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Every line meets the parabola y = x2 in 2 points.
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=⇒ (x , y) = (±i ,−1)
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y = x2

y = 0

}
=⇒ (x , y) = (0, 0)

k [x , y ]/(y , y − x2) = k [x , y ]/(y , x2) ≈ k [x ]/(x2) = Spank{1, x}

k [x , y ]/(x , y) ≈ k
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y = x2

x = 0

}
=⇒ (x , y) = (0, 0)

k [x , y ]/(x , y − x2) = k [x , y ]/(x , y) = k

Disturbing.
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Projective geometry is related to the idea of perspective
from art.
Curves are projectively equivalent if they are shadows of
the same curve.
The “points” of projective geometry are all lines through a
special point.
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Definition

Pn
k = {lines through the origin in An+1

k }
= {one-dimensional subspaces of kn+1}

Note
A point in Pn

k is a line in affine (n + 1)-space.
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Question
What kinds of polynomials vanish on subsets of projective
space?

Definition
A polynomial is homogeneous if each of its monomials has the
same degree.

Example

homogeneous: 3x2yz − y3z + 5z4

non-homogeneous: x2 − 4xy4 + z9
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Every polynomial is the sum of its homogeneous components:

f = f0 + f1 + · · ·+ fd

with fi homogeneous of degree i .

Example

5︸︷︷︸
0

+ 3x + 2y︸ ︷︷ ︸
1

+ 2xy + z2︸ ︷︷ ︸
2

+ x3︸︷︷︸
3

Proposition
Over an infinite field, f vanishes on a line through the origin iff
each fi does.
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Suppose f is homogeneous of degree d .

For all λ ∈ k and p ∈ An+1, we have

f (λp) = λd f (p).

Hence, for λ 6= 0,

f (p) = 0⇐⇒ f (λp) = 0.

The point:
Z (f ) ⊂ Pn makes sense.
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Let I ⊆ S = k [x0, . . . , xn] be an ideal.

Definition
I is homogeneous if it is generated by homogeneous
polynomials.

Example

I = (yz − x2, y2z − x3 − xz2)

Proposition
I is homogeneous iff it contains the homogeneous components
of each of its elements.
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Projective algebraic sets

S = k [x0, . . . , xn], I ⊂ S homogeneous

projective algebraic set

Z (I) = {p ∈ Pn
k : f (p) = 0 for all homog. f ∈ I}

ideal of X ⊆ Pn
k

I(X ) = (f ∈ S : f homog., f (p) = 0 for all p ∈ X )
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Projective correspondence
Algebra Geometry

homogeneous ideals of S ←→ subsets of Pn

I → Z (I)

I(X ) ← X

As before
I(Z (J)) ⊇ J Z (I(X )) ⊇ X

Z (I(Z (J))) = Z (J) I(Z (I(X ))) = I(X )

Caution!
Z (1) = Z (x0, . . . , xn) = ∅ ⊂ Pn
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Definition
m := (x0, . . . , xn) is the irrelevant ideal of S.

Theorem (Projective Nullstellensatz)
If k is algebraically closed and J ⊂ S is a homogeneous ideal,

Z (J) = ∅ ∈ Pn ⇐⇒ rad J ⊇ m.
Z (J) 6= ∅ ∈ Pn =⇒ I(Z (J)) = rad J;

Note:
Z (J) = ∅ ⇐⇒ rad(J) = S or m.
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Projective correspondence

For k algebraically closed, there is a one-to-one
correspondence:

Algebra Geometry

homogeneous radical ideals 6= m ←→ algebraic subsets of Pn

I → Z (I)

I(X ) ← X

projective varieties
prime ideals↔ irreducible projective algebraic sets
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Z (y − x2) ⊂ A2 =⇒ ? ⊂ P2

Z (y − x2) ⊂ A2 =⇒ Z (zy − x2) ⊂ P2

Z (x) ⊂ A2 =⇒ Z (x) ⊂ P2

zy = x2

x = 0

}
=⇒ (x , y , z) ∈ {(0, 0, 1), (0, 1, 0)}
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Theorem (Bezout’s theorem)

Let X = Z (f ) and Y = Z (g) be distinct curves in P2 over an
algebraically closed field. Then, the number of points in their
intersection of X , counting multiplicities, is

](X ∩ Y ) = (deg f )(deg g).
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