PCMI 2008 Undergraduate Summer School

Lecture 2: The Nullstellensatz and the Noetherian property.

David Perkinson

Reed College Portland, OR

Summer 2008

Correspondence

Algebra		Geometry
ideals of R	\longleftrightarrow	subsets of \mathbb{A}^n
1	\longrightarrow	Z(I)
I(X)	\leftarrow	Χ

HW:
$$I(Z(J)) \supseteq J$$
 $Z(I(X)) \supseteq X$ $Z(I(Z(J))) = Z(J)$ $I(Z(I(X))) = I(X)$

Theorem (Hilbert's Nullstellensatz)

If k is algebraically closed and $J \subseteq R$ is an ideal, then

$$I(Z(J)) = rad(J).$$

Corollary

If k is algebraically closed and $J \subseteq R$ is a radical ideal, then

$$I(Z(J))=J.$$

Better correspondence

Algebra		Geometry
radical ideals	\longleftrightarrow	algebraic sets
1	\rightarrow	Z(I)
I(X)	\leftarrow	X

Corollary (of the Nullstellensatz)

If k is algebraically closed, then the above correspondence is one-to-one.

Proof.

$$Z(I(X)) = X$$
 and $I(Z(J)) = rad(J) = J$.

The Hilbert basis theorem.

Every proper algebraic set is the intersection of a finite number of hypersurfaces.

hypersurface: Z(f) for a nonconstant $f \in R$.

Noetherian rings

Definition

An arbitrary ring *B* is Noetherian if every ideal of *B* is finitely generated.

Example

A PID is Noetherian, e.g., k[x].

Theorem (Hilbert basis theorem)

 $R = k[x_1, \dots, x_n]$ is Noetherian.

Previous version

$$I \subset R \quad \Rightarrow \quad I = (f_1, \ldots, f_s) \quad \Rightarrow \quad Z(I) = \bigcap_{i=1}^s Z(f_i).$$

Theorem (Hilbert basis theorem)

If B is a Noetherian ring, then so is $B[x_1, ..., x_n]$.

Proof.

- $B[x_1, ..., x_n] = B[x_1, ..., x_{n-1}][x_n]$. So n = 1 suffices.
- Let $I \subset B[x]$ be an ideal.
- f₁ a nonzero element of least degree in I.
- For i > 1, let f_i an element of least degree in $I \setminus (f_1, \dots, f_{i-1})$ if possible.
- Let a_i be the leading coefficient of f_i , and $J=(a_1,a_2,...)$.
- B Noetherian implies $J = (a_1, \ldots, a_m)$ for some m.
- $I = (f_1, \dots, f_m)$. If not, there is an f_{m+1} . Subtract off its leading term using elements of (f_1, \dots, f_m) . Contradiction.

Irreducible algebraic sets

Definition

An algebraic set is reducible if it is the union of two proper algebraic subsets. Otherwise, it is irreducible.

Proposition

An algebraic set X is irreducible if and only if I(X) is prime.

Irreducible decomposition

Theorem

If X is an algebraic set, then there are unique irreducibles, X_1, \ldots, X_m such that $X_i \not\subseteq X_j$ for $i \neq j$ and

$$X = X_1 \cup \cdots \cup X_m$$
.

The X_i are the irreducible components of X.

Proof of decomposition theorem

Lemma

Every nonempty collection \mathcal{I} of ideals in a Noetherian ring has a maximal element.

Corollary

Every collection of algebraic sets in \mathbb{A}^n has a minimal element.

Proof of decomposition theorem

Consider the bad guys:

 $\mathcal{B} = \{ \text{alg. sets in } \mathbb{A}^n, \text{ not unions of a finite number of irreds.} \}$

Now choose a minimal criminal.

Algebraic varieties

The central object of study in algebraic geometry:

Definition

An irreducible algebraic set is called an algebraic variety.