to x ∈ R>0. If α is a nonnegative integer then

a straightforward argument shows diretly that f ′α(0) = αfα−1(0), provided

that we understand 0 · f−1 to take the value 0 at x = 0. (exerise 4.2.5). If

α ∈ Q≥0 is a nonnegative rational number that isn't an integer, and s ∈ R>0,

then

fα(s) − fα(0)

s− 0
=

sα

s
= sα−1,

and so, aording to Proposition 4.1.5, f ′α(0) = 0 if α > 1 but f ′α(0) does not

exist if 0 < α < 1. In sum:

Proposition 4.2.4 (Derivative of the Power Function). Let α be a ra-

tional number. Take the domain of fα to be






R if α ∈ Z≥0,

R 6=0 if α ∈ Z≤−1,

R≥0 if α ∈ Q≥0 but α /∈ Z≥0,

R>0 if α ∈ Q<0 but α /∈ Z≤−1.
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Then the formula

f ′α = αfα−1,

holds everywhere on the domain of fα unless 0 ≤ α < 1, in whih ase it

holds everywhere on the domain of f exept at x = 0. For α = 0, we have

f ′0(0) = 0. For 0 < α < 1, f ′α(0) does not exist.

Beause 0 · f−1(x) = 0 for all x 6= 0, sometimes the boxed formula is

understood to enompass the ase α = 0 and x = 0, i.e., 0·f−1(0) is understood

to mean 0. This is not stritly orret: f−1(0) does not exist. What is orret

is that lims→0 0 · f−1(s) = 0, and so in some sense 0 · f−1 should take the

value 0 at x = 0.

At the purely proedural level, the boxed formula says that to di�eren-

tiate the power funtion, bring the power down in front and redue it by

one in the exponent . This is indeed the proedure, but the reader should be

aware that there even though the proedure is easy, there is substane to the

result.

Corollary 4.2.5. Let α be a rational number, and let x be any element of

the domain of fα. Then

lim

s→x
fα(s) = fα(x).

Proof. This follows from the proposition unless 0 < α < 1 and x = 0. These

exeptional ases are overed by Proposition 4.1.5 (page 125). ⊓⊔

We end the setion with one more derivative result. Exerise 4.2.7 is to

give a sketh of the proof.

Proposition 4.2.6 (Derivative of the Absolute Value Function Away

From Zero ). Let R 6=0 = {x ∈ R : x 6= 0}. Consider the funtion

f : R 6=0 −→ R, f(x) = |x|.

This funtion is di�erentiable and its derivative is

f ′(x) =

{
1 if x > 0,

−1 if x < 0.

Exercises

4.2.4. (a) Establish (4.3).

(b) Explain arefully why onsequently lims→x h(s) = αxα−1
.
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4.2.5. Let α be a nonnegative integer. Show that f ′α(0) = αfα−1(0), provided

that we understand 0 · f−1(0) to be 0.

4.2.6. Explain (an informal explanation is �ne) why it follows from Proposi-

tion 4.2.4 and the various funtion limit results in this hapter that for any

algebrai funtion f : A −→ R (see page 63) and any x ∈ A that is approah-

able from A,

lim

s→x
f(s) = f(x).

4.2.7. Sketh a proof of Proposition 4.2.6. Your argument should not involve

any detail-work, but rather it should explain why for x > 0 the issue redues to

the derivative of a power funtion while for x < 0 it redues to the derivative

of the negative of a power funtion. For now, ite the fat (to be proved in

the next setion) that the derivative of the negative is the negative of the

derivative.

4.2.5 Progenitive Derivative Rules

We have omputed only one derivative so far, the derivative of the power

funtion. Soon we will ompute other spei� derivatives. But in addition

to omputing the derivatives of partiular funtions, we an also ompute

the derivatives of ombinations of funtions progenitively, assuming that we

already know the derivatives of the funtions individually.

Theorem 4.2.7 (Progenitive Derivative Rules). Let A be a subset

of R, and onsider two funtions

f, g : A −→ R.

Let c ∈ R be any number. Suppose that f ′ and g ′
exist on A. Also, let

A ′ = {x ∈ A : g(x) 6= 0} and suppose that f ′ and g ′
exist on A ′

. Then

(1) (Sum/Di�erene Rule.) (f ± g) ′ exists on A and is (f ± g) ′ = f ′ ± g ′
.

That is,

(f± g) ′(x) = f ′(x)± g ′(x) for all x ∈ A.

(2) (Constant Multiple Rule.) (cf) ′ exists on A and is (cf) ′ = cf ′. That is,

(cf) ′(x) = c · f ′(x) for all x ∈ A.

(3) (Produt Rule.) (fg) ′ exists on A, and is (fg) ′ = fg ′ + f ′g. That is,

(fg) ′(x) = f(x)g ′(x) + f ′(x)g(x) for all x ∈ A.
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(4) (Reiproal Rule.) (1/g) ′ exists on A ′
and is (1/g) ′ = −g ′/g2

. That

is,

(1/g) ′(x) = −
g ′(x)

g(x)2
for all x ∈ A ′.

(5) (Quotient Rule.) (f/g) ′ exists on A ′
and is (f/g) ′ = (f ′g − fg ′)/g2

.

That is,

(f/g) ′(x) =
f ′(x)g(x) − f(x)g ′(x)

g(x)2
for all x ∈ A ′.

Regarding the hypotheses of the theorem, in fat f ′ and g ′
are guaranteed

to exist on A ′
, but showing this right now would take us too far a�eld. As

with the progenitive funtion limit rules, the reader is reminded that the

boxed formulas apply only when the derivatives on their right sides exist.

Proof. (1) To prove the Sum Rule, ompute for any x ∈ A that

(f+ g)(s) − (f+ g)(x)

s− x
=

f(s) + g(s) − f(x) − g(x)

s− x

=
f(s) − f(x)

s− x
+

g(s) − g(x)

s− x
.

The quotients on the right side have limits f ′(x) and g ′(x) individually as s

tends to x, and so their sum has limit f ′(x) + g ′(x).

(2) The proof of the Constant Multiple Rule is very similar to the proof

of the Sum/Di�erene Rule.

(3) To prove the Produt Rule, we �rst need to reall that by Proposi-

tion 4.2.2 (page 131), for any x ∈ A, beause f ′(x) exists, lims→x f(s) exists

and is f(x). Now ompute that

(fg)(s) − (fg)(x)

s− x
=

f(s)g(s) − f(x)g(x)

s− x

=
f(s)g(s) − f(s)g(x) + f(s)g(x) − f(x)g(x)

s− x

= f(s)
g(s) − g(x)

s− x
+

f(s) − f(x)

s− x
g(x).

By various funtion limit rules, the right side has the desired limit as s tends

to x.

(4) For the Reiproal Rule, suppose that x ∈ A ′
. Then

(1/g)(s) − (1/g)(x)

s− x
=

1/g(s) − 1/g(x)

s− x
=

g(x) − g(s)

s− x
· 1

g(s)g(x)
.
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As s tends to x, the �rst quotient has limit −g ′(x) and the seond has

limit 1/g(x)2, giving the result. Beause g ′(x) exists, lims→x g(s) = g(x)

(again by Proposition 4.2.2) and so beause g(x) is nonzero, also g(s) is

nonzero for s-values lose to x. That is, we needn't worry about dividing

by 0 somewhere in this argument.

(5) Finally, the Quotient Rule follows from the Produt Rule and the

Reiproal Rule beause f/g = f · 1/g. ⊓⊔

The most important progenitive derivative rule is alled the Chain Rule.

Given two funtions where the odomain of the �rst is the domain of the

seond,

f : A −→ B and g : B −→ C,

their composition is

g ◦ f : A −→ C, (g ◦ f)(x) = g(f(x)).

Atually, the omposition is sensible as long as the range f(A) of A is a subset

of the domain B of g, beause then we may respeify the odomain of f to

be B.

For example, given two rational power funtions on the positive real num-

bers,

fα, fβ : R>0 −→ R>0,

their omposition is

(fβ ◦ fα)(x) = fβ(fα(x)) = (xα)β = xαβ, x ∈ R>0,

whih is to say that their omposition is

fβ ◦ fα = fαβ : R>0 −→ R>0.

The Chain Rule says that the derivative of the omposition at x, i.e.,

(g ◦ f) ′(x), is the produt of g ′(f(x)) and f ′(x), assuming that these both

exist. A seond reharaterization of the derivative helps to prove the Chain

Rule smoothly.

Proposition 4.2.8 (Second Recharacterization of the Derivative).

Consider a funtion f : A −→ R. Let x ∈ A be approahable from A.

Then for any real number ℓ,

f ′(x) exists and equals ℓ

if and only if there is a funtion q : A −→ R suh that

f(s) = f(x) +
(
ℓ+ q(s)

)
· (s− x) where lim

s→x
q(s) = 0 and q(x) = 0.
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Proof. Suppose that f ′(x) exists and equals ℓ. De�ne

q(s) =






f(s) − f(x)

s− x
− ℓ if s 6= x,

0 if s = x.

Then f(s) = f(x)+
(
ℓ+q(s)

)
·(s−x) for s 6= x and for s = x. Beause f ′(x) = ℓ

it follows that lims→x q(s) = 0. And q(x) = 0, so q has the desired properties.

Conversely, suppose that suh a funtion q exists. Then for all s ∈ A suh

that s 6= x we have

f(s) − f(x)

s− x
= ℓ+ q(s),

and so

lim

s→x

f(s) − f(x)

s− x
= lim

s→x
(ℓ+ q(s)) = ℓ.

That is, f ′(x) exists and equals ℓ. ⊓⊔

Now the Chain Rule an be proved.

Theorem 4.2.9 (Chain Rule). Let A, B, and C be subsets of R. Con-

sider two funtions

f : A −→ B and g : B −→ C.

Let x be a point of A. Suppose that f is di�erentiable at x and g is

di�erentiable at f(x). Then the omposition g ◦ f is di�erentiable at x,

and its derivative there is

(g ◦ f) ′(x) = g ′(f(x)) · f ′(x).

Consequently, if f is di�erentiable on A and g is di�erentiable on f(A),

then g ◦ f is di�erentiable on A with derivative

(g ◦ f) ′ = (g ′ ◦ f) · f ′ : A −→ R.

Proof. Introdue the symbols ℓ = f ′(x) and y = f(x) and m = g ′(y) =

g ′(f(x)). We know that for s ∈ A,

f(s) = f(x) +
(
ℓ+ q(s)

)
· (s− x), lim

s→x
q(s) = 0 = q(x), (4.4)

and that for t ∈ B,

g(t) = g(y) +
(
m+ r(t)

)
· (t− y), lim

t→y
r(t) = 0 = r(y). (4.5)

And we need to show that for s ∈ A,
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(g ◦ f)(s) = (g ◦ f)(x) +
(
mℓ+ ~q(s)

)
· (s− x), lim

s→x
~q(s) = 0 = ~q(x).

Compute for s ∈ A that by the de�nition of omposition and then by (4.4),

(g ◦ f)(s) = g(f(s)) = g
(
f(x) + (ℓ+ q(s)) · (s− x)

)
.

That is, (g ◦ f)(s) = g(t) where t = y+ (ℓ+ q(s)) · (s− x). Now (4.5) gives

(g ◦ f)(s) = g(y) +
(
m+ r(t)

)
· (t− y)

= g(y) +
(
m+ r(t)

)
· (ℓ+ q(s)) · (s− x)

= g(y) +
(
mℓ+ r(t)ℓ+ (m+ r(t))q(s)

)
· (s− x).

So, beause g(y) = g(f(x)) = (g ◦ f)(x), we have

(g ◦ f)(s) = (g ◦ f)(x) + (mℓ+ ~q(s))(s− x),

where

~q(s) = r(t)ℓ+
(
m+ r(t)

)
q(s), t = y+ (ℓ+ q(s)) · (s− x). (4.6)

What needs to be shown is that lims→x ~q(s) = 0 and ~q(x) = 0. We have

from (4.4)

lim

s→x
q(s) = 0,

so that onsequently, using the de�nition of t in (4.6),

lim

s→x
t = y,

and so, beause s → x now gives t → y or t = y, we have from (4.5)

lim

s→x
r(t) = 0,

and so altogether, using the de�nition of ~q in (4.6),

lim

s→x
~q(s) = 0.

Also ~q(x) = r(y)ℓ+ (m+ r(y))q(x) = 0ℓ+ (m+ 0)0 = 0. This ompletes the

argument. ⊓⊔

A seemingly more natural way to go about proving the Chain Rule is by

writing for s 6= x in A,

(g ◦ f)(s) − (g ◦ f)(x)
s− x

=
g(f(s)) − g(f(x))

f(s) − f(x)
· f(s) − f(x)

s− x
,

or, letting t = f(s) and y = f(x),
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(g ◦ f)(s) − (g ◦ f)(x)
s− x

=
g(t) − g(y)

t− y
· f(s) − f(x)

s− x
.

Beause f ′(x) exists, Proposition 4.2.2 says that lims→x t = y. And so, seem-

ingly,

lim

s→x

(g ◦ f)(s) − (g ◦ f)(x)
s− x

= lim

s→x

(
g(t) − g(y)

t− y
· f(s) − f(x)

s− x

)

= lim

t→y

g(t) − g(y)

t− y
· lim
s→x

f(s) − f(x)

s− x

= g ′(y) · f ′(x) = g ′(f(x)) · f(x).

The problem with this argument is that it assumes that f(s) 6= f(x), i.e.,

that t 6= y. The exeptional ase when s 6= x but f(s) = f(x) needs to be

addressed separately, ausing lutter in the seemingly more natural approah.

Our method of proving the Chain Rule skirts this issue by working in a setting

that doesn't involve denominators.

Exercises

4.2.8. (a) Prove the Constant Multiple Rule.

(b) Prove the Quotient Rule.

4.2.9. (a) Consider the funtion

f1 : R −→ R, f1(x) = x.

Prove from srath that its derivative is

f ′1 = f0 : R −→ R, f0(x) = 1.

(b) Use only the result from (a) and the Produt Rule for derivatives to

prove that beause f2 = f1 · f1, it follows that f ′2 = 2f1.

() Use only the results from (a) and (b) and the Produt Rule to prove

that f ′3 = 3f2. Convine yourself that this proess extends to the rule f ′n =

nfn−1 for all n ∈ Z≥1.

(d) Use the result from (a) and the Reiproal Rule for derivatives to prove

that beause f−n = 1/fn for all n ∈ Z≥1 (now restriting the domain to the

set of nonzero real numbers), it follows that f ′−n = −nf−n−1. That is, the

derivative of the power funtion for integer exponents follows from the result

in (a) and progenitive derivative rules,

f ′n = nfn−1 for all n ∈ Z.

(e) Imagine that we know f1/2 to be di�erentiable, but we don't know its

derivative. Di�erentiate both sides of the relation
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f1 = f1/2 · f1/2,

applying the Produt Rule to the right side to obtain an expression involving

f1/2 and the extant-but-unknown derivative f ′1/2. Solve the resulting equality

to �nd f ′1/2. Note, however, that this proess does not prove that f1/2 is

di�erentiable.

4.2.10. Let p(x) be a polynomial. Explain why di�erentiating p(x) some �nite

number of times yields the zero funtion.

4.2.11. Let n be a nonnegative integer and let

h(x) = x+ x2 + x3 + · · ·+ xn.

Repeatedly apply the Sum Rule for derivatives and the power funtion deriva-

tive formula to get

h ′(x) = 1+ 2x+ 3x2 + · · ·+ nxn−1.

But also, fatoring out a power of x and then using the �nite geometri sum,

h(x) = (1+ x+ x2 + · · ·+ xn−1)x =
xn − 1

x− 1
x, x 6= 1.

Thus h(x) = f(x) · g(x) where f(x) = xn − 1 and g(x) = x/(x− 1), and so the

Produt Rule for derivatives gives

h ′(x) = f ′(x)g(x) + f(x)g ′(x), x 6= 1.

Show that this formula says

1+ 2x+ 3x2 + · · ·+ nxn−1 =
nxn

x− 1
−

xn − 1

(x− 1)2
, x 6= 1.

4.2.12. Let f : R −→ R be any funtion. What an be said about the om-

positions f0 ◦ f, f1 ◦ f, f ◦ f0, and f ◦ f1, where f0 : R −→ R and f1 : R −→ R
are the usual power funtions?

4.2.13. Let a, b, c, and d be real numbers, with c and d positive. Let α and β

be rational numbers. De�ne

f : R>0 −→ R, f =
a+ bfα

c+ dfβ
.

Compute the derivative f ′.
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4.2.14. (a) Let a and b be positive real numbers. Let α and γ be rational

numbers. De�ne

f : R>0 −→ R, f = (a+ bfα)
γ.

Compute the derivative f ′.

(b) Let a, b, c, and d be positive real numbers. Let α, β, and γ be rational

numbers. De�ne

f : R>0 −→ R, f =

(
a+ bfα

c+ dfβ

)γ
.

Compute the derivative f ′.

4.3 Summary

The underlying onepts of sequene limit and funtion limit provide us with

an environment to study integrals and derivatives. So far we have studied

the alulus of only one funtion, the rational power funtion. The next three

hapters will de�ne, integrate, and di�erentiate more funtions: the logarithm,

the exponential, the osine and the sine.
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The Logarithm Function

The logarithm is de�ned as an area, an integral of the reiproal funtion f−1.

In setion 2.5 we integrated the rational power funtion fα for α 6= −1, but

exerise 2.3.6 showed that our methods for doing so fail for the reiproal

funtion. That is, the methods of hapter 2 will not alulate the logarithm.

In fat, the logarithm is not an algebrai funtion, and so hoping for it to have

a formula that we an study algebraially is futile. Nonetheless, we an analyze

its properties, and we an di�erentiate and integrate it. In the proess, we will

expand our notion of integration, no longer requiring that the endpoints of

integration be in inreasing order, and no longer requiring that the funtion

being integrated be nonnegative.

Setion 5.1 de�nes the logarithm and establishes its important proper-

ties. Setion 5.2 shows that although the logarithm grows without bound, it

grows very slowly. Setion 5.3 omputes the derivative of the logarithm, and

setion 5.4 integrates the logarithm. Setion 5.5 generalizes ideas that have

emerged during the ourse of the hapter to extend integration to funtions

that aren't neessarily nonnegative and to endpoints that aren't neessarily

in inreasing order, and then re-establishes some of our earlier integration

results.

5.1 Definition and Properties of the Logarithm

5.1.1 Integration With Out-of-Order Endpoints

Definition 5.1.1 (Integral With Out-of-Order Endpoints). Let a and b

be real numbers with b < a. Let M ≥ 0 be any nonnegative real number.

Let

f : [b, a] −→ [0,M]
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be an integrable funtion. Then the integral of f from a to b is de�ned

to be ∫b

a

f = −

∫a

b

f.

That is, if the endpoints a and b are out of order then the integral from a

to b is the negative of the integral from b to a, where b and a are in order.

For example, let α ∈ Q, α 6= −1, and let 0 < b ≤ a. Let M be the

maximum of fα(a) and fα(b), so that we an onsider the funtion

fα : [b, a] −→ [0,M].

Its integral from a to b is, by De�nition 5.1.1 and then (2.7) (page 53),

∫b

a

fα = −

∫a

b

fα = −

(
aα+1 − bα+1

α+ 1

)
=

bα+1 − aα+1

α+ 1
.

That is, the formula in (2.7) holds regardless of whether a and b are in order,

∫b

a

fα =
bα+1 − aα+1

α+ 1
α ∈ Q, α 6= −1, a, b ∈ R>0. (5.1)

The formula is symbolially robust , even though it no longer represents area

(whih is always nonnegative) when b < a.

Exercise

5.1.1. Let a and b be real numbers with a ≤ b. Consider two integrable

funtions

f : [a, b] −→ [0,M], g : [a, b] −→ [0,N],

and let c ∈ R≥0 be a nonnegative real number. Aording to Proposi-

tion 3.3.13 (page 116), the funtions f+ g and cf are integrable, and

∫b

a

(f+ g) =

∫b

a

f+

∫b

a

g,

∫b

a

(cf) = c

∫b

a

f.

Show that these formulas still hold if instead b < a and the funtions f and g

have domain [b, a].

5.1.2 The Fundamental Theorem of Calculus

As another omment on formula (5.1), again given α ∈ Q, α 6= −1, onsider

the funtion

F : R>0 −→ R, F = fα+1/(α+ 1).
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Then F ′ = fα, and the formula rewrites as

∫b

a

fα = F(b) − F(a), α ∈ Q, α 6= −1, a, b ∈ R>0. (5.2)

This is an instane of the Fundamental Theorem of Calulus . The theorem

says that under appropriate irumstanes, the integral of the derivative is

the di�erene of the derivatand's values at the endpoints.

5.1.3 Definition of the Logarithm

We now use alulus to de�ne a funtion.

Definition 5.1.2 (Logarithm). The logarithm function,

ln : R>0 −→ R,

is de�ned as follows: For any x ∈ R>0,

ln(x) =

∫x

1

f−1.

In words, the logarithm of x is the integral of the reiproal funtion

from 1 to x.

De�nitions 5.1.1 and 5.1.2 ombine to say that ln(x) is positive for x > 1

but negative for 0 < x < 1. Figure 5.1 shows a portion of the y = 1/x graph

together with the orresponding portion of the y = ln(x) graph. The key to

understanding the �gure is to realize that the height of the y = ln(x) graph

is the area under the y = 1/x graph from 1 to x if x ≥ 1, and the negative

of the area if 0 < x < 1. Thus the y = ln(x) graph lies below the x-axis to the

left of the vertial line x = 1.

5.1.4 The Key Property of the Logarithm

Theorem 5.1.3 (The Logarithm Converts Multiplication to Addi-

tion). For all positive real numbers a and b,

ln(ab) = ln(a) + ln(b).

Proving this theorem spot-on requires some are, and it also requires mov-

ing from geometri intuition to algebrai intuition, guided by natural lan-

guage. We begin with a generality before proeeding to spei�s. This tidies

the exposition.
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Figure 5.1. The reiproal funtion and the logarithm funtion

5.1.5 Proof of the Key Property: A Generality

Let I be a nonempty interval in R, letM ≥ 0 be any nonnegative real number,

and onsider any funtion

f : I −→ [0,M],

integrable or not. Let a and b be any two points of I. If a and b are in order,

i.e., if a ≤ b, then we have a good visual sense of the area under the urve

y = f(x) from a to b. As before, let Arba(f) denote this area. Thus

For a ≤ b, Arba(f) is the area over [a, b] and under the graph of f.

This notion of Ar

b
a(f) is geometrially intuitive, but it is symbolially fragile

beause it relies on the side ondition a ≤ b. It would be unsustainable to ver-

ify the side ondition every time that we make referene to a quantity Ar

b
a(f).

But for now, we must. (Certainly we may not assume that whenever two

letters represent numbers, the earlier letter in the alphabet is guaranteed to

represent the smaller of the two numbers.) So, to make the expression Ar

b
a(f)

symbolially robust, extend its de�nition as follows:

If a > b then Ar

b
a(f) = −Arab(f). (5.3)

For integrable funtions, this repeats De�nition 5.1.1, but the de�nition here

is more general beause f need not be integrable. This extended de�nition

of Ar

b
a(f) may not feel entirely lear or natural geometrially, but it is utterly

platoni symbolially. An immediate onsequene of the de�nition is that
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Ar

a
b(f) = −Arba(f) for all a, b ∈ I. (5.4)

Indeed, if a ≥ b then (5.4) simply repeats (5.3), while if a < b then (5.4)

follows from (5.3) with the roles of a and b reversed (exerise 5.1.2).

A onsequene of (5.4) is that

For all a, b, c ∈ I, Ar

b
a(f) + Ar

c
b(f) = Ar

c
a(f). (5.5)

The all in (5.5) onnotes that the equality holds regardless of the order of

a, b, and c. Proving this amounts to verifying that all six ases redue bak

to the natural ase where a ≤ b ≤ c, when (5.5) holds for geometri reasons

(see �gure 5.2) beause our area funtion, whatever it is, has sensible basi

properties. Life is too short to arry out all �ve other ases, so we ontent

ourselves with working one of them, hosen at random, to get a sense of all

�ve arguments. For example, suppose that b ≤ c ≤ a. Then

Ar

b
a(f)+Ar

c
b(f)

= −Arab(f) + Ar

c
b(f) by (5.4)

= −(Arcb(f) + Ar

a
c (f)) + Ar

c
b(f) by (5.5) with b, c, a for a, b, c

= −Arac (f) beause two of the terms anel

= Ar

c
a(f) by (5.4).

To repeat, nothing in this proof of (5.5) is related to integrability.
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a(f): the obvious ase
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Exercises

5.1.2. Carefully explain the statement in the text that if a < b then (5.4)

follows from (5.3) with the roles of a and b reversed.

5.1.3. Choose another ordering of a, b, and c, and redue the equality in (5.5)

to the ase that the three points are in order.

5.1.6 Proof of the Key Property: A Specific Argument

Now we return to studying areas under the graph of one partiular funtion,

the reiproal funtion on the positive real numbers,

f−1 : R>0 −→ R, f(x) = 1/x.

If we restrit f to any losed subinterval I = [A,B] or I = [A,∞) of its domain,

then neessarily A > 0 and we an set M = 1/A to get

f−1 : I −→ [0,M].

Thus the restrition of the reiproal funtion to I falls under the previous

general disussion. However, the power funtion f−1 is monotoni, and hene,

beyond the previous generalities, it is integrable. For this reason, we write

\

∫
" rather than \Ar" in the following disussion. As in De�nition 5.1.1, for

any positive a and b,

∫b

a

f−1 = −

∫a

b

f−1 if a > b. (5.6)

And (5.5) implies

For all a, b, c ∈ R>0,

∫b

a

f−1 +

∫c

b

f−1 =

∫c

a

f−1. (5.7)

Reall that Proposition 2.5.1 (page 51) showed that for any α ∈ Q,

If b ≥ 1 and c > 0 then

∫bc

c

fα = cα+1

∫b

1

fα.

The idea was that saling a box horizontally by the fator c sales it vertially

by cα, thus giving an area-saling fator of cα+1
. In the speial ase α = −1,

i.e., in the ase of the reiproal funtion, the area-saling fator is trivial,

If b ≥ 1 and c > 0 then

∫bc

c

f−1 =

∫b

1

f−1. (5.8)
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So the mnemoni for (5.8) is that we may \anel" the c. (See �gure 5.3.

As before, the saled interval [c, bc], whih the �gure shows lying entirely

to the right of the original interval [1, b], an also lie to the right of the

original interval but with overlap, or to the left of the original interval but

with overlap, or entirely to the left of the original interval.)

If instead, 0 < b < 1, while still c > 0, then symboli reasoning shows

that the equality in (5.8) still holds, ourtesy of (5.6),

∫bc

c

f−1 = −

∫c

bc

f−1 by (5.6)

= −

∫ (1/b)bc

bc

f−1 and note that 1/b > 1

= −

∫1/b

1

f−1 by (5.8), \aneling" the bc

= −

∫ (1/b)b

b

f−1 by (5.8), \unaneling" a fator of b

=

∫b

1

f−1 by (5.6) again, beause (1/b)b = 1.

Beause the formula holds regardless of whether b ≥ 1 or 0 < b < 1, we have

shown:

For all b, c ∈ R>0,

∫bc

c

f−1 =

∫b

1

f−1. (5.9)
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Again, we have extended a formula to make it symbolially robust, even

though the generalized formula is no longer so intuitive geometrially in all

ases.

5.1.7 Proof of the Key Property: End of the Proof

Using formulas (5.7) and (5.9), ompute that for all a, b ∈ R>0,

∫ab

1

f−1 =

∫a

1

f−1 +

∫ab

a

f−1 by (5.7), with 1, a, ab as a, b, c

=

∫a

1

f−1 +

∫b

1

f−1 by (5.9), \aneling" the a.

In sum, we have established that

For all a, b ∈ R>0,

∫ab

1

f−1 =

∫a

1

f−1 +

∫b

1

f−1. (5.10)

But the natural logarithm is by de�nition

ln : R>0 −→ R, ln(x) =

∫x

1

f−1.

That is, formula (5.10) is preisely our desired result:

For all a, b ∈ R>0, ln(ab) = ln(a) + ln(b).

This ompletes the proof of Theorem 5.1.3.

5.1.8 Further Properties of the Logarithm

The remaining standard properties of the logarithm follow from its de�nition

and its key property of onverting multipliation to addition.

Theorem 5.1.4 (Properties of the Logarithm).

(1) ln(1) = 0.

(2) For all positive real numbers x and ~x,

ln(x~x) = ln(x) + ln(~x).

(3) For all positive real numbers x

ln(1/x) = − ln(x).

(4) For all positive real numbers x and ~x,

ln(x/~x) = ln(x) − ln(~x).
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(5) For all positive real numbers x and all rational numbers α,

ln(xα) = α ln(x).

Proof. (1) follows from the de�nition of the logarithm: ln(1) =
∫1
1
f−1 is the

area under the graph of the reiproal funtion from x = 1 to x = 1, i.e., it

is 0.

(2) is Theorem 5.1.3.

For (3), ompute that

ln(x) + ln(1/x) = ln(x · 1/x) by (2)

= ln(1)

= 0 by (1).

That is, ln(1/x) is the additive inverse of ln(x), as desired.

For (4), use (2) and (3),

ln(x/~x) = ln(x · 1/~x) = ln(x) + ln(1/~x) = ln(x) − ln(~x),

as asserted.

For (5), �rst let n ∈ Z≥1 be a positive integer. Then

ln(xn) = ln(x · x · · · x)
= ln(x) + ln(x) + · · ·+ ln(x) by repeated appliation of (2)

= n ln(x).

Note also that the formula ln(xn) = n ln(x) for n = 0 redues to 0 = 0, whih

ertainly is true. Next let n ∈ Z≤−1 be a negative integer. Beause −n ∈ Z≥1,

ln(xn) = ln((1/x)−n)

= −n ln(1/x) beause −n ∈ Z≥1

= −n · (− ln(x)) by (3)

= n ln(x).

Finally, let α = p/q where p and q are integers with q > 0. For any x ∈ R>0,

let ~x = x1/q. Then xα = ~xp and x = ~xq, and so

ln(xα) = ln(~xp) = p ln(~x), ln(x) = ln(~xq) = q ln(~x),

and onsequently

ln(xα) =
p

q
ln(x) = α ln(x).

This ompletes the argument. ⊓⊔
With the properties of the logarithm established, we an revisit the proof

of the nth Root Rule for sequenes, and we an prove the nth Power Rule

for sequenes diretly rather than by referene to the nth Root Rule (exer-

ise 5.1.4).
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Exercise

5.1.4. (a) Let b > 1 be a real number, and let ε > 0 be a real number. Show

that for any positive integer n,

b1/n − 1 < ε ⇐⇒ n >
ln(b)

ln(1+ ε)
.

Note that this fat gives another version of the part of the proof of Propo-

sition 3.2.8 (4) that overs the ase b > 1 (see page 80). Using a omputer,

hoose various values b > 0 and ε > 0 (with ε presumably small) to ompare

the new starting index N > ln(b)/ ln(1 + ε) from this exerise against the

starting index N > (b− 1)/ε in the original proof.

(b) Let r be a nonzero real number suh that |r| < 1, and let ε > 0 be a

real number. Show that for any positive integer n,

|r|n < ε ⇐⇒ n >
ln(ε)

ln(|r|)
.

Note that this fat gives another proof of Proposition 3.2.8 (5) (see page 80).

5.2 Logarithmic Growth

Beause 2 is bigger than 1, it follows that ln(2) is positive. And by the prop-

erties of the logarithm,

ln(4) = 2 ln(2),

ln(8) = 3 ln(2),

ln(16) = 4 ln(2),

and so on. It follows that as n grows large, so does ln(2n). However, the

sequene

(2n) = (2, 22, 23, 24, . . .)

is doubling at eah generation, growing faster and faster, whereas the orre-

sponding sequene of logarithms,

(ln(2n)) = (ln(2), 2 ln(2), 3 ln(2), 4 ln(2), . . .) = ln(2) · (n)

is growing steadily in proportion to the generation-ount. Both sequenes get

large with n, but apparently at di�erent rates.

Moving from a generation-ount n to a ontinuous variable x, any x ≥ 1

lies between 2n and 2n+1
for some n. Thus the ratio ln(x)/x is the quotient
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of two large numbers when x is large, so that we do not immediately know

how it behaves as x grows, but we suspet that

ln(x)

x
tends to 0 as x gets large.

In more suggestive notation, albeit involving a verboten symbol, we suspet

that

lim

x→∞

ln(x)

x
= 0.

(To make the notation sensible, de�ne for any funtion f : R>0 −→ R,

lim

x→∞

f(x) = lim

s→0
f(1/s).

That is, the left limit exists if the right limit does, in whih ase it takes its

value from the right limit.) To quantify our sense that the boxed statement

holds, �rst see �gure 5.4. Reall that ln x is the area under the y = 1/x urve

from 1 to x, the darker shaded area in the �gure. On the other hand, x itself

is the area of the box in the �gure, the remainder of whih is shaded more

lightly. As the box grows rightward, the darker shaded area beomes negligible

as a portion of the total shaded area.
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Figure 5.4. ln(x) as a portion of x

To further quantify the argument, see �gure 5.5. Again, ln(x) is the area

from 1 to x. Given ε > 0 (and also ε < 1: as usual, ε is a small positive num-

ber), this area is less than the area of the two boxes in the �gure, the exess

area being shown as lighter gray. Thus, for any x > 2/ε, whih presumably is

large, further enlarging the two boxes by extending eah of them leftward to

the y-axis gives the estimate

ln x <
2

ε
+

xε

2
.
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It follows that

ln(x)

x
<

1

x
· 2
ε
+

ε

2
,

and so, noting that if x > (2/ε)2 then 1/x < (ε/2)2,

ln(x)

x
< ε for all x > (2/ε)2.

Here x > (2/ε)2 presumably is very large. But suh large x gives ln(x)/x < ε

where ε > 0 was given to us, and so the desired onlusion follows.
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Figure 5.5. ln(x) is less than the two box-areas

Although the notion \x → ∞" is outside the sope of our formal argu-

ments, we an restrit the previous disussion from the ontinuous variable x

to a disrete variable n to get a formal result:

Proposition 5.2.1 (The Logarithm Grows Slowly). We have the se-

quene limit

lim

n

ln(n)

n
= 0.

Exercises

5.2.1. Let n be a positive integer. Draw a �gure that shows learly why boxes

of base 1 on the x-axis and heights 1, 1/2, 1/3, . . . have their tops above the

graph of the reiproal funtion f−1. Explain why this shows that
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1 > ln(2),

1+
1

2
> ln(3),

1+
1

2
+

1

3
> ln(4),

and in general

1+
1

2
+

1

3
+ · · ·+ 1

n
> ln(n+ 1).

This shows that the sum 1 + 1/2 + 1/3 + · · · + 1/n grows without bound as

n grows.

5.2.2. (a) Use a box to show that ln(2) < 1.

(b) Use a box to show that 1/2 < ln(2). Explain why it follows that

1 < ln(4).

() By its de�nition, the logarithm funtion is stritly inreasing. Therefore

there is one, and only one, number e suh that ln(e) = 1. Parts (a) and (b)

of this exerise have shown that 2 < e < 4. Use boxes to show that in fat

e < 3, by showing that 1 < ln(3). Explain arefully whether using inner or

outer boxes is the orret hoie for the argument, and why. How many boxes

does your argument require?

5.2.3. (a) How does ln(x10)/x behave as x grows large?

(b) How does ln(x)/x1/10 behave as x grows large?

5.3 Differentiation of the Logarithm

Theorem 5.3.1 (Derivative of the Logarithm). The logarithm funtion

ln : R>0 −→ R,

is di�erentiable on its entire domain, and its derivative is the reiproal

funtion,

ln

′ = f−1 : R>0 −→ R.

That is,

ln

′(x) = 1/x for all x ∈ R>0.

Consequently, also

lim

s→x
ln(s) = ln(x) for all x ∈ R>0.
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Proof. The bulk of the work is to establish the normalized result ln

′(1) = 1,

lim

s→1

ln(s) − ln(1)

s− 1
= 1.

To study the limit in the display, onsider �rst s-values greater than 1, and

onsider �gure 5.6. The relative areas of the small box, the region under the

graph of f−1, from 1 to s, and the large box show that three positive quantities

an be listed in order,

s− 1

s
≤ ln(s) ≤ s− 1 for s > 1.

Therefore, dividing through by the positive quantity s− 1 gives

1

s
≤ ln(s)

s− 1
≤ 1 for s > 1. (5.11)
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Figure 5.6. Bounds on ln(s) for s > 1

Next onsider s-values less than 1, though of ourse still positive. Fig-

ure 5.7 shows that now we an list the same three quantities as before in

inreasing order, although this time they inrease from the most negative to

the least negative,

s− 1

s
≤ ln(s) ≤ s− 1 for 0 < s < 1.

The fat that the same quantities bound ln(s) regardless of whether s > 1

or 0 < s < 1 is an instane of symboli robustness. But this time, dividing

through by the negative quantity s− 1 reverses the inequalities,
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1 ≤ ln(s)

s− 1
≤ 1

s
for 0 < s < 1.

Reall that ln(1) = 0. Inequality (5.11) and the previous display ombine into

a single estimate that overs the ases s > 1 and 0 < s < 1,

min{1, 1/s} ≤ ln(s) − ln(1)

s− 1
≤ max{1, 1/s} for all s > 0 exept s = 1.

As s goes to 1, so does 1/s, by the Reiproal Rule for funtion limits (The-

orem 4.1.6, part (4)). Also, the distanes from min{1, 1/s} and max{1, 1/s}

to 1 are at most the distane from 1/s to 1. From the estimate in the pre-

vious display and from these observations, the Squeezing Rule for funtions

(Theorem 4.1.8) gives

lim

s→1

ln(s) − ln(1)

s− 1
exists and equals 1

That is, we have shown that ln

′(1) exists and equals 1.
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Figure 5.7. Bounds on the logarithm as s tends to 1 from the left

To �nish the proof that ln

′(x) = 1/x in general, let x be any positive

real number. For any positive real number s 6= x, the logarithm properties

ln(s) − ln(x) = ln(s/x) and ln(1) = 0 ombine with basi algebra to give

ln(s) − ln(x)

s− x
=

1

x
· ln(s/x) − ln(1)

s/x− 1

=
1

x
· ln(~s) − ln(1)

~s− 1
where ~s = s/x.
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As s tends to x, ~s tends to 1. And so by the previous alulation,

For all x ∈ R>0, lim

s→x

ln(s) − ln(x)

s− x
=

1

x
.

This ompletes the proof of Theorem 5.3.1. ⊓⊔

The fat that ln

′ = f−1 on R>0 one again shows us a onnetion between

integration and di�erentiation: the logarithm was de�ned by integrating the

reiproal funtion from startpoint 1 to a variable endpoint x, and the deriva-

tive of the logarithm at x is the reiproal funtion there. More spei�ally,

ompute for any a, b ∈ R>0 that

∫b

a

f−1 =

∫1

a

f−1 +

∫b

1

f−1 =

∫b

1

f−1 −

∫a

1

f−1 = ln(b) − ln(a).

Beause ln

′ = f−1, this shows that formula (5.2) (page 147) extends to the

ase α = −1 as well. Given α ∈ Q, de�ne

F : R>0 −→ R, F =

{
fα+1/(α+ 1) if α 6= −1,

ln if α = −1.

Then F ′ = fα in all ases, and

∫b

a

fα = F(b) − F(a), α ∈ Q, a, b ∈ R>0.

Exercises

5.3.1. Let A be a subset of R, let R 6=0 = {x ∈ R : x 6= 0}, and let

f : A −→ R 6=0

be any di�erentiable funtion. Prove that the funtion

g : A −→ R, g(x) = ln(|f(x)|)

is di�erentiable and its derivative is

g ′(x) =
f ′(x)

f(x)
.

You will need to use the Chain Rule (Theorem 4.2.9, page 139) twie, and

you will need to use Proposition 4.2.6 (page 135).
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5.3.2. Find the derivatives of the following funtions f : R>0 −→ R.

(a) f(x) = ln(cx) where c ∈ R>0.

(b) f(x) = ln(xα) where α ∈ Q.

() f(x) = xα ln(cxβ) where α,β ∈ Q and c ∈ R>0.

(d) f(x) = (ln(x))2. (Note that (ln(x))2 is not ln(x2).)

(e) f(x) = (ln(x))3.

(f) f(x) = (ln(x))n where n ∈ Z≥1.

(g) f(x) = (ln(x+ 1))α where α ∈ Q.

(h) f(x) = ln(ln(x+ 3)).

5.3.3. (a) The tangent line to the graph of the logarithm at x = 1 passes

through the point (1, 0) and has slope 1/1 = 1, and so it is the graph of the

funtion

t(x) = x− 1, x ∈ R>0.

Explain why

t(x) =

∫x

1

f0 for x ≥ 1.

(b) Explain why f0(x) ≥ f−1(x) for all x ≥ 1, with equality only for x = 1.

() Explain why parts (a) and (b) argue that that the tangent line to the

graph of the logarithm at x = 1 lies above the graph to the right of x = 1.

(d) Realling De�nition 5.1.1, explain why also

t(x) =

∫x

1

f0 for 0 < x < 1.

(e) Explain why f0(x) ≤ f−1(x) for all x suh that 0 < x ≤ 1, with equality

only for x = 1.

(f) Explain why despite the inequality in (e) pointing the other diretion

from the inequality in (b), parts (d) and (e) argue that that the tangent line

to the graph of the logarithm at x = 1 lies above the graph to the left of x = 1

as well.

(g) Now let x0 ∈ R>0 be any positive number, and onsider the tangent

line to the graph of the logarithm at x0. Explain why it is the graph of the

funtion

t(x) = ln(x0) +
1

x0
(x− x0).

Show that

t(x) − ln(x) = ln(x/x0) −

(
x

x0
− 1

)
.

Explain why therefore the earlier portions of this exerise show that t(x) −

ln(x) ≥ 0, with equality only for x = x0. That is, for any x0 ∈ R>0, the

tangent line to the graph of the logarithm at x = x0 lies above the graph.
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5.4 Integration of the Logarithm

The logarithm funtion is integrated similarly to the power funtion, but with

some new wrinkles. The work requires evaluating a variant of the �nite geo-

metri sum and then noting that we already know how to evaluate a resulting

limit, beause it is a derivative.

Thus, we pre-emptively ompute the sum that will arise in the alula-

tion; this sum an be omputed using alulus, as has already been done as

an exerise and now will be repeated in the text, or using only algebra, as

in an exerise to follow. With the sum in hand, we integrate the logarithm

from 1 to b where b > 1. Finally we integrate the logarithm between general

endpoints a, b ∈ R>0. This last alulation requires expanding our notion of

integral, beause part of the logarithm graph lies below the x-axis.

5.4.1 Another Summation Formula

To integrate the logarithm, we will need to evaluate the sum

σ(x) = 1+ 2x+ 3x2 + · · ·+ nxn−1, x 6= 1.

Evaluating this sum was exerise 4.2.11, but we repeat the work here.

Let n be a nonnegative integer and let

h(x) = x+ x2 + x3 + · · ·+ xn.

Repeatedly applying the Sum Rule for derivatives and the power funtion

derivative formula gives

h ′(x) = 1+ 2x+ 3x2 + · · ·+ nxn−1 = σ(x), x 6= 1.

But also, fatoring out a power of x and then using the �nite geometri sum,

h(x) = (1+ x+ x2 + · · ·+ xn−1)x =
xn − 1

x− 1
x, x 6= 1.

Thus h(x) = f(x) · g(x) where f(x) = xn − 1 and g(x) = x/(x − 1), and so

the Produt Rule for derivatives and then the Quotient Rule and other rules

ombine to give that for x 6= 1,

h ′(x) = f ′(x)g(x) + f(x)g ′(x)

=
nxn−1x

x− 1
+ (xn − 1)

x− 1− x

(x− 1)2

=
nxn

x− 1
−

xn − 1

(x− 1)2
.
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Equate the two expressions for h ′
to evaluate σ(x),

1+ 2x+ 3x2 + · · ·+ nxn−1 =
nxn

x− 1
−

xn − 1

(x− 1)2
, x 6= 1. (5.12)

The next exerise shows how to evaluate this sum without using alulus.

Exercise

5.4.1. A moment ago we used alulus to evaluate the sum

σ(x) = 1+ 2x+ 3x2 + · · ·+ nxn−1, x 6= 1,

but in fat the sum does not require alulus. Instead, ompute that

σ(x) = 1+ x+ x2 + · · ·+ xn−1

+ x+ x2 + · · ·+ xn−1

+ x2 + · · ·+ xn−1

.

.

.

.

.

.

+ xn−1.

That is,

σ(x) = (1+ x+ x2 + · · ·+ xn−1)

+ x(1+ x+ · · ·+ xn−2)

+ x2(1+ · · ·+ xn−3)

+ · · ·
+ xn−1.

Reall that x 6= 1, apply the �nite geometri sum formula, and do some algebra

to rederive (5.12).

5.4.2 The Normalized Case

Again let b be a real number greater than 1. To integrate the logarithm

funtion from 1 to b, �rst use a geometri partition and right endpoints, thus

reating an upper sum. Again n is the number of boxes, and s = b1/n
so that

sn = b, and the jth interval-width is (s − 1)sj for j = 0, . . . , n − 1. However,

now

the jth box-height is ln(sj+1) = (j+ 1) ln(s) for j = 0, . . . , n− 1,

and so the sum of the box-areas is
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Tn = (s− 1) ln(s)
[
1s0 + 2s1 + 3s2 + · · ·+ nsn−1

]

= (s− 1) ln(s)
[
1+ 2s+ 3s2 + · · ·+ nsn−1

]
.

We just found the sum at the end of the previous display. By (5.12), and using

the fat that n ln(s) = ln(sn),

Tn = (s− 1) ln(s)

(
nsn

s− 1
−

sn − 1

(s− 1)2

)
= sn ln(sn) − (sn − 1)

ln(s)

s− 1
,

and thus, beause s = b1/n
and so sn = b,

Tn = b ln(b) − (b− 1)
ln(s)

s− 1
. (5.13)

Now to �nd limn(Tn) remember that as n grows large, s goes to 1, and so

beause

lim

s→1

ln(s)

s− 1
= lim

s→1

ln(s) − ln(1)

s− 1
= ln

′(1) = 1,

it follows from (5.13) that

lim

n
(Tn) = b ln(b) − b+ 1.

As with the rational power funtion, the end of thisn integral alulation uses

a normalizied derivative value.

The sequene (Sn) of lower sums obtained by taking funtion values at

left endpoints is suh that limn(Tn − Sn) = 0 (exerise 5.4.2). Therefore the

logarithm funtion is integrable from 1 to b, and its integral is the limit

limn(Tn), ∫b

1

ln = b ln(b) − b+ 1, b > 1.

This is the area under the logarithm urve from x = 1 to x = b (see �gure 5.8).
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Figure 5.8. Area under the logarithm urve
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Exercise

5.4.2. In the alulation just ompleted, eah Tn is a sum of outer box-areas

beause we determined the box-heights by sampling the logarithm funtion

over the right endpoints of the box-bases,

Tn = (s− 1) ln(s)
[
1s0 + 2s1 + 3s2 + 4s3 + · · ·+ nsn−1

]
.

Show that if instead we use the left endpoints then the relevant sum of n

inner box-areas is

Sn = (s− 1) ln(s)
[
0s0 + 1s1 + 2s2 + 3s3 + · · ·+ (n− 1)sn−1

]
.

Find Tn − Sn and then explain why limn(Tn − Sn) = 0. (It may be helpful to

reall that ln(s) = ln(b)/n.)

5.4.3 The General Case

The opening idea of this hapter was to begin moving from geometri intuition

to symboli intuition by de�ning under suitable irumstanes

∫b

a

f = −

∫a

b

f if a > b.

This de�nition worked perfetly well symbolially, but geometrially it alled

on us to expand our notion of the integral, thinking of it as a sort of signed

area, depending on whih diretion we traverse the x-axis horizontally. Now,

the fat that the logarithm funtion takes positive and negative values (as

ompared to the power funtion on R>0 whih is always positive) is inentive

to extend our notion of the integral as signed area vertially as well. That is,

the losing idea of this hapter is to view area below the x-axis as negative

area when the x-axis is traversed in the positive diretion, i.e., from left to

right. Beause a negative times a negative is a positive, area below the x-axis

is positive when the x-axis is traversed from right to left. The methodology

that makes all the ases uniform is to think of the integral analytially as a

limit of sums.

Let a and b be positive real numbers in order. That is, 0 < a ≤ b. We

want to disuss the integral ∫b

a

ln .

Although the logarithm ould take positive and/or negative values on [a, b],

depending on the values of a and b, its output-values are in any ase trapped

between two numbers, ln(a) and ln(b). As shown in �gure 5.9, it is geomet-

rially natural to interpret the integral is the sum of two possible quantities,
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a possible negative quantity, the negative of the area between the

graph of the logarithm and the x-axis under the portion of the x-axis

from a to the smaller of b and 1 (this term is present only if 0 < a < 1),

and

a possible positive quantity, the area between the graph of the log-

arithm and the x-axis over the portion of the x-axis from the larger

of a and 1 to b (this term is present only if b > 1).

Figure 5.9 shows a senario where both terms are present beause a < 1 < b.
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Figure 5.9. Integral of the logarithm as a sum of positive and negative areas

Putting aside the geometrially natural for a moment, we proeed in a

way that is analytially natural. Beause 0 < a ≤ b, it follows that b/a ≥ 1.

Let (Tn) be the sequene of upper sums for Ar

b/a
1 (ln) used to ompute

∫b/a
1

ln

in the previous subsetion, where the b there is the b/a here. Thus for eah n ∈
Z≥1 there are partition points

1 = s0 < s1 < · · · < sn−1 < sn = b/a (where s = (b/a)1/n),

and jth boxes for j = 0, . . . , n− 1 having bases and heights

βj = (s− 1)sj, hj = ln(sj+1).

The box-areas are

Aj = βjhj, j = 0, . . . , n− 1,

and the box-area sum is
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Tn = A0 + · · ·+An−1.

Now sale the partition points by a to get new partition points asj for j =

0, . . . , n,

a = as0 < as1 < · · · < asn−1 < asn = b,

new box-bases and box-heights for j = 0, . . . , n− 1,

~βj = aβj, ~hj = ln(asj+1) = ln(a) + ln(sj+1) = ln(a) + hj,

and hene new box-areas

Ãj = a ln(a)βj + aAj, j = 0, . . . , n− 1.

The new box-areas sum to

T̃n = Ã0 + · · ·+ Ãn−1 = a ln(a)(β0 + · · ·+ βn−1) + a(A0 + · · ·+An−1).

The sum β0 + · · ·+βn−1 of the original box-bases is b/a− 1, and the seond

sum in the previous display is Tn, so we have shown that the new box-areas

sum to

T̃n = a(b/a− 1) ln(a) + aTn = (b− a) ln(a) + aTn.

Consequently, our andidate analyti value of

∫b
a
ln is

lim

n
(T̃n) = (b− a) ln(a) + a

∫b/a

1

ln

= (b− a) ln(a) + a((b/a) ln(b/a) − b/a+ 1)

= b ln(a) − a ln(a) + b ln(b) − b ln(a) − b+ a

=
(
b ln(b) − b

)
−
(
a ln(a) − a

)
.

The question is whether this analyti work is ompatible with the natural

geometri interpretation of the integral

∫b
a
ln when 0 < a ≤ b. We annot

generally interpret T̃n as an upper sum beause the graph of the logarithm,

and the boxes, an lie below the x-axis during some or all of the alulation.

However, the upper sum idea an be salvaged by hoisting the graph and the

boxes vertially to plae the region of interest just above the x-axis. That is,

rather than study the logarithm itself, we an study its vertial translate,

g : [a, b] −→ [0, ln(b) − ln(a)], g(x) = ln(x) − ln(a).

Subtrating ln(a) raises the graph when ln(a) is negative, as shown in �g-

ure 5.10. Letting the partition points ~xj = asj of [a, b] be as in the analyti

work of the previous paragraph, eah jth outer box for g over [~xj, ~xj+1] has
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Figure 5.10. Hoisting the logarithm graph

base

~βj = aβj as before, and height

~hj− ln(a) = hj. Thus the resulting upper

sum for g is aTn, and in the limit,

∫b

a

g = a

∫b/a

1

ln .

Beause we view

∫b
a
g as obtained by subtrating the signed retangle-area

(b−a) ln(a) from
∫b
a
ln, we obtain

∫b
a
ln by reversing the proess, i.e., adding

the orretion term (b−a) ln(a) to the omputed value of

∫b
a
g. Geometrially,

we are making

∫b
a
ln the sum of the dark area and the negative of the light

area in the left side of �gure 5.11, the orret value beause it is sum of the

dark area and the negative of the light area in the right side of the �gure.

Adding the orretion term to the right side of the previous display gives

∫b

a

ln = (b− a) ln(a) + a

∫b/a

1

ln .

This is the same expression that we got for

∫b
a
ln analytially above, and so

without further ado we deree that its already-omputed value is indeed the

integral, ∫b

a

ln = (b ln(b) − b) − (a ln(a) − a) , 0 < a ≤ b.

If instead, 0 < b < a then, naturally,

∫b

a

ln = −

∫a

b

ln = −
(
(a ln(a) − a) − (b ln(b) − b)

)
by the previous display

=
(
b ln(b) − b

)
−
(
a ln(a) − a

)
again,
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Figure 5.11. Signed area as di�erene of positive areas

so that, robustly,

∫b

a

ln =
(
b ln(b) − b

)
−
(
a ln(a) − a

)
, a, b ∈ R>0.

Espeially when a = 1, this formula extends the formula from the end of the

previous subsetion, now giving

∫b

1

ln = b ln(b) − b+ 1, b ∈ R>0.

Beause a and b an be in either order, and beause the logarithm funtion

takes positive and negative values, we summarize how to trak the boxed

formula for the integral as a signed area. First, area between the x-axis and

the graph of the logarithm is deemed positive when the graph lies above

the axis, negative when it lies below, and the integral is the net signed area

if 0 < a ≤ b. However, if 0 < b < a then the integral is the negative of the net

positive area. All of this is easier to understand visually than verbally. But

beause the boxed formula is insensitive to the ases, symboli understanding

is truly the easiest of all in this ontext.

5.4.4 The Fundamental Theorem of Calculus Again

To end this setion, onsider the funtion

F : R>0 −→ R, F(x) = x ln(x) − x.

We have established the formula

∫b

a

ln = F(b) − F(a), a, b ∈ R>0.

By now the reader antiipates that the derivative of F is the funtion whose

integral F is, i.e., F ′ = ln. To see this, note �rst that F is built from the

di�erentiable funtions
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f1, ln : R>0 −→ R.

Various results about derivatives on�rm that indeed F ′ = ln (exerise 5.4.3).

Exercise

5.4.3. Complete the veri�ation that the funtion F just given indeed has

derivative F ′ = ln.

5.5 Signed Integration in General

5.5.1 The Integral Revisited

The following de�nition aptures the expanded notion of the integral that

emerged during this hapter in the ourse of integrating the logarithm.

Definition 5.5.1. Let a and b be real numbers with a < b. Let L and M

be real numbers with L ≤ M. Let

f : [a, b] −→ [L,M]

be a funtion. If the vertially translated funtion with nonnegative out-

puts

g : [a, b] −→ [0,M− L], g(x) = f(x) − L

is integrable from a to b, then the integral of f from a to b is de�ned to

be ∫b

a

f =

∫b

a

g+ (b− a)L.

And then, as before, also the integral with out-of-order endpoints is de-

�ned to be ∫a

b

f = −

∫b

a

f.

The �rst part of De�nition 5.5.1 raises a problem. Its formula

∫b

a

f =

∫b

a

g+ (b− a)L

makes use of the datum L from the odomain of f, but this odomain an be

hosen with onsiderable exibility. If we keep the domain and the rule but

hange the odomain to get

f : [a, b] −→ [L̃, M̃],
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then on the fae of it, the de�nition ould presribe a di�erent value of

∫b
a
f.

We need to ensure that this doesn't happen.

Geometrially, the issue is as follows. The �rst part of De�nition 5.5.1

says to hoist the graph of f above the x-axis, ompute the integral under

the hoisted graph, and then adjust by an amount orresponding to the area

gained by the hoisting. (Again, see �gure 5.11.) What we need to verify is that

hoisting the graph by a di�erent amount and then making the orresponding

di�erent adjustment leads to the same answer. Phrasing the matter in these

geometri terms makes the desired onlusion essentially inesapable: hoisting

the graph higher adds a retangular region between the x-axis and the hoisted

graph, but the orretion fator will be modi�ed by an amount equal to the

area of the added retangular region, leading to the same value for the signed

area as before. (See �gure 5.12.)
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Figure 5.12. Same signed area as another di�erene of positive areas

To verify analytially that the de�nition makes sense, we proeed as fol-

lows. To repeat, for the original hoie of odomain we have

f : [a, b] −→ [L,M],

and then

g : [a, b] −→ [0,M− L], g(x) = f(x) − L,

and then ∫b

a

f =

∫b

a

g+ (b− a)L.

For the modi�ed hoie of odomain we have
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f : [a, b] −→ [L̃, M̃] (same domain and same rule),

and then

~g : [a, b] −→ [0, M̃− L̃], ~g(x) = f(x) − L̃,

and then also ∫b

a

f =

∫b

a

~g+ (b− a)L̃.

We want to show that the two de�nitions of

∫b
a
f are equal. By symmetry we

may assume that L̃ ≥ L. Thus for all x ∈ [a, b],

g(x) − ~g(x) = (f(x) − L) − (f(x) − L̃) = L̃− L,

or

g = ~g+ (L̃− L).

Beause g and ~g are both nonnegative funtions, and L̃ − L is a nonnegative

onstant, the fat that area has sensible properties says that

∫b

a

g =

∫b

a

~g+ (b− a)(L̃− L).

Consequently, the �rst de�nition of

∫b
a
f as

∫b
a
g+ (b− a)L beomes

∫b

a

f =

∫b

a

~g+ (b− a)(L̃− L) + (b− a)L =

∫b

a

~g+ (b− a)L̃.

This is the seond de�nition of f, and we are done showing that De�nition 5.5.1

is well de�ned when a ≤ b. Beause the de�nition of

∫b
a
f when a > b is given

in terms of

∫b
a
f when a ≤ b, it is well de�ned too.

Exercise

5.5.1. (a) Draw a �gure illustrating why it is geometrially obvious that∫1
−1

f1 = 0.

(b) Carry out the proess of omputing

∫1
−1

f1 by hoisting.

5.5.2 Progenitive Integral Rules Revisited

With integration now de�ned for funtions whose values ould be negative,

and for out-of-order endpoints, we need to revisit the results that (suppressing

the �ne print)

� the integral of a sum is the sum of the integrals, and
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� the integral of a onstant multiple is the onstant multiple of the integral.

The proofs of the upgraded results should not repeat the earlier proofs for

nonnegative funtions, but rather should ite them and arry out only the

new work required now for the upgrades. In other words, the required work is

to push the previous results through the hoisting proess that de�nes integrals

of funtions whose values ould be negative.

Proposition 5.5.2 (Progenitive Integral Rules). Consider two inte-

grable funtions

f : [a, b] −→ [L,M], ~f : [a, b] −→ [L̃, M̃].

Then the funtion

f+ ~f : [a, b] −→ [L+ L̃,M+ M̃], (f+ ~f)(x) = f(x) + ~f(x)

is integrable, and ∫b

a

(f+ ~f) =

∫b

a

f+

∫b

a

~f.

Let c ∈ R≥0 be a nonnegative real number. Then the funtion

cf : [a, b] −→ [cL, cM], (cf)(x) = c · f(x)

is integrable, and ∫b

a

(cf) = c

∫b

a

f.

Let c ∈ R<0 be a negative real number. Then the funtion

cf : [a, b] −→ [cM, cL], (cf)(x) = c · f(x)

is integrable, and ∫b

a

(cf) = c

∫b

a

f.

Finally, the three equalities hold if instead a > b.

Proof. De�ne

g : [a, b] −→ [0,M− L], g(x) = f(x) − L

and

~g : [a, b] −→ [0, M̃− L̃], ~g(x) = ~f(x) − L̃.

Then their sum

g+ ~g : [a, b] −→ [0,M+ M̃− L− L̃]
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is

(g+ ~g)(x) = (f+ ~f)(x) − (L+ L̃).

Therefore

∫b

a

(f+ ~f) =

∫b

a

(g+ ~g) + (b− a)(L+ L̃)

=

∫b

a

g+ (b− a)L+

∫b

a

~g+ (b− a)L̃

=

∫b

a

f+

∫b

a

~f.

(The integral on the right side of the top line exists and is the sum of the two

integrals on the seond line by Proposition 3.3.13 on page 116 beause they

exist and g and ~g are nonnegative, and they exist beause f and ~f are given

to be integrable.)

For c ∈ R≥0, de�ne

cg : [a, b] −→ [0, c(M− L)], (cg)(x) = (cf)(x) − cL.

Then

∫b

a

(cf) =

∫b

a

(cg) + (b− a)cL

= c

∫b

a

g+ c(b− a)L by Proposition 3.3.13

= c

(∫b

a

g+ (b− a)L

)

= c

∫b

a

f.

To establish the result for c ∈ R<0, we may show that

∫b

a

(−f) = −

∫b

a

f,

beause any negative number is a positive multiple of −1, and we already

have the result for c ∈ R>0. Reall that

∫b

a

f =

∫b

a

g+ (b− a)L where g(x) = f(x) − L.

Also de�ne

h : [a, b] −→ [0,M− L], h(x) = −f(x) +M.
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Then ∫b

a

(−f) =

∫b

a

h− (b− a)M.

It follows that

∫b

a

f+

∫b

a

(−f) =

∫b

a

g+ (b− a)L+

∫b

a

h− (b− a)M

=

∫b

a

(g+ h) + (b− a)(L−M).

But note that for any x ∈ [a, b],

(g+ h)(x) = f(x) − L− f(x) +M = M− L,

so that ∫b

a

(g+ h) = (b− a)(M− L),

and therefore

∫b

a

f+

∫b

a

(−f) = (b− a)(M− L) + (b− a)(L−M) = 0.

This is the desired result,

∫b

a

(−f) = −

∫b

a

f.

Finally, the three results for a > b follow from those for a ≤ b beause of

the basi de�nition that

∫b
a
f = −

∫a
b
f. ⊓⊔

Similarly, the Inequality Rule for integrals needn't require that the fun-

tions involved be nonnegative.

Proposition 5.5.3 (Inequality Rule for Integrals, Second Version).

Consider two integrable funtions

f, g : [a, b] −→ [L,M]

suh that

f ≤ g,

meaning that f(x) ≤ g(x) for all x ∈ [a, b]. Then
∫b

a

f ≤
∫b

a

g.

Proof. We already have the result for f− L and g− L, and the result follows

immediately beause

∫b

a

f =

∫b

a

(f− L) + (b− a)L ≤
∫b

a

(g− L) + (b− a)L =

∫b

a

g.

⊓⊔
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5.5.3 The Area Between Two Curves

Proposition 5.5.4 (Area Between Two Curves As An Integral). ℄ Let

a and b be real numbers with a ≤ b. Consider two integrable funtions

f, g : [a, b] −→ R.

The area between the graphs of f and g is

∫b

a

|g− f|.

Proof (Sketh of the proof.). For nonnegative funtions f, g : [a, b] −→
[0,M], de�ne

max{f, g}, min{f, g} : [a, b] −→ [0,M]

as follows. For any x ∈ [a, b],

max{f, g}(x) =

{
g(x) if g(x) ≥ f(x),

f(x) if g(x) < f(x)

and

min{f, g}(x) =

{
f(x) if g(x) ≥ f(x),

g(x) if g(x) < f(x).

Thus for all x ∈ [a, b],

max{f, g}(x) −min{f, g}(x) =

{
g(x) − f(x) if g(x) ≥ f(x),

f(x) − g(x) if g(x) < f(x)

= |g(x) − f(x)|.

Then the area is

Ar

b
a(max{f, g}) − Ar

b
a(min{f, g}) =

∫b

a

max{f, g}−

∫b

a

min{f, g}

=

∫b

a

(max{f, g}−min{f, g})

=

∫b

a

|g− f|.

A subtle point here is that if f and g are integrable then so are max{f, g}

and min{f, g}, so that the areas in the argument are integrals as taitly as-

serted. This will be obvious in the examples where we apply the proposition,

and so we omit the general argument.

For bounded funtions f, g : [a, b] −→ [L,M], possibly taking negative

values now, a hoisting argument redues the problem to the nonnegative ase.

⊓⊔
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For example, onsider the funtions

f, g : [0, 2] −→ R

where

f(x) = x2/2 , g(x) = x3 − 5x2/2+ 2x.

Compute that their di�erene is

(g− f)(x) = x3 − 3x2 + 2x = x(x2 − 3x+ 2) = x(x− 1)(x− 2).

This shows that f = g at x = 0, at x = 1, and at x = 2, while

g > f on (0, 1) and g < f on (1, 2).

(See �gure 5.13.) Therefore the area between the graphs of f and g is

A =

∫1

0

(g− f) +

∫2

1

(f− g).

The �rst integral is

∫1

0

(g− f) =

(
14 − 04

4

)
− 3

(
13 − 03

3

)
+ 2

(
12 − 02

2

)
=

1

4
,

and the seond is

∫2

1

(f− g) = −

(
24 − 14

4

)
+ 3

(
23 − 13

3

)
− 2

(
22 − 12

2

)
=

1

4
.

Thus the total area between the graphs is

A =
1

2
.

(In the �rst half of this alulation, we have applied the formula

∫b

a

fα =
bα+1 − aα+1

α+ 1
, α 6= −1

in the ase where the endpoint a is 0. This extension has not yet been justi�ed,

and it is valid only for α ≥ 0, but we take it as granted for now beause we

will disuss it arefully in hapter 8.)

Exercises

5.5.2. Find the area enlosed by the urve whose equation is

y2 + 2xy+ 2x2 = 1.

(See �gure 5.14. The urve is an ellipse. Use the quadrati equation to solve

the equation for y in terms of x, and then integrate between the two x-values

for whih there is one y-value.)
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PSfrag replaements

0 1 2

f

f

g

g

Figure 5.13. Area between two urves

5.5.3. (a) Find the area of the region shown between the urves y = x(x− 2)

and y = −x3 in �gure 5.15.

(b) Find the area of the region shown between the urves y = 8x3/9 −

2x2/9− x and y = 2x/3 in �gure 5.16.

() Find the area of the region shown between the urves y = −(x−2)(x−3)

and y = (x− 1)(x− 2)(x− 3) in �gure 5.17.
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Figure 5.14. Figure for exerise 5.5.2

Figure 5.15. Figure for exerise 5.5.3 (a)
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Figure 5.16. Figure for exerise 5.5.3 (b)

Figure 5.17. Figure for exerise 5.5.3 ()



6

The Exponential Function

The exponential funtion is the most important funtion in mathematis. It

an be desribed in various ways, all ompatible. This hapter de�nes the ex-

ponential funtion as the inverse funtion of the logarithm, i.e., as the funtion

that undoes the e�et of the logarithm,

y = exp(x) if and only if x = ln(y).

The exponential funtion is also the unique di�erentiable funtion that is its

own derivative and takes a normalized value at 0:

If f ′ = f and f(0) = 1 then f = exp .

And the exponential funtion is a limit of ever higher powers of quantities

ever loser to 1,

exp(x) = lim

n

((
1+

x

n

)n)
.

Setion 6.1 introdues the notion of a ontinuous funtion. The general

priniple that di�erentiable funtions are ontinuous gives the ontinuity of

the partiular funtions that we have di�erentiated in these notes. The In-

termediate Value Theorem says that a ontinuous funtion whose domain is

an interval annot jump over feasible outputs: if the funtion assumes two

values then it assumes every value between them as well. One onsequene

of the Intermediate Value Theorem is the existene of nth roots of positive

real numbers, something that we invoked in hapter 2. Another onsequene

of the theorem is that every real number is a logarithm, and so the logarithm

funtion has an inverse. Setion 6.2 de�nes the exponential as this inverse

funtion. The properties of the logarithm therefore give rise to orresponding

properties of the exponential. These properties lead to a de�nition of raising

any positive real number to any real exponent, whereas before we ould raise

a positive real number only to a rational exponent. Setion 6.3 quanti�es the
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oft-ited fat that the exponential funtion grows very quikly. Setion 6.4

shows that the exponential funtion is its own derivative. Setion 6.5 inte-

grates the exponential funtion. Setion 6.6 shows that the exponential is a

limit of powers as desribed above, and then gives an interpretation of the

limit in terms of ompound interest.

6.1 Continuity

6.1.1 Definition of Continuity

Definition 6.1.1 (Continuity). Let A be a subset of R, and let

f : A −→ R

be a funtion. Let x be a point of A. The funtion f is continuous at x

if

lim

s→x
f(s) = f(x).

The funtion f is continuous on A if it is ontinuous at eah x ∈ A.

Aording to this de�nition, in order for f : A −→ R to be ontinuous

at x, neessarily

� x ∈ A,

� x is approahable from A,

� and for every sequene (sn) in A that approahes x, limn(f(sn)) = f(x).

Espeially, if x ∈ A but x is not approahable from A then f annot be ontin-

uous at x. So, for example, under our de�nition no funtion f : Z −→ R an be

ontinuous (exerise 6.1.1). The reader is alerted that under a di�erent math-

ematial onvention, more ommon than ours, the approahability ondition

is not required for ontinuity, and so every suh funtion is ontinuous.

To show that a funtion f : A −→ R is disontinuous at a point x ∈ A

that is approahable from A, it suÆes to �nd a sequene (sn) in A that ap-

proahes x while the orresponding output sequene (f(sn)) does not onverge

to f(x). For example, take the funtion

f : R −→ R, f(x) =

{
0 if x ≤ 0,

1 if x > 0.

Consider the sequene (sn) = (1/n). The sequene approahes 0. The orre-

sponding sequene of outputs,

(f(sn)) = (1, 1, 1, . . .),
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has limit 1. And so, realling that f(0) = 0,

(sn) approahes 0 but lim

n
(f(sn)) 6= f(0).

Thus De�nition 6.1.1 is not satis�ed for x = 0, i.e., f is disontinuous at 0.

The following result says that most of the funtions that we have worked

with in these notes are ontinuous.

Proposition 6.1.2 (Differentiability Implies Continuity). Let A be a

subset of R, and onsider a funtion

f : A −→ R.

If f is di�erentiable on A then f is ontinuous on A.

Proof. This proposition only rephrases Proposition 4.2.2 on page 131 (exer-

ise 6.1.3). ⊓⊔

Although all di�erentiable funtions are ontinuous, not all ontinuous

funtions are di�erentiable. The simplest example is the absolute value fun-

tion,

f : R −→ R, f(x) = |x|.

We saw in exerise 4.2.1 (page 130) that f is not di�erentiable at 0. But it

is ontinuous at 0, beause for any sequene (sn) in R 6=0, to say that (sn)

approahes 0 is to say that |sn − 0| grows small as n grows large, i.e., f(sn)

tends to 0, whih is f(0).

Extending the example of the absolute value funtion, Weierstrass used an

analyti proess of superimposing ever more, ever smaller orners to reate

a funtion f : R −→ R that is ontinuous everywhere and di�erentiable

nowhere. Its graph is somehow jagged no matter how losely we zoom in.

Proposition 6.1.3 (Continuity of the Power Function). Let α be a

rational number. The power funtion fα is ontinuous on its domain.

Proof. This proposition rephrases Corollary 4.2.5 on page 135. ⊓⊔

However, for another example of ontinuity without di�erentiability, let

α be any rational number suh that 0 < α < 1. Consider the αth power

funtion, whose value at 0 is fα(0) = 0 (see the disussion on page 29),

fα : R≥0 −→ R, fα(x) = xα.

This funtion is ontinuous at 0. However, Proposition 4.2.4 (page 134) says

that f ′α(0) does not exist.
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Proposition 6.1.2 says fairly broadly that the rational power funtions fα
and the logarithm funtion are ontinuous on their domains. (The exeption

is that the proposition does not say that fα is ontinuous at 0 for 0 < α < 1,

but the previous paragraph has taken are of this ase.) In partiular, let

R 6=0 = {x ∈ R : x 6= 0} and onsider the reiproal funtion

f−1 : R 6=0 −→ R, f(x) = 1/x.

As just remarked, f−1 is ontinuous on R 6=0. And yet to graph f−1, we must

drastially lift the penil from the page beause f−1(x) is very negative for x

a little less than 0, while f−1(x) is very positive for x a little greater than 0.

This example shows that the ommon idea of a ontinuous funtion as one

that an be graphed without lifting one's penil is not entirely orret. The

issue here is that the domain R 6=0 of f−1 has two piees, with a break at 0.

The graph of f−1 on eah piee of R 6=0 an be drawn in one stroke. The

ontinuity of f−1 means that its graph has no more breaks than its domain.

Exercises

6.1.1. Explain why no funtion f : Z −→ R is ontinuous under De�ni-

tion 6.1.1. A qualitative explanation is �ne. For a more quantitative one, the

hoie ε = 1/2 ould be helpful.

6.1.2. Consider the funtion

f : R −→ R, f(x) =

{
0 if x < 0,

1 if x ≥ 0.

Show that f is not ontinuous at 0.

6.1.3. Explain with some are why Proposition 6.1.2 repeats Proposition 4.2.2.

6.1.2 Continuity and Integrability

Theorem 6.1.4 (Continuity Implies Integrability). Let a and b be real

numbers with a ≤ b, and onsider a funtion

f : [a, b] −→ R.

If f is ontinuous on [a, b] then the integral

∫b
a
f exists.

Unfortunately, the proof of Theorem 6.1.4 is beyond our sope.

The funtions that we know to be integrable are bounded pieewise mono-

toni funtions. Suh a funtion need not be ontinuous, and so the onverse

of Theorem 6.1.4 does not hold.
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For an example of a bounded ontinuous funtion that is not pieewise

monotoni, onsider

f : [−1, 1] −→ [−1, 1], f(x) =

{
x sin(1/x) if x 6= 0,

0 if x = 0.

The graph of f is shown in �gure 6.1.

-1 -0.5 0.5 1

-0.2

0.2

0.4

0.6

0.8

Figure 6.1. A bounded, ontinuous, but not pieewise monotoni funtion

6.1.3 The Intermediate Value Theorem

Even though the reiproal funtion f−1(x) = 1/x is ontinuous, its rangeR 6=0

has two piees. However, this is beause its domain R 6=0 has two piees al-

ready. If a funtion is ontinuous and its domain is an interval, then beause

its domain has no breaks, its range has no breaks either. The following result

expresses this idea analytially.

Theorem 6.1.5 (Intermediate Value Theorem). Let a and b be real

numbers with a < b. Let the funtion

f : [a, b] −→ R

be ontinuous, and suppose that f(a) < 0 and f(b) > 0. Then there exists

some number c ∈ (a, b) suh that f(c) = 0.

That is, if a ontinuous funtion whose domain is a losed interval tran-

sists from taking a negative output-value to taking a positive output-value,

then it must take the output-value 0 somewhere in between. Note that the
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onlusion of the theorem isn't simply \f(c) = 0," whih in isolation would

be meaningless beause the hypotheses make no mention of a point c; rather

the onlusion is that there exists some c suh that f(c) = 0, although the

theorem is mute on the preise whereabouts of c or how to �nd it. Again the

phrase there exists , whose meaning is not truly settled, has arisen.

The negative , positive , and zero in Theorem 6.1.5 are normalizations.

More generally we have

Corollary 6.1.6 (Intermediate Value Theorem, Second Version). Let

a and b be real numbers with a < b. Let the funtion

f : [a, b] −→ R

be ontinuous. Let v be any value between f(a) and f(b). Then there is

some number c ∈ (a, b) suh that f(c) = v.

To redue the orollary to the theorem, �rst replae the f in the orollary

by f1 = f− v. Then f(c) = v if and only if f1(c) = 0, and 0 lies between f1(a)

and f1(b). Seond, if f1(a) > 0 and f1(b) < 0 then replae f1 by f2 = −f1.

Now the hypotheses for the original theorem are met, and the onlusion of

the original theorem gives the onlusion of the orollary, as desired. A tait

point here is that beause f is ontinuous, so are f1 and f2. Exerise 6.1.5

is to draw pitures illustrating the argument given in this paragraph, and to

explain the tait point.

The orollary says that if a funtion is ontinuous on an interval, its output

annot jump over a value: if two numbers are output-values of the funtion

then all numbers between them are output-values as well. This is the sense

in whih a ontinuous funtion is graphed without lifting the penil from the

page.

A loose rephrase of the Intermediate Value Theorem is:

Under appropriate onditions, to show that a funtion takes the

value 0 somewhere, it suÆes to show only that the funtion

hanges sign.

We give an example. View the unit irle as a thin metal ring, and suppose

that it has di�erent temperatures at di�erent points, but with the tempera-

ture varying ontinuously as one moves around the ring. Other than this, we

assume nothing spei� about the ring's temperature funtion. The laim is

that despite knowing so little about the temperature funtion, we an assert

that somewhere on the ring, there is an antipodal pair of points that have

the same temperature . Indeed, for any angle s, let p(s) denote the point of

the ring at angle s, and let
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g(s) = temperature at p(s) − temperature at p(s+ π).

Here p(s+π) is the point antipodal to p(s). Thus we want to show that there

exists some c suh that g(c) = 0. If g(0) = 0 then we are done. Otherwise,

beause p(2π) = p(s), we have

g(π) = temperature at p(π) − temperature at p(2π)

= temperature at p(π) − temperature at p(0)

= −(temperature at p(0) − temperature at p(π))

= −g(0).

This shows that g(0) and g(π) have opposite signs. Thus, the Intermediate

Value Theorem says that for some c between 0 and π we have g(c) = 0,

whih is to say that the antipodal points p(c) and p(c + π) have the same

temperature. To reapitulate, no matter how the temperature varies around

the ring, provided only that it is ontinuous, the Intermediate Value Theorem

says that some pair of antipodal points on the ring has the same temperature,

but it tells us nothing about where that pair of points is to be found. This

argument may provoke a mix of reations from the reader, as it does for the

author of these notes.

Here is an attempt to prove Theorem 6.1.5 (the normalized Intermediate

Value Theorem) rather than assume it. There are f-inputs in [a, b] suh that

the orresponding f-output is negative, suh as a. The number b exeeds all

suh inputs. So surely there is a least value c that is at least as big as all suh

inputs. If f(c) > 0 then beause lims→c f(s) = f(c), neessarily f(s) > 0 for

all s lose enough to c (see Proposition 4.1.3 on page 122), and so some value

s < c is also at least as big as all f-inputs that produe negative outputs,

ontraditing the fat that c is the least suh value. Similarly, if f(c) < 0 then

neessarily f(s) < 0 for some value s > c, ontraditing the fat that c is at

least as big as all f-inputs that produe negative outputs. The only possibility

remaining is that f(c) = 0.

However, rather than prove the Intermediate Value Theorem, this argu-

ment shows only that the theorem follows from any assumption about the real

number system that makes valid the Then surely there is a least value. . .

statement in the previous paragraph. The issue here is idential to the one

that arose from the attempt to prove the Arhimedean Property of the real

number system bak on page 72.

Exercises

6.1.4. Let p(x) = x3 − 3x + 1. Use the Intermediate Value Theorem to show

that there are at least three di�erent numbers a, b, and c suh that p(a) =

p(b) = p(c) = 0.
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6.1.5. (a) Illustrate the argument that the seond version of the Intermediate

Value Theorem follows from the normalized version.

(b) Let f : [a, b] −→ R be a ontinuous funtion. Show that for any real

number h, also f+ h is ontinuous. Show that for any real number c, also cf

is ontinuous.

6.1.6. Let f : [0, 1] −→ [0, 1] be a ontinuous funtion suh that f(0) = 1

and f(1) = 0. Draw a piture illustrating the situation. Geometrially, it is

ompelling that the graph of f must ross the 45-degree line y = x at least

one; that is, f(c) = c for some c ∈ (0, 1). Use the Intermediate Value Theorem

to prove this. The argument requires an auxiliary (helper) funtion.

6.1.4 Applications of the Intermediate Value Theorem

For our �rst appliation of the Intermediate Value Theorem, we return to

the subjet of nth roots of positive real numbers. This topi was disussed

starting on page 27, and the reader is enouraged to review the disussion

there before ontinuing here.

Let n ≥ 2 be an integer, and let b > 1 be a real number. Consider the

power funtion

fn : [1, b] −→ R, fn(x) = x · · · x (n times).

We have argued that fn is stritly inreasing on R>0. Also, we have argued

that fn is di�erentiable and hene ontinuous on all ofR, so that its restrition

here to [1, b] is ontinuous as well. Neither of these arguments made any

referene to the existene of nth roots. Note that beause b > 1 and n ≥ 2,

f(1) = 1 < b and f(b) = bn > b.

By the Intermediate Value Theorem, there exists some number c ∈ (1, b) suh

that f(c) = b. And there is only one suh c beause f is stritly inreasing.

That is, there is exatly one c suh that cn = b. In other words, c is the

unique positive nth root of b, niely served up to us by the theorem.

If 0 < b < 1, then 1/b > 1 and the argument just given produes the nth

root c of 1/b, and 1/c is the nth root of b. And if b = 1 then b is its own

nth root. This overs all ases, and now our invoation of unique nth roots

(page 27) is a onsequene of whatever assumed property of the real number

system will prove the Intermediate Value Theorem.

For our seond appliation of the Intermediate Value Theorem, we know

that the logarithm funtion is ontinuous on R>0, and we have shown in

exerise 5.2.2 (page 157) that
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ln(2) < 1 < ln(4).

The exerise then argued that onsequently there is one and only one number e

between 2 and 4 suh that ln(e) = 1. There is at most one suh number

beause the logarithm is stritly inreasing, but the fat that there is at least

one suh number was supportable for us earlier only at the level of intuition.

Now it follows from the Intermediate Value Theorem. To repeat:

Definition 6.1.7 (The number e). The unique real number x that sat-

is�es the ondition ln(x) = 1 is denoted e. That is, e is de�ned by the

property

ln(e) = 1.

Continuing to work with the logarithm funtion, let y be any positive real

number. By the Arhimedean property of the real number system, there is

some positive integer n suh that n > y. Beause ln(1) = 0 and ln(en) =

n ln(e) = n, the logarithm funtion on the interval [1, en] satis�es

ln(1) < y and ln(en) > y.

By the Intermediate Value Theorem,

ln(x) = y for some x ∈ (1, en).

That is, every positive real number is a logarithm . Similarly, if b < 0 then

beause −b = ln(x) for some x, it follows that b = − ln(x) = ln(1/x). And

of ourse, 0 = ln(1). Beause the logarithm funtion is stritly inreasing, we

have proved the following result.

Proposition 6.1.8 (The Logarithm is Bijective). Eah real number y

takes the form y = ln(x) for exatly one positive number x. That is, the

funtion

ln : R>0 −→ R
takes eah value in its odomain exatly one.

Exercise

6.1.7. Let b ∈ R>0 be a positive real number. Consider the funtion

g : R −→ R, g(x) = x2 − b.

Thus the unique positive number c suh that g(c) = 0 is the square root of b.

(a) For any positive real number s, the height of the graph of g over s is g(s)

(this ould be negative) and the tangent slope of the graph is g ′(s) = 2s. Use
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these data and analyti geometry to show that the tangent line to the graph

of g at (s, g(s)) meets the x-axis at

~s =
1

2

(
s+

b

s

)
.

Note that beause b and s are positive, so is ~s.

(b) Choose any real number s1 >
√
b, and then de�ne a sequene reur-

sively using the formula from (a),

sn+1 =
1

2

(
sn +

b

sn

)
, n ≥ 1. (6.1)

Show that for any n ∈ Z≥1, if s
2
n > b then onsequently s2n+1 > b. Beause

s21 > b, it follows (you need not explain this part analytially, but put some

thought into it) that s2n > b for all n ∈ Z≥1. And then it further follows,

beause all the sn-values are positive, that sn >
√
b for all n ∈ Z≥1.

() Show that sn+1 ≤ sn for all n ∈ Z≥1. So (again, you needn't explain

what follows, but put thought into it) the sequene (s1, s2, s3, . . .) onsists

of entries that grow ever smaller, but the number

√
b is less than or equal to

all the sn. Then surely there is a greatest number c less than or equal to all

the sn. This c is the limit of the sequene: the sequene elements sn get ever

loser to c as n grows, and if they don't get within ε > 0 of c then c + ε is

at most as big all the sn, ontraditing the fat that c is the greatest suh

number.

(d) Take the limit of both sides of (6.1), arefully explaining your use of

various sequene limit rules, to onlude that c =
√
b. Thus the proess in

this exerise (a speial ase of Newton's method) omputes

√
b.

(e) Use a omputer to investigate how quikly the values sn tend to

√
b

for various values of b and various starting approximations s1 for eah b.

6.2 Definition and Properties of the Exponential

Function

6.2.1 Definition and Basic Properties

As disussed at the end of setion 6.1.4, for eah real number y there is exatly

one positive real number x suh that y = ln(x).

The names x and y, being mere symbols, an be interhanged: For eah

real number x there is exatly one positive real number y suh that x = ln(y).

The funtion that takes eah real x to the orresponding positive real y is the

exponential funtion . So earlier the logarithm was de�ned as an integral,
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and now the exponential funtion is de�ned as the inverse funtion of the

logarithm: it undoes the logarithm, and the logarithm undoes it. All of this

takes us far beyond the idea of a funtion as an analyti expression.

Definition 6.2.1 (Exponential Function). The exponential function,

exp : R −→ R>0,

is the inverse funtion of the logarithm. That is, the funtions exp and ln

are related by the following property:

For all x ∈ R and all y ∈ R>0, y = exp(x) ⇐⇒ x = ln(y).

Beause the exponential funtion and the logarithm funtion exhange the

roles of x and y, the graph of the exponential funtion is obtained by reeting

the graph of the logarithm funtion through the line y = x (exerise 6.2.1).

Figure 6.2 shows (portions of) the graphs of the two funtions.
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Figure 6.2. Graphs of the exponential and logarithm funtions

We show that immediately in onsequene of De�nition 6.2.1,

for all x ∈ R, ln(exp(x)) = x, (6.2)

and
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for all y ∈ R>0, exp(ln(y)) = y. (6.3)

To establish (6.2), let x ∈ R and let y = exp(x). Aording to the de�ning

property of the exponential funtion, x = ln(y), i.e., x = ln(exp(x)) as desired.

That is, (6.2) follows from one diretion aross the double-headed arrow \⇐⇒"

in the de�ning property of the exponential funtion. Naturally, (6.3) follows

from the other (exerise 6.2.2).

Theorem 6.2.2 (Properties of the Exponential Function).

(1) exp(0) = 1.

(2) For all real numbers x and ~x,

exp(x+ ~x) = exp(x) exp(~x).

(3) For all real numbers x

exp(−x) = 1/ exp(x).

(4) For all real numbers x and ~x,

exp(x− ~x) = exp(x)/ exp(~x).

(5) For all real numbers x and all rational numbers α,

exp(αx) = (exp(x))α.

Proof. These are all onsequenes of the orresponding properties of the log-

arithm, or (3) an be proved by using (1) and (2) as in the proof of the

orresponding logarithm property. For example, to prove (2), let

y = exp(x), ~y = exp(~x),

so that

x = ln(y), ~x = ln(~y).

Then beause ln(y) + ln(~y) = ln(y~y),

exp(x+ ~x) = exp(ln(y) + ln(~y) = exp(ln(y~y)) = y~y = exp(x) exp(~x).

The remainder of the proof is exerise 6.2.3. ⊓⊔

Exercises

6.2.1. Explain why the geometri operation of reeting a point p = (x, y)

in the plane through the 45-degree line y = x is the same as the algebrai

operation of exhanging the point's x- and y-oordinates. Note that p = q+ r

where q = x+y
2

(1, 1) and r = x−y
2

(1,−1), and the reetion of p is q− r.

6.2.2. Show that (6.3) follows from the de�ning property of the exponential

funtion.

6.2.3. Prove the rest of Theorem 6.2.2.
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6.2.2 Raising to Powers Revisited

Reall that so far we understand raising any positive real number b ∈ R>0

to any rational exponent α ∈ Q. The exponential funtion provides us a

mehanism to raise any b ∈ R>0 to any real exponent x ∈ R, and to re-

establish the laws of exponents in this ontext. The idea is that for b ∈ R>0

and α ∈ Q,

bα = exp(ln(bα)) = exp(α ln(b)).

But in the previous display, the right side makes sense with no referene

to the fat that α is rational . Thus the following de�nition is natural.

Definition 6.2.3 (Raising a Positive Real Number to a Real Power).

Let b ∈ R>0 be any positive real number, and let x ∈ R be any real

number. Then bx
is de�ned to be

bx = exp(x ln(b)).

Again, this de�nition of exponentiation agrees with our previous notion

of exponentiation when x is rational. Note that bx
is positive for b ∈ R>0

and x ∈ R.

Immediately in onsequene of De�nition 6.2.3, Theorem 5.1.4(4) (page

152) no longer requires a rational exponent:

Proposition 6.2.4 (Enhanced Property of the Logarithm). For all

positive real numbers b and all real numbers x,

ln(bx) = x ln(b).

Also, to study a speial ase of De�nition 6.2.3, reall the number e suh

that ln(e) = 1. Beause ln(e) = 1, De�nition 6.2.3 says that

ex = exp(x),

and this explains why the exponential funtion is often written ex and alled

e to the x.

Returning from ex to bx
for any positive real number b, our new notion

of exponentiation satis�es the appropriate laws, as follows.

Proposition 6.2.5 (Laws of Real Exponents). Let b, ~b ∈ R>0 be any

positive real numbers. Let x, ~x ∈ R be any real numbers. Then

(1) b0 = 1 and b1 = b.

(2) bxb~x = bx+~x
.

(3) (bx)~x = bx~x
.

(4) (b~b)x = bx
~bx

.
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The only obstale to proving the proposition is that its formulas are so

familiar. But one one understands that the mehanism is De�nition 6.2.3,

the omputations are easy.

Proof. (1) is immediate beause the exponents 0 and 1 are rational numbers.

We an also obfusate matters and argue that b0 = exp(0 ln(b)) = exp(0) = 1

by Theorem 6.2.2, and b1 = exp(1 ln(b)) = exp(ln(b)) = b by (6.3), but doing

so is gratuitous. For (3), ompute that

(bx)~x = exp

(
~x ln(bx)

)
= exp(x~x ln(b)) = bx~x.

Parts (2) and (4) are exerise 6.2.5. ⊓⊔

Various properties that we have established for the rational power funtion

extend to the funtion fα(x) = xα for x ∈ R>0 where now α is real rather

than rational. For example, for positive real s and t, with u = t/s,

tα − sα = sα(uα − 1) has the same sign as uα − 1,

and then, beause

uα = exp(α ln(u)),

if α > 0 then α ln(u) is positive for u > 1 and negative for 0 < u < 1, and

so uα > 1 for u > 1 and 0 < uα < 1 for 0 < u < 1, and so fα on R>0 is

inreasing. Similarly, if α < 0 then fα on R>0 is dereasing. So as before, the

power funtion fα on R>0 is inreasing if α > 0 and dereasing if α < 0.

Consequently, if α > 0 then for any ε > 0 and any x ∈ R>0 we have

xα < ε if and only if x < ε1/α.

This shows that

lim

x→0+

xα = 0 if α > 0.

That is, if α > 0 then the funtion fα(x) = xα for x ∈ R>0 extends ontinu-

ously to fα(0) = 0.

Exercises

6.2.4. Prove Proposition 6.2.4.

6.2.5. Prove parts (2) and (4) of Proposition 6.2.5.
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6.3 Exponential Growth

The �rst few terms of the sequene

(sn) =

(
n100000000

1.00000001n

)

are roughly, aording to a omputer,

s1 = 0.999999,

s2 = 3.684665× 1030102999,

s3 = 2.964601× 1047712125,

s4 = 1.357676× 1060205999,

s5 = 2.713950× 1069897000.

These are enormous. On the other hand, the jumps in the powers of 10|

from zero to 30 million to 48 million to 60 million to 70 million|seem to

be slowing down, suggesting that perhaps the sequene is tending upward to

some huge-but-�nite value. In fat, limn(sn) = 0. (!)

Theorem 6.3.1 (Exponential Growth Dominates Polynomial Growth).

Exponential growth dominates polynomial growth in the sense that

lim

x→∞

xa

bx
= 0 for any a > 0 and b > 1.

Here, as on page 155, for any funtion f : R>0 −→ R we de�ne

lim

x→∞

f(x) = lim

s→0
f(1/s).

That is, the left limit exists if the right limit does, in whih ase it takes its

value from the right limit.

Proof. We have already established that

lim

x→∞

ln x

x
= 0.

The result follows. For all large enough x we have

ln x

x
<

lnb

a+ 1
,

so that after ross-multiplying,

(a+ 1) ln x < x lnb,
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and so by a property of the logarithm,

ln(xa+1) < ln(bx),

and so beause the logarithm is inreasing,

xa+1 < bx,

and now dividing through by xbx
and noting that xa/bx

is positive gives

0 <
xa

bx
<

1

x
.

Beause limx→∞ 1/x = 0, we are done by squeezing. ⊓⊔

6.4 Differentiation of the Exponential

The main result of this setion is as follows.

Theorem 6.4.1 (The Exponential Function is Its Own Derivative).

The exponential funtion is its own derivative,

exp

′ = exp .

In onsequene of the theorem, the exponential funtion is ontinuous.

The theorem is lose to self-evident geometrially in onsequene of the

derivative of the logarithm being the reiproal funtion. For any real num-

ber x, the point (exp(x), x) lies on the logarithm graph beause exp(x) > 0

and ln(exp(x)) = x, and we have:

The tangent slope to the logarithm graph at (exp(x), x) is 1/ exp(x).

Reeting the logarithm graph through the y = x line gives the exponential

graph. And surely the tangent line of the reeted graph at the reeted point

is the reetion of the tangent line to the original graph at the original point.

(For example, this an be argued using the geometri haraterization of the

tangent line in exerise 4.2.3 on page 132.) Reeting the line interhanges the

roles of rise and run , so that the slope of the reeted line is the reiproal

of the original slope. In sum:

The tangent slope to the exponential graph at (x, exp(x)) is exp(x).

That is, exp

′(x) = exp(x), and so this geometri argument supports the the-

orem and perhaps already proves it.

The Chain Rule also supports the theorem. For all x ∈ R,
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ln(exp(x)) = x,

and so taking derivatives gives

ln

′(exp(x)) exp ′(x) = 1,

or, beause the derivative of the logarithm is the reiproal,

exp

′(x)

exp(x)
= 1,

whih is to say (again) that exp

′(x) = exp(x). However, the problem with this

argument is that it assumes that the exponential funtion is di�erentiable.

The existene of the derivative of the exponential funtion is the subtle issue

here, not the value of the derivative one its existene is known. The just-

given Chain Rule argument ignored this point, while the preeding geometri

argument handwaved it. Our only method to show in a satisfatory way that

the derivative exists is to work analytially and alulate it, and so our proof

of the theorem will proeed by doing so.

Proof. (Proof that exp

′
exists and equals exp.) First we establish the nor-

malized ase that exp

′(0) = exp(0), i.e., that

lim

s→0

exp(s) − exp(0)

s− 0
= exp(0).

Beause exp(0) = 1 this means showing that

lim

s→0

exp(s) − 1

s
= 1.

To establish this funtion limit is to establish that

for any sequene (sn) in R that approahes 0,

lim

n

(
exp(sn) − 1

sn

)
= 1.

On the other hand, we know that ln

′(1) = 1, whih is to say, realling that

ln(1) = 0, that

for any sequene (tn) in R>0 that approahes 1,

lim

n

(
ln(tn)

tn − 1

)
= 1,

and the Reiproal Rule for sequene limits says that onsequently
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for any sequene (tn) in R>0 that approahes 1,

lim

n

(
tn − 1

ln(tn)

)
= 1.

So, onsider any sequene (sn) in R that approahes 0. Let tn = exp(sn) for

eah n, a sequene in R>0. We show that (tn) approahes 1. Let ε > 0 be

given. Our goal is to make values tn lie within ε of 1, so we may assume that

ε < 1 by shrinking ε if neessary. Beause ln(1 − ε) < 0 and ln(1 + ε) > 0

and limn(sn) = 0, there is a starting generation N suh that ln(1− ε) < sn <

ln(1 + ε) for all n ≥ N. Beause the exponential funtion is inreasing and

tn = exp(sn) for all n, it follows that 1−ε < tn < 1+ε for all n ≥ N, showing

that limn(tn) = 1. Furthermore, beause sn 6= 0 for all n, also tn 6= 1 for

all n, and so (tn) approahes 1 as laimed. (See �gure 6.3.) Now, beause (tn)

approahes 1, we have that indeed

lim

n

(
tn − 1

ln(tn)

)
= 1.

And beause tn = exp(sn) and ln(tn) = sn for eah n, this is exatly our

desired sequene limit,

lim

n

(
exp(sn) − 1

sn

)
= 1.

So we have our desired normalized funtion limit,

lim

s→0

(
exp(s) − 1

s

)
= 1,

whih is to say that exp

′(0) = 1 as laimed.

For general but �xed x ∈ R and for any s ∈ R, let ~s = s − x, so that

s = x+ ~s. Then

lim

s→x

(
exp(s) − exp(x)

s− x

)
= lim

~s→0

(
exp(x+ ~s) − exp(x)

~s

)

= lim

~s→0

(
exp(x) exp(~s) − exp(x)

~s

)

= exp(x) lim
~s→0

(
exp(~s) − 1

~s

)

= exp(x) by the normalized ase.

That is, exp

′(x) = exp(x) for every x. This ompletes the proof.

⊓⊔



6.4 Di�erentiation of the Exponential 199
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Figure 6.3. Convergene of (sn) to 0 fores onvergene of (tn) to 1

Exercises

6.4.1. Let α ∈ R be any real number, not neessarily rational. De�ne the

orresponding power funtion

fα : R>0 −→ R, fα(x) = exp(α ln(x)).

Observe that if α ∈ Q is rational then this funtion is the familiar rational

power funtion fα, other than the issue that its domain may now be smaller.

Show that fα is di�erentiable and as before,

f ′α = αfα−1.

(Use the hain rule.)

6.4.2. For any positive real number b (abbreviating base), de�ne

gb : R −→ R, gb(x) = bx = exp(x ln(b)).

Thus ge is the exponential funtion. Show that gb is di�erentiable on R, and

g ′
b = ln(b)gb.

That is, slightly abusing notation,
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(bx) ′ = ln(b)bx.

(Use the hain rule.)

6.4.3. We know that the exponential funtion satis�es the onditions

exp

′ = exp and exp(0) = 1.

Suppose that some unknown funtion f : R −→ R also satis�es the onditions

f ′ = f and f(0) = 1.

De�ne

g : R −→ R, g(x) = exp(−x)f(x).

Show that g ′ = 0, i.e., g ′(x) = 0 for all x ∈ R. This fat suggests powerfully

that that the funtion g itself must be some onstant c. Granting this, �nd c

by evaluating g(0). What does this say about f?

6.4.4. For eah of the following funtions, determine the funtion's domain,

and then di�erentiate the funtion on its domain.

(a) f(x) = exp(x) ln(x).

(b) f(x) = exp(ln(x) + 1/x)

() f(x) = xabx
. (Here a ∈ R and b ∈ R>0 are onstants.)

6.4.5. The hyperboli osine and the hyperboli sine funtions are

osh : R −→ R, osh(x) =
ex + e−x

2

and

sinh : R −→ R, sinh(x) =
ex − e−x

2
.

(Their pronuniations rhyme with bosh and grinh .)

(a) Show that osh

′ = sinh and sinh

′ = osh.

(b) Use the hain rule to ompute (osh2 − sinh

2) ′ without omputing

osh

2
or sinh

2
, putting your answer in as simple a form as you an. What

does your answer suggest about osh

2 − sinh

2
?

() Sketh the graphs of osh and sinh on one set of oordinate axes.

6.5 Integration of the Exponential

Let b be a positive real number. Beause the exponential funtion is mono-

toni, its integral from 0 to b exists. Now see �gure 6.4. Its light-shaded region
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has area

∫
exp(b)

1
ln. The formula for the integral of the logarithm (see page 169)

says that ∫
exp(b)

1

ln = b exp(b) − exp(b) + 1.

And the entire shaded box in the �gure has area b exp(b). It follows that the

integral of the exponential from 0 to b is

∫b

0

exp = b exp(b) − (b exp(b) − exp(b) + 1) = exp(b) − 1.
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Figure 6.4. The integral of the exponential via the integral of the logarithm

It is also very easy to integrate the exponential with no referene to the

integral of the logarithm. We show how to do so beause the same method will

be used in hapter 7 to integrate the osine and sine funtions. For a uniform

partition of [0, b] into n subintervals the lower sum is a �nite geometri sum

of length n,

Sn =
b

n
[exp(0) + exp(b/n) + exp(2b/n) + · · ·+ exp((n− 1)b/n)]

=
b

n

[
1+ exp(b/n) + (exp(b/n))2 + · · ·+ (exp(b/n))n−1

]

=
b

n
· (exp(b/n))

n − 1

exp(b/n) − 1

= (exp(b) − 1)
/
exp(b/n) − exp(0)

b/n− 0
,
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and thus

lim

n
(Sn) = (exp(b) − 1)/ exp ′(0) = exp(b) − 1.

Eah orresponding upper sum Tn satis�es

Tn − Sn =
b

n
[exp(b) − 1] ,

and so limn(Tn − Sn) = 0. Therefore, again,

∫b

0

exp = exp(b) − 1.

Now the method of the previous paragraph an be used instead to rederive

the integral of the logarithm with no work. Beause the logarithm took some

e�ort to integrate, there is a real gain of eÆieny here. But integrating the

logarithm this way would have deferred our learning the answer until now.

For the more general integral of the exponential funtion,

∫b

a

exp, a, b ∈ R,

�rst assume that a < b and translate the boxes over [0, b−a] by a. Note that

exp(x+ a) = exp(a) exp(x), and very quikly it follows that (exerise 6.5.1)

∫b

a

exp = exp(b) − exp(a), a ≤ b. (6.4)

And then, �nally, if instead a > b then

∫b

a

exp = −

∫a

b

exp = −(exp(a) − exp(b)) = exp(b) − exp(a).

That is,

Theorem 6.5.1 (Integral of the Exponential Function). The integral

of the exponential funtion is

∫b

a

exp = exp(b) − exp(a), a, b ∈ R.

Naturally this is another instane of the Fundamental Theorem of Calu-

lus. Let F = exp, so that F ′ = exp. Then the formula says that

∫b

a

exp = F(b) − F(a), a, b ∈ R.
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Exercise

6.5.1. Let a and b be real numbers with a ≤ b. Explain why lower sums S̃n
for Ar

b
a(exp) satisfy

S̃n = eaSn,

where eah Sn is in turn a lower sum for Ar

b−a
0 (exp), and similarly for upper

sums. Show that formula (6.4) follows.

6.6 The Exponential as a Limit of Powers

6.6.1 The Description

Theorem 6.6.1 (The Exponential Function as a Limit of Powers).

For any real number x,

exp(x) = lim

n

((
1+

x

n

)n)
.

Before the proof, it deserves notie that the limit in the theorem is subtle.

Given a �xed real number x, the question is to what value the quantity

(
1+

x

n

)n

tends as n grows large. For that matter, does suh a value even exist?

One argument proeeds as follows: Beause x is �xed, 1+x/n tends to 1

as n grows large, and so (1 + x/n)n behaves like 1n. Beause 1n = 1 for

all n, the limiting value of (1+ x/n)n must be 1.

A seond argument reahes a drastially di�erent onlusion: Assume that

x is positive. Beause 1 + x/n is greater than 1 for all n, it follows that

(1+x/n)n is a high power of a quantity greater than 1. But the high powers

of any quantity greater than 1 grow very large, and so the limiting value

of (1+x/n)n must be in�nite. Similarly, if x is negative then for large n,

1+x/n lies between 0 and 1, and so the limiting value of (1+x/n)n must

be 0. Thus the limit is in�nite for positive x, and 0 for negative x. And

of ourse it is 1 for x = 0.

These arguments, and their onlusions, are both inorret. The problem

with both of them is that to study the limiting behavior of (1 + x/n)n as n

grows large, we must take are that both ourrenes of n in (1+x/n)n grow

large together . The �rst argument let the denominator-n grow �rst and only

thereafter let the exponent-n grow as well. The seond argument made the

omplementary error. The falsity of the resulting onlusions illustrates yet

again that to obtain the orret medium-sized answers in alulus, we need

to manipulate small and large quantities arefully.
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Proof. During the ourse of di�erentiating the logarithm, we established the

bounds

s− 1

s
≤ ln(s) ≤ s− 1, s ∈ R>0.

Let x ∈ R be any real number, let n ∈ Z≥1 be any positive integer suh

that n > |x|, and replae s by 1+ x/n to get

x/n

1+ x/n
≤ ln

(
1+

x

n

)
≤ x

n
, n > |x|.

Multiply the inequalities through by n and then note that n ln(1 + x/n) =

ln((1+ x/n)n) to get

x

1+ x/n
≤ ln

((
1+

x

n

)n)
≤ x, n > |x|.

Beause the exponential funtion is stritly inreasing, the inequalities are

preserved upon passing the quantities through it,

exp

(
x

1+ x/n

)
≤
(
1+

x

n

)n
≤ exp(x), n > |x|. (6.5)

By various sequene limit results (exerise 6.6.1),

lim

n

(
x

1+ x/n

)
= x,

and so, beause the exponential funtion is ontinuous,

lim

n

(
exp

(
x

1+ x/n

))
= exp(x),

To omplete the argument, apply the Squeezing Rule for sequene limits

to (6.5), showing that indeed

lim

n

((
1+

x

n

)n)
exists and equals exp(x) for all x ∈ R.

⊓⊔

Exercise

6.6.1. Show that for any real number x,

lim

n

(
x

1+ x/n

)
= x.
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6.6.2 An Interpretation: Compound Interest

The bank promises you an annual interest rate of x. For example, x ould be

some value suh as x = 0.05, i.e., �ve perent, but to avoid being overspei�

we view x as a generi positive real number.

You make a deposit d.

A year later the bank informs you that you now have your original deposit

plus the interest on your deposit, said interest amounting to your deposit

multiplied by the annual interest rate. That is, the bank tells you that the

amount in your aount is now

d(1+ x).

This is not fair to you. The bank has been free to invest your deposit from

the moment that you made it, and then further to invest any pro�ts from the

initial investment, and so on; but the bank has awarded you interest only on

your deposit, despite earning money with your deposit all through the year.

It would be more fair for the bank to award you interest on your deposit

halfway through the year, at half of the annual interest rate, and then to

award you interest on your new larger amount of money at the end of the

year, again at half of the annual interest rate. Thus at six months you would

have your deposit plus your deposit times half the annual interest rate,

d(1+ x/2),

and at the end of the year you would have your amount at six months plus

your amount at six months times half the annual interest rate,

d(1+ x/2)2.

But this is not fair to you either. The bank has made money with your deposit

ontinuously, but still it has awarded you interest only after six months and

then ompounded it only after another six months. On the brighter side, the

end-year amount now satis�es

d(1+ x/2)2 = d(1+ x+ x2/4) > d(1+ x),

i.e., the situation is more fair to you now than it was after a single interest

payment at the end of the year.

Similarly, if the bank awards and then ompounds interest monthly then

at the end of the year you have

d(1+ x/12)12.

Before we ontinue to analyze the situation, here is a small observation: For

any positive quantity s and any integer n > 1, expanding the n-fold produt
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(1+ s)n = (1+ s)(1+ s) · · · (1+ s)

gives the term 1 (from multiplying all of the 1's together), gives the term ns

(from the n di�erent ways of multiplying one s and n − 1 1's together), and

gives other terms, all of whih are positive. Thus

(1+ s)n > 1+ ns for s > 0 and n > 1.

Returning to the ompound interest alulation we have, in onsequene of

the observation just made,

(1+ x/12)6 > 1+ 6x/12 = 1+ x/2,

and so

d(1+ x/12)12 = d
(
(1+ x/12)6

)2
> d(1+ x/2)2.

That is, you have more at the end of the year if the bank ompounds interest

monthly than if the bank ompounds interest only twie a year, just as you

have more if the bank ompounds interest twie a year than if the bank

ompounds interest only one a year.

If the bank ompounds interest daily then at the end of the year your

balane is

d(1+ x/365)365.

Presumably this is more than you have if the bank ompounds interest

monthly, but the relevant algebra to justify this fat is a bit hairier than

the two omparisons that we we have made so far. (The problem is that 365

is not an integer multiple of 12, whereas 12 is an integer multiple of 2, and 2

is an integer multiple of 1.) Instead, note that if the bank ompounds interest

12 times daily then beause 12 · 365 = 4380, at the end of the year you have

d(1+ x/4380)4380.

Furthermore, applying our small observation twie gives

(1+ x/4380)12 > 1+ x/365 and (1+ x/4380)365 > 1+ x/12,

so that

(1+ x/4380)4380 > (1+ x/365)365 and (1+ x/4380)4380 > (1+ x/12)12.

In other words, if the bank ompounds interest 12 times daily then at the end

of the year then you have more than if the bank ompounds interest daily

or monthly. (Unsurprisingly, the daily ompounding does yield more interest

than the monthly, and this is easy to show using alulus rather than algebra.

See exerise 6.6.2.)
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Even if the bank ompounds your interest 4380 times, this still isn't quite

fair to you beause the bank is making money ontinuously with your deposit.

The orret senario is for the bank to ompound your interest ontinuously

as well. Thus we are led to the exponential funtion: at the end of the year,

your aount value should be

d lim
n
((1+ x/n)n) = dex.

Interpret an interest rate as a proportion fator relating the rate of inrease

of a quantity to the amount of the quantity. That is, viewing time t as an

independent variable, the aruing value of your aount is an unknown time-

dependent funtion f(t) suh that

f(0) = d (initial ondition),

f ′(t) = xf(t) (di�erential equation).

Similar to exerise 6.4.3, the only funtion satisfying these onditions is

f(t) = dext.

Thus we reover our result that the exponential funtion arises naturally

from ontinuously ompounded interest. And more generally, it desribes any

quantity that inreases in proportion to its amount.

Exercises

6.6.2. Reall that in the ourse of proving that the exponential is a limit of

powers, we made use of the inequality

s

1+ s
≤ ln(1+ s), s > −1.

Beause the inequality was derived by omparing a box-area to an area under

a urve, the inequality is strit (i.e., it is \<") unless s = 0.

(a) Let x ∈ R>0 be a �xed positive real number. De�ne a funtion of a

variable t that also makes referene to the onstant x,

f : R≥1 −→ R, f(t) = ln((1+ x/t)t).

Show that

f ′(t) = ln(1+ s) −
s

1+ s
, where s =

x

t
.

(b) Part (a) shows that f ′ is always positive by the inequality at the

beginning of this exerise, beause s = x/t is positive. The fat that f ′ is
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always positive suggests powerfully that f is stritly inreasing. Granting

this, explain why the funtion

g : R≥1 −→ R, g(x) = exp(f(x))

is stritly inreasing as well.

() In partiular,

g(1) < g(2) < g(3) < · · · .
What does this say about your aount balane at the end of the year if the

bank ompounds interest daily rather than monthly?

6.6.3. Let d and x be positive real numbers. What is the doubling time of

the quantity

f : R≥0, f(t) = dext,

i.e., the t-value suh that f(t) = 2d? How does the doubling time depend on

the initial value d? If instead x is negative, what is the halving time of f?



7

The Cosine and Sine Functions

The basi trigonometri funtions osine and sine desribe uniform osilla-

tion, analogously to how the exponential funtion desribes natural growth.

Beause osillation is a more ompliated phenomenon than natural growth,

the properties of the osine and sine are orrespondingly more elaborate than

those of the exponential. After establishing the properties of osine and sine,

we arry out our usual program of di�erentiating and integrating these fun-

tions.

Setion 7.1 establishes the fat that the irumferene of the unit irle is

its diameter times its area, a fat relevant to the properties of osine and the

sine. Setion 7.2 de�nes the osine and the sine, and setion 7.3 establishes

some of their properties: basi identities, angle sum and di�erene formulas,

double and half angle formulas, produt and di�erene formulas. Using these

properties, we an di�erentiate the osine and the sine in setion 7.4, and we

an integrate them in setion 7.5. Setion 7.6 introdues other trigonometri

funtions, the tangent, otangent, seant, and oseant, and setion 7.7 intro-

dues their inverse funtions. All of these funtions are within our power to

di�erentiate by using progenitive derivative rules, but for the most part we

don't yet know how to integrate them.

7.1 The Circumference of the Unit Circle

Let π denote the area of the unit irle, and let c denote its irumferene.

We quikly review the proof that c = 2π. Figure 7.1 shows n triangles irum-

sribing the unit irle (n = 8 in the �gure, and in general we assume that n

is even). One triangle is shaded, and the altitude from its vertex at the enter

of the irle to the enter of its base is shown. Beause the altitude is the

irle's radius, eah triangle has height 1. Also, the triangle bases have total



210 7 The Cosine and Sine Funtions

length slightly larger than the irle irumferene c. Meanwhile, �gure 7.2

shows the same triangles rearranged into a retangle whose base is half the

sum of the triangle bases and whose height is 1. The area of the irumsrib-

ing polygon in �gure 7.1 equals the area of the retangle in �gure 7.2. As n

grows, the area of the irumsribing polygon in �gure 7.1 tends to the area π

of the unit irle, while the base of the retangle in �gure 7.2 tends to half

the irle irumferene c and its height is always 1 and so the area of the

retangle tends to c/2. In the limit, the equal areas are π and c/2, from whih

the desired result follows,

c = 2π.

Figure 7.1. Triangles irumsribing the unit irle

Figure 7.2. Rearrangement of the irumsribing triangles

7.2 Definition of the Cosine and the Sine

Let s ∈ R≥0 be a nonnegative real number. Starting at (1, 0), proeed oun-

terlokwise along the unit irle through ar length s, and let P(s) denote

the point thus reahed. The x- and y-oordinates are respetively the cosine

and the sine of s,

P(s) = (os(s), sin(s)). (7.1)
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For s ∈ R<0, i.e., for negative s, proeeding ounterlokwise along the unit

irle through ar length s has the obvious interpretation of proeeding lok-

wise instead through ar length −s. Again let P(s) denote the point thus

reahed, and extend formula (7.1) to this ase as well. Thus we have de�ned

funtions

os, sin : R −→ [−1, 1].

So, for example, starting at (1, 0) and then going one-quarter, one-half, three-

quarters, and all the way around the unit irle ounterlokwise gives the

values

(os(0), sin(0)) = (1, 0),

(os(π/2), sin(π/2)) = (0, 1),

(os(π), sin(π)) = (−1, 0),

(os(3π/2), sin(3π/2)) = (0,−1),

(os(2π), sin(2π)) = (1, 0).

The graphs of the osine and sine funtions (or rather, portions of the graphs)

are shown in �gure 7.3.

PSfrag replaements

−π

π

2π

os(s) sin(s)

Figure 7.3. Cosine and sine

7.3 Identities for the Cosine and the Sine

7.3.1 Basic Identities

The following properties of sine and osine are onsequenes of the de�nition.

For all s ∈ R,
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sin(s)2 + os(s)2 = 1, (7.2)

os(s+ 2πn) = os(s) for all n ∈ Z, (7.3)

sin(s+ 2πn) = sin(s) for all n ∈ Z, (7.4)

os(−s) = os(s), (7.5)

sin(−s) = − sin(s), (7.6)

os(π/2− s) = sin(s), (7.7)

sin(π/2− s) = os(s). (7.8)

Property (7.2) holds by the Pythagorean Theorem beause P(s) lies on the

unit irle. Properties (7.3) and (7.4) hold beause the irle has irum-

ferene 2π. Properties (7.5) and (7.6) hold beause proeeding from (1, 0)

lokwise rather than ounterlokwise but through the same ar length s

gives the same x-oordinate but the opposite y-oordinate. Properties (7.7)

and (7.8) hold beause starting at (0, 1) (rather than at (1, 0)) and proeeding

lokwise through ar length s along the unit irle is the reetion through

the 45-degree line y = x of starting at (1, 0) and proeeding ounterlokwise

through ar length s. Thus the x-oordinate produed by the �rst proess,

os(π/2 − s), must equal the y-oordinate produed by the seond, sin(s),

and similarly sin(π/2− s) = os(s).

The reader should visually identify as many as possible of the basi prop-

erties of osine and sine in �gure 7.3. Also, antiipating a result to ome, the

reader should see that plausibly the tangent slope of the sine graph is the

height of the osine graph, and the tangent slope of the osine graph is minus

the height of the sine graph. That is, the graphs suggest (as we will show

arefully soon) that sin

′ = os and os

′ = − sin.

Exercise

7.3.1. Consider the funtions f, g, h : [0, π/2] −→ R where

f(s) = (sin(4s))5, g(s) = (sin(3s))5, h(s) = (os(3s))5,

and onsider the quantities

A =

∫π/2

0

f, B =

∫π/2

0

g, C =

∫π/2

0

h.

Arrange A, B, and C in inreasing order. The idea here is not to ompute

preisely but to reason, with explanation, from rough skethes (whih you

should show) of the graphs of f, g, and h.
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Figure 7.4. Geometry for the angle sum and di�erene formulas

7.3.2 Angle Sum and Difference Formulas

Let s, t ∈ R be any real numbers. As far as their osines and sines are

onerned, we may assume that in fat s, t ∈ [0, 2π), and for the moment

we further assume that s > t. Figure 7.4 shows the points P(0) = (1, 0),

P(t) = (os(t), sin(t)), P(s) = (os(s), sin(s)), P(s−t) = (os(s−t), sin(s−t)).

The ar length distane s− t from P(0) to P(s− t) equals the ar length dis-

tane from P(t) to P(s), so the orresponding linear distanes are equal as well,

and hene so are their squares. By the Pythagorean Theorem, the equality of

squares of distanes is

(os(s− t) − 1)2 + sin

2(s− t) = (os(s) − os(t))2 + (sin(s) − sin(t))2,

or, after a little algebra that makes use of the �rst basi identity (7.2),

os(s− t) = os(s) os(t) + sin(s) sin(t).

Beause this formula is una�eted by exhanging s and t, our initial assump-

tion that s > t (after both are translated to lie in [0, 2π)) is unneessary, and

the formula holds for all s, t ∈ R. Altogether the angle sum and di�erene

formulas are
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os(s+ t) = os(s) os(t) − sin(s) sin(t), (7.9)

os(s− t) = os(s) os(t) + sin(s) sin(t), (7.10)

sin(s+ t) = sin(s) os(t) + os(s) sin(t), (7.11)

sin(s− t) = sin(s) os(t) − os(s) sin(t). (7.12)

We have established (7.10). The others follow from substitutions in (7.10) and

the basi identities. The slight elaborateness of these formulas orresponds to

the slightly ompliated way that the osillating x- and y-oordinates of a

point moving around the irle are related to eah other.

Exercise

7.3.2. Prove the other three angle sum and di�erene formulas.

7.3.3 Double and Half Angle Formulas

For all s ∈ R,

os(2s) = os

2(s) − sin

2(s) = 2 os2(s) − 1 = 1− 2 sin2(s), (7.13)

sin(2s) = 2 sin(s) os(s), (7.14)

os

2(s/2) = 1
2
(1+ os(s)), (7.15)

sin

2(s/2) = 1
2
(1− os(s)). (7.16)

Here (7.13) and (7.14) follow from (7.9) and the �rst basi identity (7.2)

and (7.11). Then (7.15) and (7.16) follow from (7.13).

Exercise

7.3.3. Prove the double and half angle formulas.

7.3.4 Product Formulas

For all s, t ∈ R,

os(s) os(t) = 1
2
(os(s− t) + os(s+ t)), (7.17)

sin(s) sin(t) = 1
2
(os(s− t) − os(s+ t)), (7.18)

os(s) sin(t) = 1
2
(sin(s+ t) − sin(s− t)). (7.19)

Here (7.17) follows from adding (7.9) and (7.10), and (7.18) follows from

subtrating (7.9) from (7.10), and (7.19) follows from subtrating (7.12)

from (7.11).
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Exercise

7.3.4. Prove the produt formulas.

7.3.5 Difference Formulas

For all s, t ∈ R,

os(s) − os(t) = −2 sin
(
s+t
2

)
sin

(
s−t
2

)
, (7.20)

sin(s) − sin(t) = 2 os
(
s+t
2

)
sin

(
s−t
2

)
. (7.21)

Here (7.20) follows from substituting

s+t
2

for s and

s−t
2

for t in (7.18). And

(7.21) follows from the same substitutions in (7.19).

Exercises

7.3.5. Prove the di�erene formulas.

7.3.6. Complete the table of sines and osines whose �rst half is

0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π

sin

os

and whose seond half is

π 7π/6 5π/4 4π/3 3π/2 5π/3 7π/4 11π/6 2π

sin

os

No justi�ation of the table values is requested in your written work, but do

derive them from the results of this ourse rather than quoting them from

memory or elsewhere. To �nd sin(π/6) and os(π/6), note that the trian-

gle having verties (0, 0), (os(π/6), sin(π/6)), and (os(−π/6), sin(−π/6)) is

equilateral of side 1.

7.4 Differentiation of the Cosine and the Sine

The osine and sine funtions osillate so regularly that one normalized deriva-

tive alulation|that sin

′(0) = 1|quikly gives the derivatives of the sine

and osine everywhere. To di�erentiate the sine at 0, the �rst step is to es-

tablish some estimates using geometry and algebra.
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Figure 7.5. Analysis of sine and osine

Lemma 7.4.1. For all s ∈ (0, π/2),

0 ≤ sin(s) ≤ s ≤ sin(s)/ os(s).

The geometry of the arguments in the proof to follow is shown in �gure 7.5.

Proof. Consider any s ∈ (0, π/2). Beause the point (os(s), sin(s)) lies in the

�rst quadrant of the artesian plane, 0 ≤ sin(s).

For next inequality, note that sin(s) is the distane from (os(s), 0)

to (os(s), sin(s)), whih is less than the distane from (1, 0) to (os(s), sin(s)),

and this is in turn less than the ar length from (1, 0) to (os(s), sin(s)), whih

is s. Thus sin(s) ≤ s.

For the third inequality, the right triangle in the �gure with legs sin(s)

and os(s) is similar to the right triangle in the �gure with legs t and 1, so

that

t = sin(s)/ os(s).

The �gure suggests strongly that also t ≥ s. We invoke this as an assumption.

(For Arhimedes, it was a partiular onsequene of a more general assumption

about urves that are onave in the same diretion , the urves in this ase

being s and t eah joined with its reetion through the horizontal axis,

so that they start at a shared point and end at a shared point.) Thus s ≤
sin(s)/ os(s). ⊓⊔

The next proposition is self-evident geometrially, but we give a quik

analyti proof.

Proposition 7.4.2 (Continuity of the Sine and Cosine Functions).

The sine and osine funtions are ontinuous at 0, meaning that

lim

s→0
sin(s) = 0, lim

s→0
os(s) = 1.
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Proof. For the �rst limit, the lemma's inequalities 0 ≤ sin(s) ≤ s for 0 < s <

π/2 give 0 ≤ | sin(s)| ≤ |s| for 0 < |s| < π/2, beause sin(s) and s simply hange

their signs when s is negative rather than positive. Beause lims→0 |s| = 0,

the Squeeze Rule for funtion limits gives lims→0 | sin(s)| = 0 in onsequene,

from whih lims→0 sin(s) = 0 as desired (see (4.2) on page 123).

For the seond limit, again see �gure 7.5. For 0 < |s| < π/2, note that

| os(s) − 1| is the distane from (1, 0) to (os(s), 0), whih is less than the

distane from (1, 0) to (os(s), sin(s)), and this is in turn less than the ar

length from (1, 0) to (os(s), sin(s)), whih is |s|. That is, | os(s) − 1| ≤ |s| for

0 < |s| < π/2. The Squeeze Rule for funtion limits gives lims→0 | os(s)−1| =

0, from whih lims→0 os(s) = 1 as desired (see (4.1) on page 123).

⊓⊔

Proposition 7.4.3 (Derivatives of the Sine and the Cosine at 0). The

sine and osine are di�erentiable at 0, and

sin

′(0) = 1, os

′(0) = 0.

Proof. First we disuss the sine. Beause sin(−s)/(−s) = sin(s)/s for all

nonzero s, we may onsider the funtion

g : (0, π/2) −→ R, g(s) =
sin(s)

s

and show that lims→0 g(s) = 1. Note that s, sin(s), and os(s) are positive for

s ∈ (0, π/2). The inequality s ≤ sin(s)/ os(s) from the lemma gives os(s) ≤
sin(s)/s, and the inequality sin(s) ≤ s from the lemma gives sin(s)/s ≤ 1, so

together

os(s) ≤ sin(s)

s
≤ 1 for all s ∈ (0, π/2).

Beause lims→0 os(s) = 1 by the previous proposition, the Squeeze Rule for

funtion limits shows that

lim

s→0

sin(s)

s
= 1.

That is,

lim

s→0

sin(s) − sin(0)

s− 0
= 1,

whih is to say that sin

′(0) exists and equals 1.

Seond we disuss the osine, obtaining the desired result from the value

sin

′(0) = 1 and from other work that we have done. By (7.16) (page 214),

os(s) − 1

s
=

−2 sin2(s/2)

s
= − sin(s/2)

sin(s/2)

s/2
.
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As s goes to 0 so does s/2, and hene so does sin(s/2) by the previous propo-

sition. And sin(s/2)/(s/2) goes to sin

′(0) = 1. Hene overall,

lim

s→0

os(s) − os(0)

s− 0
= −0 · 1 = 0,

whih is to say that os

′(0) exists and equals 0.

⊓⊔

As mentioned, the general derivatives of osine and sine are onsequenes

of their regular osillatory nature and of the normalized derivative value

sin

′(0) = 1, whih quikly gave os

′(0) = 0 as well.

Theorem 7.4.4 (Derivatives of Cosine and Sine). The osine and the

sine funtions are di�erentiable on R, and

os

′ = − sin, sin

′ = os .

Proof. Fix any value x ∈ R. Write any s ∈ R as s = x+ ~s, so that s− x = ~s.

Then

os(s) − os(x)

s− x
=

os(x+ ~s) − os(x)

~s

=
os(x) os(~s) − sin(x) sin(~s) − os(x)

~s

= os(x)
os(~s) − 1

~s
− sin(x)

sin(~s)

~s
.

Thus, beause s goes to x exatly when ~s goes to 0, the normalized values

os

′(0) = 0 and sin

′(0) = 1 give

lim

s→x

os(s) − os(x)

s− x
= os(x) lim

~s→0

os(~s) − 1

~s
− sin(x) lim

~s→0

sin(~s)

~s

= os(x) · 0− sin(x) · 1 = − sin(x).

In other words, os

′ = − sin. The argument that sin

′ = os an be done

virtually identially, but a nonrepetitive method is to use the identity sin(x) =

os(π/2 − x) and the just-derived result os

′ = − sin and the hain rule and

the identity sin(π/2− x) = os(x) (exerise 7.4.1). ⊓⊔

Exercises

7.4.1. Carry out the argument that sin

′ = os.

7.4.2. Find the derivatives of the following funtions.

(a) f(x) = ln(os(x) + 2).

(b) f(x) = sin(4(x3 + 2)).

() f(x) = ln((sin(x) + 1)/ os(x)) for x ∈ (−π/2, π/2).
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7.5 Integration of the Cosine and the Sine

7.5.1 Imaginary Exponential

To integrate the osine and sine funtions graefully, one again via the �nite

geometri sum formula and a normalized derivative value, we use so-alled

omplex numbers .

� First introdue the so-alled imaginary number i, having the properties

i2 = −1 and ir = ri for all r ∈ R.

� A general omplex number is a number x+ iy where x, y ∈ R.

Just as using the word real does not ause anything to exist, nor does using

the word imaginary prevent anything from existing, and nor does using the

word omplex make anything ompliated; the omplex number system is

every bit as extant as the real number system and is a simple extension of

it, both systems' adjetival names onnoting only historial respet for the

language of mathematis as it grappled with ideas.

One an hek that addition, subtration, multipliation, and division of

omplex numbers all work well, i.e., these operations satisfy the basi laws of

algebra. The imaginary number i solves the polynomial equation X2 + 1 = 0,

whih has no real solution. More generally, although a polynomial with real

oeÆients needn't have real roots, the Fundamental Theorem of Algebra

says that every nononstant polynomial with omplex oeÆients has omplex

roots (the oeÆients ould be real, and then the roots might be real). Thus,

introduing i orrets an algebrai de�ieny of the real number system.

Now further de�ne the exponential of any purely imaginary omplex

number, meaning a real number multiple of i,

eiθ = os(θ) + i sin(θ), θ ∈ R. (7.22)

A omputation (exerise 7.5.1) shows that the addition laws for the osine and

sine funtions, whih we have established, two slightly ompliated formulas

that entwine the two funtions,

os(θ+ φ) = os(θ) os(φ) − sin(θ) sin(φ)

sin(θ+ φ) = sin(θ) os(φ) + os(θ) sin(φ),

make the imaginary exponential work as we would hope, by taking sums to

produts, as expressed in one simple formula involving only one funtion,

ei(θ+φ) = eiθeiφ.

It follows that ei2θ = ei(θ+θ) = eiθeiθ = (eiθ)2, and then ei3θ = ei(2θ+θ) =

ei2θeiθ = (eiθ)2eiθ = (eiθ)3, and in general
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eijθ = (eiθ)j, j = 0, 1, 2, . . . .

Here are perhaps the most fundamental entities from mathematis:

� Numbers

{ 1 and 0: basi to arithmeti; the multipliative and additive identities

{ π: arises naturally in geometry as the area of the unit irle

{ e: arises naturally in analysis as the number whose logarithm is 1

{ i: arises naturally in algebra as a solution of X2 + 1 = 0

� Operations

{ addition and multipliation: built into the real and omplex number

systems

{ exponentiation: relates addition and multipliation

� Relation

{ equality.

As a speial ase of the de�nition eiθ = os(θ) + i sin(θ), set θ = π to get

eiπ = −1, or

eiπ + 1 = 0.

In a marvel of eÆieny, this omprises exatly the �ve fundamental numbers,

the three fundamental operations, and the one fundamental relation, one eah

and nothing more.

Exercise

7.5.1. Show that De�nition 7.22 and the addition laws for the osine and sine

funtions give the law ei(θ+φ) = eiθeiφ for all θ,φ ∈ R.

7.5.2. De�nition 7.22 expresses the imaginary exponential in terms the o-

sine and sine funtions. Evaluate (eiθ + ei(−θ))/2 and (eiθ − ei(−θ))/(2i) to

show that also the osine and sine funtions an be expressed in terms of the

imaginary exponential.

7.5.2 The Integrals Via the Imaginary Exponential

The osine and sine funtions are both bounded, beause their values lie

in [−1, 1]. Also, the osine funtion is

inreasing on [−π, 0] and dereasing on [0, π],

dereasing on [−2π,−π] and inreasing on [π, 2π],

inreasing on [−3π,−2π] and dereasing on [2π, 3π],

and so on, while the sine funtion is
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inreasing on [−π/2, π/2],

dereasing on [−3π/2,−π/2] and [π/2, 3π/2],

inreasing on [−5π/2,−3π/2] and [3π/2, 5π/2],

and so on. All of this is self-evident if one remembers the interpretation of

the osine and the sine as the oordinates of a point that moves around the

irle.

Theorem 7.5.1 (Integrals of the Cosine and the Sine). Let a and b

be any real numbers. Then the integrals

∫b
a
os and

∫b
a
sin exist, and their

values are

∫b

a

os = sin(b) − sin(a)

and

∫b

a

sin = os(a) − os(b).

We will prove this niely by using the imaginary exponential.

Proof. As usual, if we an prove the results for a ≤ b then they follow as

well for a > b. So we assume that a ≤ b, and in fat we assume that a < b

beause the ase a = b is trivial.

The sine and the osine are bounded and pieewise monotoni. Any

bounded monotoni funtion is integrable by Theorem 3.3.8 on page 108 (for

nonnegative suh funtions) and the disussion in hapter 5 (extending the

integral to bounded funtions that an also take negative values). The sine

and the osine are therefore integrable by Proposition 3.3.9 on page 109. Also

by the proposition, we may arry out the integral over an interval [a, b] where

the funtion (sine or osine) is monotoni. First we onsider the normalized

ase a = 0.

Now onsider a uniform partition of [0, b] into n subintervals, eah having

width b/n. The sum

Sn =
b

n

(
os(0b

n
) + os(1b

n
) + os(2b

n
) + · · ·+ os(

(n−1)b
n

)

+ i
b

n

(
sin(0b

n
) + sin(1b

n
) + sin(2b

n
) + · · ·+ sin(

(n−1)b
n

)

has limit

lim

n
Sn =

∫b

0

os+i

∫b

0

sin .

Rearrange Sn and then use the imaginary exponential de�nition eiθ =

os(θ) + i sin(θ) to get
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Sn =
b

n

(
os(0b

n
) + os(1b

n
) + os(2b

n
) + · · ·+ os(

(n−1)b
n

)

+ i
b

n

(
sin(0b

n
) + sin(1b

n
) + sin(2b

n
) + · · ·+ sin(

(n−1)b
n

)

=
b

n

(
os(0b

n
) + os(1b

n
) + os(2b

n
) + · · ·+ os(

(n−1)b
n

)

+ i sin(0b
n
) + i sin(1b

n
) + i sin(2b

n
) + · · ·+ i sin(

(n−1)b
n

)

)

=
b

n

(
ei0b/n + ei1b/n + ei2b/n + · · ·+ ei(n−1)b/n

)
,

and now, very similarly to the alulation beginning with It is also very

easy to integrate the exponential on page 201 we have, by the property

eijθ = (eiθ)j, by the �nite geometri sum formula, and by (eiθ)n = (einθ),

that this sum is

Sn =
b

n

(
ei0b/n + ei1b/n + ei2b/n + · · ·+ ei(n−1)b/n

)

=
b

n

(
1+ eib/n + (eib/n)2 + · · ·+ (eib/n)n−1

)

=
b

n
· (e

ib/n)n − 1

eib/n − 1

=
b

n
· eib − 1

eib/n − 1
.

Noting that 1 = −i · i, this is

Sn = −i(eib − 1)
/eib/n − e0

ib/n− 0
.

As n grows large, the quotient (eib/n−e0)/(ib/n−0) in the previous display

tends to exp

′(0) = 1, and so overall the sum that we are evaluating has limit

lim

n
Sn = −i(eib − 1) = −i(os(b) − 1+ i sin(b)) = sin(b) + i(1− os(b)).

That is, beause also limn Sn =
∫b
0
os+i

∫b
0
sin as noted after the de�nition

of Sn at the beginning of this paragraph,

∫b

0

os = sin(b),

∫b

0

sin = 1− os(b).

In general

∫b
a
os =

∫b
0
os−

∫a
0
os and similarly for the sine funtion, so the

laimed results follow,

∫b

a

os = sin(b) − sin(a),

∫b

a

sin = os(a) − os(b).

⊓⊔



7.6 Other Trigonometri Funtions 223

The reader ould reasonably be onerned that beause the proof just

given uses omplex numbers, the �nite geometri sum and normalized deriva-

tive value that it ites are unjusti�ed variants of justi�ed results. We gladly

work with these variants beause they are very natural and they let us make

suh a lovely argument. The variant �nite geometri sum for omplex numbers

is established by exatly the same basi algebra that we used in setion 2.1.2

to establish it for real numbers. As for the variant normalized derivative, see

exerise 7.5.3(a).

Exercise

7.5.3. (a) Show that

eis − 1

is
= −i

(
os(s) − 1

s
+ i

sin(s)

s

)
.

Use known normalized derivative values of the osine and sine funtions to

explain why the two quotients on the right side of the equality go respetively

to 0 and 1 as s goes to 0. Consequently the quotient on the left side goes to 1.

This is the normalized derivative value that was used in the setion with

s = b/n.

(b) Show that for all s, x ∈ R with s 6= x,

eis − eix

i(s− x)
=

ei(s−x) − 1

i(s− x)
eix.

By part (a), with s − x here playing the role of s there, the limit of this

quotient, as the variable value s approahes the �xed value x, is eix. Explain

how this shows that

lim

s→x

os(s) − os(x)

s− x
= − sin(x) and lim

s→x

sin(s) − sin(x)

s− x
= os(x).

thus reproving Theorem 7.4.4.

7.6 Other Trigonometric Functions

Definition 7.6.1 (Tangent, Cotangent, Secant, Cosecant). The tan-

gent, cotangent, secant, and cosecant funtions have the formulas

tan(s) = sin(s)/ os(s),

ot(s) = os(s)/ sin(s),

se(s) = 1/ os(s),

s(s) = 1/ sin(s).
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The domains of these funtions are the largest subsets of R that avoid

dividing by 0. For example, the domain of the tangent is

dom(tan) = {s ∈ R : s 6= ±π/2, ±3π/2, ±5π/2, . . . }.

Example 7.6.2. We di�erentiate the tangent. Any point s ∈ dom(tan) is also

approahable from dom(tan), and

tan

′(s) =

(
sin

os

)′

(s) by de�nition of the tangent

=

(
sin

′ · os− sin · os ′
os

2

)
(s) by the Quotient Rule

=

(
os

2 + sin

2

os

2

)
(s) beause sin

′ = os and os

′ = − sin

=
1

os

2(s)
beause os

2 + sin

2 = 1

= se

2(s).

That is,

tan

′ = se

2 .

Exerise 7.6.1 is to show that also

ot

′ = − s

2

and

se

′ = tan · se
and

s

′ = − ot · s .

Exercises

7.6.1. What is the domain of the otangent? The seant? The oseant? Show

that

ot

′ = − s

2, se

′ = tan · se, s

′ = − ot · s .
7.6.2. (a) Desribe the domain of the funtion given by the formula

f(x) = ln(| tan(x) + se(x)|).

Explain why f is di�erentiable and ompute f ′. The answer should simplify

niely.

(b) Similarly for

f(x) = − ln(| ot(x) + s(x)|).

() Similarly for

f(x) = ln(| tan(x/2)|).
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7.7 Inverse Trigonometric Functions

Example 7.7.1 (The Inverse Cosine Function). Restrit the domain of

the osine to [0, π]. The resulting funtion

os : [0, π] −→ [−1, 1]

takes eah value in its odomain exatly one, so it is invertible. The inverse

funtion is the arc-cosine,

aros : [−1, 1] −→ [0, π].

A graph of the ar-osine is shown in �gure 7.6.

PSfrag replaements
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Figure 7.6. Graph of the ar-osine funtion

Beause we an integrate the osine, we an integrate the ar-osine by

using the same method that let us integrate the exponential via the integral

of the logarithm (or onversely) in setion 6.5. Consider any value b ∈ [−1, 1],

let c = aros(b), and onsider �gure 7.7. The dark-shaded area is

∫b
−1

aros.

The light-shaded area is

∫π
c
(b − os). The entire shaded area is π(b + 1).

Therefore,
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∫b

−1

aros = π(b+ 1) −

∫π

c

(b− os)

= π(b+ 1) − (π− c)b+

∫π

c

os

= π+ bc+ sin(π) − sin(c)

= π+ bc− sin(c).

But c = aros(b) and sin(aros(b)) =
√
1− b2

(the general fat that

sin(aros(x)) =
√
1− x2 , x ∈ [−1, 1]

is demonstrated by �gure 7.8), and so

∫b

−1

aros = π+ b aros(b) −
√
1− b2.

It follows that more generally, for all a, b ∈ [−1, 1],

∫b

a

aros = (b aros(b) −
√
1− b2) − (a aros(a) −

√
1− a2).

We an also di�erentiate the ar-osine. Note that

os(aros(x)) = x, x ∈ [−1, 1].

The Chain Rule says that onsequently, for all x ∈ [−1, 1] suh that the

derivative aros

′(x) exists,

− sin(aros(x)) · aros ′(x) = 1.

So for all x ∈ [−1, 1] suh that the derivative aros ′(x) exists and furthermore

sin(aros(x)) is nonzero,

aros

′(x) = −
1

sin(aros(x))
.

But as already noted, sin(aros(x)) =
√
1− x2 for x ∈ [−1, 1]. Thus

sin(aros(x)) 6= 0 for all x ∈ (−1, 1). Only the endpoints x = ±1 need to

be exluded to avoid dividing by zero in the previous display. That is, if the

derivative aros

′
exists on (−1, 1) then it is

aros

′(x) = −
1√

1− x2
, −1 < x < 1.

But we still have to address the existene question.
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Figure 7.7. Integrating the ar-osine
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Figure 7.8. Figure to ompute sin(aros(x))

As with di�erentiating the exponential funtion, what needs to be shown

for any x ∈ (−1, 1) is that

lim

s→x

aros(s) − aros(x)

s− x
= −

1√
1− x2

,

whih is to say that
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for any sequene (sn) in (−1, 1) that approahes x,

lim

n

(
aros(sn) − aros(x)

sn − x

)
= −

1√
1− x2

.

On the other hand, we know that os

′(aros(x)) = −
√
1− x2, whih is to

say that

for any sequene (tn) in (0, π) that approahes aros(x),

lim

n

(
os(tn) − os(aros(x))

tn − aros(x)

)
= −

√
1− x2,

and beause −
√
1− x2 is nonzero, and noting that os(aros(x)) = x, the

Reiproal Rule for sequene limits says that in fat

for any sequene (tn) in (0, π) that approahes aros(x),

lim

n

(
tn − aros(x)

os(tn) − x

)
= −

1√
1− x2

.

So, onsider any sequene (sn) that approahes x in (−1, 1). Let tn =

aros(sn) for eah n. We show that (tn) approahes aros(x). Let ε > 0

be given. Our goal is to make values tn lie within ε of aros(x), so we may

assume that aros(x)−ε > 0 and aros(x)+ε < π by shrinking ε if neessary.

Consider the number ρ1 = os(aros(x) + ε), whih is less than x, and the

number ρ2 = os(aros(x) − ε), whih is greater than x. Beause limn(sn) =

x, there is a starting generation N suh that ρ1 < sn < ρ2 for all n ≥ N.

Beause the ar-osine funtion is dereasing and tn = aros(sn) for all n,

it follows that aros(x) − ε < tn < aros(x) + ε for all n ≥ N, showing

that limn(tn) = aros(x). Furthermore, beause sn 6= x for all n, also tn 6=
aros(x) for all n, and so (tn) approahes aros(x) as laimed.

Now, beause (tn) approahes aros(x), we have

lim

n

(
tn − aros(x)

os(tn) − x

)
= −

1√
1− x2

.

And beause tn = aros(sn) and os(tn) = sn for eah n, this is exatly our

desired sequene limit,

lim

n

(
aros(sn) − aros(x)

sn − x

)
= −

1√
1− x2

.

This ompletes the proof. In sum,

aros

′(x) = −
1√

1− x2
, −1 < x < 1.
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With the derivative of the ar-osine in hand, we an see the Fundamental

Theorem of Calulus in ation one again. De�ne a funtion

F : [−1, 1] −→ R, F(x) = x aros(x) −
√
1− x2.

Then (exerise 7.7.1)

F ′(x) = aros(x), −1 < x < 1.

And so, as usual, for all a, b ∈ (−1, 1), glossing over the issue of the endpoints

for now, ∫b

a

aros = F(b) − F(a), F ′ = aros .

Similarly to the inverse osine funtion, we an de�ne the inverse sine,

arsin : [−1, 1] −→ [−π/2, π/2],

the inverse tangent,

artan : R −→ (−π/2, π/2),

and the inverse otangent,

arot : R −→ (0, π).

Exerises 7.7.2 and 7.7.3 are to disuss these funtions, to alulate their

derivatives, and to integrate the ar-sine.

Exercises

7.7.1. As in the setion, let F(x) = x aros(x)−
√
1− x2 for x ∈ [−1, 1]. Show

that F ′ = aros on (−1, 1).

7.7.2. Restrit the domain of the sine to [−π/2, π/2]. The resulting funtion

sin : [−π/2, π/2] −→ [−1, 1]

takes eah value in its odomain exatly one, so it is invertible. The inverse

funtion is the arc-sine,

arsin : [−1, 1] −→ [−π/2, π/2].

(a) Sketh a graph of the ar-sine.

(b) Explain why for all y ∈ [−1, 1] suh that the derivative arsin

′(y)

exists and os(arsin(y)) is nonzero,
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arsin

′(y) =
1

os(arsin(y))
.

() For generi y ∈ [−1, 1], draw a right triangle with verties (0, 0), (0, y),

and (x, y) where the third vertex lies on the right half of the unit irle.

Explain how this �gure shows that for suh y,

os(arsin(y)) =
√
1− y2 .

(d) Show that

arsin

′(y) =
1√

1− y2
, −1 < y < 1.

(e) Compute

∫b
a
arsin for any a, b ∈ [−1, 1].

7.7.3. (a) Disuss the inverse tangent funtion

artan : R −→ (−π/2, π/2)

and show that

artan

′(x) =
1

1+ x2
, x ∈ R.

(b) Disuss the inverse otangent funtion

arot : R −→ (0, π)

and show that

arot

′(x) = −
1

1+ x2
, x ∈ R.
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Polynomial Approximation and Series

Representation

The basi operations with real numbers are addition and multipliation. So the

simplest funtions are those that are evaluated by arrying out �nitely many

suh operations. These funtions are preisely the polynomials . It is natural

to approximate the more ompliated funtions that we have studied|the

power funtion for exponents other than nonnegative integers, the logarithm,

the exponential, the trigonometri funtions|by polynomials. And it is nat-

ural to investigate how good the approximations are, and whether the more

ompliated funtions, despite not being polynomials, are somehow limits of

polynomials.

This hapter derives approximating polynomials Pn of eah degree n for

the just-mentioned funtions. For eah suh funtion f, for all x in a ertain

domain that may not be the full domain of f, the values Pn(x) tend to f(x)

as n grows. Thus limits of polynomials provide a uniform desription of

the funtions, despite the funtions all being so di�erent from eah other.

Also, estimates of how well the polynomials approximate their limit-funtions

provide a �nite proess to ompute the funtions to any desired auray. This

makes the funtions more tangible than they were previously.

Most of the arguments in this hapter are not hard to follow, but in a few

plaes the alulations get detailed. The reader is enouraged to read those

passages lightly rather than get bogged down.

Setion 8.1 is somewhat of a warmup, expanding the polynomial (1+ x)n

in powers of x. Setion 8.2 establishes preliminary results for the alulations

to follow in the hapter|an alternative notation for the integral, better suited

to omputation, and a disussion of the integral of the power funtion when

the left endpoint of integration is zero. Setion 8.3 �nds approximating poly-

nomials and remainders for the logarithm, and setion 8.4 does the same for

the exponential, and setion 8.5 does the same for the osine and the sine.

Finally, setion 8.6 �nds approximating polynomials and remainders for the
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power funtion at 1 + x, i.e., for (1 + x)α. The results here generalize the

results of setion 8.1.

8.1 The Finite Binomial Theorem

Let n ∈ Z≥0 be a nonnegative integer. The funtion

f : R −→ R, f(x) = (1+ x)n

is a polynomial. To desribe it in terms of nonnegative integer powers of x,

introdue the notation

(
n

k

)
=

n(n− 1) · · · (n− k+ 1)

k!
, k = 0, . . . , n.

The numerator of the fration is the produt of k terms, starting at n − 0

and derementing to n − (k − 1). The denominator is also the produt of k

terms, from 1 to k, the factorial of k. When k = 0 the numerator and the

denominator are both understood to be 1 beause a produt of no terms

naturally should be the multipliatively neutral quantity 1, just as a sum of

no terms is the additively neutral quantity 0.

For nonnegative integers n and k with 0 ≤ k ≤ n, the binomial oeÆients(
n
k

)
arrange themselves in a pleasing pattern. The �rst few are

(
0

0

)
=

1

0!
= 1,

and (
1

0

)
=

1

0!
= 1,

(
1

1

)
=

1

1!
= 1,

and (
2

0

)
=

1

0!
= 1,

(
2

1

)
=

2

1!
= 2,

(
2

2

)
=

2 · 1
2!

= 1,

and

(
3

0

)
=

1

0!
= 1,

(
3

1

)
=

3

1!
= 3,

(
3

2

)
=

3 · 2
2!

= 3,

(
3

3

)
=

3 · 2 · 1
3!

= 1.

This famous arrangement is Pasal's Triangle , in whih eah internal entry

is the sum of the two entries above it on either side:
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

et.

That is, the nth row's kth entry is

(
n
k

)
, where the top row is onsidered the

0th row and the left entry of eah row is onsidered the 0th entry.

Theorem 8.1.1 (Finite Binomial Theorem). Let n ∈ Z≥0 be a non-

negative integer, and let x ∈ R be any real number. Then

(1+ x)n = 1+

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

n

)
xn, x ∈ R, n ∈ Z≥0.

A more ompat formulation uses the Sigma-notation for sums,

(1+ x)n =

n∑

j=0

(
n

j

)
xj, x ∈ R, n ∈ Z≥0.

The oeÆients in the Finite Binomial Theorem form the appropriate row

of Pasal's Triangle. For example,

(1+ x)5 = 1+ 5x+ 10x2 + 10x3 + 5x4 + x5.

Beause

(
n
1

)
= n, the Binomial Theorem on�rms our observation in se-

tion 6.6.2 that (1+ x)n > 1+ nx for any x > 0 and any n > 1.

The Finite Binomial Theorem is essentially a ombinatorial statement,

and so one an prove it (in the sense that a proof is a onvining argument

rather than a formal ritual) by talking rather than manipulating symbols.

Consider for example the x3 term in (1 + x)10. Expand the tenfold produt

of two-term sums

(1+ x)10 = (1+ x)(1+ x) · · · (1+ x)

by multiplying out all tenfold produts that result from hoosing a 1 or an x

from eah fator 1 + x. (There are 210 = 1024 suh terms.) The oeÆient

of x3 in the expansion of (1+x)10 is the number of ways that we an make ten

onseutive hoies of an x or a 1 that result in three net x's and seven net 1's.

The �rst x that we hoose an be drawn from any of the ten fators 1 + x,
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the seond x an our at any of the nine remaining fators, and the third x

an our at any of the eight fators then remaining in turn. Thus there are

10 · 9 · 8 ways of hoosing the three x's. But in this ounting sheme, hoosing

the x's from, say, the seond, �fth, and eighth fators is viewed as a separate

event from hoosing the x's from the �fth, seond, and eighth fators, or from

the seond, eighth, and �fth fators, and so on. To eliminate overounting, we

must divide by the number of ways of arranging the labels (2, 5, and 8 in the

example) of the three fators where we hose x. There are 3 · 2 · 1 = 3! suh

arrangements. So �nally, the oeÆient of x3 in (1+ x)10 is

10 · 9 · 8
3!

=

(
10

3

)
.

The argument with general nonnegative integers n and k (where k ≤ n) in

plae of 10 and 3 is the same.

This setion has expanded a ertain polynomial (a nonnegative power

of 1 + x) in powers of x, naturally obtaining an expansion with only �nitely

many terms. The rest of the hapter will expand nonpolynomial funtions (see

exerise 8.1.3) in powers of x as well, but the expansions will not terminate.

Exercises

8.1.1. Write out the binomial expansions for (1+x)3 and for (1+x)4, multiply

them together, and on�rm that you have obtained the binomial expansion

for (1+ x)7.

8.1.2. Here is a third false argument about (1 + x/n)n, in the spirit of the

two arguments on page 203. Aording to the Binomial Theorem,

(
1+

x

n

)n
= 1+

(
n

1

)
x

n
+

(
n

2

)
x2

n2
+ · · ·+

(
n

n

)
xn

nn
.

That is, beause

(
n
1

)
= n, it follows that (1 + x/n)n equals 1 + x plus

�nitely many terms, eah of whih is a onstant times a negative power

of n. Thus as n gets very large, (1+ x/n)n tends toward the value 1+ x.

This argument is inorret. Explain at least one of its aws.

8.1.3. (a) Explain why the derivative of any polynomial is another polyno-

mial, and why the only polynomial that an equal its derivative, or equal the

negative of the derivative of its derivative, is the zero polynomial.

(b) Why an't any of the funtions ln, exp, os, or sin be a polynomial?

8.1.4. With the Sigma-notation now introdued on page 233, albeit infor-

mally, we an write far more onise versions of omputations that we have

arried out.
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(a) Identify the result early in hapter 2 that says that for r 6= 1,

n−1∑

j=0

rj =
rn − 1

r− 1
.

(b) Identify the omputation later in hapter 2 for α ∈ Q other than −1,

for b > 1, and with sn = b, that

(s− 1)

n−1∑

j=0

sj(sj)α = (s− 1)

n−1∑

j=0

(sα+1)j by laws of exponents

= (s− 1)
(sα+1)n − 1

sα+1 − 1
by (a)

= (bα+1 − 1)
/sα+1 − 1

s− 1
rearranging, sn = b

n→
bα+1 − 1

α+ 1
beause f ′α+1(1) = α+ 1.

() Identify the alulation from hapter 5 that, again for b > 1 and with

sn = b,

n−1∑

j=0

(j+ 1)sj =

n−1∑

j=0

j∑

k=0

sj beause j+ 1 =

j∑

k=0

1

=

n−1∑

k=0

n−1∑

j=k

sj reversing the order of summation

=

n−1∑

k=0

sk
n−k−1∑

j=0

sj rewriting the inner sum

=

n−1∑

k=0

sk
sn−k − 1

s− 1
by (a)

=
1

s− 1

n−1∑

k=0

(sn − sk) by algebra

=
nsn

s− 1
−

sn − 1

(s− 1)2
adding sn to itself n times and by (a)

=
nb

s− 1
−

b− 1

(s− 1)2
beause sn = b.

(d) Identify the alulation also from hapter 5 that, again for b > 1 and

with sn = b,
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(s− 1)

n−1∑

j=0

sj ln(sj+1) = (s− 1) ln(s)

n−1∑

j=0

(j+ 1)sj by a logarithm property

= (s− 1) ln(s)

(
nb

s− 1
−

b− 1

(s− 1)2

)
by ()

= b ln(b) − (b− 1)
ln(s) − ln(1)

s− 1
n ln(s) = ln(sn) = ln(b)

n→ b ln(b) − b+ 1 beause ln

′(1) = 1.

(e) Identify the alulation from hapter 6 that for b > 0,

b

n

n−1∑

j=0

ejb/n =
b

n
· eb − 1

eb/n − 1
by (a)

= (eb − 1)
/eb/n − e0

b/n− 0
rearranging

n→ eb − 1 beause exp

′(0) = 1.

(f) Identify the alulation from hapter 7 that for b > 0,

b

n

n−1∑

j=0

(os(jb/n) + i sin(jb/n)) =
b

n

n−1∑

j=0

eijb/n by de�nition of eijb/n

=
b

n
· eib − 1

eib/n − 1
by (a)

= −i(eib − 1)
/eib/n − e0

ib/n− 0
rearranging

n→ −i(eib − 1) os

′(0) = 0, sin ′(0) = 1

= sin(b) + i(1− os(b)) by de�nition of eib.

8.2 Preliminaries for the Pending Calculations

8.2.1 An Alternative Notation

Definition 8.2.1 (New Notation for the Integral). If a funtion f is

integrable from a to b, we write

∫b

x=a

f(x)

as a synonym for ∫b

a

f.
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Beause

∫b
a
f is a number that does not depend in any way on the symbol x

that is present in the new notation, that symbol an be replaed by any other

symbol not already in use. Thus other synonyms for

∫b
a
f are, for instane,

∫b

t=a

f(t),

∫b

x1=a

f(x1),

∫b

•=a

f(•) .

The variable of integration , meaning the x or the t or the x1 or the • here,

is alled a dummy variable beause its name does not a�et the value of the

integral. It omes into existene temporarily as we alulate, only to disappear

when the alulation is omplete. While our new notation is less streamlined

than the old, its advantage for the purposes of this hapter is that having the

variable of integration appear expliitly will let us keep trak of events as we

integrate funtions that are themselves integrals of other funtions, whih are

integrals in turn, and so on. The new notation failitates omputing.

One partiular formula will be useful in the new notation, so we establish

it immediately. For any α ∈ R de�ne a funtion

g : R>−1 −→ R, g(x) = fα(1+ x) = (1+ x)α.

The graph of g is the graph of the power funtion fα translated one unit

to the left. So for any x ≥ 0, Ar1+x
1 (fα) = Ar

x
0(g), and for any x suh that

−1 < x < 0, −Ar11+x(fα) = −Ar0x(g). That is in all ases,

∫1+x

1

fα =

∫x

0

g, x > −1.

Rewrite the right side in our new notation to get the useful formula

∫1+x

1

fα =

∫x

x1=0

(1+ x1)
α, x > −1. (8.1)

One last omment (for now) about notation: The reader with prior bak-

ground in alulus has almost ertainly seen an even more adorned form of

writing the integral than the one just introdued here, to wit,

∫b

a

f =

∫b

x=a

f(x)dx.

We will bring the dx into our notation later, when it too will help keep trak

of ertain alulations, but for this hapter it is unneessary.

8.2.2 The Power Function Integral With Endpoint 0

For any positive real number b ∈ R>0 and for any nonnegative exponent

α ∈ R≥0, the region under the graph of the αth power funtion from 0 to b,
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R = {(x, y) ∈ R2 : 0 ≤ x ≤ b, 0 ≤ y ≤ fα(x)},

is a bounded subset of the plane, and so it has an area. (The relevant fat

in play here are that for α ≥ 0, the power funtion fα extends ontinuously

from R>0 to R≥0. Spei�aly, fα(0) = 0 for α > 0 while f0(0) = 1.) Fur-

thermore, beause the power funtion is monotoni on [0, b], the area is an

integral, ∫b

0

fα exists and is Ar

b
0 (fα).

So to �nd the integral, we need only to �nd the area.

Beause the power funtion is nonnegative on R≥0, we have for any num-

ber a suh that 0 < a ≤ b,

Ar

b
a(fα) ≤ Ar

b
0 (fα).

On the other hand, a box having base [0, a] and height aα
shows (see �g-

ure 8.1) that also.

Ar

b
0 (fα) ≤ aα+1 + Ar

b
a(fα).

That is, remembering the expliit formula for Ar

b
a(fα),

bα+1 − aα+1

α+ 1
≤ Ar

b
0 (fα) ≤ aα+1 +

bα+1 − aα+1

α+ 1
.

Now let a tend to 0. Beause α ≥ 0, ertainly α+1 > 0, so that lima→0 a
α+1 =

0. (Here it is understood that a is tending to 0 from the positive side.) Con-

sequently, by the Squeezing Rule and various other limit rules,

Ar

b
0 (fα) =

bα+1

α+ 1
.

That is, ∫b

0

fα =
bα+1

α+ 1
, α ≥ 0, b ≥ 0.

Here we have extended the formula to b = 0, when it simply says that 0 = 0.

(Before ontinuing, we make a brief digression. Even though we assumed

that α ∈ R≥0, it is striking that proeeding from the inequalities

bα+1 − aα+1

α+ 1
≤ Ar

b
0 (fα) ≤ aα+1 +

bα+1 − aα+1

α+ 1

to the onlusion that

Ar

b
0 (fα) =

bα+1

α+ 1

required only that α+1 > 0, i.e., it required only that α > −1. This suggests,

for example (letting α = −1/2), that even though the graph of the funtion
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PSfrag replaements

a b0

aα

fα(x) = xα

Figure 8.1. One more outer box

f−1/2 : R>0 −→ R, f−1/2(x) = 1/
√
x

has a vertial asymptote at x = 0, so that the region under the graph over the

interval (0, 1] is unbounded, apparently the very �nite number 2 is a redible

value for the region's area. The problem with this reasoning is that our un-

derlying invoation that regions have areas has been made only for bounded

regions. In our framework, the area of the unbounded region doesn't exist in

the �rst plae, and so the inequalities at the beginning of this paragraph are

meaningless for negative values of α suh as α = −1/2. But this example en-

ourages autiously expanding the notion of area to apply to some unbounded

regions. More spei�ally, the idea is that 2 is the area of the region under

the graph of f−1/2 over (0, 1] in the sense that 2 is the least number that is

at least as big as all areas of �nite trunations of the region. The equation

∫1

0

1√
x
= 2

gives the value of an improper integral . We will not pursue this subjet

further.)

Spei� examples of the power funtion integrals with left endpoint 0 are,

using the new notation,

∫x

x1=0

1 = x,

∫x

x1=0

x1 =
x2

2
,

∫x

x1=0

x21 =
x3

3
,

and in general, ∫x

x1=0

xn1 =
xn+1

n+ 1
, n ∈ Z≥0, x ≥ 0.
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The previous display holds only for x ≥ 0 so far, but beause the exponent n

is a nonnegative integer we want to extend it to negative x as well. Beause

(−x1)
n = (−1)nxn1 , for negative x naturally

∫x

x1=0

xn1 = (−1)n+1

∫−x

x1=0

xn1 , n ∈ Z≥0, x < 0,

the extra power of −1 oming from the reversed diretion of integration. Thus

∫x

x1=0

xn1 = (−1)n+1 (−x)n+1

n+ 1
=

xn+1

n+ 1
, n ∈ Z≥0, x < 0.

And so preditably enough, the formula for

∫x
0
fn is symbolially robust,

∫x

x1=0

xn1 =
xn+1

n+ 1
, n ∈ Z≥0, x ∈ R.

Exercise

8.2.1. Figure 8.1 shows a ase where α > 0. How would the �gure hange

for α = 0? Does this a�et the argument in the text that

∫b
0
fα exists and

equals bα+1/(α+ 1)?

8.3 The Logarithm

By the de�nition of the logarithm and by the useful formula (8.1),

ln(1+ x) =

∫1+x

1

f−1 =

∫x

x1=0

1

1+ x1
, x > −1.

Reall the �nite geometri sum formula for any n ∈ Z≥0,

1+ r+ r2 + · · ·+ rn−1 =
1− rn

1− r
, r 6= 1.

Rearrange the formula to get

1

1− r
= 1+ r+ r2 + · · ·+ rn−1 +

rn

1− r
, r 6= 1,

and then substitute −x1 for r,

1

1+ x1
= 1− x1 + x21 − · · ·+ (−1)n−1xn−1

1 + (−1)n
xn1

1+ x1
, x1 6= −1. (8.2)

Now integrate, letting x1 vary from 0 to x, to obtain the logarithm as a

polynomial and a remainder, using Proposition 5.5.2 (page 173),
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ln(1+ x) =

∫x

x1=0

1

1+ x1
= Pn(x) + Rn(x), x > −1, (8.3)

where Pn(x) is obtained by integrating the polynomial in (8.2) term-by-term,

arrying out power funtion integrals with left endpoint 0 (exerise 8.3.1(a)),

Pn(x) = x−
x2

2
+

x3

3
− · · ·+ (−1)n−1 x

n

n
,

and the remainder is the integral of the rest of the right side of (8.2),

Rn(x) = (−1)n
∫x

x1=0

xn1
1+ x1

.

Equation (8.3) and sequene limit rules ombine to show that for any x suh

that x > −1, the sequene of polynomials (Pn(x)) onverges to ln(1+x) if and

only if the sequene of remainders (Rn(x)) onverges to 0 (exerise 8.3.1(b)).

So the next question is how the remainder Rn(x) behaves as n grows.

We address the question by estimating the remainder. The integral is being

taken from x1 = 0 to x1 = x, where x is �xed through this disussion and

now we stipulate that −1 < x ≤ 1. (The analysis will not work for x > 1.) If

0 ≤ x ≤ 1 then throughout the integration proess,

0 <
1

1+ x1
≤ 1,

and so

|Rn(x)| ≤
∫x

x1=0

xn1 =
xn+1

n+ 1
.

If −1 < x < 0 then throughout the integration,

0 <
1

1+ x1
≤ 1

1+ x
,

and so

|Rn(x)| ≤
1

1+ x

∣∣∣∣
∫x

x1=0

xn1

∣∣∣∣ =
1

1+ x

∣∣∣∣
xn+1

n+ 1

∣∣∣∣ =
1

1+ x
· |x|

n+1

n+ 1
.

In both ases, letting C be the maximum of 1 and 1/(1+ x),

|Rn(x)| ≤ C
|x|n+1

n+ 1
.

Therefore by sequene limit rules (exerise 8.3.1()),

lim(Rn(x)) = 0,
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and we have shown that

ln(1+ x) = lim

n
(Pn(x)), −1 < x ≤ 1.

Less formally,

ln(1+ x) = x−
x2

2
+

x3

3
− · · ·+ (−1)n−1 x

n

n
+ · · · , −1 < x ≤ 1.

And in Sigma-notation,

ln(1+ x) =

∞∑

n=1

(−1)n−1 x
n

n
, −1 < x ≤ 1.

Note in partiular the formula when x = 1,

ln(2) = 1−
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+

1

7
−

1

8
+ · · · .

(See exerise 8.3.2 for a geometri derivation of this formula.)

Beyond being pretty, the boxed formulas are shorthand for an algorithm to

ompute ln(1+x) (where −1 < x ≤ 1) to any desired auray by omputing a

polynomial, i.e., by arrying out �nitely many additions and multipliations..

The idea is that given a desired auray, i.e., an error tolerane for our

answer, the analysis that we just arried out lets us �nd a degree n so that

|Rn(x)| is smaller than the error tolerane. Thus Pn(x) is as lose to ln(1+ x)

as was desired.

Theorem 8.3.1 (Taylor Polynomial and Remainder for the Loga-

rithm). For any x ∈ (−1, 1], and for any n ∈ Z≥0,

ln(1+ x) = Pn(x) + Rn(x)

where

Pn(x) =

n∑

k=1

(−1)k−1 x
k

k
= x−

x2

2
+

x3

3
− · · ·+ (−1)n−1 x

n

n

and

|Rn(x)| ≤
|x|n+1

n+ 1
max

{
1,

1

1+ x

}
.

Consequently, for any x ∈ (−1, 1],

ln(1+ x) = lim

n
(Pn(x)) = x−

x2

2
+

x3

3
− · · ·+ (−1)n−1 x

n

n
+ · · · .
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For example, we use the theorem to estimate ln(1.1) by hand to within

1/500, 000. The nth degree polynomial approximation to ln(1.1) is

Pn(0.1) = (0.1) −
(0.1)2

2
+

(0.1)3

3
− · · ·+ (−1)n−1 (0.1)

n

n
,

and the remainder satis�es

|Rn(0.1)| ≤
(0.1)n+1

(n+ 1)
.

The only symboli variable is n, and the goal is to approximate ln(1.1) to

within 1/500, 000. Set n = 4 in the previous display to get

|R4(0.1)| ≤
1

500, 000
.

That is, the fourth degree Taylor polynomial

P4(0.1) =
1

10
−

1

200
+

1

3000
−

1

40000

= 0.10000000 · · ·− 0.00500000 · · ·+ 0.00033333 · · ·− 0.00002500 · · ·
= 0.09530833 · · ·

agrees with ln(1.1) to within 0.00000200 · · · , so that

0.09530633 · · · ≤ ln(1.1) ≤ 0.09531033 · · · .

Mahine tehnology should on�rm this.

The graphs of the natural logarithm and its �rst �ve Taylor polynomials

are plotted from 0 to 2 in �gure 8.2. (Here the funtions are ln(x) and Pn(x−1)

so that the oordinate axes are in their usual position for the logarithm.) A

good hek of your understanding is to see if you an determine whih graph

is whih in the �gure (exerise 8.3.3).

Exercises

8.3.1. (a) Carry out the integration to obtain the polynomial Pn(x) in the

setion.

(b) Explain how sequene limit rules show that limn(Pn(x)) = ln(1 + x)

if and only if limn(Rn(x)) = 0.

() Use sequene limit rules to show that limn(Rn(x)) = 0 if −1 < x ≤ 1.

8.3.2. Figure 8.3 shows a partial geometri deomposition of ln(2).

(a) Identify the one box of width 1 in the �gure and explain why its area

is 1− 1/2.
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0.5 1 1.5 2

-3

-2

-1

1

Figure 8.2. The natural logarithm and its Taylor polynomials

(b) Identify the one box of width 1/2 in the �gure and explain why its

area is 1/3− 1/4.

() Identify the two boxes of width 1/4 in the �gure and explain why their

areas are 1/5− 1/6 and 1/7− 1/8.

(d) Identify the four boxes of width 1/8 in the �gure and explain why

their areas are 1/9− 1/10, 1/11− 1/12, 1/13− 1/14, and 1/15− 1/16.

(e) Identify the eight boxes of width 1/16 in the �gure and explain why

the areas of the �rst two suh boxes are 1/17− 1/18 and 1/19− 1/20.

8.3.3. In �gure 8.2, identify the graphs of P1(x − 1) through P5(x − 1) and

the graph of ln(x) near x = 0 and near x = 2.

8.4 The Exponential

8.4.1 A Precalculation

De�ne

I0 : R −→ R, I0(x) = 1,

and then de�ne for n = 1, 2, 3, . . .

In : R −→ R, In(x) =

∫x

0

In−1.
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So, for example, I1(x) =
∫x
0
1 = x. That is,

I1 = f1/1.

Consequently, I2(x) =
∫x
0
f1 = x2/2, or

I2 = f2/2.

Similarly, I3 =
∫x
0
f2/2 = x3/(3 · 2),

I3 = f3/3!.

Continuing in this vein shows that

In = fn/n!, n ∈ Z≥0.

(Reall that 0! = 1 by onvention, so that the formula for In overs the

ase n = 0.)

In our new notation, the alulations are written,
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I0(x) = 1,

I1(x) =

∫x

x1=0

1 = x,

I2(x) =

∫x

x1=0

∫x1

x2=0

1 =

∫x

x1=0

x1 =
x2

2
,

I3(x) =

∫x

x1=0

∫x1

x2=0

∫x2

x3=0

1 =

∫x

x1=0

∫x1

x2=0

x2 =

∫x

x1=0

x21
2

=
x3

3 · 2 ,

and in general,

In(x) =

∫x

x1=0

∫x1

x2=0

· · ·
∫xn−1

xn=0

1 =
xn

n!
, n ∈ Z≥0.

8.4.2 The Calculation

The method for expressing the exponential funtion as ever-higher degree

polynomials plus the orresponding remainders is to use the basi identity

exp(x) = 1+

∫x

0

exp, x ∈ R

(a rearrangement of the formula

∫x
0
exp = exp(x) − exp(0)) over and over.

Fix any real number x for the duration of this disussion, and start from

the basi identity, renotated,

ex = 1+

∫x

x1=0

ex1 .

By the basi identity again, then Proposition 5.5.2, and then the prealula-

tion,

ex = 1+

∫x

x1=0

(
1+

∫x1

x2=0

ex2

)

= 1+

∫x

x1=0

1+

∫x

x1=0

∫x1

x2=0

ex2

= 1+ x+

∫x

x1=0

∫x1

x2=0

ex2 .

One more by the same proess,

ex = 1+ x+

∫x

x1=0

∫x1

x2=0

(
1+

∫x2

x3=0

ex3

)

= 1+ x+

∫x

x1=0

∫x1

x2=0

1+

∫x

x1=0

∫x1

x2=0

∫x2

x3=0

ex3

= 1+ x+
x2

2!
+

∫x

x1=0

∫x1

x2=0

∫x2

x3=0

ex3 .
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Continuing this proess through n iterations shows that

ex = Pn(x) + Rn(x), x ∈ R,

where Pn(x) is an nth degree polynomial,

Pn(x) = 1+ x+
x2

2!
+ · · ·+ xn

n!
,

and Rn(x) is the remainder integral ,

Rn(x) =

∫x

x1=0

∫x1

x2=0

· · ·
∫xn

xn+1=0

exn+1 .

The task now is to analyze Rn(x), beause as with the logarithm, the sequene

of polynomials (Pn(x)) onverges to ex if and only if limn(Rn(x)) = 0.

If x ≥ 0 then the integrand exn+1
of Rn(x) lies between 1 and ex. If

x < 0 then the integrand lies between ex and 1. In either ase there is a

onstant C (spei�ally, C is the maximum of ex and 1) suh that all through

the integration,

0 < exn+1 ≤ C.

So if x ≥ 0 then integrating this inequality n+1 times (see Proposition 3.3.14

on page 117) orrespondingly bounds the remainder integral by a multiple of

the prealulated integral,

0 ≤ Rn(x) ≤ C

∫x

x1=0

∫x1

x2=0

· · ·
∫xn

xn+1=0

1 = C
xn+1

(n+ 1)!
.

If x < 0 then all of the integrals in Rn(x) have out-of-order endpoints, and

Rn(x) = (−1)n+1

∫0

x1=x

∫0

x2=x1

· · ·
∫0

xn+1=xn

exn+1 ,

and so

|Rn(x)| =

∫0

x1=x

∫0

x2=x1

· · ·
∫0

xn+1=xn

exn+1

≤ C

∫0

x1=x

∫0

x2=x1

· · ·
∫0

xn+1=xn

1

= (−1)n+1C

∫x

x1=0

∫x1

x2=0

· · ·
∫xn

xn+1=0

1

= C
(−x)n+1

(n+ 1)!
.

Combining the ases, we have shown that for all x ∈ R,
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|Rn(x)| ≤ C
|x|n+1

(n+ 1)!
.

Beause |x| an be greater than 1, the quotient |x|n+1/(n+1)! an be a ratio of

two large numbers, making its behavior initially unlear. But we an analyze

it. The Arhimedean property of the real number system says that there exists

some positive integer m suh that m > 2|x|. It follows that

|x|

m+ 1
<

1

2
,

|x|

m+ 2
<

1

2
,

|x|

m+ 3
<

1

2
,

and so on. Now onsider the onstant

K =
|x|m

m!
,

and note that (eah line after the �rst in the following display making referene

to the line before it)

|x|m

m!
= K,

|x|m+1

(m+ 1)!
=

|x|m

m!
· |x|

m+ 1
= K · |x|

m+ 1
≤ K · 1

2
,

|x|m+2

(m+ 2)!
=

|x|m+1

(m+ 1)!
· |x|

m+ 2
≤ K · 1

2
· 1
2
= K ·

(
1

2

)2

,

|x|m+3

(m+ 3)!
=

|x|m+2

(m+ 2)!
· |x|

m+ 3
≤ K ·

(
1

2

)2

· 1
2
= K ·

(
1

2

)3

,

and in general,

|x|m+ℓ

(m+ ℓ)!
≤ K ·

(
1

2

)ℓ

, ℓ ∈ Z≥0.

The previous inequality rewrites as

|x|n+1

(n+ 1)!
≤ K ·

(
1

2

)n+1−m

, n+ 1 ≥ m.

And so,

|Rn(x)| ≤ CK2m−1 ·
(
1

2

)n

, n ≥ m− 1.

It follows that for any x ∈ R,

lim

n
(Rn(x)) = 0,

and therefore
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ex = lim(Pn(x)).

Less formally,

ex = 1+ x+
x2

2!
+ · · ·+ xn

n!
+ · · · , x ∈ R,

or

ex =

∞∑

n=0

xn

n!
, x ∈ R.

Note in partiular the formula when x = 1,

e = 1+ 1+
1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+

1

8!
+ · · · .

Theorem 8.4.1 (Taylor Polynomial and Remainder for the Exponen-

tial). For any x ∈ R, and for any n ∈ Z≥0,

ex = Pn(x) + Rn(x)

where

Pn(x) =

n∑

k=0

xk

k!
= 1+ x+

x2

2!
+ · · ·+ xn

n!

and (letting ⌈x⌉ denote the smallest integer that is at least x)

|Rn(x)| ≤
|x|n+1

(n+ 1)!
max

{
1, 3⌈x⌉

}
.

Consequently, for any x ∈ R,

ex = lim

n
(Pn(x)) = 1+ x+

x2

2!
+ · · ·+ xn

n!
+ · · · .

Proof. Here the point is that we know

|Rn(x)| ≤
|x|n+1

(n+ 1)!
max {1, ex} ,

but beause we don't know ex, we loosen the bound a little more to get a

bound that we an ompute. ⊓⊔

Exercise

8.4.1. Estimate the auray to whih P10(1) approximates e.
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8.5 The Cosine and the Sine

Fix any real number x for the duration of this disussion. Reall that

os(x) + i sin(x) = eix.

Thus the two identities

os(x) = 1−

∫x

x1=0

sin(x1), sin(x) =

∫x

x1=0

os(x1)

enode more onisely as (using the fat that −1 = i2)

eix = 1+ i

∫x

x1=0

eix1 .

It follows that

eix = 1+ i

∫x

x1=0

(
1+ i

∫x1

x2=0

eix2

)

= 1+ i

∫x

x1=0

1−

∫x

x1=0

∫x1

x2=0

eix2

= 1+ ix−

∫x

x1=0

∫x1

x2=0

eix2 .

Again by the same proess,

eix = 1+ ix−

∫x

x1=0

∫x1

x2=0

(
1+ i

∫x2

x3=0

eix3

)

= 1+ ix−

∫x

x1=0

∫x1

x2=0

1− i

∫x

x1=0

∫x1

x2=0

∫x2

x3=0

eix3

= 1+ ix−
x2

2
− i

∫x

x1=0

∫x1

x2=0

∫x2

x3=0

eix3 .

And after one more iteration,

eix = 1+ ix−
x2

2
− i

x3

3!
+

∫x

x1=0

∫x1

x2=0

∫x2

x3=0

∫x3

x4=0

eix4 .

Continuing through n iterations shows that

eix = Pn(x) + Rn(x)

where Pn(x) is an nth degree polynomial,

Pn(x) = 1+ ix+ i2
x2

2
+ i3

x2

3!
+ · · ·+ in

xn

n!
,
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and Rn(x) is the remainder integral,

Rn(x) = in+1

∫x

x1=0

∫x1

x2=0

· · ·
∫xn

xn+1=0

eixn+1 .

Now take the sum out to 2n + 1 rather than out to n, deompose the result

into its real and imaginary parts, and revise the notation Pn to get for the

osine,

Pn(x) = 1−
x2

2
+

x4

4!
− · · ·+ (−1)n

x2n

(2n)!
=

n∑

k=0

(−1)k
x2k

(2k)!

and

Rn(x) = ±
∫x

x1=0

∫x1

x2=0

· · ·
∫x2n+1

x2n+2=0

os(x2n+2),

and to get for the sine,

Pn(x) = x−
x3

3!
+

x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!
=

n∑

k=0

(−1)k
x2k+1

(2k+ 1)!

and beause the x2n+2
term of the sine expansion is 0, in fat

Rn(x) = ±
∫x

x1=0

∫x1

x2=0

· · ·
∫x2n+2

x2n+3=0

os(x2n+3).

Beause the osine funtion is bounded in absolute value by 1, this gives

Theorem 8.5.1 (Taylor Polynomial and Remainder for the Cosine

and Sine). For any x ∈ R, and for any n ∈ Z≥0,

os(x) = Pn(x) + Rn(x),

where

Pn(x) =

n∑

k=0

(−1)k
x2k

(2k)!
= 1−

x2

2!
+

x4

4!
− · · ·+ (−1)n

x2n

(2n)!

and

|Rn(x)| ≤
|x|2n+2

(2n+ 2)!
.

Consequently, for any x ∈ R,

os(x) = lim

n
(Pn(x)) = 1−

x2

2!
+

x4

4!
− · · ·+ (−1)n

x2n

(2n)!
+ · · · .

For any x ∈ R, and for any n ∈ Z≥0,
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sin(x) = Pn(x) + Rn(x),

where

Pn(x) =

n∑

k=0

(−1)k
x2k+1

(2k+ 1)!
= x−

x3

3!
+

x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!

and

|Rn(x)| ≤
|x|2n+3

(2n+ 3)!
.

Consequently, for any x ∈ R,

sin(x) = lim

n
(Pn(x)) = x−

x3

3!
+

x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · · .

Here the polynomial Pn for the osine has degree 2n or 2n + 1 rather

than n, and the polynomial Pn for the sine has degree 2n + 1 or 2n + 2.

The reader who wants polynomial subsripts to math polynomial degrees is

welome to renotate them P2n or P2n+1, and P2n+1 or P2n+2, and to renotate

the remainders orrespondingly as well.

Exercises

8.5.1. Explain how Theorem 8.5.1 shows that for positive x the approxima-

tion sin(x) ≈ x is aurate to within x3/6. It is understood that x is in radians

rather than degrees. Swithing now to degrees, and using a alulator to on-

vert radians to degrees, show that the approximation sin x ≈ x holds within

0.0005 for x up to 8 degrees, but not if x is 9 degrees.

8.5.2. For any value s ∈ (0, π/2), let a(s) be the area of the shaded region in

the left half of �gure 8.4, and let b(s) be the area of the shaded region in the

right half of the �gure.

(a) Explain why a(s) = (1/2)(1 − os(s)) sin(s). Approximate 1 − os(s)

by a polynomial in s that inludes all powers of s no higher than s3. Do the

same for sin(s). Use these two polynomials to do the same for a(s).

(b) Explain why b(s) = (1/2)s − (1/2) os(s) sin(s). Approximate os(s)

and sin(s) by polynomials in s that inlude all powers of s no higher than s3,

and then do the same for b(s).

() Evaluate

lim

s→0

a(s)

b(s)
.
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8.6 The Power Function

8.6.1 The Polynomial and the Remainder

The method for expressing the power funtion as ever-higher degree poly-

nomials plus the orresponding remainders is essentially the same as for the

other funtions in this hapter. (And a fairly general theory is little di�erent

from our spei� examples.) This time, begin by realling formula (2.7) from

the end of hapter 2,

∫b

a

fα =
bα+1 − aα+1

α+ 1
α ∈ R, α 6= −1, 0 < a ≤ b.

(This formula is valid for irrational exponents α as well as rational expo-

nents α, although we haven't shown so.) The usual veri�ation on�rms that

in fat the formula holds if a and b are out of order as well. Speialize to a = 1

and b = 1+ x where x > −1, and replae α by α− 1,

∫1+x

1

fα−1 =
(1+ x)α − 1

α
, α ∈ R, α 6= 0, x > −1.

Rewrite the formula as follows, swithing to our new notation and iting the

useful formula (8.1) (page 237),

(1+ x)α = 1+ α

∫x

x1=0

(1+ x1)
α−1, α ∈ R, x > −1. (8.4)

(For α = 0, this formula doesn't follow from the previous one, but in this ase

it simply says that 1 = 1.)

Fix any real number x > −1. Let α ∈ R be any real number. By (8.4)

one,

(1+ x)α = 1+ α

∫x

x1=0

(1+ x1)
α−1.

By (8.4) again, and by the results ited in the alulation for the exponential

funtion, the integral is
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∫x

x1=0

(1+ x1)
α−1 =

∫x

x1=0

(
1+ (α− 1)

∫x1

x2=0

(1+ x2)
α−2

)

=

∫x

x1=0

1+ (α− 1)

∫x

x1=0

∫x1

x2=0

(1+ x2)
α−2

= x+ (α− 1)

∫x

x1=0

∫x1

x2=0

(1+ x2)
α−2,

so that

(1+ x)α = 1+ αx+ α(α− 1)

∫x

x1=0

∫x1

x2=0

(1+ x2)
α−2.

Similarly, the double integral is

∫x

x1=0

∫x1

x2=0

(1+ x2)
α−2 =

∫x

x1=0

∫x1

x2=0

(
1+ (α− 2)

∫x2

x3=0

(1+ x3)
α−3

)

=

∫x

x1=0

∫x1

x2=0

1+ (α− 2)

∫x

x1=0

∫x1

x2=0

∫x2

x3=0

(1+ x3)
α−3

=
x2

2!
+ (α− 2)

∫x

x1=0

∫x1

x2=0

∫x2

x3=0

(1+ x3)
α−3,

so that now

(1+x)α = 1+αx+
α(α− 1)

2!
x2+α(α−1)(α−2)

∫x

x1=0

∫x1

x2=0

∫x2

x3=0

(1+x3)
α−3.

Reintrodue the binomial oeÆient notation, but where now α an be any

real number,

(
α

k

)
=

α(α− 1) · · · (α− k+ 1)

k!
, k ∈ Z≥0.

Unless α is a nonnegative integer, the binomial oeÆient

(
α
k

)
is nonzero for

all k ∈ Z≥0, and as soon as k exeeds α,
(
α
k

)
hanges sign with eah inrement

of k. After n iterations of the proess, we get

(1+ x)α = Pn(x) + Rn(x), x > −1,

where similarly to the Finite Binomial Theorem,

Pn(x) = 1+

(
α

1

)
x+

(
α

2

)
x2 + · · ·+

(
α

n

)
xn

and the remainder is

Rn(x) = α(α− 1) · · · (α− n)

∫x

x1=0

∫x1

x2=0

· · ·
∫xn

xn+1=0

(1+ xn+1)
α−n−1.
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We have derived the formula up to n = 2, and exerise 8.6.1 is to obtain it

for n = 3. As usual, the sequene of polynomials (Pn(x)) onverges to (1+x)α

if and only if the sequene of remainders (Rn(x)) has limit 0. If α ∈ Z≥0 then

the formulas for Pn(x) and Rn(x) show that Pn(x) = Pα(x) and Rn(x) = 0

for all n ≥ α. This situation is overed by the Finite Binomial Theorem. The

situation where α ∈ R but α /∈ Z≥0 will be disussed next.

Exercises

8.6.1. Carry out one more step of the proess in the setion to get from the

formula (1+ x)α = P2(x) + R2(x) to the formula (1+ x)α = P3(x) + R3(x).

8.6.2. Reall that

ln(1+ x) =

∫x

x1=0

(1+ x)−1, x > −1.

Also, speializing the work just done to the ase α = −1 gives an equality

(1+ x1)
−1 = Pn−1(x1) + Rn−1(x1), x > −1, n ≥ 1.

Integrate the equality to re-obtain the degree-n polynomial approximation

of ln(1 + x) (i.e., the Pn(x) for ln(1 + x) is

∫x
x1=0

Pn−1(x), integrating the

Pn−1(x1) for (1+ x1)
−1

), and to obtain an expression for the remainder that

is valid for x > −1 rather than only for |x| < 1. (To make the notation

work smoothly, write the Rn−1(x1) for (1+ x1)
−1

with outermost variable of

integration x2.)

8.6.2 The Infinite Binomial Theorem

Now take α ∈ R but α /∈ Z≥0. That is, α is a real number other than a

nonnegative integer. To review, we have the formula

(1+ x)α = Pn(x) + Rn(x), x > −1,

where Pn(x) is the nth degree polynomial

Pn(x) = 1+

(
α

1

)
x+

(
α

2

)
x2 + · · ·+

(
α

n

)
xn,

and

Rn(x) =

(
α

n+ 1

)
(n+ 1)!

∫x

x1=0

∫x1

x2=0

· · ·
∫xn

xn+1=0

(1+ xn+1)
α−n−1,

so that
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Rn(x) =

∣∣∣∣
(

α

n+ 1

)
(n+ 1)!

∫x

x1=0

∫x1

x2=0

· · ·
∫xn

xn+1=0

(1+ xn+1)
α−n−1

∣∣∣∣ .

The task is to analyze Rn(x) as n grows large. The analysis here is more

ompliated than those earlier in this hapter, and so the reader should engage

with it to taste.

Beause n is growing large, we assume that n > α − 1 (suh n exists by

the Arhimedean property of the real number system), so that the exponent

α− n− 1 in the remainder integral is negative.

If x ≥ 0 then the integrand (1 + xn+1)
α−n−1

lies between (1 + x)α−n−1

and 1. If x < 0 then the integrand lies between 1 and (1+ x)α−n−1
. In either

ase there is a onstant C (the maximum of 1 and (1 + x)α−n−1
) suh that

all through the integration,

0 < (1+ xn+1)
α−n−1 ≤ C.

So if x ≥ 0 then integrating this inequality n+ 1 times bounds the remainder

integral by a multiple of the prealulated integral,

|Rn(x)| ≤ C

∣∣∣∣
(

α

n+ 1

)∣∣∣∣ (n+ 1)!

∫x

x1=0

∫x1

x2=0

· · ·
∫xn

xn+1=0

1

= C

∣∣∣∣
(

α

n+ 1

)∣∣∣∣ x
n+1.

If x < 0 then all of the integrals in Rn(x) have out-of-order endpoints, and so

|Rn(x)| =

∣∣∣∣
(

α

n+ 1

)∣∣∣∣ (n+ 1)!

∫0

x1=x

∫0

x2=x1

· · ·
∫0

xn+1=xn

(1+ xn+1)
α−n−1

≤ C

∣∣∣∣
(

α

n+ 1

)∣∣∣∣ (n+ 1)!

∫0

x1=x

∫0

x2=x1

· · ·
∫0

xn+1=xn

1

= C

∣∣∣∣
(

α

n+ 1

)∣∣∣∣ (n+ 1)!(−1)n+1

∫x

x1=0

∫x1

x2=0

· · ·
∫xn

xn+1=0

1

= C

∣∣∣∣
(

α

n+ 1

)∣∣∣∣ (−x)n+1.

Combining the ases, we have shown that for all x > −1,

|Rn(x)| ≤ Bn(x), where Bn(x) = C

∣∣∣∣
(

α

n+ 1

)∣∣∣∣ |x|
n+1.

Now impose the stronger ondition that |x| < 1. Then more spei�ally,

|x| = 1− 2δ, (8.5)

where δ = (1 − |x|)/2 > 0. Consider the sequene (whose origin will be ex-

plained in a moment)
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(sn) =

(∣∣∣∣
α− n

n+ 1

∣∣∣∣
)
.

By sequene limit rules and the fat that the absolute value funtion is on-

tinuous,

lim

n
(sn) = 1, (8.6)

and so, beause 1/(1− δ) > 1, there exists a starting index N suh that

0 < sn <
1

1− δ
for all n ≥ N. (8.7)

Now onsider the ratio of the estimates of onseutive-generation remainders,

the generation being omfortably large,

Bn(x)

Bn−1(x)
=

C
∣∣( α

n+1

)∣∣ |x|n+1

C
∣∣(α

n

)∣∣ |x|n
=

∣∣∣∣
α− n

n+ 1

∣∣∣∣ |x| = sn|x|.

Thus the ratio is what gives rise to sn. Let

r =
1− 2δ

1− δ
,

so that 0 ≤ r < 1. By (8.5) and (8.7),

Bn(x)

Bn−1(x)
< r for all n ≥ N.

That is (starting at n = N+ 1 rather than at n = N just to be tidy, and eah

line after the �rst in the following display making referene to the line before

it),

BN+1(x) ≤ rBN(x),

BN+2(x) ≤ rBN+1(x) ≤ r2BN(x),

BN+3(x) ≤ rBN+2(x) ≤ r3BN(x),

and in general,

BN+ℓ(x) ≤ rℓBN(x) for all ℓ ∈ Z≥0.

By sequene limit rules it follows that for any x suh that |x| < 1,

lim

n
(Bn(x)) = 0,

and therefore that

lim

n
(Rn(x)) = 0.

Reall that
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(1+ x)α = Pn(x) + Rn(x), |x| < 1, n ∈ Z≥0.

Beause limn(Rn(x)) = 0, it follows that lim(Pn(x)) = (1+x)α. Less formally,

(1+ x)α = 1+

(
α

1

)
x+

(
α

2

)
x2 + · · ·+

(
α

n

)
xn + · · · , |x| < 1, α ∈ R.

In Sigma-notation,

(1+ x)α =

∞∑

n=0

(
α

n

)
xn, |x| < 1, α ∈ R.

Theorem 8.6.1 (Taylor Polynomial and Remainder for the Power

Function: the Binomial Theorem). For any x ∈ (−1, 1), for any α ∈ R,

and for any n ∈ Z≥0 suh that n > α− 1,

(1+ x)α = Pn(x) + Rn(x)

where

Pn(x) =

n∑

k=0

(
α

k

)
xk = 1+

(
α

1

)
x+

(
α

n

)
2x2 + · · ·+

(
α

n

)
xn

and

|Rn(x)| ≤
∣∣∣∣
(

α

n+ 1

)∣∣∣∣ |x|
n+1

max

{
1, (1+ x)α−n−1

}
.

Consequently, for any x ∈ (−1, 1) and for any α ∈ R,

(1+ x)α = lim

n
(Pn(x)) = 1+

(
α

1

)
x+

(
α

n

)
2x2 + · · ·+

(
α

n

)
xn + · · · .

The graphs of the square root and its �rst six Taylor polynomials are

plotted from 0 to 4 in �gure 8.5. (Here the funtions are

√
x and Pn(x− 1) so

that the oordinate axes are in their usual position.) The �gure shows that

the polynomials are approximating the square root well from 0 to 2, but not

for x beyond 2.

Exercises

8.6.3. Let α be a real number.

(a) Let (~sn) = ((α − n)/(n + 1)). Show that limn(~sn) = −1. Explain

why (8.6) follows.

(b) Con�rm the alulation in the setion that Bn(x)/Bn−1(x) = sn|x|.

() Use sequene limit rules to explain why limn(Bn(x)) = 0.

(d) Use sequene limit rules to explain why limn(Rn(x)) = 0.
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Figure 8.5. The square root and its Taylor polynomials

8.6.4. Use a seond degree polynomial to approximate

√
1.2. Find a guaran-

teed auray of the approximation and thus �nd upper and lower bounds for√
1.2.

8.6.5. (For the symbolially-inlined.) The identity

(1+ x)α = eα ln(1+x), |x| < 1, α ∈ R

now has a formal interpretation as an equality involving three in�nite sums:

on the left side of the equality, a sum of oeÆients times powers of x; and on

the right side of the equality, a seond sum of oeÆients times powers of a

third sum. Does the formal interpretation seem to gives the same expression

on both sides of the equality?

8.6.6. The remainder analysis for the logarithm and the power funtion re-

quired |x| < 1 (or x = 1 for the logarithm) to show that limn(Rn(x)) = 0, but

the analysis for the exponential funtion, the osine, and the sine did not.

Why is this? That is, what aspet of the analysis was di�erent enough among

the various funtions to produe two pairs of di�erent-avored results?

8.7 Summary

The alulations that we arried out for various funtions in this hapter have

muh in ommon. One we have the Fundamental Theorem of Calulus, an

exerise (exerise 10.1.7) will show how to desribe all of the alululations in

one general enoding.





9

Theory and Applications of the Derivative

The derivative is a loal onstrut, omputed by zooming in on the behavior

of a funtion about a single point. This hapter disusses how despite being

loal, the derivative an help as answer large-sale questions.

One suh question, the problem of optimizing a funtion|making it as

large or as small as possible|is disussed in setion 9.1. Here the basi idea is

intuitive geometrially: where the funtion is optimized, its graph should have

a horizontal tangent, i.e., its derivative should be zero. Setion 9.2 introdues

the Mean Value Theorem and its onsequenes. This theorem gives a formula

relating a funtion and its derivative, with no referene to the fat that the

derivative is a limit. With the formula in hand, plausible statements about

funtions (e.g., the fat that if the derivative is positive, the funtion is stritly

inreasing) beome easy to prove. Setion 9.3 shows how to use alulus to

sketh the graphs of funtions. Computer graphing tehnology is e�etive and

readily available nowadays, but nonetheless sometimes alulus an inform us

about features of a graph that are not shown learly by the mahine-generated

�gure. Setion 9.4 disusses problems of the following form: given two related

quantities, and given the rate of hange of one of them, what is the rate of

hange of the other? Suh problems are known as related rates problems.

9.1 Optimization

To optimize a funtion is to make it as big as possible or as small as possible by

suitably speifying its input-value. The following de�nition gives us language

to disuss this subjet.

Definition 9.1.1 (Minimum, Maximum, Extremum, Local Minimum,

Local Maximum, Local Extremum). Let A be a subset of R, and let

f : A −→ R be a funtion. Then
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• A minimum of f is a funtion-value f(x) suh that f(x) ≤ f(s) for

all s ∈ A. The funtion f has a minimum at x if f(x) is a minimum

of f.

• A maximum of f is a funtion-value f(x) suh that f(x) ≥ f(s) for

all s ∈ A. The funtion f has a maximum at x if f(x) is a maximum

of f.

• An extremum of f is a minimum or a maximum of f. The funtion f

has an extremum at x if f(x) is an extremum of f.

• A local minimum of f is a funtion-value f(x) suh that f(x) ≤ f(s)

for all s ∈ A within some positive distane of x. The funtion f has

a local minimum at x if f(x) is a loal minimum of f.

• A local maximum of f is a funtion-value f(x) suh that f(x) ≥ f(s)

for all s ∈ A within some positive distane of x. The funtion f has

a local maximum at x if f(x) is a loal maximum of f.

• A local extremum of f is a loal minimum or a loal maximum of f.

The funtion f has a local extremum at x if f(x) is a loal extremum

of f.

A minimum of a funtion is a loal minimum but not neessarily on-

versely, and similarly for maximum and extremum. A funtion an have at

most one minimum and at most one maximum (although the funtion an

takes its minimum at many di�erent inputs, and similarly for the maximum),

but it an have many loal minima and loal maxima. Exerise 9.1.1 asks for

examples of these phenomena. Aording to the de�nition, if f is onstant,

then its value is both a minimum and a maximum, and it has a minimum and

a maximum at every input-value. To esape this ounterintuitive linguisti

irumstane, one an further de�ne a strict minimum of f by hanging

\f(x) ≤ f(s) for all s ∈ A within some positive distane of x" to \f(x) < f(s)

for all s ∈ A within some positive distane of x exept s = x" in the de�nition,

and so on. (In general, an inequality is alled strit if it preludes equality.)

9.1.1 The Extreme Value Theorem

For an arbitrary funtion f, there is no reason to believe that extrema exist

to be found. But for a ertain lass of funtions, optimization is guaranteed,

at least in the abstrat.

Theorem 9.1.2 (Extreme Value Theorem). Let f be a ontinuous fun-

tion whose domain is a losed, bounded interval,

f : [a, b] −→ R, f ontinuous.

Then f assumes a maximum value and a minimum value.
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Like the Intermediate Value Theorem (page 185), the Extreme Value The-

orem is an abstrat existene theorem. That is, its onlusion is not that (for

example) \f(x) ≤ f(s) for all s ∈ [a, b]," whih in isolation would be mean-

ingless beause the hypotheses make no mention of any partiular point x.

Rather the onlusion is that there exists some x suh that f(x) ≤ f(s) for

all s ∈ [a, b]. But the theorem says nothing about where x is or how to �nd

it.

The Extreme Value Theorem is not a alulus theorem: it makes no refer-

ene to derivatives, integrals, or in�nite sums. Espeially, the funtion f in

the theorem is not assumed to be di�erentiable . On the other hand, the

theorem does make use of limits, beause limits are at the heart of ontinu-

ity. Also, the theorem depends on a property of the real number system, a

property equivalent|after some work|to the Completeness Property that we

have invoked throughout these notes. Beause the issues that arise in proving

Theorem 9.1.2 are foundational, the proof is beyond our sope. This para-

graph applies verbatim to the Intermediate Value Theorem as well. Although

the Intermediate Value Theorem and the Extreme Value Theorem are sep-

arated by many pages in these notes, they are very similar in their roles as

theorems that support the foundations of alulus, and they should be viewed

as a pair.

In our ontext, what is more important anyway than proving the Extreme

Value Theorem is that one an gain intuition about its ontent by onvining

oneself via examples that its onlusion an fail unless all of the hypotheses

are met. That is,

� A disontinuous funtion whose domain is a losed, bounded interval need

not assume a maximum value or a minimum value.

� A ontinuous funtion whose domain is a losed but unbounded interval

need not assume a maximum value or a minimum value.

� A ontinuous funtion whose domain is a bounded but non-losed interval

need not assume a maximum value or a minimum value.

� A ontinuous funtion whose domain is a non-losed, unbounded interval

need not assume a maximum value or a minimum value.

Exerise 9.1.2 asks for examples.

Exercises

9.1.1. Illustrate graphially examples of the following phenomena:

(a) A loal minimum of a funtion need not be a minimum of the funtion.

(b) A funtion an take its maximum at many inputs.

() A funtion an have many loal minima, all distint.

(d) A funtion an have many loal maxima, eah taken at many inputs.



264 9 Theory and Appliations of the Derivative

9.1.2. (a) Find a funtion f : [0, 1] −→ R that assumes no maximum value

and no minimum value. (Give a lear sketh of the graph of suh an f, or a

formula for suh an f, with some explanation in either ase.)

(b) Find a ontinuous funtion f : [0,∞) −→ R that assumes no minimum

value and no maximum value.

() Find a ontinuous funtion f : (0, 1] −→ R that assumes no maximum

value.

(d) Find a ontinuous funtion f : (0, 1] −→ R that assumes no minimum

value and no maximum value.

9.1.3. (a) Explain why for any ontinuous funtion f : [a, b] −→ R, we may

take the odomain of f to be some interval [L,M] instead.

(b) May we take the range of f to be [L,M]?

9.1.2 Conditions for Optimization

Under suitable onditions, the onditions under whih a funtion is loally

optimized are very onstrained.

Theorem 9.1.3 (Critical Point Theorem). Consider a funtion on a

losed, bounded interval,

f : [a, b] −→ R.

Suppose that f has a loal extremum at the point x ∈ [a, b], i.e., f(x) is a

loal extremum of f. Then at least one of the following onditions holds:

(a) f is not di�erentiable at x.

(b) x is an endpoint of [a, b], i.e., x = a or x = b.

() f is di�erentiable at x and f ′(x) = 0.

For an example of onditions (a) and (b), the absolute value funtion

| | : [−1, 1] −→ R

assumes its minimum at x = 0, where it is not di�erentiable, and the funtion

assumes its maximum at the endpoints x = −1 and x = 1.

Corollary 9.1.4. Let f : [a, b] −→ R be ontinuous, and let f be di�er-

entiable on (a, b). The only possible points where its extrema an our

are a, b, and x ∈ (a, b) suh that f ′(x) = 0.

Proof (of the theorem). Suppose that f(x) is a loal maximum. Suppose also

that f is di�erentiable at x, and that x is not an endpoint, i.e., that ondi-

tions (a) and (b) do not hold. We want to show that onsequently ondition ()

holds, i.e., that f ′(x) = 0.
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Beause x is not the endpoint b of [a, b], there exist values s ∈ [a, b] suh

that s > x. For all suh s lose enough to x, we have f(s) − f(x) ≤ 0 beause

f(x) is a loal maximum, and we have s − x > 0 beause s > x, and so the

quotient (f(s) − f(x))/(s − x) is zero or negative. Thus, letting s approah x

from the right,

f ′(x) = lim

s→x+

f(s) − f(x)

s− x
≤ 0.

Similarly letting s approah x from the left shows that f ′(x) ≥ 0. Thus f ′(x) =

0. The ase where f has a loal minimum at x an be treated similarly, or by

using the auxiliary funtion g = −f, whih has a loal maximum at x and has

derivative g ′ = −f ′. ⊓⊔

Example 9.1.5. Consider the funtion

f : [−2, 2] −→ R, f(x) = x3 − 3x.

This funtion is di�erentiable with derivative

f ′ : [−2, 2] −→ R, f ′(x) = 3x2 − 3.

The values x suh that f ′(x) = 0 are therefore x = −1 and x = 1, and so any

possible loal extrema of f our at these points or at the endpoints x = −2

and x = 2. Compute that

f(−2) = −2, f(−1) = 2, f(1) = −2, f(2) = 2.

Beause f assumes a minimum by the Extreme Value Theorem, the minimum

is f(−2) = f(1) = −2. Similarly, the maximum of f is f(−1) = f(2) = 2.

Example 9.1.6. Consider the funtion

f : R −→ R, f(x) =
1

x2 + 1
.

Then f is always positive. The denominator of f(x) is smallest at x = 0, so

that the maximum of f is f(0) = 1. The denominator of f(x) grows without

bound as |x| grows without bound, so that the positive value f(x) grows ever

loser to 0 as |x| grows without bound, and f has no minimum.

Exercises

9.1.4. Sketh the graph of a generi funtion f : [a, b] −→ R. Then sketh

the graph of the related funtion g(s) = f(−s).
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9.1.5. Find all loal extrema of the following funtions. For eah loal ex-

tremum, state whether it is also global.

(a) f : [−2, 2] −→ R, f(x) = x4 − x2.

(b) f : [−2, 2] −→ R, f(x) = 4x3 − 3x4.

9.1.6. Consider the funtion

f : [1,∞) −→ R, f(x) = ln(x)/x.

Note that f(1) = 0, that f(x) ≥ 0 for all x ∈ [1,∞), and that limx→∞ f(x) = 0

(see page 155).

(a) Does the Extreme Value Theorem guarantee that f has a maximum?

(b) Show that the unique x ∈ [1,∞) suh that f ′(x) = 0 is x = e.

() Beause limx→∞ f(x) = 0, there exists some value b ≥ 1 suh that

f(x) ≤ f(e)/2 for all x ≥ b. Explain why f has a maximum on [1, b], and why

this maximum is also the maximum of f on [1,∞).

(d) Whih is larger, ln(e)/e or ln(π)/π? Explain. Consequently, whih is

larger, π ln(e) or e ln(π)? ln(eπ) or ln(πe)? Whih is larger, eπ or πe
?

9.1.3 Optimization Story-Problems

To solve an optimization story-problem, proeed as follows.

� Draw and label a �gure.

� Write an equation for the quantity to optimize. If possible, express the

quantity in terms of a single independent variable. Be aware of the domain

of values for the variable.

� Typially the domain is an interval. If the interval is losed and bounded,

evaluate the quantity at the endpoints. Otherwise analyze the quantity

near the missing endpoints, or as the variable gets large or small.

� Find the values of the variable for whih the derivative of the quantity is

zero, and evaluate the quantity at eah suh value.

� Evaluate the quantity at points where its derivative fails to exist.

In pratie, one sometimes gets a little asual with this proedure.

Example 9.1.7. Optimize the produt x1x2 of two nonnegative numbers

that sum to 1.

Experimentation suggests strongly that the answer is x1 = x2 = 1/2. For

example,

1

10
· 9
10

=
9

100
,

2

10
· 8
10

=
16

100
,

3

10
· 7
10

=
21

100
,

4

10
· 6
10

=
24

100
,

5

10
· 5
10

=
25

100
.

To phrase the problem in terms of one variable, we want to optimize the

funtion
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f(x) = x(1− x), x ∈ [0, 1].

Beause the domain of f is a losed, bounded interval, and beause f is

ontinuous, f assumes a maximum and a minimum. The endpoint value

f(0) = f(1) = 0 is the minimum beause f is nonnegative. We an �nd the

maximum in various ways:

� Use algebra: Complete the square,

f(x) = −x2 + x− 1/4+ 1/4 = 1/4− (x− 1/2)2,

or symmetrize to get the same formula,

f(x) = (1/2+ (x− 1/2))(1/2− (x− 1/2)) = 1/4− (x− 1/2)2,

so beause (x−1/2)2 is nonnegative, f takes its maximum at x = 1/2, and

the maximum is 1/4.

� Use geometry: The graph of f(x) = x(1 − x) = x − x2 is a downward-

opening parabola that passes through the x-axis at x = 0 and at x = 1,

so its highest point is halfway between them horizontally, making its x-

oordinate 1/2. This highest point has height 1/2(1− 1/2) = 1/4.

� Use alulus: Beause f(x) = x− x2,

f ′(x) = 1− 2x,

and so f ′(x) = 0 if and only if x = 1/2. By Corollary 9.1.4, the maximum

of f therefore ours at x = 1/2, and it is f(1/2) = 1/4.

Example 9.1.8. Optimize the volume of a ylinder that sits inside a

sphere.

The situation is depited in pro�le in �gure 9.1. Let the ylinder have

base-radius r and half-height a. Then its volume is

V = πr2 · 2a.

But beause the ylinder �ts in a sphere, whih may as well be the unit sphere,

we also have

a2 + r2 = 1.

The extreme ases of the geometry are ylinders that degenerate either to a

line segment between the spherial poles or an equatorial disk, both having

volume zero. And so, as a funtion of a, the volume is

f(a) = π(1− a2) · 2a = 2π(a− a3), a ∈ [0, 1].

Beause f is di�erentiable and its domain is a losed, bounded interval, it

assumes a minimum and a maximum. Beause the endpoint value f(0) =
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PSfrag replaements
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a

Figure 9.1. Cylinder inside sphere, seen in pro�le

f(1) = 0 is the minimum, the maximum value must be assumed somewhere

where f ′ = 0. Compute that

f ′(a) = 2π(1− 3a2),

and so the maximum ours when a2 = 1/3. Reall that a2 + r2 = 1, so

that also r2 = 2/3 for the maximum volume. That is, the proportions for the

maximum volume satisfy 2a2 = r2, or

r =
√
2a.

The ylinder's height is h = 2a, so the answer rewrites as

h =
√
2 r.

Beause this answer is phrased in terms of proportions, it does not depend

on normalizing the sphere-radius to 1.

Example 9.1.9. Optimize the surfae-area of a ylinder having given vol-

ume.

We may normalize the volume and phrase the answer in terms of pro-

portions. Let the ylinder have radius r and height h. Then its surfae area,

enompassing the base, the top, and the side, is
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A = 2πr2 + 2πrh = 2π(r2 + rh),

while the volume is

V = πr2h.

Normalize the volume to π, so that r2h = 1 and thus rh = 1/r. Then the

surfae area is

A(r) = 2π(r2 + 1/r).

Note that A is very large for small positive r (a very tall, thin ylinder) and

for large positive r (a very wide, squat ylinder). To make A small, set its

derivative to 0,

A ′(r) = 2π(2r− 1/r2) = 2π(2r3 − 1)/r2.

Thus A ′(r) = 0 when r3 = 1/2. But beause r2h = 1, onsequently r3h = r,

or r3 = r/h. And so the proportions of the optimal ylinder are

r

h
=

1

2
,

or h = 2r. The ylinder has diameter d = 2r, so in fat the proportions are

h = d.

That is, the ylinder sits tightly inside a ube.

Example 9.1.10. Build the biggest on�guration of m by n retangular

pens using a given amount of fening, onsisting of m rows of pens,

having total length x, by n olumns of pens, having total length y.

Normalize to one unit of fening, so that (m + 1)x + (n + 1)y = 1. The

quantity that we want to optimize is

f(x) = xy = x · 1− (m+ 1)x

n+ 1
=

x− (m+ 1)x2

n+ 1
,

with 0 ≤ x ≤ 1
m+1

. Note that f(0) = f( 1
m+1

) = 0 while f is positive for the

rest of its inputs. So, to maximize f, set its derivative to 0,

0 = f ′(x) =
1− 2(m+ 1)x

n+ 1
,

giving x = 1
2(m+1)

. (Beause f(x) is quadrati, the optimizing value of x

being the midpoint of the domain an be obtained in other ways, as in the

�rst example above.) Consequently y = 1
2(n+1)

and the largest enlosed area

is

1
4(m+1)(n+1)

. The optimizing amounts of east{west and north{south fening

are equal, x = m+1
2(m+1)

= 1
2
and similarly y = 1

2
.
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Figure 9.2. Moving a toothpik around a orner

Example 9.1.11. An ant wants to move a toothpik around a 90-degree

orner between a tunnel of width a and a tunnel of width b. Both tunnels

are horizontal and have negligible height. How long a toothpik an �t

around the orner?

The situation is depited in �gure 9.2. For any angle s ∈ (0, π/2), the

longest toothpik that an �t into the orner at angle s has length

f(s) = a se(s) + b s(s).

The smallest value of f is length of the longest toothpik that will �t all the

way around the orner.

The domain of f is a bounded interval, but it is missing both of its end-

points. However, note that f(s) is very large for s slightly greater than 0 and

for s slightly less than π/2, and this is onsonant with our geometri intuition

that the toothpik's �t is tightest somewhere in the middle of the proess of

getting it around the orner. So, beause f is di�erentiable, we onsider its

derivative,

f ′(s) = a tan(s) se(s) − b ot(s) s(s) =
a sin3(s) − b os3(s)

sin

2(s) os2(s)
.

This derivative vanishes for

s = artan

(
(b/a)1/3

)
,
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and for this value of s we have

f(s) = a2/3
√

a2/3 + b2/3 + b2/3
√
a2/3 + b2/3 =

(
a2/3 + b2/3

)3/2
.

For example, if a = 8 and b = 27 then a toothpik of length

(82/3 + 272/3)3/2 = 13
√
13 ≈ 47

will �t around the orner.

Example 9.1.12. The bottom of a statue is h units higher than the

viewer's eye. The top of the statue is H units higher than the viewer's

eye. How far bak should the viewer stand to maximize the vertial angle

that she pereives the statue to �ll?
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Figure 9.3. Viewing a statue

The situation is depited in �gure 9.3. Let the horizontal distane from the

viewer's eye to the statue be x, a positive number. Then the angle in question

is b − a where tan(a) = h/x and tan(b) = H/x. Thus we want to maximize

the funtion

f(x) = artan(H/x) − artan(h/x), x > 0.

For small positive x, artan(H/x) and artan(h/x) are lose to π/2, so f(x) is

lose to 0, and for large positive x, artan(H/x) and artan(h/x) are lose to 0,
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so again f(x) is lose to 0. Thus we searh for x-values suh that f ′(x) = 0.

Compute

f ′(x) =
−H/x2

1+H2/x2
−

−h/x2

1+ h2/x2
=

−H

x2 +H2
+

h

x2 + h2

=
−H(x2 + h2) + h(x2 +H2)

(x2 +H2)(x2 + h2)
.

The fration vanishes exatly when its numerator vanishes, and its numerator

is

−H(x2 + h2) + h(x2 +H2) = (h−H)x2 − hH(h−H) = (x2 − hH)(h−H).

This vanishes only for x =
√
hH, and so we have the optimal distane. This

distane is the geometri mean of h and H, meaning their multipliative

average, as ompared to their arithmeti mean (h + H)/2. Inidentally, the

relation x2 = hH shows that in �gure 9.3 the two right triangles having

side x are similar when x is optimal. Beause the optimal horizontal distane

is

√
hH, the optimal pereived vertial angle is onsequently (invoking the

identity artanb− artana = artan( b−a
1+ab

))

artan(H/
√
hH) − artan(h/

√
hH) = artan

(
H− h

2
√
hH

)
.

Espeially if H = 2h, whih is to say that the statue is as high as its base,

as for example is true for the Statue of Liberty, then the optimal pereived

viewing angle is artan

(
1

2
√
2

)
≈ 19.47◦. Similarly if H = 3h, whih is to say

that the statue is twie as high as its base, then the optimal pereived viewing

angle is 30◦.

Example 9.1.13. A partile travels through medium 1 at speed v and

through medium 2 at speed w. If the partile travels from point A to

point B (see �gure 9.4) in the least possible amount of time, what is the

relation between angles α and β?

If, for example, v is greater than w, then one argument is that the par-

tile should travel in medium 1 (where it moves faster) to the point on the

boundary between the media just above point B, and then drop straight down

to B, thus spending as little time as possible traveling slowly. But this strat-

egy entails taking a long path from A to B. A seond argument is that the

partile should take the shortest path from A to B, the line segment joining

them, regardless of the fat that in doing so it will traverse a longer path

in medium 2, where it moves slowly. The orret answer will lie somewhere

between the answers suggested by these two arguments.
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Figure 9.4. Geometry of Snell's Law

Beause time is distane over speed, a little trigonometry shows that this

problem is to minimize the time

t =
a

v
se(α) +

b

w
se(β),

where the lateral distane traveled is

a tan(α) + b tan(β) = d.

View α as the independent variable and β as a funtion of α. Di�erentiate

the expression for the lateral distane to get

a se2(α) + b se2(β) · β ′ = 0.

Now di�erentiate t to get

t ′ =
a

v
tan(α) se(α) +

b

w
tan(β) se(β) · β ′,

whih rewrites as

t ′ =
a

v
sin(α) se2(α) +

b

w
sin(β) se2(β) · β ′.

But from the derivative of the lateral distane, b se2(β) · β ′ = −a se2(α),

and so

t ′ =
a

v
sin(α) se2(α) −

a

w
sin(β) se2(α)

= a se2(α)

(
sin(α)

v
−

sin(β)

w

)
.

That is, t ′ = 0 exatly when sin(α)/v = sin(β)/w, or
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sin(α)

sin(β)
=

v

w
.

This relation is alled Snell's Law .

A seond optimization method an sometimes solve problems more quikly

and easily. Explaining why this seond method works requires ideas from two-

variable alulus, beyond the sope of these notes. Even so, we present it as

a proedure and then revisit problems from earlier in this setion to show it

in ation. The proedure is as follows.

To optimize a funtion f of two variables, subjet to a onstraint g = c

where g is a seond funtion of two variables, proeed as follows.

1. Compute four quantities

� A: the derivative of f with respet to the �rst of its two variables,

� B: the derivative of f with respet to the seond of its two variables,

� C: the derivative of g with respet to the �rst of its two variables,

� D: the derivative of g with respet to the seond of its two vari-

ables.

2. Study the relation AD = BC and the onstraint g = c together, and

see what they tell us.

The produt problem revisited. Reall the problem:

Find the biggest value of the produt x1x2 where x1 and x2 are

two nonnegative numbers that sum to 1.

Here we have f(x1, x2) = x1x2 and g(x1, x2) = 1 where g(x1, x2) = x1 + x2.

Thus

A = x2, B = x1, C = 1, D = 1,

and the relation AD = BC is

x2 = x1.

Beause also x1 + x2 = 1, the solution obviously is x1 = x2 = 1/2 with

produt 1/4, as above. This same method shows that the biggest value of

the produt xα1

1 xα2

2 where x1 and x2 are two nonnegative numbers that sum

to 1, and α1 and α2 are positive exponents, ours at x1 = α1/(α1 +α2) and

x2 = α2/(α1 + α2) and is αα1

1 αα2

2 /(α1 + α2)
α1+α2

. The reader an hek

that for α1 = α2 = 1 this solution mathes the partiular ase that we have

solved.

The ylinder problem. Reall the problem:

Find the largest ylinder that �ts in a sphere.
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(See �gure 9.1 on page 268.) Here we have f(r, h) = πr2h and g(r, h) = 1

where g(r, h) = r2 + (h/2)2. Thus

A = 2πrh, B = πr2, C = 2r, D = h/2,

and the relation AD = BC is

πrh2 = 2πr3

Canel πr to get h2 = 2r2, or

h =
√
2 r.

As above, these are the proportions of the biggest ylinder that �ts in a sphere.

Another ylinder problem. Reall the problem:

Find the ylinder of least area having �xed volume.

Here we have f(r, h) = 2πr2 + 2πrh and g(r, h) = 1 where g(r, h) = πr2h.

Thus

A = 4πr+ 2πh = 2π(2r+ h), B = 2πr, C = 2πrh, D = πr2,

and the relation AD = BC is

2π2r2(2r+ h) = 4π2r2h,

or, after aneling 2π2r2,

2r+ h = 2h,

or

2r = h.

So the height is the diameter, as above.

The fene problem. Reall the problem:

Build the biggest on�guration of m by n retangular pens using

a given amount of fening.

Here we have f(x, y) = xy and g(x, y) = 1 where g(x, y) = (m+1)x+(n+1)y.

Thus

A = y, B = x, C = m+ 1, D = n+ 1,

and the relation AD = BC is

(n+ 1)y = (m+ 1)x.

This relation says to alloate half of one's fening to east{west and the other

half to north{south, as we know from above to be the solution.

The toothpik problem. Reall the problem:
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An ant wants to move a toothpik around a 90-degree orner be-

tween a tunnel of width a and a tunnel of width b. Both tunnels

are horizontal and have negligible height. How long a toothpik

an �t around the orner?

(See �gure 9.2 on page 270.) Let u be the portion of the toothpik in the width-

a tunnel and let v be the portion of the toothpik in the width-b tunnel. When

the toothpik is at angle θ we have os(θ) = a/u and sin(θ) = b/v. Thus the

funtion to be optimized is f(u, v) = u + v and the onstraint ondition is

g(u, v) = 1 where g(u, v) = a2/u2 + b2/v2. We have

A = 1, B = 1, C = −2
a2

u3
, D = −2

b2

v3
,

and so the ondition AD = BC is a2/u3 = b2/v3. This ondition raised to

the power 2/3 is a4/3/u2 = b4/3/v2, and this along with the onstraint are

a−2/3 a
2

u2
= b−2/3b

2

v2
,

a2

u2
+

b2

v2
= 1.

Use the �rst of these to substitute b2/3/a2/3 ·a2/u2
for b2/v2 in the seond,

a2/3 + b2/3

a2/3

a2

u2
= 1,

from whih u2 = a4/3(a2/3 + b2/3) and thus

u = a2/3(a2/3 + b2/3)1/2.

Symmetrially v = b2/3(a2/3+b2/3)1/2, and so the optimal value is as above,

u+ v = (a2/3 + b2/3)3/2.

The statue problem. Reall the problem:

The bottom of a statue is h units higher than the viewer's eye.

The top of the statue is H units higher than the viewer's eye. How

far bak should the viewer stand to maximize the vertial angle

that she pereives the statue to �ll?

(See �gure 9.3 on page 271.) We optimize f(a, b) = b − a subjet to the

onstraint g(a, b) = 0 where g(a, b) = (tana)/h − (tanb)/H, eah of whose

terms is 1/x where x is the horizontal distane in the �gure. Remembering

that tan

′ = se

2 = tan

2 +1,

A = −1, B = 1, C = (tan2 a+ 1)/h, D = −(tan2 b+ 1)/H.
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Beause C = h(tan2 a)/h2+1/h = h/x2+H/(hH) and similarlyD = −H/x2−

h/(hH), the relation AD = BC is

H/x2 + h/(hH) = h/x2 +H/(hH).

So (H−h)/x2 = (H−h)/(hH), giving x2 = hH and thus x =
√
hH as above.

In fat the statue problem an be solved without alulus. To minimize

b− a we may minimize tan(b− a) instead, whih by a trigonometry identity

(exerise 9.1.14) and then the geometry of the problem and then some algebra

is

tan(b− a) =
tan(b) − tan(a)

1+ tan(b) tan(a)
=

H/x− h/x

1+ hH/x2
=

H− h

x+ hH/x
.

This is largest when its denominator x+ hH/x is smallest. And

x+
hH

x
=

√
hH

(
x√
hH

+

√
hH

x

)
.

In general for positive y we have y + 1/y = (
√
y − 1/

√
y)2 + 2 ≥ 2 with

equality if and only if y = 1. The previous display has y = x/
√
hH, so it is

smallest when x =
√
hH, the same answer as twie before.

The light ray problem. Reall the problem:

Find the quikest path for a light ray to travel from point A at

vertial distane a up in the air to point B at vertial depth b

down in the water. The light ray travels at speed v in the air and

at speed w in the water.

(See �gure 9.4 on page 273.) Here the related quantities are the angle of

inidene α and the angle of refration β. The funtion to be optimized

is f(α,β) = (a/v) se(α) + (b/w) se(β), and the onstraining relation is

g(α,β) = 1 where g(α,β) = a tan(α) + b tan(β). Thus

A = (a/v) tan(α) se(α), B = (b/w) tan(β) se(β)

C = a se2(α), D = b se2(β),

and beause tan = sin · se, these are

A = (a/v) sin(α) se2(α), B = (b/w) sin(β) se2(β)

C = a se2(α), D = b se2(β).

The relation AD = BC is

(ab/v) sin(α) se2(α) se2(β) = (ab/w) sin(β) se2(β) se2(α),

whih anels down to
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sin(α)

v
=

sin(β)

w
,

and this is Snell's law as above,

sin(α)

sin(β)
=

v

w
.

Exercises

9.1.7. Let α1 and α2 be positive real numbers. Optimize the weighted prod-

ut xα1

1 xα2

2 of two nonnegative numbers x1 and x2 that sum to 1.

9.1.8. Optimize the volume of a one that sits inside a sphere. (Let r be the

radius of the one's irular base, and let h be the height from the one's base

to its vertex. Your answer should desribe the proportions of the one.)

9.1.9. Optimize the volume of a ylinder that sits inside a one.

9.1.10. Rotate a right triangle of a given hypotenuse to form a one of greatest

volume.

9.1.11. Optimize the volume of a box reated by utting four small squares

away from the orners of a large square and then folding up the resulting

aps.

9.1.12. Find the point(s) on the parabola y = x2 that are nearest to the point

(0, 9/2).

9.1.13. Optimize the geometri mean

√
hH where h and H are nonnegative

numbers whose arithmeti mean is 1.

9.1.14. Use the identities sin(b − a) = sin(b) os(a) − os(b) sin(a) and

os(b−a) = os(b) os(a)+ sin(b) sin(a) to show that tan(b−a) = (tan(b)−

tan(a))/(1+ tan(b) tan(a)).

9.2 The Mean Value Theorem and Its Consequences

9.2.1 Statement of the Theorem

Theorem 9.2.1 (Rolle’s Theorem). Suppose that a funtion

f : [a, b] −→ R

is ontinuous on [a, b] and di�erentiable on (a, b), and suppose further

that f(a) = f(b) = 0. Then there exists some value c ∈ (a, b) suh that

f ′(c) = 0.
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Figure 9.5. Rolle's Theorem

Rolle's Theorem is illustrated in �gure 9.5.

Proof. If f is identially 0 then so is f ′, and any c ∈ (a, b) will do.

Otherwise, note that f has a minimum and a maximum by the Extreme

Value Theorem. Either the minimum or the maximum is nonzero, and so it o-

urs at a nonendpoint c ∈ (a, b), where f is di�erentiable. By Corollary 9.1.4,

f ′(c) = 0. ⊓⊔

The proof of Rolle's Theorem relies on the Extreme Value Theorem, whih

we have not proved. Like the Extreme Value Theorem, Rolle's Theorem is an

existene theorem: its onlusion is not that \f ′(c) = 0," whih in isolation

would be meaningless beause the hypotheses make no mention of a point c,

but that there exists some c suh that f ′(c) = 0.

Theorem 9.2.2 (Mean Value Theorem). Suppose that a funtion

f : [a, b] −→ R

is ontinuous on [a, b] and di�erentiable on (a, b). Then there exists some

value c ∈ (a, b) suh that

f ′(c) =
f(b) − f(a)

b− a
.

The Mean Value Theorem is illustrated in �gure 9.6. Note also that in

Arhimedes's quadrature of the parabola, eah insribed triangle has its mid-

dle vertex over the point c from the Mean Value Theorem (f. page 18 and
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�gure 1.14 on page 18). The ondition that f needs to be ontinuous on the

losed interval but need not be di�erentiable at the endpoints means, for ex-

ample, that the Mean Value Theorem applies to a funtion suh as the square

root on [0, 1] despite the fat that its graph has a vertial tangent at the origin.
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Figure 9.6. The Mean Value Theorem

Proof. De�ne auxiliary funtions

g : [a, b] −→ R, g(x) = f(a) +
f(b) − f(a)

b− a
(x− a)

and

h : [a, b] −→ R, h(x) = f(x) − g(x).

The graph of g is the line segment from (a, f(a)) to (b, f(b)), and the fun-

tion h measures the vertial distane from the graph of g to the graph of f.

Beause h meets the onditions for Rolle's Theorem, there exists some

value c ∈ (a, b) suh that h ′(c) = 0. But in general,

h ′(x) = f ′(x) − g ′(x) = f ′(x) −
f(b) − f(a)

b− a
,

so that the ondition h ′(c) = 0 is, as desired,

f ′(c) =
f(b) − f(a)

b− a
,

⊓⊔



9.2 The Mean Value Theorem and Its Consequenes 281

Exercise

9.2.1. (a) Sketh the graph of a funtion f : [a, b] −→ R for whih there are

exatly four possible hoies of c in the Mean Value Theorem, i.e., there are

exatly four points c ∈ (a, b) suh that f ′(c) = (f(b) − f(a))/(b− a).

(b) Sketh the graph of a funtion f : [a, b] −→ R for whih there are

in�nitely many possible hoies of c in the Mean Value Theorem, i.e., there

are in�nitely many points c ∈ (a, b) suh that f ′(c) = (f(b) − f(a))/(b − a),

but also there are some hoies of c ∈ (a, b) that do not satisfy the ondition

of the Mean Value Theorem, i.e., there are some points c ∈ (a, b) suh that

f ′(c) 6= (f(b) − f(a))/(b− a).

9.2.2 Consequences of the Mean Value Theorem

The Mean Value Theorem has a wealth of onsequenes. To rephrase, it says

that if f is ontinuous on [a, b] and di�erentiable on (a, b) then

f(b) − f(a)

b− a
= f ′(c) for some c ∈ (a, b).

To appreiate why this statement enables us to do things that we an't do

without it, �rst note that it involves a sort of tradeo�. The drawbak is that:

The statement involves a point c ∈ (a, b), but we don't know the

value of c.

But on the other hand, the bene�t is that:

The statement gives us a onnetion between the funtion f and

its derivative f ′ with no referene to a limit .

Beause limits are elaborate, tehnial, and sometimes unwieldy, the bene�t

outweighs the drawbak one we learn how to use the theorem despite not

knowing c.

Here is an example. Let I be any interval in R, and let

f : I −→ R

be a di�erentiable funtion suh that f ′ = 0 everywhere on I. As mentioned

in exerise 6.4.3 (page 200), this strongly suggests that f is onstant, but

until now an easy proof was not aessible to us. The easy proof proeeds

as follows. Let a and b be any two distint points of I. We may assume

that a < b. Restrit the domain of f to [a, b]. The resulting funtion satis�es

the hypotheses of the Mean Value Theorem. Therefore,

f(b) − f(a) = f ′(c)(b− a) for some c ∈ (a, b).
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We don't know where c is, but this doesn't matter beause f ′(c) = 0 for all c.

That is,

f(a) = f(b).

Beause a and b are arbitrary points of I it follows that f is onstant.

It would be eminently reasonable for the reader to underwhelmed by an

argument to support the patently obvious fat that if the derivative is al-

ways zero then the funtion is onstant. However, the underlying issue is that

the fat is patently obvious only beause of our intuition that the set of real

numbers geometrially forms an unbroken line, a ontinuum . The set of ra-

tional numbers also omes with a linear order, and as a subset of the line

the rationals leave no gaps of positive length|that is, every real interval of

positive length ontains rational numbers. Algebraially, the rational num-

bers and the real numbers an be haraterized indistinguishably: addition,

subtration, multipliation, and division work as they should. Nonetheless, if

we go through the exerise of de�ning the onepts in these notes only in the

restrited ontext of the rational numbers, then not all of the results ontinue

to hold. In partiular, the funtion

f : Q −→ Q, f(x) =

{
0 if x2 < 2,

1 if x2 > 2

is di�erentiable at eah point x ∈ Q, its derivative is 0 everywhere, and yet it

is not a onstant funtion. Thus, any argument that if the derivative is zero

the funtion is onstant must somehow rely on a property of the real number

system that distinguishes it from the rational number system.

The next exerise is to derive more onsequenes of the Mean Value The-

orem.

Exercise

9.2.2. (a) Let f1, f2 : [a, b] −→ R be di�erentiable funtions suh that f ′1 = f ′2
on [a, b]. Show that f2 = f1 + C for some onstant C.

(b) Let f : [a, b] −→ R be a di�erentiable funtion suh that f ′ > 0

on [a, b]. Show that f is stritly inreasing on [a, b].

() Let f : [a, b] −→ R be di�erentiable and stritly inreasing. Must it be

true that f ′ > 0 on [a, b]? Proof or ounterexample.

(d) Let f : [a, b] −→ R be a di�erentiable funtion suh that f ′ ≥ 0

on [a, b]. Show that f is inreasing on [a, b].

(e) Let f : [a, b] −→ R be di�erentiable and inreasing. Must it be true

that f ′ ≥ 0 on [a, b]? Proof or ounterexample.
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9.3 Curve Sketching

To sketh the graph of a funtion f with the help of alulus, here are some

points to bear in mind.

� The formula for f may make lear where f is positive, negative, and zero,

i.e., where the graph is above, below, or rossing the x-axis.

� If the formula for f has a denominator then f is unde�ned at x-values

where the denominator is zero. If the numerator is nonzero for suh x

then f probably has a vertial asymptote at x. Chek the sign of f at

values slightly larger than x and slightly smaller than x to see whether

the graph is rising very high or dropping very low on eah side of the

asymptote.

� Similarly, if the formula has a square root then f is de�ned only for x-

values where the quantity under the square root is nonnegative, and so

on.

� The graph may also have horizontal asymptotes or diagonal asymptotes.

Horizontal asymptotes arise if f(x) tends to a limit as x → +∞ or as x →
−∞, and similarly for diagonal asymptotes if f(x)/x tends to a limit.

� The formula for f ′ may make lear where f ′ is positive, negative, and zero,

i.e., where the graph is rising, falling, or has a horizontal tangent.

� The formula for f ′′ may make lear where f ′′ is positive, negative, and zero,

i.e., where the graph is onvex (bending up), onave (bending down), or

ineting (swithing bend-diretions).

� At an x-value where f is unde�ned it is understood that f ′ and f ′′ are

unde�ned as well, and similarly at an x-value where f ′ is unde�ned it is

understood that f ′′ is unde�ned as well. At an x-value where f is de�ned

but f ′ is not, the graph may have a orner or some other exoti behavior.

Computer graphing tehnology is so e�etive and so readily available that

skething urves with the help of alulus may feel like a pointless endeavor,

espeially beause the omputer an plot many points quikly and produe a

�gure that is aurate in shape and sale. However, sometimes alulus an tell

us about key features of the graph that are hard to see in omputer-generated

plots, e.g., the preise loation of loal extrema, or points of inetion.

Example 9.3.1. Consider the funtion

f(x) =
x2

x2 − 1
, x ∈ R, x 6= ±1.

Note that f is even (i.e., f(−x) = f(x)), so we need only study it for x ≥ 0.

Also,

� f(0) = 0.
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� limx→+∞ f(x) = 1.

� limx→1+ f(x) = +∞ and limx→1− f(x) = −∞.

(Here the seond bullet is shorthand for f tends to 1 as its inputs grow large

and positive , and the third bullet is shorthand for f is large and positive at

inputs slightly greater than 1 and f is large and negative at inputs slightly

less than 1.) Compute that the derivative of f is

f ′(x) =
2x · (x2 − 1) − x2 · 2x

(x2 − 1)2
=

−2x

(x2 − 1)2
.

Thus f ′(0) = 0 and f ′(x) < 0 for 0 < x < 1 and for 1 < x. Similarly, a bit of

algebra shows that

f ′′(x) =
2(3x2 + 1)

(x2 − 1)3
.

Thus f ′′(x) < 0 for 0 ≤ x < 1 and f ′′(x) > 0 for 1 < x. We an present many

of our observations in a table. The ions indiate whether the graph of f is

rising or falling, and whether it is onvex or onave.

0 < x < 1 1 < x

f − +

f ′ − −

f ′′ − +

A omputer-generated plot of f (�gure 9.7) shows the features that we have

dedued analytially,

Example 9.3.2. Consider the funtion

f(x) = x1/3 + x−1/3 = x−1/3(x2/3 + 1), x > 0.

This funtion should behave like x−1/3
for x near 0, and like x1/3 for large x.

More spei�ally,

� f(x) > 0 for all x > 0.

� limx→0+ f(x) = +∞ and limx→+∞ f(x) = +∞.

Compute that the derivative of f is

f ′(x) =
1

3
x−2/3 −

1

3
x−4/3 =

1

3
x−4/3(x2/3 − 1), x > 0.

Thus f ′(1) = 0, and f ′(x) < 0 for 0 < x < 1, and f ′(x) > 0 for 1 < x. Similarly,

a bit of algebra shows that
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Figure 9.7. Graph of f(x) = x2/(x2 − 1)

f ′′(x) =
2

9
x−7/3(2− x2/3), x > 0.

Thus f ′′(23/2) = 0, and f ′′(x) > 0 for 0 < x < 23/2, and f ′′(x) < 0 for 23/2 <

x. We an present many of these observations in a table.

0 < x < 1 1 < x < 23/2 23/2 < x

f + + +

f ′ − + +

f ′′ + + −

A omputer-generated plot of f (�gure 9.8) shows some of the features that

we have dedued analytially, but the transition from positive to negative

urvature at x = 23/2 ≈ 2.828 is not really visible, nor is the asymptoti

behavior f(x) ∼ x1/3 for large x.

Example 9.3.3. Consider the funtion

f(x) = 2 sin(x) − sin(2x), −π ≤ x ≤ π.

Note that f is odd (i.e., f(−x) = −f(x)), so we may study it on [0, π] instead.

In partiular, f(0) = f(π) = 0. The derivative of f is (now suppressing the

domain from the notation)

f ′(x) = 2 os(x) − 2 os(2x).
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Figure 9.8. Graph of f(x) = x1/3 + x−1/3

Reall that os(2x) = 2 os2(x) − 1. Therefore,

f ′(x) = 2(os(x) − 2 os2(x) + 1) = −2(os(x) − 1)(2 os(x) + 1).

Thus f ′(x) = 0 if x = 0, 2π/3. And f(2π/3) =
√
3 +

√
3/2 = 3

√
3/2 ≈ 2.6.

Beause −2(os(x)−1) ≥ 0 for all x, the sign of f ′ is determined by the sign of

2 os(x)+1, whih is positive for 0 ≤ x < 2π/3 and negative for 2π/3 < x ≤ π.

The seond derivative of f is

f ′′(x) = −2 sin(x) + 4 sin(2x).

Reall that sin(2x) = 2 sin(x) os(x). Therefore,

f ′′(x) = −2 sin(x)(1− 4 os(x)).

Thus f ′′(x) = 0 at x = 0, π, aros(1/4). Beause os(π/3) = 1/2 and

os(π/2) = 0, it follows that aros(1/4) lies between π/3 and π/2. And a

small alulation shows that f(aros(1/4)) = 3
√
15/8 ≈ 1.45. Beause sin(x)

is positive for 0 < x < π, while 1− 4 os(x) is positive for 0 ≤ x < aros(1/4)

and negative for aros(1/4) < x ≤ π, we have the following table.

0 < x < aros(1/4) aros(1/4) < x < 2π/3 2π/3 < x ≤ π

f + + +

f ′ + + −

f ′′ + − −
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A omputer-generated plot of f (�gure 9.9) shows most of the features that we

have dedued analytially, although the inetion points over ± artan(−1/4),

where the graph hanges from bending up to bending down, are not easy to

pik out until the �gure is enhaned to emphasize them.
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2

Figure 9.9. Graph of f(x) = 2 sin(x) − sin(2x)

This example arises from the very beginnings of Fourier analysis , loosely

the theory of expressing general funtions as ombinations of osillations, sim-

ilarly to how we expressed funtions as ombinations of powers (polynomials)

in hapter 8. The weighted ombination of the osillations sin(x) and sin(2x)

is approximating the 45-degree line identity funtion f1(x) = x on [−π, π].

For any positive integer n, the funtion

gn(x) = 2

n∑

k=1

(−1)k−1 1

k
sin(kx)

= 2

(
sin(x) −

1

2
sin(2x) +

1

3
sin(3x) − · · ·+ (−1)n−1 1

n
sin(nx)

)

uses more osillations to approximate the the line more losely. The graph

of g6 is shown in �gure 9.10.

Example 9.3.4. Consider the funtion

f(x) = 2(x− 1)5/3 + 5(x− 1)2/3 = (x− 1)2/3(2x+ 3).

Here we take the domain of f to be the set of all real numbers, even though

aording to our formalism f(x) is sensible only for x ≥ 1. The idea is that



288 9 Theory and Appliations of the Derivative
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Figure 9.10. Graph of g6(x) = 2
∑6

k=1(−1)k−1
sin(kx)/k

for x < 1, we an take (x− 1)1/3 as the negative number whose ube is x− 1

(this number is −(1− x)1/3), and then f(x) is its square. Observe that

� f(x) = 0 for x = 1 and x = −3/2.

� f(0) = 3.

� limx→+∞ f(x) = +∞ and limx→−∞ f(x) = −∞.

Next ompute that the derivative of f is

f ′(x) =
10

3
(x− 1)2/3 +

10

3
(x− 1)−1/3

=
10

3
(x− 1)−1/3x.

Observe that

� f ′(1) is unde�ned, limx→1− f ′(x) = −∞ and limx→1+ f ′(x) = ∞.

� f ′(0) = 0.

� f ′(x) > 0 for x < 0, f ′(x) < 0 for 0 < x < 1, and f ′(x) > 0 for x > 1.

The seond derivative of f is

f ′′(x) =
20

9
(x− 1)−1/3 −

10

9
(x− 1)−4/3

=
10

9
(x− 1)−4/3(2x− 3).

Observe that
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� f ′′(x) is unde�ned at x = 1 (naturally, beause f ′(1) was already unde-

�ned).

� f ′′(3/2) = 0.

� f ′′(x) < 0 for x < 1 and 1 < x < 3/2, and f ′′(x) > 0 for x > 3/2.

Along with the value f(0) = 3, note that

f(3/2) = (1/2)2/3 · 6 = 6/22/3 > 6/2 = 3.

We an present many of our observations in a table.

x < −3/2 −3/2 < x < 0 0 < x < 1 1 < x < 3/2 3/2 < x

f − + + + +

f ′ + + − + +

f ′′ − − − − +

A omputer-generated plot of f (�gure 9.11) shows most of the features that

we have dedued analytially, but it does not learly show that the graph

inets at (3/2, f(3/2)).
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Figure 9.11. Graph of f(x) = (x − 1)2/3(2x + 3)

Example 9.3.5 (Shape of the power function). The following table sum-

marizes many of our observations about the power funtion fα(x) on R>0,
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extended to x = 0 when possible. In all ases the graph lies in the �rst o-

ordinate quadrant and passes through the point (1, 1). For the limits in the

table, Proposition 4.1.5 says that

lim

s→0
fα(s) =






∞ if α < 0

1 if α = 0

0 if α > 0,

and then, beause we de�ne

lim

s→∞

fα(s) = lim

s→0
fα(1/s)

and then note that fα(1/s) = (1/s)α = s−α == f−α(s), we also have

lim

s→∞

fα(s) = lim

s→0
f−α(s) =






0 if α < 0

1 if α = 0

∞ if α > 0.

The observations ombine to show that for all α < 0, the graph of the funtion

looks qualitatively like the hyperbola-branh y = 1/x, that for all α stritly

between 0 and 1, the graph looks qualitatively like the square root urve

y =
√
x, and that for all α > 1, the graph looks qualitatively like the parabola

y = x2. Of ourse, the graph of f0 is the line y = 1 and the graph of f1 is the

line y = x.

α < 0 α = 0 0 < α < 1 α = 1 1 < α

fα + + + + +

fα(1) 1 1 1 1 1

lims→0 fα(s) ∞ 1 0 0 0

lims→∞ fα(s) 0 1 ∞ ∞ ∞
f ′α = αfα−1 − 0 + 1 +

lims→0 f
′
α(s) −∞ 0 ∞ 1 0

lims→∞ f ′α(s) 0 0 0 1 ∞
f ′′α = α(α− 1)fα−2 + 0 − 0 +

Exercises

9.3.1. Let f = ln. What is f ′′? What is its sign? How does this relate to

exerise 5.3.3 (page 161)?
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9.3.2. Graph the following funtions, giving some disussing ritial points,

asymptotes, onvexity/onavity, and so on, as relevant.

(a) f(x) = x3/(1− x2).

(b) f(x) = (1− x2)2.

() f(x) = x/(1+ x2)

(d) f(x) = x+ sin(x).

(e) f(x) = x ln(x).

9.4 Related Rates Story-Problems

In a typial related rates problem, some time-dependent proess involves two

related quantities. At some moment, we presumably an measure one quantity,

and we know its rate of hange. The idea is to determine the rate of hange

of the seond quantity at that moment. The tehnique is to di�erentiate the

original relation between the quantities with respet to time, remembering to

use the Chain Rule.

Example 9.4.1. The bottom end of a ladder of length ℓ is being moved

away from the wall at onstant speed. At what speed is the top of the

ladder sliding down the wall?

PSfrag replaements

ℓ

x

h

Figure 9.12. Ladder

Let x(t) denote the time-dependent distane of the base of the ladder from

the wall, and let h(t) denote the height of the top of the ladder up the wall.

The situation is depited in �gure 9.12. Then we have
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x(t)2 + h(t)2 = ℓ2, x(0) = 0, x ′(t) = 1.

(Here we normalize the onstant speed given to us by the problem to 1 for

onveniene.) Di�erentiate with respet to time,

2x(t)x ′(t) + 2h(t)h ′(t) = 0.

That is, beause x ′(t) = 1,

h ′(t) = −
x(t)

h(t)
.

Beause h(t) =
√

ℓ2 − x(t)2, we have (now suppressing t from the notation),

h ′ = −
x√

ℓ2 − x2
.

Thus, at the beginning moment of the proess, when the ladder's base is at

the wall (x = 0), the horizontal motion of the ladder's base is not ausing any

vertial motion of the ladder's top down the wall. On the other hand, at the

end-moment, when x = ℓ, the top of the ladder instantaneously has in�nite

vertial veloity down the wall.

Example 9.4.2. A pedestrian of height h walks away from a street light

of height H at onstant speed. At what speed is her shadow-length in-

reasing?

PSfrag replaements
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Figure 9.13. Street light, pedestrian, and shadow
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Let x denote the pedestrian's horizontal distane from the base of the

street light, and let s denote the pedestrian's shadow-length. The situation is

depited in �gure 9.13. Similar triangles show that

s

h
=

x+ s

H
.

Di�erentiate with respet to time,

s ′

h
=

x ′ + s ′

H
,

or, after a little bit of algebra, and again normalizing to x ′ = 1,

s ′ =
h

H− h
.

The shadow-length is inreasing at a onstant rate.

Example 9.4.3. A hild is ying a kite at onstant height. Wind is blow-

ing the kite horizontally at onstant speed. At what speed is string playing

out through the hild's hand?

PSfrag replaements
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Figure 9.14. Kite

Let h denote the height of the kite, let x denote the horizontal distane

from the kite to the hild, and let s denote the length of string from the hild

to the kite. Unrealistially idealize the string as a line segment, so that

s2 = x2 + h2.
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The situation is depited in �gure 9.14. Take time-derivatives,

2ss ′ = 2xx ′.

Normalizing to x ′ = 1, we have

s ′ =
x

s
=

x√
x2 + h2

.

Thus s ′ = 0 when the kite is diretly over the hild's head. Also, in the limit

as ever more string is played out, s ′ tends to 1; this is sensible beause the

proportions of the triangle degenerate toward s = x in the limit.

Example 9.4.4. A rope is suspended over a pulley at height y. A weight

is attahed to one end of the pulley, and the other end of the rope is

being pulled horizontally away from beneath the pulley at onstant rate,

lifting the weight. At what rate is the weight rising?

PSfrag replaements
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Figure 9.15. Weight and pulley

Let x denote the horizontal distane from point on the oor beneath the

pulley to the end of the rope that is being pulled. Let h (for hypotenuse)

denote the length of rope from the pulley to the end being pulled. Then

x2 + y2 = h2.

The situation is depited in �gure 9.15. The weight is rising at the rate that

rope is passing over the pulley, and rope is passing over the pulley at rate h ′
,

so we want to �nd h ′
. Di�erentiate the previous relation,



9.4 Related Rates Story-Problems 295

2xx ′ = 2hh ′.

And so, normalizing to x ′ = 1,

h ′ =
x

h
=

x√
x2 + y2

.

The weight is initially rising at speed 0, and (assuming that the pulled end

of the rope was initially beneath the pulley) it has reahed the pulley when

h = 2y and thus x =
√
3 y. The weight is rising at speed

√
3/2 when it reahes

the pulley.

Example 9.4.5. Water is being added to a onial tank of height H and

radius R at onstant rate. At what rate is the height of the water in the

tank hanging?

PSfrag replaements h

r

H

R

Figure 9.16. Half-pro�le of onial tank

Let h denote the height of the water in the tank, and r the radius. At any

instant, the water in the tank forms a one similar to the tank, so that

h

H
=

r

R
,

and therefore we an express h in terms of r, and r ′ in terms of h ′
,

h =
H

R
r and r ′ =

R

H
h ′ .

The situation is depited in �gure 9.16. The volume of water in the tank is
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V =
1

3
πr2h.

Therefore, by the produt rule,

V ′ =
1

3
π(2rr ′h+ r2h ′) =

1

3
π

(
2r

R

H
h ′H

R
r+ r2h ′

)
= πr2h ′.

But V ′ = 1, and so

h ′ =
1

πr2
.

That is, perhaps obviously in hindsight, the water's rate of rising equals the

reiproal of the ross-setional irular area of the tank at the water's height.

At the beginning of the proess, when h = 0, apparently h ′
is instantaneously

in�nite, and at the end, h ′
is 1/(πR2).

Exercises

9.4.1. A spetator at a tennis math is sitting netside. The ourt has length ℓ

and width w. A player standing at the middle of the baseline hits the ball

perfetly horizontally, giving it veloity v. At what rate is the spetator's head

swiveling as the ball moves?

9.4.2. A Ferris wheel has radius R, and it rotates at rate ω. It is nighttime.

A lantern is suspended immediately above the top of the Ferris wheel. As you

ride the Ferris wheel, at what rate is your shadow moving when you are at

angle t from the top?

9.4.3. Point p moves along the x-axis at rate a, and point q moves along the

y-axis at rate b. At what rate does the distane between them hange?

9.4.4. A sphere of radius r has volume V = 4πr3/3 and area A = 4πr2. If an

evaporating spherial drop of water is losing volume at a rate proportional to

its area, show that it is losing area at a rate proportional to its radius.

9.4.5. A balloon rises vertially at onstant rate, and ar travels horizontally

at a di�erent onstant rate. How is the distane between them hanging?

9.4.6. One end of a rope is attahed to the bow of a boat. The other end of

the rope passes through a ring on a dok, distane h higher than the bow, at

onstant rate. At what rate does the bow move toward the dok?
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Integration via Antidifferentiation

Eah time that we have integrated a funtion f in these notes, the result was

the di�erene of two values of a seond funtion F whose derivative was f. The

Fundamental Theorem of Calulus says that this phenomenon is general: If f

is ontinuous on [a, b] and F ′ = f then

∫b

a

f = F(b) − F(a).

Thus the problem of integrating f is solved whenever we an antidi�erenti-

ate f, i.e., whenever we an �nd a funtion F whose derivative is f. This hapter

establishes the Fundamental Theorem of Calulus in setion 10.1 and then

lays out some antidi�erentiation tehniques. Some basi antiderivatives are

given in setion 10.2. Setion 10.3 explains how to �nd ertain antiderivatives

by a proess alled forward substitution, and setion 10.4 explains a related

proess alled inverse substitution. Setion 10.5 presents a useful tehnique

alled antidi�erentiation by parts.

10.1 The Fundamental Theorem of Calculus

10.1.1 Indefinite Integrals, Antiderivatives

To make the ideas lear, we begin by naming some of the phenomena just

disussed in the hapter introdution. First,

Definition 10.1.1 (Indefinite Integral). Let I be a nonempty interval

in R, and onsider a funtion

f : I −→ R
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suh that

∫b
a
f exists for all a, b ∈ I. An indefinite integral of f is a

seond funtion

F : I −→ R

suh that ∫b

a

f = F(b) − F(a) for all a, b ∈ I.

So if we have an inde�nite integral F of f then we an ompute

∫b
a
f without

going through a proess involving sums and limits. Various inde�nite integrals

that we have found during the ourse of these notes by going through proesses

involving sums and limits, i.e., by integrating, are shown in �gure 10.1.

f F

fα (α 6= −1) on R>0 fα+1/(α+ 1)

f−1 on R>0 ln

ln f1 ln−f1

exp exp

os sin

sin − os

aros f1 aros− sin ◦ aros

Figure 10.1. Inde�nite integrals

The �rst goal of this hapter is to produe inde�nite integrals, and there-

fore the means to integrate, without integrating. To prepare for doing so, it is

very helpful to have some properties of inde�nite integrals at hand, as follows.

Proposition 10.1.2 (Indefinite Integral Properties). Let I be a non-

empty interval in R, let

f, g : I −→ R

be funtions suh that

∫b
a
f and

∫b
a
g exist for all a, b ∈ I, and let c ∈ R

be a onstant.

(a) Suppose that F,G : I −→ R are respetively inde�nite integrals of f

and g. Then F + G is an inde�nite integral of f + g and cF is an

inde�nite integral of cf.
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(b) Suppose that F : I −→ R is an inde�nite integral of f. Then a seond

funtion F̃ : I −→ R is also an inde�nite integral of f if and only if

F̃ = F+ C for some onstant C.

Proof. Exerise 10.1.1(a). ⊓⊔

Soon we will use the \if" part of Proposition 10.1.2(b), i.e.:

Given an inde�nite integral F of f,

if F̃ = F+ C for some onstant C

then F̃ is also an inde�nite integral of f.

So, given an inde�nite integral F of f, we know how to reognize some other

inde�nite integrals of f from it, they being F + C for any C. This is not

substantive, but to establish it one does have to verify that if

∫b
a
f = F(b)−F(a)

for all a, b ∈ I then the same ondition holds with F+ C in plae of F.

Similarly to De�nition 10.1.1, we formally name the seond phenomenon

from the hapter introdution.

Definition 10.1.3 (Antiderivative). Let I be a nonempty interval in R,

and onsider a funtion

f : I −→ R.

An antiderivative of f is a seond funtion

F : I −→ R

suh that

F ′ = f.

Note that the antiderivative de�nition makes no referene to integration.

As with the inde�nite integral, it will be very helpful for us to have properties

of antiderivatives. Beause we antiipate that antiderivatives and inde�nite

integrals will turn out to be the same funtions, it is no surprise that the

antiderivative properties in the next proposition are exatly the same as the

the inde�nite integral properties in Proposition 10.1.2.

Proposition 10.1.4 (Antiderivative Properties). Let I be a nonempty

interval in R, let

f, g : I −→ R

be funtions, and let c ∈ R be a onstant.

(a) Suppose that F,G : I −→ R are respetively antiderivatives of f and g.

Then F + G is an antiderivative of f + g and cF is an antiderivative

of cf.
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(b) Suppose that F : I −→ R is an antiderivative of f. Then a seond

funtion F̃ : I −→ R is also an antiderivative of f if and only if

F̃ = F+ C for some onstant C.

Proof. Exerise 10.1.2(a). ⊓⊔

Soon we will use the \only if" part of Proposition 10.1.4(b), i.e.:

If F and F̃ are antiderivatives of f

then F̃ = F+ C for some onstant C.

So, given an antiderivative F of f, we know that every antiderivative of f takes

the form F+C for some C. This is substantive, its proof relying on the Mean

Value Theorem.

Eah time that we found an inde�nite integral F for a funtion f, the

inde�nite integral was also an antiderivative of f, as shown in �gure 10.2. The

Fundamental Theorem of Calulus asserts that under reasonable onditions,

this will always be so. That is, the Fundamental Theorem says that:

Under suitable onditions, integration redues to antidi�erentiation .

With this slogan in mind, we are motivated to study antidi�erentiation, whih

is not innately of interest but is relatively easy, as a means to integration,

whih is very muh of interest but is diÆult.

The next result will help us prove the Fundamental Theorem of Calulus.

Proposition 10.1.5. Let I be a nonempty interval in R, and let f : I −→ R
be a funtion. Suppose that some one funtion F : I −→ R is both an an-

tiderivative of f and an inde�nite integral of F. Then every antiderivative

of f is an inde�nite integral of f.

Proof. Consider any antiderivative of F̃ of f. Beause F is an antiderivative of f,

the \only if" part of Proposition 10.1.4(b) says, substantively, that F̃ = F+C

for some C. And so now, beause F is an inde�nite integral of f, the \if" part of

Proposition 10.1.2(b) says, easily, that F̃ is also an inde�nite integral of f. ⊓⊔

So, given I and f as in the proposition, if we an produe just one fun-

tion F that is both an antiderivative of f and an inde�nite integral of f then

we have many inde�nite integrals of f.

Exercises

10.1.1. (a) Prove Proposition 10.1.2. For part (b), �rst show that if F̃ =

F+C then F̃ inherits the inde�nite integral property from F; seond, for F̃ an

inde�nite integral of f along with F, let p ∈ I be a �xed point, then state and



10.1 The Fundamental Theorem of Calulus 301

f F F ′

fα (α 6= −1) on R>0 fα+1/(α+ 1) fα

f−1 on R>0 ln f−1

ln f1 ln−f1 ln

exp exp exp

os sin os

sin − os sin

aros f1 aros− sin ◦ aros aros

Figure 10.2. Inde�nite integrals and their derivatives

explain the relation between F̃(x) − F̃(p) and F(x) − F(p) where x is any point

of I, and onlude from the relation that F̃ = F+ C for some C.

(b) Suppose that F,G : I −→ R are respetively inde�nite integrals of f

and g. Need the produt FG be an inde�nite integral of the produt fg?

10.1.2. (a) Prove Proposition 10.1.4. For part (b), �rst show that if F̃ =

F + C then F̃ inherits the antiderivative property from F; seond, for F̃ an

antiderivative of f along with F, use the Mean Value Theorem or one of its

onsequenes to show that F̃ = F+ C for some C.

(b) Suppose that F,G : I −→ R are respetively antiderivatives of f and g.

Need the produt FG be an antiderivative of the produt fg?

10.1.2 The Fundamental Theorem, Part I

The Fundamental Theorem of Calulus is really two theorems, eah of whih

desribes a sense in whih di�erentiation and integration are inverse opera-

tions. The seond of the two theorems is the one that relates integration and

antidi�erentiation, but we naturally begin with the �rst.

Theorem 10.1.6 (Fundamental Theorem of Calculus, Part I). Let I

be a nonempty interval in R, and let p be a point of I. Let the funtion

f : I −→ R be ontinuous. De�ne a funtion

F : I −→ R, F(x) =

∫x

p

f.

Then F is di�erentiable on I and
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F ′ = f.

Theorem 10.1.6 has several points of interest.

� Its onstruted funtion F is an inde�nite integral of its given funtion f,

beause for any points a and b of I,

F(b) − F(a) =

∫b

p

f−

∫a

p

f =

∫b

a

f.

Thus, one interpretation of the �rst part of the Fundamental Theorem is

that

a partiular inde�nite integral of f is also an antiderivative of f.

The pending seond part of the Fundamental Theorem, that

every antiderivative of f is also an inde�nite integral of f,

will follow immediately from this and Proposition 10.1.5.

� The theorem's statement that if F(x) =
∫x
p
f then F ′

exists and equals f,

i.e., that the integral of a ontinuous funtion up to a variable endpoint

di�erentiates bak to the funtion, says loosely that di�erentiation inverts

integration. It does not say that integration inverts di�erentiation.

� Geometrially, the idea of the theorem is that:

The rate at whih the area of the region under a urve grows as

an endpoint moves is the height of the urve over the moving

point .

� Beause the logarithm is de�ned as ln(x) =
∫x
1
f−1, our alulation in

hapter 5 of the derivative ln

′ = f−1 now amounts to proving a speial

ase of Theorem 10.1.6.

� The theorem says that:

Every ontinuous funtion on an interval has an antiderivative,

onstruted by integration.

We may not be able to write the antiderivative without an integral sign,

i.e., we may not be able to �nd a nie expression for

∫x
p
f, but nonetheless

its derivative is f. For example, the bell-shaped funtion

f : R −→ R, f(x) =
1√
π
e−x2

has as an antiderivative the error funtion ,

erf : R −→
(
−
1

2
,
1

2

)
, erf(x) =

∫x

0

f,

even though we an't simplify the formula for erf . Like the logarithm, the

error funtion, de�ned as an integral, needs its own name. It is part of the

area under the bell-shaped urve that desribes many limiting behaviors

in probability. The fator 1/
√
π normalizes f so that the total area beneath

its graph is 1. (See �gure 10.3.)
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y = 1√
π
e−x2
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Figure 10.3. erf(x): area under a bell-shaped urve

The hypothesis in Theorem 10.1.6 that f is ontinuous warrants a quik

remark. As we have disussed, every ontinuous funtion f : [p, x] −→ R (or

f : [x, p] −→ R if x < p) is integrable, but the proof of this fat is tehni-

al and so we omitted it. The funtions that we know to be integrable over

losed, bounded intervals are the (not neessarily ontinuous) bounded, piee-

wise monotoni funtions. We will state a weaker version of Theorem 10.1.6,

hypothesizing suh a ontinuous funtion f rather than an arbitrary ontinu-

ous f, at the end of this setion.

Proof (of Theorem 10.1.6). Reall the funtion in the statement of the

theorem,

F : I −→ R, F(x) =

∫x

p

f.

We want to show that

F ′ = f on I,

showing in the proess that F ′
exists on I. That is, we need to show that for

any point x of I,

lim

s→x

F(s) − F(x)

s− x
= f(x).

Let x be any point of I, let s be any point of I with s 6= x, and ompute

F(s) − F(x)

s− x
=

∫s
p
f−

∫x
p
f

s− x
=

∫s
x
f

s− x
,

So what we need to show is that for our arbitrarily hosen point x in I,

lim

s→x

∫s
x
f

s− x
= f(x).
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By the Extreme Value Theorem, beause f is ontinuous, f on the interval

[min{x, s},max{x, s}] has a minimum f(xm) and a maximum f(xM), although

we don't know the minimizing input xm or the maximizing input xM. That

is,

f(xm) ≤ f(t) ≤ f(xM) for all t ∈ [min{x, s},max{x, s}].

The minimizing input xm and the maximizing input xM of f between min{x, s}

and max{x, s} depend on s. Assume that x < s. By the Inequality Rule for

integrals (Proposition 5.5.3, page 175), it follows that

(s− x)f(xm) ≤
∫s

x

f ≤ (s− x)f(xM),

or, equivalently,

f(xm) ≤
∫s
x
f

s− x
≤ f(xM).

Now assume instead that s < x. The same argument gives

f(xm) ≤
∫x
s
f

x− s
≤ f(xM),

and multiplying the numerator and the denominator in the middle by −1

gives the same relation as in the ase x < s,

f(xm) ≤
∫s
x
f

s− x
≤ f(xM).

This is, the previous display holds for all s 6= x in I. Now let s go to x. Beause

xm and xM lie in [min{x, s},max{x, s}], as s goes to x also xm and xM are

squeezed to x. Consequently, again beause f is ontinuous, f(xm) and f(xM)

go to f(x) as s goes to x. Thus the quotient in the middle of the previous

display is squeezed to the same value,

lim

s→x

∫s
x
f

s− x
= f(x).

This is exatly what we needed to show. ⊓⊔

To summarize, the Extreme Value Theorem shows that the derivative of

the funtion F given by integrating a ontinuous funtion f from a �xed end-

point to a variable endpoint is the original funtion f at the variable endpoint.

As mentioned earlier, the funtions that we know to be integrable are the

bounded pieewise monotoni funtions. The variant of Theorem 10.1.6 that

assumes that f is a pieewise monotoni suh funtion is
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Theorem 10.1.7 (FTC I, Weaker Variant). Let I be a nonempty in-

terval in R, and let p be a point of I. Let the funtion f : I −→ R be

ontinuous and pieewise monotoni. De�ne a funtion

F : I −→ R, F(x) =

∫x

p

f.

Then F is di�erentiable on I and F ′ = f.

This theorem an be proved with no referene to the Extreme Value The-

orem (exerise 10.1.4).

Example 10.1.8. Consider the funtions

f : R −→ R, f(x) =
1

1+ x2

and

F : R −→ R, F(x) =

∫x

0

f.

By Theorem 10.1.7, F ′ = f. But also the funtion artan : R −→ R has

derivative f, so that F(x) = artan(x) + C for some onstant C. Substitute

x = 0 to get C = 0. That is, using the notation introdued in De�nition 8.2.1

(page 236),

artan(x) =

∫x

x1=0

1

1+ x21
, x ∈ R. (10.1)

This formula is similar to the de�ning formula for the logarithm on page 240,

ln(1+ x) =

∫x

x1=0

1

1+ x1
, x > −1.

Just as the logarithm formula led in setion 8.3 to an expression for ln(1+ x)

as a limit of polynomials when −1 < x ≤ 1, formula (10.1) leads to suh an

expression for artan(x) (exerise 10.1.6),

artan(x) = x−
x3

3
+

x5

5
− · · ·+ (−1)n

x2n+1

2n+ 1
+ · · · , −1 ≤ x ≤ 1,

or

artan(x) =

∞∑

n=0

(−1)n
x2n+1

2n+ 1
, −1 ≤ x ≤ 1.

In partiular, it gives the lovely formula

π

4
= 1−

1

3
+

1

5
−

1

7
+

1

9
−

1

11
+

1

13
−

1

15
+ · · · ,

similar to the formula for ln(2) on page 242.
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Example 10.1.9. Exerise 10.1.5 will establish a generalization of Theo-

rem 10.1.6 as follows. Let the funtion h : I −→ J from one interval in R
to another be di�erentiable, and let p be a point of J. Let the funtion

f : J −→ R be ontinuous. De�ne a funtion

F : I −→ R, F(x) =

∫h(x)

p

f.

Then F is di�erentiable on I and

F ′(x) = f(h(x))h ′(x), x ∈ I.

Using this result, we an revisit example 9.4.5 (page 295) in more gener-

ality. Consider a tank of height H having ross-setional area A(h) for eah h

from 0 to H. The volume of the tank up to a given height h is thus V =
∫h
0
A.

Suppose that water is being added to the tank at onstant rate, whih we

normalize to 1. At what rate is the height of the water in the tank hanging

at any given time t?

To answer this question, let h(t) denote the time-dependent height of the

water in the tank, and note that the time-dependent volume of the water in

the tank is

V(t) =

∫h(t)

0

A.

By the extension of Theorem 10.1.6 given at the beginning of this example,

here with V for F and t for x and A for f,

V ′(t) = A(h(t))h ′(t).

But we are assuming that V ′(t) = 1 for all t, and so for all t,

h ′(t) = 1/A(h(t)).

That is, the water's rate of rising equals the reiproal of the ross-setional

area of the tank at the water's height. We saw this result for the speial ase

of a onial tank in example 9.4.5, but now Theorem 10.1.6 shows that it

holds for any tank shape whatsoever.

Exercises

10.1.3. De�ne a funtion

f : R −→ [0, 1], f(x) =

{
0 if x < 0,

1 if x ≥ 0.
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This funtion is bounded and monotoni, and so it is integrable over any

interval [a, b]. De�ne a seond funtion

F : R −→ R, F(x) =

∫x

0

f.

Is F di�erentiable? Does this ontradit Theorem 10.1.6 or Theorem 10.1.7?

10.1.4. (a) Explain why to prove Theorem 10.1.7, it suÆes to prove the

theorem but with the stronger hypothesis that the ontinuous funtion f is

monotoni rather than only pieewise monotoni. (To make things simpler,

assume that the pieewise monotoniity involves only two piees.)

(b) Assume that f is inreasing. Show that with this assumption, Theo-

rem 10.1.7 an be proved with no referene to the Extreme Value Theorem.

10.1.5. Let f : R −→ R be ontinuous. Consider the funtion

G : R −→ R, G(x) =

∫x2

0

f.

Theorem 10.1.6 does not apply here to say that G ′ = f, beause the upper

limit of integration in the integral that de�nes G is not x itself, but rather a

funtion of x.

(a) De�ne two funtions,

F : R −→ R, F(x) =

∫x

0

f

and

g : R −→ R, g(x) = x2.

Explain why G is a omposition (whih?) of F and g.

(b) Use the Chain Rule and Theorem 10.1.6 to di�erentiate G.

() Let g, h : R −→ R be di�erentiable funtions (g here is now general,

no longer the spei� g from earlier in this exerise) and onsider the funtion

H : R −→ R, H(x) =

∫h(x)

g(x)

f.

Explain why H is di�erentiable, and ompute H ′
. (The new wrinkle here is

that now both endpoints of integration vary. Your solution should redue the

situation bak to appliations of the ase of one variable endpoint, and then

use the Chain Rule for those ases as in part (b).)

10.1.6. Similarly to the analysis of the logarithm in setion 8.3, obtain the

boxed formula for artan(x) given in the setion.
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10.1.3 The Fundamental Theorem, Part II

Whereas Part I of the Fundamental Theorem is a statement about the deriva-

tive of the integral, our �rst statement of Part II is a statement about the

integral of the derivative.

Theorem 10.1.10 (Fundamental Theorem of Calculus, Part II). Let I

be a nonempty interval in R. Let the funtion f : I −→ R be ontinuous.

Suppose that the funtion F : I −→ R is an antiderivative of f, whih is

to say that F ′ = f. Then for any points a and b of I,

∫b

a

f = F(b) − F(a).

Thus the seond part of the Fundamental Theorem says loosely that in-

tegration inverts di�erentiation, in that the integral of the derivative is the

di�erene of the original funtion's values at the two endpoints. That is:

The integral of the rate of hange of a funtion is the net hange

in the funtion.

Note also that the seond part of the Fundamental Theorem says that every

antiderivative of f is also an inde�nite integral of f.

Proof. Let p be any point of I, and de�ne F̃ : I −→ R to be F̃(x) =
∫x
p
f.

Theorem 10.1.6 says that F̃ ′ = f, whih is to say that F̃ is an antiderivative of f.

And as disussed after the statement of Theorem 10.1.6, F̃ is also an inde�nite

integral of f. So Proposition 10.1.5 says that our given antiderivative F of f

is an inde�nite integral of f, meaning preisely that

∫b
a
f = F(b) − F(a) for all

a, b ∈ I, as desired.

An essentially idential proof, more self-ontained rather than iting

Proposition 10.1.5, is as follows. Let p be any point of I, and de�ne F̃ : I −→ R
to be F̃(x) =

∫x
p
f. Then F̃ ′ = f by Theorem 10.1.6, and so, beause also our

given F is suh that F ′ = f, it is a onsequene of the Mean Value Theorem

that F̃ = F+ C for some C. Thus for any points a and b of I,

∫b

a

f = F̃(b) − F̃(a) = (F(b) + C) − (F(a) + C) = F(b) − F(a).

Again this ompletes the proof. The use of the Mean Value Theorem here is

preisely what proves the \only if" part of Proposition 10.1.4(b), and the

omputation just displayed is preisely what proves \if" part of Proposi-

tion 10.1.2(b). These two impliations are what prove Proposition 10.1.5; this

paragraph uses them diretly rather than iting it. ⊓⊔
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The proof just given that Part II of the Fundamental Theorem follows from

Part I is essentially instant, but also Theorem 10.1.10 an be proved diretly

without referene to Theorem 10.1.6. Here is one version of the argument.

Fix points a, b ∈ I with a < b. Choose any partition points

a = x0 < x1 < · · · < xn−1 < xn = b.

For j = 1, . . . , n, restrit the domain of F to the jth subinterval [xj−1, xj], and

let [xj−1, xj] and F play the roles of [a, b] and f in the Mean Value Theorem.

Then the theorem says that

F(xj) − F(xj−1) = (xj − xj−1)F
′(cj) for some cj ∈ (xj−1, xj).

But F ′ = f, and so the previous display rewrites as

F(xj) − F(xj−1) = (xj − xj−1)f(cj) for some cj ∈ (xj−1, xj).

Let Mj be any number at least as big as all f-values on [xj−1, xj]. Then the

previous equality implies the inequality

F(xj) − F(xj−1) ≤ (xj − xj−1)Mj.

Summing the left sides of this inequality for j = 1, . . . , n gives

(F(x1)−F(x0))+(F(x2)−F(x1))+ · · ·+(F(xn−1)−F(xn−2)+(F(xn)−F(xn−1)),

whih telesopes to F(b) − F(a). On the other hand, summing the right sides

of the inequality for j = 1, . . . , n gives

(x1 − x0)M1 + (x2 − x1)M2 + · · ·+ (xn−1 − xn−2)Mn−1 + (xn − xn−1)Mn.

This is an upper sum for Ar

b
a(f), and beause the number n of partition points

is arbitrary, as are the partition points xj and the values Mj that exeed f

on [xj−1, xj], the upper sum is utterly general. So we have shown that

F(b) − F(a) ≤ T for any upper sum T for Ar

b
a(f).

Some sequene of upper sums onverges to

∫b
a
, and so it follows that

F(b) − F(a) ≤
∫b

a

f.

Similarly

∫b
a
f ≤ F(b) − F(a), and so we are done,

∫b

a

f = F(b) − F(a).
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So far the argument has assumed that f ≥ 0, but extending it to general

ontinuous f is just a matter of passing it through the usual hoisting proess.

The key idea here is that loosely speaking, Part II of the Fundamental The-

orem omes from the Mean Value Theorem. Note that the �rst proof that

we gave of Part II taitly used the Mean Value Theorem as well, along with

quoting Part I. Unlike Part I, Part II annot be proved without reourse to

an abstrat existene theorem even under simplifying onditions suh as as-

suming that f is monotoni. There is a oneptual reason for this: Whereas

Part I zooms in to measure the loal rate of hange of a quantity arising from

large-sale synthesis (the total area of a region), Part II pulls the amera bak

to make an assertion about a quantity arising from large-sale synthesis of

loal information.

Introduing a little more notation will larify how Part II of the Fundamen-

tal Theorem of Calulus sometimes redues integration to antidi�erentiation.

Definition 10.1.11 (Antiderivative Notation). Let I be a nonempty

interval in R, and let f : I −→ R be a funtion. Then

∫
f denotes any antiderivative of f.

This de�nition needs to be read arefully. Reall that an antiderivative of f

is a funtion whose derivative is f, even though the notation just introdued

for an antiderivative is very similar to that for an integral. The di�erene is

that in the antiderivative notation

∫
f, the integral sign is bare rather than

adorned by limits of integration as it is in the integral notation

∫b
a
f. Note

that

∫
f is a funtion,

any of a family of funtions di�ering from eah other by onstants, whereas

∫b
a
f is a number.

Introdue one more piee of notation:

Definition 10.1.12 (Notation for Difference of Function-Values at

Two Points). For any funtion F whose domain inludes the points a

and b,

F
∣∣∣
b

a
is short for F(b) − F(a).

With all of this notation in plae, Part II of the Fundamental Theorem of

Calulus an be rephrased.
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Theorem 10.1.13 (Fundamental Theorem of Calculus, Part II, Re-

phrased). Let I be a nonempty interval in R. Suppose that the funtion

f : I −→ R is ontinuous, and that

∫
f is an antiderivative of f. Then for

any points a and b of I,

∫b

a

f =

(∫
f

) ∣∣∣
b

a
.

That is, any antiderivative of f is an inde�nite integral of f.

The last statement in the theorem is why the antiderivative notation was

hosen to resemble an integral. To rephrase the theorem one more time, the

integral of f from a to b is the di�erene of the antiderivative values at the

endpoints. And hene, to integrate it suffices to antidifferentiate.

Exercises

10.1.7. Let I be a nonempty interval in R, let n be a nonnegative integer,

and let

f : I −→ R

have n + 1 ontinuous derivatives. (This means that the funtion f(0) = f,

the derivative f(1) = f ′, the seond derivative f(2) = f ′′, and so on up to the

(n + 1)st derivative f(n+1)
exist and are ontinuous on I.) Let a and x be

points of I.

(a) Explain why

f(x) = f(a) +

∫x

x1=a

f ′(x1).

(b) Assuming that n ≥ 1, explain why

f ′(x1) = f ′(a) +

∫x1

x2=a

f ′′(x2),

and therefore

f(x) = f(a) + f ′(a)(x− a) +

∫x

x1=a

∫x1

x2=a

f ′′(x2).

() Continue in this vein to explain why, if n ≥ 2,

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2

+

∫x

x1=a

∫x1

x2=a

∫x2

x3=a

f ′′′(x3),

(d) Explain why in general,
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f(x) = Pn(x) + Rn(x),

where the degree n approximating polynomial is

Pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f(n)(a)

n!
(x− a)n

=

n∑

k=0

f(k)(a)

k!
(x− a)k,

and the orresponding remainder is an (n+ 1)-fold iterated integral,

Rn(x) =

∫x

x1=a

· · ·
∫xn

xn+1=a

f(n+1)(xn+1).

Note that this exerise uni�es muh of the work in hapter 8.

10.2 Basic Antidifferentiation

We expand the antiderivative notation introdued a moment ago.

Definition 10.2.1 (Antiderivative Notation With a Variable). Let I

be a nonempty interval in R, and let f : I −→ R be a funtion. Then,

letting x denote a variable,

∫
f(x)dx denotes any antiderivative of f, viewed as a funtion of x.

Every di�erentiation formula gives rise to an antidi�erentiation formula.

Some antidi�erentiation formulas arising from the derivatives that we have

omputed during the ourse of these notes are shown in �gure 10.4, using the

notation just introdued. In eah formula, the right side is one antiderivative

of the left side, and the general antiderivative is the given spei� one plus an

arbitrary onstant. For example, the �rst formula in the table perhaps should

say instead, ∫
xα dx =

xα+1

α+ 1
+ C, α 6= −1.

But to keep the notation lean, we omit the \+C" throughout the table, re-

membering to inorporate it as neessary when we ompute. You should know

the formulas in the table bakward and forward.

Example 10.2.2. To alulate the antiderivative

∫
x(x3 + 1)3 dx,
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∫
xα dx =

xα+1

α+ 1
, α 6= −1

∫
1

x
dx = ln(|x|)

∫
ln(x)dx = x ln(x) − x

∫
ex dx = ex

∫
os(x) dx = sin(x)

∫
sin(x) dx = − os(x)

∫
se

2(x) dx = tan(x)

∫
s

2(x) dx = − ot(x)

∫
tan(x) se(x) dx = se(x)

∫
ot(x) s(x) dx = − s(x)

∫
1

1+ x2
dx = artan(x)

∫
1√

1− x2
dx = arsin(x)

∫
se(x)dx = ln(| tan(x) + se(x)|)

∫
s(x)dx = − ln(| ot(x) + s(x)|)

= ln(| tan(x/2)|)

Figure 10.4. Basi antidi�erentiation formulas

use the Finite Binomial Theorem to expand (x3 + 1)3,

∫
x(x3 + 1)3 dx =

∫
x
(
(x3)3 + 3(x3)2 + 3(x3) + 1

)
dx

=

∫
(x10 + 3x7 + 3x4 + x)dx

=
x11

11
+

3x8

8
+

3x5

5
+

x2

2
+ C.
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Example 10.2.3. The antiderivative

∫
s

2(3x)dx

isn't quite to be found in the �gure 10.4 table beause of the 3x. Nonetheless,

the table entry

∫
s

2(x)dx = − ot(x) suggests that a natural starting guess

is − ot(3x). By the Chain Rule, the derivative of − ot(3x) is 3 s2(3x), and

beause onstants pass through di�erentiation it follows that

∫
s

2(3x)dx = −
1

3
ot(3x) + C.

Example 10.2.4. The antiderivative

∫
1

a2 + x2
dx (where a > 0 is onstant)

looks similar to the table entry

∫
1

1+x2 dx = artan(x). To make the funtion

whose antiderivative we want look more like the funtion in the table entry,

rewrite it,

1

a2 + x2
=

1

a2
· 1

1+ (x/a)2
.

Thus the natural starting guess for our antiderivative is artan(x/a). By the

Chain Rule, the derivative of artan(x/a) is 1/(1 + (x/a)2) · (1/a), and so

beause onstants pass through derivatives it follows that

∫
1

a2 + x2
dx =

1

a
artan

( x

a

)
+ C.

Exercises

10.2.1. Verify all of the formulas in �gure 10.4 by loating the text or exerise

in these notes that di�erentiates eah quantity on the right side.

10.2.2. Find the following antiderivatives.

(a)

∫
x(1+ 3

√
x)dx.

(b)

∫
e2x + e3x

e4x
dx.

()

∫
se(2x+ 3)dx.

(d)

∫
1√

a2 − x2
dx where a > 0 is onstant.
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10.3 Antidifferentiation by Forward Substitution

Beause the emphasis will now be on alulating, we revert to a less formal

writing style. All funtions are assumed to be integrable and/or di�erentiable

as neessary.

10.3.1 The Forward Substitution Formula

The forward substitution formula is

∫ (
(f ◦ g) · g ′

)
=

(∫
f

)
◦ g. (10.2)

The natural �rst response to this formula is to have no idea what it says,

muh less how to use it. We will address these matters one at a time.

10.3.2 What the Formula Says and Why It Is True

Formula (10.2) says:

If

∫
f is an antiderivative of f then the omposition

(∫
f
)
◦ g is in

turn an antiderivative of (f ◦ g) · g ′
.

That is:

Finding an antiderivative of a funtion of the form (f ◦ g) · g ′

redues to �nding an antiderivative of the simpler funtion f.

To establish the formula, it suÆes to show that given an antiderivative

∫
f

of f, the derivative of the omposition

(∫
f
)
◦ g is (f ◦ g) · g ′

. Compute, using

the Chain Rule and the fat that (
∫
f) ′ = f by de�nition, that the derivative

of the omposition is indeed

[(∫
f

)
◦ g

] ′

=
((∫

f

) ′

◦ g
)
· g ′ = (f ◦ g) · g ′.

This proof is so simple beause the forward substitution formula (10.2) uses

the variable-free notation for funtions, the unluttered notation that is well

suited to arguments.

10.3.3 Using the Formula in its Variable-Free Form

Atual alulational examples involve funtions-as-formulas, so that their no-

tation and the variable-free notation are at odds. Here is an example of trans-

lating the with-variable notation (as in De�nition 10.2.1) of an antiderivative

problem into the variable-free notation of formula (10.2).
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Example 10.3.1. To �nd the antiderivative

∫
etan(x) se2(x)dx (this is a funtion of the variable x),

introdue (using variable-free notation)

f = exp and g = tan, so that g ′ = se

2 .

Then the antiderivative takes the desired form,

∫
etan(x) se2(x)dx =

∫ (
(f ◦ g) · g ′

)
.

Here the notations are in onit: the left side arries the information that

the variable of the antiderivative is to be named x, while the right side makes

no referene to the variable name. In using the variable-free notation, we

now must also remember that in the �nal answer|a funtion de�ned by a

formula|the variable is to be named x. With this detail �led away somewhere

in our memories, note that the forward substitution formula (10.2) says that

the antiderivative is instead

∫
etan(x) se2(x)dx =

(∫
f

)
◦ g.

But ∫
f =

∫
exp = exp+ C,

so that (∫
f

)
◦ g = (exp+ C) ◦ tan = exp ◦ tan + C.

That is, bringing the variable x bak into the notation,

∫
etan(x) se2(x)dx = etan(x) + C.

10.3.4 Improvement: the Formula With Variables

It would be silly to keep working examples in the fashion of the previous

paragraph. Rather than translate every example into variable-free notation,

we should translate the one forward substitution formula into notation that

inorporates variables. The result is (exerise 10.3.1)

∫
f(g(x))g ′(x)dx =

∫
f(u)du where u = g(x). (10.3)
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Example 10.3.2. Using the boxed formula, the previous example an be re-

worked more suintly, again with f = exp and g = tan,

∫
etan(x) se2(x)dx =

∫
eu du where u = tan(x)

= eu + C where u = tan(x)

= etan(x) + C.

The basi mnemoni for forward substitution is:

See something and its derivative.

In the previous example, the something was tan(x) and its derivative was

se

2(x). That is, the something is the g(x) in the forward substitution for-

mula.

Example 10.3.3. Similarly, let a > 0 and onsider the antiderivative

∫
x
√

a2 − x2 dx.

Here the something is a2−x2, and its derivative is −2x. The problem doesn't

quite give us the derivative, but the imperfet �t is easy to �x beause on-

stants pass through antidi�erentiation,

∫
x
√

a2 − x2 dx = −
1

2

∫
(−2x)

√
a2 − x2 dx.

And so by forward substitution,

∫
x
√

a2 − x2 dx = −
1

2

∫
(−2x)

√
a2 − x2 dx

= −
1

2

∫
g ′(x)f(g(x))dx

= −
1

2

∫
f(u)du where u = g(x)

= −
1

2

∫ √
udu where u = a2 − x2

= −
1

2
· 2
3
u3/2 + C where u = a2 − x2

= −
1

3
(a2 − x2)3/2 + C.

Exercise

10.3.1. Explain arefully how eah side of the forward substitution formula

with variables (10.3) arises from its ounterpart in the variable-free forward

substitution formula (10.2).
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10.3.5 Second Improvement: the Procedure Instead of the Formula

Forward substitution is easier in pratie if it is viewed as a proedure rather

than a formula, whether the formula has variables or not. The proedure is

failitated by a piee of notation due to Leibniz.

Definition 10.3.4 (Leibniz Notation for the Derivative). Let u be a

di�erentiable funtion of x. Then

du

dx
is a synonym for u ′(x).

Example 10.3.5. Returning to the antiderivative

∫
x
√

a2 − x2 dx,

the proedure is to make the substitution

u = a2 − x2 (the something).

Then

du

dx
= −2x (its derivative),

so that

du = −2xdx,

and onsequently

xdx = −
1

2
du.

Therefore the antiderivative is

∫
x
√

a2 − x2 dx = −
1

2

∫ √
udu (substituting)

= −
1

2
· 2
3
u3/2 + C

= −
1

3
(a2 − x2)3/2 + C.

This proedure works, and it has been learned by generations of alulus

students. But it is not as self-evident as it appears. The problem is that the

Leibniz notation for the derivative,

du

dx
,

is a single, indivisible symbol, while the separate notations dx and du

have not been given meanings at all unless they our in onjuntion
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with the integral sign as part of the antiderivative notation. So the idea

that in general

\if u = g(x) then du = g ′(x)dx"

is in isolation a meaningless statement, muh less a valid argument. But the

Leibniz notation relentlessly suggests it as a valid ritual to pratie during the

ourse of antidi�erentiation, and the notation has been designed so that the

ritual is valid. In proedural terms, the mnemoni for forward substitution is:

See u and du.

Example 10.3.6. Consider the antiderivative

∫
tan(x)dx =

∫
sin x

os x
dx.

Make the substitution u = os x. Then du = − sin xdx, and so

∫
sin x

os x
dx = −

∫
du

u
= − ln(|u|) + C = − ln(| os x|) + C.

Example 10.3.7. Sometimes a workable substitution takes a little algebra to

�nd. For instane, the antiderivative

∫
(1− x)2/5

x12/5
dx,

an be rewritten as

∫
(1− x)2/5

x12/5
dx =

∫ (
1− x

x

)2/5
1

x2
dx =

∫ (
1

x
− 1

)2/5
1

x2
dx.

Let u = 1/x− 1. Then du = −(1/x2)dx, and so we have

∫
(1− x)2/5

x12/5
dx = −

∫
u2/5 du = −

5

7
u7/5 = −

5

7

(
1

x
− 1

)7/5

+ C.

To summarize, the variable-free formulation is the right environment for

justifying the forward substitution method, but the algorithm is the right way

to apply it.

10.3.6 Basic Forward Substitution Formulas

Every basi antidi�erentiation formula ombines with the Chain Rule to give

rise to a forward substitution antidi�erentiation formula. These are shown in

�gure 10.5. As in �gure 10.4, a \+C" is tait in the right side of eah formula.
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∫
(g(x))αg ′(x)dx =

(g(x))α+1

α+ 1
, α 6= −1

∫
g ′(x)

g(x)
dx = ln(|g(x)|)

∫
ln(g(x))g ′(x)dx = g(x) ln(g(x)) − g(x)

∫
eg(x)g ′(x)dx = eg(x)

∫
os(g(x))g ′(x)dx = sin(g(x))

∫
sin(g(x))g ′(x)dx = − os(g(x))

∫
se

2(g(x))g ′(x)dx = tan(g(x))

∫
s

2(g(x))g ′(x)dx = − ot(g(x))

∫
se(g(x)) tan(g(x))g ′(x)dx = se(g(x))

∫
s(g(x)) ot(g(x))g ′(x)dx = − s(g(x))

∫
g ′(x)

1+ g2(x)
dx = artan(g(x))

∫
g ′(x)√
1− g2(x)

dx = arsin(g(x))

∫
se(g(x))g ′(x)dx = ln(| se(g(x)) + tan(g(x))|)

∫
s(g(x))g ′(x)dx = − ln(| s(g(x)) + ot(g(x))|)

Figure 10.5. Basi forward substitution formulas

Example 10.3.8. We will alulate

∫
x2 se2(x3 + 1)dx. Compute that

∫
x2 se2(x3 + 1)dx =

1

3

∫
se

2(g(x))g ′(x)dx where g(x) = x3 + 1

=
1

3
tan(x3 + 1) + C,

by the seventh formula in table 10.5.

Example 10.3.9. We will alulate

∫
tet

2

dt. The antiderivative is
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∫
tet

2

dt =
1

2

∫
g ′(t)eg(t) dt where g(t) = t2

=
1

2
et

2

+ C.

Exercises

10.3.2. Find the following antiderivatives.

(a)

∫
ex sin(ex)dx.

(b)

∫
sin(x)

sin(os(x))
dx.

()

∫
(3w4 +w)2(12w3 + 1)dw.

(d)

∫
1

x
√

1− (ln(x))2
dx.

(e)

∫
x

1+ x2
dx.

(f)

∫
2

1+w2
dw.

(g)

∫
sin

3(x)dx.

(h)

∫
sin

4(x)dx.

(i)

∫
sin(ln(x))

x
dx.

(j)

∫
os(tan(

√
x)) se2(

√
x)√

x
dx.

10.3.3. The last entry of Table 10.4 is

∫
s(x)dx = − ln(| ot(x) + s(x)|) =

ln(| tan(x/2)|), but the last entry of Table 10.5 is only

∫
s(g(x))g ′(x)dx =

− ln(| s(g(x)) + ot(g(x))|). Why not also ln(| tan(g(x)/2)|)?

10.3.7 Forward Substitution in Integrals

The forward substitution formula for integrals (as ompared to antideriva-

tives) is

∫b

a

(
(f ◦ g) · g ′

)
=

∫g(b)

g(a)

f. (10.4)

This formula follows from its ounterpart (10.2) for antiderivatives and Part II

of the Fundamental Theorem of Calulus (Theorem 10.1.10),
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∫b

a

(
(f ◦ g) · g ′

)
=

( ∫ (
(f ◦ g) · g ′

))∣∣∣
b

a
by Theorem 10.1.10

=

((∫
f

)
◦ g

)∣∣∣
b

a
by (10.2)

=

(∫
f

) ∣∣∣
g(b)

g(a)
by de�nition of omposition

=

∫g(b)

g(a)

f by Theorem 10.1.10 again.

The following notation is well suited to hange of variable integral alu-

lations.

Definition 10.3.10 (New Notation for the Integral). If a funtion f is

integrable from a to b then

∫b

x=a

f(x)dx is a synonym for

∫b

a

f.

As explained after De�nition 8.2.1 (page 236), the dummy variable x in

this notation an be replaed by any other symbol not already in use. Using

this notation, formula (10.4) is

∫b

x=a

f(g(x))g ′(x)dx =

∫g(b)

u=g(a)

f(u)du. (10.5)

Example 10.3.11. To evaluate the integral

∫e

x=1

(ln x)2

x
dx,

let u = ln(x). Then du = dx/x. Also if x = 1 then u = 0, and if x = e then

u = 1. Thus, by a straightforward appliation of (10.5),

∫e

x=1

(ln x)2

x
dx =

∫1

u=0

u2 du =
u3

3

∣∣∣
1

0
=

1

3
.

Example 10.3.12. To evaluate

∫4π2

π2

sin(
√
x)√

x
dx,

let u =
√
x. Then du = dx/(2

√
x), and so dx/

√
x = 2 du. Also, if x = π2

then

u = π, and if x = 4π2
then u = 2π. Thus
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∫4π2

π2

sin(
√
x)√

x
dx = 2

∫2π

π

sin(u)du

= −2 os(u)
∣∣∣
2π

π

= −2(os(2π) − os(π))

= −2(1+ 1) = −4.

Example 10.3.13. Let a > 0 be a onstant. We will alulate

∫a

0

1

a2 + x2
dx.

From example 10.2.4 (page 314), an antiderivative of 1/(a2 + x2) is
∫

1

a2 + x2
dx =

1

a
artan

( x

a

)
.

So by Part II of the Fundamental Theorem of Calulus,

∫a

0

1

a2 + x2
dx =

1

a
artan

( x

a

) ∣∣∣∣
a

0

=
1

a
artan(1) =

π

4a
.

(We did not use (10.5) for this example.)

Example 10.3.14. To evaluate

∫1

x=−1

√
1− x2 dx,

Note that the upper half of the unit irle is the graph of the funtion f(x) =√
1− x2. Thus the integral is the area above the x-axis and below the upper

half of the unit irle, i.e., it is π/2. (We did not use (10.5) for this example.)

Example 10.3.15. To evaluate

∫π/2

t=0

sin

2(t)dt,

note that beause sin(t) = os(π/2− t), this integral is also

∫π/2

t=0

os

2(t)dt.

(See �gure 10.6.) Therefore, twie the integral is

∫π/2

t=0

(sin2(t) + os

2(t))dt =

∫π/2

t=0

1 dt = π/2.

Thus ∫π/2

t=0

sin

2(t)dt =

∫π/2

t=0

os

2(t)dt = π/4.

(We did not use (10.5) for this example.)
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PSfrag replaements

y = os

2(t) y = sin

2(t)

π/2

1

Figure 10.6. Same area under the graphs of os

2
and sin

2

Example 10.3.16. To evaluate

∫
ln(

√
3)

x=− ln(
√
3)

1

ex + e−x
dx,

note that this integral is

∫
ln(

√
3)

x=− ln(
√
3)

1

ex + e−x
dx =

∫
ln(

√
3)

x=− ln(
√
3)

ex

1+ (ex)2
dx

=

∫√3

u=1/
√
3

1

1+ u2
du where u = ex

= artan(u)
∣∣∣
√
3

1/
√
3
=

π

3
−

π

6
=

π

6
.

Exercise

10.3.4. Find the following integrals.

(a)

∫ 3
√
π

x=0

x2 sin(x3)dx.

(b)

∫
ln(e3−1)

x=ln(e2−1)

ex

1+ ex
dx.

()

∫e/3

x=1/3

ln(3x)

x
dx.

(d)

∫
ln(ln(2))/ ln(2)

x=0

2x dx.
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10.4 Antidifferentiation by Inverse Substitution

10.4.1 The Inverse Substitution Formula and Why It Is True

The forward substitution formula is a bit ontrived, in that it produes an-

tiderivatives only of funtions having the speial form (f ◦ g) · g ′
. That is, it

works only when u and du are present. The inverse substitution formula is

more general. In its variable-free form it says

∫
(f ◦ g) =

(∫
(f · h ′)

)
◦ g where h inverts g. (10.6)

As with the initial presentation of the forward substitution formula, the mean-

ing and the use of the inverse substitution formula are probably opaque at

�rst glane.

The formula says that if h inverts g and

∫
(f·h ′) is an antiderivative of f·h ′

then the omposition

(∫
(f · h ′)

)
◦ g is in turn an antiderivative of f ◦ g. That

is:

Finding an antiderivative of the omposition f◦g redues to �nd-

ing an antiderivative of the produt f · h ′
where h inverts g.

And the inverse formula follows quikly from the forward formula. Indeed,

the forward formula

∫ (
(f ◦ g) · g ′

)
=

(∫
f
)
◦ g with f · h ′

in plae of f is

∫ ((
(f · h ′) ◦ g

)
· g ′

)
=

(∫
(f · h ′)

)
◦ g.

The right side of the previous display is the desired right side of the inverse

substitution formula. On the left side, by the hain rule and then by the fat

that beause h ◦ g is the identity map its derivative is 1, the integrand is

(
(f · h ′) ◦ g

)
· g ′ = (f ◦ g) · (h ′ ◦ g) · g ′ = (f ◦ g) · (h ◦ g) ′ = f ◦ g.

That is, the left side integrand is f ◦ g as desired.

As with forward substitution, we now want to rewrite the inverse substi-

tution formula with variables, and then redue it to a proedure.

10.4.2 The Formula With Variables

The inverse substitution formula with variables is

∫
f(g(x))dx =

∫
f(u)h ′(u)du where u = g(x) and x = h(u).
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For example, onsider the antiderivative

∫
e
√
x dx.

This is

∫
e
√
x dx =

∫
f(g(x))dx where f(u) = eu and g(x) =

√
x.

The inverse funtion of u =
√
x = g(x) is x = u2 = h(u), whose derivative is

h ′(u) = 2u. Thus aording to the inverse substitution formula,

∫
e
√
x dx = 2

∫
ueu du where u =

√
x.

A plausible �rst guess for

∫
ueu du is ueu. This guess has derivative ueu+eu,

so that orreting it to ueu − eu gives the orret antiderivative. Therefore,

the original antiderivative is

∫
e
√
x dx = 2

√
xe

√
x − 2e

√
x + C.

10.4.3 The Procedure

The proedure is as follows. To ompute the antiderivative

∫
e
√
x dx,

make the substitution

u =
√
x.

Then the inverse substitution is

x = u2,

and so

dx = 2udu.

Therefore the antiderivative is

∫
e
√
x dx = 2

∫
euudu where u =

√
x.

And from here things go as before.

The inverse substitution proedure di�ers from the forward substitution

proedure in that for inverse substitution, after determining the substitution

u = g(x), we indeed invert it by �nding x = h(u) and then express dx in terms
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of u and du, i.e., dx = h ′(u)du. Then we substitute u and dx. Unlike forward

substitution, this doesn't require the problem to ontain both u and du.

Inverse substitution doesn't really have a mnemoni ounterpart to the

see u and du slogan for forward substitution. The idea is to hoose some g

to make the funtion whose antiderivative we want have the form f(g(x)), and

let u = g(x). Invert g and di�erentiate the inverse h. Then the new funtion

to antidi�erentiate is f(u)h ′(u). If this is easier, then the inverse substitution

has helped. But there are no general rules for hoosing g well. A promising-

looking inverse substitution an lead nowhere, and an outlandish-looking one

an render a problem trivial. The losest thing to a mnemoni for inverse

substitution is:

Choose u and express dx in terms of u and du.

Example 10.4.1. For a promising-looking inverse substitution that does no

good, onsider an antiderivative losely related to the error funtion intro-

dued on page 302, ∫
e−x2

dx.

A plausible hoie is u = x2. Then x =
√
u, and so dx = du/(2

√
u). Thus the

antiderivative is

1

2

∫
e−u

√
u

du where u = x2,

but this is no better than what we started with. In fat, no amount of substi-

tution will allow us to express this antiderivative in terms of funtions that

have been studied in this ourse. It has no suh expression.

Example 10.4.2. For an unpromising-looking inverse substitution that does

good, onsider the antiderivative

∫
dx√
1+

√
x
.

With rekless abandon, let u =
√
1+

√
x. Now invert: u2 = 1 +

√
x, and so

x = (u2 − 1)2. It follows that

dx = 2(u2 − 1) · 2udu,

and so

∫
dx√
1+

√
x
= 4

∫
(u2 − 1)udu

u
= 4

∫
(u2 − 1)du

= 4

(
u3

3
− u

)
+ C =

4

3
(1+

√
x)3/2 − 4(1+

√
x)1/2 + C.
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Exercises

10.4.1. (a) Find

∫
x2 + 1

(2x− 3)2
dx.

(b) Let p(x) denote a generi polynomial. Let a and b be real numbers, not

both zero, and let n be a positive integer. Explain how an inverse substitution

will evaluate

∫
p(x)

(ax+ b)n
dx.

10.4.2. Find

∫ √
1− x2

x2
dx. (Let x = os(u).)

10.4.4 Inverse Substitution in Integrals

The inverse substitution formula for integrals (as ompared to antiderivatives)

is

∫b

a

(f ◦ g) =
∫g(b)

g(a)

(f · h ′) where h inverts g.

This formula follows from its variable-free ounterpart, similarly to the ase

of forward substitution. That is,

∫b

a

(f ◦ g) =
( ∫

(f ◦ g)
)∣∣∣

b

a
by Theorem 10.1.10

=

(( ∫
(f · h ′)

)
◦ g

)∣∣∣
b

a
by (10.6)

=
( ∫

(f · h ′)
)∣∣∣

g(b)

g(a)
by de�nition of omposition

=

∫g(b)

g(a)

(f · h ′) by Theorem 10.1.10 again.

With variables, the inverse substitution formula for integrals is

∫b

x=a

f(g(x))dx =

∫g(b)

u=g(a)

f(u)h ′(u)du where u = g(x) and x = h(u).

Example 10.4.3. To evaluate

∫9

0

dx√
1+

√
x
.

reall the substitution u =
√
1+

√
x from example 10.4.2. If x = 0 then u = 1

and if x = 1 then u = 2. Thus, by the alulation in example 10.4.2 and by

the inverse substitution formula for integrals,

∫9

0

dx√
1+

√
x
= 4

∫2

1

(u2 − 1)du = 4

(
1

3
u3 − u

) ∣∣∣
2

1
=

16

3
.
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Example 10.4.4. To �nd

∫0
t=−1

t
√
t+ 1 dt, let u = t + 1. Then t = u − 1,

so dt = du. And if t = −1 then u = 0, while if t = 0 then u = 1. Hene

∫0

t=−1

t
√
t+ 1 dt =

∫1

u=0

(u− 1)
√
udu =

∫1

u=0

(u3/2 − u1/2)du

=
2

5
u5/2 −

2

3
u3/2

∣∣∣∣
1

0

=
2

5
−

2

3
= −

4

15
.

We ould also do this example by letting u =
√
t+ 1, so that t = u2 − 1 and

then dt = 2 du and so on.

Example 10.4.5. Let a > 0 be onstant. To evaluate

∫a

x=−a

√
a2 − x2 dx,

let u = x/a, so that x = au. Then
√
a2 − x2 = a

√
1− u2

and dx = adu.

Also, if x = ±a then u = ±1. Thus the integral is, iting example 10.3.14

(page 323) at the last step,

∫a

x=−a

√
a2 − x2 dx = a2

∫1

u=−1

√
1− u2 du =

πa2

2
.

The answer is inevitable beause the upper half of the irle of radius a has

equation y =
√
a2 − x2 and the upper half of the disk of radius a has area

πa2/2.

Exercises

10.4.3. Find the following integrals.

(a)

∫1

0

x2(x3 + 1)3 dx.

(b)

∫3/2

0

1√
9− x2

dx.

()

∫1

0

x
√
1− xdx.

10.4.4. Find the area of the region bounded by the ellipse x2/4+y2 = 1 and

the lines x = ±1.

10.4.5. Consider the following argument: To evaluate the integral

∫π

x=0

os

2(x)dx,
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let u = sin(x). Then os(x) =
√
1− u2

and du = os(x)dx. Also, if x = 0

then u = 0, and if x = π then u = 0. Thus the integral is

∫π

x=0

os

2(x)dx =

∫π

x=0

os(x) os(x)dx =

∫0

u=0

√
1− u2 udu = 0.

And so the inverse substitution proedure has shown that the integral is

zero.

(a) This argument annot be orret beause the integral is visibly positive.

What is wrong with it?

(b) Explain why the integral is also

∫π

x=0

sin

2(x)dx.

Use this fat and the idea of example 10.3.15 (page 323) to �nd the integral.

10.5 Antidifferentiation by Parts

The formula for antidi�erentiation by parts is

∫
fg ′ = fg−

∫
gf ′. (10.7)

(Here fg ′
means f times the derivative of g, and similarly for gf ′.) This

formula follows immediately from antidi�erentiating the Produt Rule for

derivatives,

(fg) ′ = fg ′ + gf ′

to get

fg =

∫
fg ′ +

∫
gf ′.

The orresponding formula for integration by parts is, naturally,

∫b

a

fg ′ = fg
∣∣∣
b

a
−

∫b

a

gf ′. (10.8)

To use the formula, the idea is to write the funtion whose antiderivative

we seek in the form fg ′
, where the antiderivative of gf ′ is easier to �nd.

Example 10.5.1. We will alulate

∫π
0
x sin(3x)dx. The �rst step is to searh

for an antiderivative of x sin(3x). Let
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f(x) = x, g ′(x) = sin(3x),

f ′(x) = 1, g(x) = −
1

3
os(3x).

Then by the formula for antidi�erentiation by parts

∫
x sin(3x)dx =

∫
f(x)g ′(x)dx

= f(x)g(x) −

∫
f ′(x)g(x)dx

= −
x

3
os(3x) +

1

3

∫
os(3x)dx

= −
x

3
os(3x) +

1

9
sin(3x) + C.

Hene

∫π

0

x sin(3x)dx =

(
−
x

3
os(3x) +

1

9
sin(3x)

) ∣∣∣
π

0
= −

π

3
os(3π) =

π

3
.

If instead we had proeeded by setting

f(x) = sin(3x), g ′(x) = x,

f ′(x) = 3 os(3x), g(x) =
1

2
x2,

then by the formula for antidi�erentiation by parts

∫
x sin(3x)dx =

∫
f(x)g ′(x)dx

= f(x)g(x) −

∫
f ′(x)g(x)dx

=
1

2
x2 sin(3x) −

3

2

∫
x2 os(3x)dx.

In this ase the antiderivative

∫
x2 os(3x)dx looks more ompliated than

the one we started with. When you antidi�erentiate by parts, it is not always

lear what you should take for f and for g ′
. If you �nd that things are starting

to look more ompliated rather than less ompliated, you might try another

hoie for f and g ′
.

Example 10.5.2. To �nd

∫
sin(

√
x)dx, �rst arry out the inverse substitu-

tion u =
√
x. Then x = u2

, so that dx = 2udu. Thus
∫
sin(

√
x)dx =

∫
sin(u) · 2udu = 2

∫
u sin(u)du.

Now we an antidi�erentiate by parts to �nd

∫
u sin(u)du. Let
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f(u) = u, g ′(u) = sin(u),

f ′(u) = 1, g(u) = − os(u).

Then

∫
u sin(u)du =

∫
f(u)g ′(u)du

= f(u)g(u) −

∫
f ′(u)g(u)du

= −u os(u) +

∫
os(u)du

= −u os(u) + sin(u) + C.

Hene

∫
sin(

√
x)dx = 2

∫
u sinudu

= −2u os(u) + 2 sin(u) + C

= −2
√
x os(

√
x) + 2 sin(

√
x) + C.

Example 10.5.3. Antidi�erentiation by parts is used to evaluate antideriva-

tives of the forms

∫
xn sin(ax)dx,

∫
xn os(ax)dx,

∫
xneax dx,

where n is a positive integer. All three antiderivatives an be redued to

antiderivatives of the forms

∫
xn−1

sin(ax)dx,

∫
xn−1

os(ax)dx,

∫
xn−1ex dx,

and so by applying the proess n times we redue the power of x down

to x0, whih gives us antiderivatives that we an �nd easily. For example,

for

∫
xn sin(ax)dx, let

f(x) = xn, g ′(x) = sin(ax),

f ′(x) = nxn−1, g(x) = −
1

a
os(ax).

Then

∫
xn sin(ax)dx =

∫
f(x)g ′(x)dx = f(x)g(x) −

∫
f ′(x)g(x)dx

= −
xn

a
os(ax) +

n

a

∫
xn−1

os(ax)dx.
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Example 10.5.4. We will alulate

∫
sin(ln(x))dx. To do so, let

f(x) = sin(ln(x)), g ′(x) = 1,

f ′(x) =
os(ln(x))

x
, g(x) = x.

(10.9)

Then

∫
sin(ln(x))dx =

∫
f(x)g ′(x)dx = f(x)g(x) −

∫
f ′(x)g(x)dx

= x sin(ln(x)) −

∫
os(ln(x))dx

Next use the same tehnique to �nd an antiderivative of os(ln(x)). Let

f(x) = os(ln(x)), g ′(x) = 1,

f ′(x) = −
sin(ln(x))

x
, g(x) = x.

Then

∫
os(ln(x))dx =

∫
f(x)g ′(x)dx = f(x)g(x) −

∫
f ′(x)g(x)dx

= x os(ln(x)) +

∫
sin(ln(x))dx

It may seem as though we are bak where we started, but in fat the two

alulations ombine to give

∫
sin(ln(x))dx = x sin(ln(x)) − x os(ln(x)) −

∫
sin(ln(x))dx.

Thus

2

∫
sin(ln(x))dx = x sin(ln(x)) − x os(ln(x)) + C,

and ∫
sin(ln(x))dx =

x

2
(sin(ln(x)) − os(ln(x))) + C.

Example 10.5.5. We already know from working a sum in hapter 5 that

∫
ln(x)dx = x ln(x) − x+ C.

Now we rederive the result using antidi�erentiation by parts. Let

f(x) = ln(x), g ′(x) = 1,

f ′(x) = 1/x, g(x) = x.
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Then

∫
ln(x)dx =

∫
f(x)g ′(x)dx = f(x)g(x) −

∫
f ′(x)g(x)dx

= x ln(x) −

∫
1 dx

= x ln(x) − x+ C.

We naturally wonder whether this method of �nding

∫
ln(x)dx is related

to the summation method of hapter 5. It is, losely, as explained in exer-

ise 10.5.4.

Theorem 10.5.6 (Antiderivative of the Inverse Function). Let I and J

be intervals in R. Let the ontinuous funtion

g : I −→ J

have inverse funtion

h : J −→ I.

Suppose that h is di�erentiable and that h ′
is ontinuous. Reall that f1

denotes the identity funtion. Then an antiderivative of h is

∫
h = f1 · h−

(∫
g

)
◦ h.

Thus the antiderivative of the inverse funtion an be expressed in terms

of the inverse funtion and the antiderivative of the original funtion.

With variables, the previous formula is

∫
h(x)dx = xh(x) −

∫
g(u)du where u = h(x).

It an be shown that beause g is ontinuous, so is its inverse funtion h.

We omit the proof, but it deserves omment that the argument requires that

I and J be intervals. (See exerise 10.5.6.) This is an instane where the full

desription of funtions|inluding domains and odomains|is neessary to

analyze a situation.

Proof. Compute, using the fats that f ′1 = f0 is the onstant funtion 1 and

that g ◦h is the identity funtion f1 beause g and h are inverse funtions to

eah other,
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∫
h =

∫
f ′1 · h

= f1 · h−

∫
f1 · h ′

antidi�erentiating by parts

= f1 · h−

∫
(g ◦ h) · h ′

= f1 · h−

(∫
g

)
◦ h by forward substitution.

Alternatively, the reader may �nd the same alulation easier to read with

variables, now noting that g(h(x)) = x,
∫
h(x)dx =

∫
x ′h(x)dx

= xh(x) −

∫
xh ′(x)dx

= xh(x) −

∫
g(h(x))h ′(x)dx

= xh(x) −

∫
g(u)du where u = h(x).

⊓⊔

The formula in Theorem 10.5.6 says that the antiderivative of the inverse

funtion equals a produt minus a omplementary antiderivative of the origi-

nal funtion. This fat about antiderivatives dovetails perfetly, via the Fun-

damental Theorem of Calulus, with our earlier alulations of the integrals

of the exponential and the ar-osine (see pages 200 and 225): the integral of

the inverse funtion equals a box-area minus a omplementary integral of the

original funtion.

As an example, to ompute

∫
tan(x)dx, note that tan(x) = sin(x)/ os(x),

and so if we let u = os(x) so that also du = − sin(x)dx then

∫
tan(x)dx = −

∫
du

u
= − ln(|u|) + C = − ln(| os(x)|) + C.

Now we an also ompute

∫
artan(x)dx,

∫
artan(x)dx = x artan(x) −

∫
tan(u)du where u = artan(x)

= x artan(x) + ln(| os(artan(x))|) + C

= x artan(x) −
1

2
ln(1+ x2) + C.

Indeed, one an hek this by omputing

(
x artan(x) −

1

2
ln(1+ x2)

) ′
= artan(x) +

x

1+ x2
−

1

2
· 2x

1+ x2
= artan(x).
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Exercises

10.5.1. Calulate the following antiderivatives.

(a)

∫
xex dx.

(b)

∫
x2ex dx.

()

∫
ex sin(x)dx. (Integrate by parts twie, and then don't give up.)

(d)

∫
x√

4− x2
dx.

(e)

∫
x
√
4− x2 dx.

(f)

∫
xα ln(|x|)dx, where α ∈ R. (Don't forget the ase where α = −1.)

(g)

∫
x2 os(2x)dx.

(h)

∫
x ln(x)dx.

10.5.2. Evaluate the following integrals.

(a)

∫1

x=0

x arsin(x)dx.

(b)

∫4

x=1

arse(
√
x)dx. (The ar-seant funtion has domain [1,∞) and

odomain [0, π/2).)

10.5.3. (a) Antidi�erentiate by parts to �nd an antiderivative of aros.

(b) Antidi�erentiate by parts to �nd an antiderivative of artan.

10.5.4. This exerise desribes summation by parts , the disrete analogue

of antidi�erentiation by parts, whih is a ontinuous proess.

(a) Consider two funtions (sequenes, in fat)

f, g : Z≥0 −→ R,

and de�ne for k ∈ Z≥1

∆f(k) = f(k+ 1) − f(k), ∆g(k) = g(k) − g(k− 1).

Show that for any n ∈ Z≥1,

n∑

k=1

f(k)∆g(k) = f(k)g(k− 1)
∣∣∣
n+1

1
−

n∑

k=1

∆f(k)g(k).

(It may be most onvining to write out eah side of the equality and on�rm

that the same terms our.) Note the similarity between this formula and

formula (10.8) for integration by parts.
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(b) Reall that in hapter 5 we integrated the logarithm by evaluating the

sum

σ(x) = 1+ 2x+ 3x2 + · · ·+ nxn−1, x 6= 1.

Using the notation of part (a), let

f(k) = k and g(k) = 1+ x+ · · ·+ xk−1,

inluding the ase g(0) = 0. Show that

σ(x) =

n∑

k=1

f(k)∆g(k),

so that by part (a), in fat

σ(x) = f(n+ 1)g(n) −

n∑

k=1

∆f(k)g(k).

Evaluate this seond expression for σ(x) to rederive the sum as omputed in

exerise 5.4.1 (page 163).

10.5.5. What is wrong with the following argument? Let

f(x) =
1

x
, g ′(x) = 1,

f ′(x) = −
1

x2
, g(x) = x.

Then

∫
1

x
dx =

∫
f(x)g ′(x)dx = f(x)g(x) −

∫
f ′(x)g(x)dx

= 1+

∫
1

x
dx.

If we subtrat

∫
1
x
dx from both sides we obtain

0 = 1.

10.5.6. Consider the set

I = {x ∈ R : 0 ≤ x < 1 or 2 ≤ x ≤ 3 or 4 < x ≤ 5}.

Note that I is not an interval. Let J = [0, 3], an interval. Consider the funtion

g : I −→ J, g(x) =






x if 0 ≤ x < 1,

x− 1 if 2 ≤ x ≤ 3,

x− 2 if 4 < x ≤ 5.
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The graph of g is shown in �gure 10.7. Draw the graph of the inverse funtion

h : J −→ I.

Explain why g is ontinuous but h is not. Is h integrable? What would hange

in this exerise if the domain of g were extended to inlude x = 1 and x = 4?

PSfrag replaements

g(x)

x

Figure 10.7. A ontinuous, invertible funtion with a disontinuous inverse

10.5.7. Let

In =

∫π/2

0

sin

n(x)dx, n ∈ Z≥0.

(a) Evaluate I0 and I1.

(b) Show that

In =
n− 1

n
In−2, n ≥ 2.

Use this formula to evaluate I3 and I4.

() Show that for n odd,

In =
2 · 4 · 6 · · · (n− 1)

3 · 5 · 7 · · ·n .

Show that for n even,

In =
1 · 3 · 5 · · · (n− 1)

2 · 4 · 6 · · ·n · π
2
.
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10.5.8. Find redution formula for the following antiderivatives.

(a)

∫
xn os(ax)dx.

(b)

∫
xneax dx.

()

∫
(ln(x))n dx.





A

Assumptions About the Real Number System

We assume that there is a real number system, a set R that ontains two

distint elements 0 and 1 and is endowed with the algebrai operations of

addition,

+ : R×R −→ R,

and multipliation,

· : R×R −→ R.

The sum +(a, b) is written a + b, and the produt ·(a, b) is written a · b or

more briey as ab.

The assumed algebrai properties of the real number system are as follows.

Theorem A.0.1 (Field Axioms for (R,+, ·)). The real number system,

with its distint 0 and 1 and with its addition and multipliation, is

assumed to satisfy the following set of axioms.

(a1) Addition is assoiative: (x+ y) + z = x+ (y+ z) for all x, y, z ∈ R.

(a2) 0 is an additive identity: x+ 0 = x for all x ∈ R.

(a3) Existene of additive inverses: For eah x ∈ R there exists y ∈ R
suh that x+ y = 0.

(a4) Addition is ommutative: x+ y = y+ x for all x, y ∈ R.

(m1) Multipliation is assoiative: x(yz) = (xy)z for all x, y, z ∈ R.

(m2) 1 is a multipliative identity: 1x = x for all x ∈ R.

(m3) Existene of multipliative inverses: For eah nonzero x ∈ R there

exists y ∈ R suh that xy = 1.

(m4) Multipliation is ommutative: xy = yx for all x, y ∈ R.

(d1) Multipliation distributes over addition: (x + y)z = xz + yz for all

x, y, z ∈ R.

All of basi algebra follows from the �eld axioms. For example, additive

and multipliative inverses are unique, the anellation law holds, 0 · x = 0

for all real numbers x, and so on.
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Subtrating a real number from another is de�ned as adding the additive

inverse. In symbols,

− : R×R −→ R, x− y = x+ (−y) for all x, y ∈ R.

We also assume that R is an ordered �eld. This means that there is a

subset R+
of R (the positive elements) suh that the following axioms hold.

Theorem A.0.2 (Order Axioms).

(o1) Trihotomy Axiom: For every real number x, exatly one of the fol-

lowing onditions holds:

x ∈ R+, −x ∈ R+, x = 0.

(o2) Closure of positive numbers under addition: For all real numbers x

and y, if x ∈ R+
and y ∈ R+

then also x+ y ∈ R+
.

(o3) Closure of positive numbers under multipliation: For all real num-

bers x and y, if x ∈ R+
and y ∈ R+

then also xy ∈ R+
.

For all real numbers x and y, de�ne \x < y" to mean \y− x ∈ R+
." The

de�nitions of \x ≤ y" and \x > y" and \x ≥ y" are analogous. The usual

rules for inequalities then follow from the axioms.

Finally, we assume that the real number system is complete. Complete-

ness an be phrased in various ways, all logially equivalent. The version of

ompleteness that is urrently in Ray Mayer's notes for Mathematis 112 is

as follows.

Theorem A.0.3 (Completeness as a Binary Search Criterion). Every

binary searh sequene in the real number system onverges to a unique

limit.

Two other versions of ompleteness are phrased in terms of sequenes and

in terms of set-bounds:

Theorem A.0.4 (Completeness as a Monotonic Sequence Criterion).

Every bounded monotoni sequene in R onverges to a unique limit.

Theorem A.0.5 (Completeness as a Set-Bound Criterion). Every

nonempty subset of R that is bounded above has a least upper bound.

Convergene is a onept of analysis, and therefore so is ompleteness. All

three statements of ompleteness are existene statements.
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