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1. Motivation

In this thesis, we aim at studying the evolution of a fluid system of reactive particles that undergo
Brownian motion. That is, given a fluid system in homogeneous medium, particles undergo Brow-
nian motion with constant diffusion rate. Moreover, the particles in our system are candidates for
different types of reactions, where reactions take place with certain probability per unit time when-
ever all the reaction candidates are within a separation less than or equal to the reactive radius.
Traditionally, differential equations are frequently used for the simulation of fluids. Notable exam-
ples include the Navier-Stokes equation, the Euler equation, the Boltzmann equation and so on.
However, there are some limitations in their application. For example, the Navier-Stokes equation
assumes continuity of the fluid and that the fluid in a whole moves with zero relativistic velocities.
Such assumptions do not hold in all situations. In particular, at the molecular level, a reactive
system’s macroscopic behavior can be affected by factors such as thermally induced fluctuations.
For example, combustion in a low-temperature system can lead the system to a state where the
fluctuation effect is much stronger and causes the macroscopic description given by the differential
equation to deviate from reality [17]. Another example would be a chemical system with catalitic
reactions. In such a system, if the reactants exist in a small region, then the spatial fluctuation of
that region grows as the reaction happens. This needs to be accounted for in computation.

In our case, the formulation based on deterministic differential equations is inaccurate since it
assumes well-mixedness of the whole system, which is not necessarily true. Hence, for an accurate
result, we need to use more accurate descriptions. In the following sections, we will investigate
existent methodology and then discuss our new method.

2. Background

In this section, we lay down the theoretical backgrounds that constitute the basis of our method of
efficiently performing a reactive system’s simulation.

2.1. Particle Methods. Traditional macroscopic methods are inadequate for the description of
certain situations, and we need to use mesoscopic or microscopic methods to describe the system’s
behavior. A much more accurate simulation can be obtained if one uses a particle-based model
instead of PDEs. In the following, we will first review two particle-based methods.

Molecular dynamics (MD), developed in the early 60s, has gained popularity in research areas
such as physics, material science, biology, and chemistry. It views the system as a collection of
interacting particles and reduces the original problem to an N-body problem. Usually the velocities
and displacement of particles after events such as collision are calculated by solving Newton’s
equations of motion. However, for the study of a reactive system’s dynamics, MD is very limited
due to its high computational cost. Actually, a deterministic algorithm is too computationally
expensive to be of practical use in many cases. We need to turn to stochastic algorithms to achieve
higher efficiency.

An alternative method used for rarefied gas modeling is the direct simulation Monte Carlo (DSMC)
method. DSMC also views the system as a collection of interacting particles. It divides the system
into small cells and only particles in the same cell are allowed to interact. Instead of calculating the
interaction in a deterministic way, DSMC uses kinetic theory to predict certain parameters such
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as the collision rate, and then processes collisions stochastically. Unlike MD, DSMC is not correct
at the molecular scale but accurate in a scale smaller than mean free path. Hence, even at the
microscopic level, DSMC is accurate.

2.2. Time and Event Driven Algorithms. In a particle model, the evolution can be driven
by time or events. We illustrate both of them in a model where particles are assumed to be hard
spheres and travel in straight lines between collisions. The only event here is the collision of particles.
In a time-driven simulation, the system evolves as time progresses. Given the discrete nature of
computer time, we cannot use a continuously changing model. Hence, we need to discretize time
into small intervals dt. Starting from the initial configuration, we let each particle move by a time dt
and then we check if any two of them are overlapping. If not, then we go on to move the particles
in the next timestep. If there are some particles overlapping with each other, then we go back to
the moment of collision and calculate the after-collision velocities for each particle and then their
positions at the end of that interval. For the algorithm to be accurate, we need to use a sufficiently
small dt. Otherwise, we can miss collisions since particles are only observed at the end of each
timestep and a collision that happens in the middle of a timestep can go unnoticed. However,
using a small timestep would significantly increase the computational cost of the algorithm, and
this makes time-driven simulation a less useful technique.

On the other hand, we have the event-driven simulation. In the same hard-sphere collision example,
instead of evolving the system by time, we evolve it by events. Given an initial configuration, we
build a queue consisting of events and times of occurences. After building the event queue, we
choose the event with highest priority, that is, the first one that happens, and we process this
event. After that, we need to make changes to the system. For example, the colliding particles will
have new trajectories and thus future events in the queue that involve these particles should be
invalidated while some new events should be added. Then, we repeat the procedure above until the
desired stopping time is achieved. Compared to time-driven simulation, event-driven simulation is
more efficient and accurate in many cases.

2.3. Reaction-Diffusion Models. There are several models used for stochastic reaction-diffusion
models. Here, we introduced the Smoluchowski model and Doi model. We will start with the
Smoluchowski model, which was proposed by Smoluchowski in 1917. We illustrate the idea by the
bimolecular coagulation reaction A+B → ∅. Here, the reaction generates no product, which does
not mean some particles disappear during reaction. Instead, there can be various interpretations.
For example, the resulting product can be particles that do not interfere with any particle of interest
in our system and we just ignore them in the simulation. The reaction is assumed to take place
instantaneously once two molecules are in a separation r, which we call the reactive radius. As an
example, we start with much more B molecules than A molecules and add A molecules to replace
those annihilated during the reaction. Choose an A molecule as the central particle, around which
is a group of particles undergoing Brownian motion. The central A particle acts like a sink: once
a B molecule diffuses toward it and is exactly r away from it, the B molecule would annihilate.
With these conditions, we can set up a differential equation, with the dependent variable being
the number density of B and the independent variable being the distance away from the central
A molecule. However, there are two serious limitations in this model: (1) the static reaction area
is different from physical situation where the reaction region should be dynamic; (2) the particles
surrounding the central particle do not interact with each other. These two limitations make the
model unphysical.
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After its first publication, the Smoluchowski model has been modified and improved. In an attempt
to construct a more accurate model, M. Doi proposed the Doi model in [6]. In this model, binary
reactions take place stochastically when two reagents are separated by less than or equal to their
reactive radius. The probability of the reaction taking place is fixed per unit of time.

There are deterministic algorithms for the above models but such approaches lack accuracy, and
a stochastic description is necessary, see [9]. We now further develop the basic background of
stochastic simulation, and then illustrating Gillespie’s stochastic simulation algorithms (SSA) and
the reaction-diffusion master equation (RDME) model.

We start with the single annihilation reaction, i.e.,

A→ ∅. (1)

Let A(t) denote the number of A molecules at time t. With the basic assumption that a reaction
takes place with a fixed reaction rate k per unit time, we derive that at time t the probability that
a reaction would happen in the next timestep dt

f(t)dt = A(t)kdt. (2)

Then, let g(A(t), s) be the probability that there is no reaction from t to s. Then, by time invariance
of the system, we have

g(A(t), s+ dt) = g(A(t), s)(1− f(t+ s)dt). (3)

Since no reaction happens until s, we have

f(t+ s)dt = A(t)kdt. (4)

Hence, by rearranging the equation and passing dt to 0, we get

∂g(A(t), s)

∂t
= −A(t)kg(A(t), s) (5)

which is a simple ODE for g. The solution for this ODE with initial condition g(A(t), 0) = 1 we
can get the solution to be

g(A(t), s) = e−A(t)ks. (6)

Again, by time invariance of the system, we can derive the probability that the first reaction since
time t happens at t+ s is

h(s) = g(A(t), s)A(t)kds. (7)

This is a probability density function, and the reader can easily verify that its integral over [0,∞)
is 1. Hence, if we assume that reactions happen uniformly with respect to the probability distri-
bution function we just calculated, we can determine the next reaction time τ . In practice, we
need to generate a uniform psuedo-random number r ∈ (0, 1) and then use r to calculate τ as fol-
lows. Suppose τ is the cumulative distribution function F (r). Then we need to have the following
condition ∫ F (r2)

F (r1)

h(s)ds = r2 − r1. (8)

This condition implies that hds = dF−1, hence

F−1(s) = e−A(t)s. (9)
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Hence, we can derive F and therefore for any uniform random number r ∈ (0, 1) we can calcu-
late

τ = F (r) =
−1

A(t)k
ln(r). (10)

In this way we derive the stochastic first reaction time for the single annihilation system. However,
we need modifications of the method to deal with a more complicated system consisting of multiple
reactions, such as one consisting of both annihilation and birth reactions. To begin with, we define
the propensity function for a reaction. Note that throughout we assume the number of reagents of a
reaction to be less than or equal to two, since any reactions involving more than two reagents can be
treated as several reactions, each of which contains at most two reagents. Then, for reactions with
no reagents and reaction rate k0, the propensity function at time t is defined to be α(t) = k0; for
reactions with one reagent and reaction rate k1, we define α(t) = A(t)k1, where A(t) is the number
of reagents; for reactions with two reagents and reaction rate k2, we define α(t) = A1(t)A2(t)k2,
where A1(t), A2(t) are the number of two reagents. Essentially, the propensity function describes
the likelihood of a certain reaction taking place at time t.

An important stochastic simulation algorithm (SSA) that we will use is the one developed by
Gillespie in [10]. In a system of n reactions with certain initial conditions, Gillespie’s SSA works as
follows:

(1) Generate a uniform random number r ∈ (0, 1).

(2) Calculate the values of propensity functions for each reaction to be α1, · · · , αn and then
define

α0 =

n∑
i=1

αi. (11)

(3) Determine the next reaction time to be

τ =
−1

α0
ln(r). (12)

(4) Generate a new uniform random number r1 ∈ (0, 1).

(5) Determine which of the n reactions will take place next to be reaction i such that

i−1∑
j=0

αj

α0
≤ r1 ≤

i∑
j=0

αj

α0
. (13)

(6) Change the number of molecules for each species involved in the reaction we chose accord-
ingly. Then, go back to step one.

Now we are ready to introduce the concept of the chemical master equation (CME). For a general
system of n reactions and m species starting at t0 with A0 = (A1(t0), · · · , Am(t0)), suppose the
probability for configuration A at time t is P (A, t), then the probability of P (A, t + dt) is given
by

P (A, t+ dt) = P (A, t)(1− α0dt) +

n∑
i=1

P (A + vi, t)αidt (14)
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where vi is the vector of change for ith reaction. Underlying the previous equation is the assumption
that there is at most one reaction within dt, which is justified as the differential of an exact
differential is 0. Hence, by rearranging the equation and passing dt to 0, we get

∂P (A, t)

∂t
= −α0P (A, t) +

n∑
i=1

αiP (A + vi, t). (15)

This coupled system of ODEs is the CME. In the general case, the dimension of the system can be
infinite. Traditional numerical schemes are inappropriate for solving such equations. Even though
in an extremely simple case like the single annihilation reaction we just encountered, the solution to
the stochastic equations we just constructed can be equal to that of deterministic ODEs, in general
the solutions are different. See [9] for details.

So far we have considered system evolution from a global perspective and an assumption underlying
our discussion is well-mixedness of the system. However, real situations are more complicated.
According to Einstein’s theory, particles undergo Brownian motion since frequent collision between
particles make the trajectories random walks instead straight lines. For particles of a certain species,
we can determine its diffusion constant by the formula

D =
RT

6πηrN
(16)

where R is the gas constant, T is the absolute temperature, η is the viscosity of the fluid, r is
the radius of the particle, and N is the Avogadro’s constant. With this diffusion constant, we can
compute the position of a particle to be

x(t+ ∆t) = x(t) +
√

2D∆t rn (17)

where rn is an n-dimensional uniform number with each component in the range (0, 1). We also
need to consider the existence of different boundary conditions. We suppose that the system is
located in [0, L1]× · · · × [0, Ld]. There are three boundary conditions that we consider:

(1) Periodic: if in some dimension a particle diffuses into a position xi < 0 or xi > Li, then
we add a multiple, possibly negative, of Li to xi to make it in the range [0, Li]. Essentially
when a particle passes a boundary, it goes into the other side.

(2) Reflective: if in some dimension a particle diffuses into a position xi < 0 or xi > Li, then
we change its position to −xi or 2Li − xi respectively. In this case, the particle hits the
boundary and is reflected back by the boundary.

(3) Reservoir: if in some dimension a particle diffuses into a position xi < 0 or xi > Li, then
the particle goes into the reservoir and is flagged as an irrelevant particle. Also, in the
reservoir, if some particle diffuses into the system, it would be marked as a new particle in
the system.

Now we proceed to illustrate the reaction-diffusion master equation (RDME) model. In the RDME
model, the whole system is divided into a collection of cells of specific, the choice of which will be
illustrated later. Each particle is viewed as a point undergoing Brownian motions. Reactions can
take place only between particles in the same cell. A few versions of RDME are available. Some of
them suffer from the problem that as cell size goes to zero, the first reaction time would approach
infinity. See [14] for a detailed discussion. In particular, RDME no longer assumes the system to
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be globally well-mixed but to be locally well-mixed, i.e., partition positions within the same cell
are assumed to be uniform.

Note that after including diffusion and allowing the system not to be globally well-mixed, we need
to modify the chemical master to justify these changes. We assume the system to be located in
[0, L1] × · · · × [0, Ld] and partition it into cells of size h = h1 × · · · × hd. Also, we suppose there
are n species and m reactions. It is straightforward to give each cell in the system an index j,
where j ∈ {1, · · · ,

∏n
i=1 Li/hi}, or a multiindex j = (j1, · · · , jn), where ji ∈ {1, · · · , Li/hi}. For

simplicity we will use a single index and also in our implementation of IRDME in the third section,
due to computational consideration, we use single index.

We can define a state vector J = (J1, · · · ,Jn), where J i is the vector of ordered single index of the
cells of each particle with species i. Similar to the CME, if we denote the probability of having state
vector J at time t with cell size vector h to be Ph(J , t), then we can write the RDME as,

∂Ph(J , t)

∂t
= (L+R)Ph(J , t) (18)

where L is the diffusion operator, and R is the reaction operator. Now we derive each operator
explicitly. Firstly, for the diffusion operator, we consider the system to be affected only by diffusion
effect. A special form of the Fokker-Planck equation shows that for particles undergoing Brownian
motion with diffusion constant D, if f(x, t) is probability density function of position x and time
t, then we have

∂f(x, t)

∂t
= D∆f(x, t) (19)

where ∆ is the Laplace operator. With this, we can just apply the discrete Laplace operator
obtained by finite difference to derive the case where cell size is h,

∂fh(x, t)

∂t
=

1

h2

d∑
i=1

f(x + ei) + f(x− ei)− 2f(x). (20)

Repeating this for each species would lead to the desired diffusion operator.

A description of converting the differential equation system we just described into particle model
can be found in [13]. Even though the RDME has advantage over older models, it suffers from the
problem of cell size. In particular, as shown in [16], in order to approximate the Doi or Smoluchowski
model, the RDME model needs to have a cell size that is neither too large nor too small. Also, if the
cell size approaches zero, then the time it takes for the next reaction to happen approaches infinity.
Even with an appropriate choice of cell size, the idea of RDME would still introduce problems.
When we implement the algorithm using a particle method, the grid structure of RDME would
generate artifacts in the result. In a real situation, the particle distribution should be unrelated to
the grid. However, once we implement RDME, there would be difference in particle distribution
between the center and near the boundary of a cell.

Now, we are going to briefly discuss the direct simulation Monte Carlo (DSMC) algorithm. Tradi-
tional particle methods, notably molecular dynamics, simulate a system of particles in an N-body
setting. Trajectories of particles are calculated by solving a system of equations of motion. The ex-
tremely high computational cost makes their applications limited to very small system size. DSMC
is a stochastic alternative to MD in dilute gas. In the initial configuration, each particle has some
position and velocity. The system is divided into n regular cells. At the beginning of each timestep,
we update each particle’s position to r + vt, where r is the particle’s position, v is the velocity,
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and t is the length of the timestep. Then, we implement same-cell stochastic collisions. To do so,
we first use kinetic theory to determine the number of collisions to process. Then, we randomly
select pairs of particles in the same cell and randomly determine if they are going to collide or
not. In particular, the trajectories of these particles need not overlap with each other since this
is a stochastic rather than real collision. Also, not every pair we choose would collide. We first
compute some maximum relative speed and then generate a uniform random number r ∈ (0, 1).
Then, if |vr| < |vmax|r then we propose the collision and reset the velocity as if a collision happens
to these two particles. Otherwise, we choose another pair of particles, which need not be different
from the pair we just chose, and repeat the process above. We repeat doing so until processing the
predetermined number of collisions. A detailed version of DSMC can be found in [1].

In the past decades, DSMC has achieved success in rarefied gas simulation. However, there are some
intrinsic problems. Notably, the model is not Galilean invariant and not microscopically isotropic.
The grid artifact introduces a difference in distribution of particles in the center of the cell and
particles near the boundary of the cell. Even though random shifting before and after each timestep
can mollify the problem, it introduces new problems regarding the treatment of boundary condition.
In addition, DSMC is not isotropic and does not conserve angular momentum. Therefore, it can
lead to very inaccurate results, for example, in rotating flows.

In [7], a scheme based on DSMC that is isotropic was proposed and named I-DSMC, where “I”
means isotropic. Instead of allowing only same-cell collisions, in I-DSMC, two particles can still be
allowed to collide if they are in neighboring cells, as long as the separation between them is not
larger than the collision diameter.

In order to perform I-DSMC, in each timestep we create a random ordering of all the cells. Then
we visit each cell in order, at which point we create a list of particles in the center cell and also a
list of particles in the neighboring, and also the center, cells. Then, we process stochastic collisions
with some rule, which will not be discussed here since it is not related to the topic of our interest.
The reader may find the detailed description in [7].

3. S-BD-RME and S-RBD

There are three problems with the RDME approach,

(1) cell-size dependence;

(2) expensive computation cost, especially in well-mixed regime;

(3) unphysical diffusion process.

In [15], a convergent RDME is considered to fix the first issue above, where the reaction operator
is modified so that reactions between different cells are taken into account. In [2], multinomial
diffusion is proposed as an improvement for the second problem. For the third issue, particle
tracking can be used, which generates a Brownian dynamics.

In this section we describe two particle algorithms, the Split Brownian Dynamics with Reaction
Master Equation (S-BD-RME) and Split Reactive Brownian Dynamics (S-RBD). Here, S-BD-RME
is based on one of the algorithm proposed in [5], with the difference that S-BD-RME uses strang
splitting in diffusion process and a random shifting to reduce the error. Our novel method is the
S-RBD algorithm, which is grid free.
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3.1. Model Description. We want to investigate the dynamics of particles in a rectangular box
in d-dimensions. Throughout this section, we will assume the hard-sphere model, that is, we view
particles as hard spheres of fixed radii. Also, we assume the particle to diffuse in a homogeneous
medium, where the medium has no impact on reaction rates. We tried to simulate this system as
time evolves, where the changes come from diffusion and reaction of the particles.

For a system, we need to specify a set of parameters. We need two constants Ns and Nr, which
represent the number of particles’ species and the types of reactions respectively. For each species,
we are also given its diffusion constant, radius, and number density. We allow reactions with 0, 1, or
2 reagents only. In reality, reactions involving three or more reagents do not take place immediately.
Instead, they consist of sequences of reactions with at most 2 reagents. Hence, our assumption is
physical. Also, we need to build a reaction network from input data. We classify reactions in the
following way.

(1) Birth: reactions of the form ∅ → A and ∅ → A + B, i.e., reactions with 0 reactants and 1
or 2 products, where the products are uniformly generated in the box.

(2) Annihilation: reactions of the form A → ∅ and A + B → ∅, i.e., reactions with 1 or 2
reactants and 0 products.

(3) Replacement: reactions of the form A → B or A → B + C. If there is only one product,
then the product takes the position of the reagent; otherwise, one of the product takes the
position of the reagent and the other one is born uniformly in the sphere centered at the
reagent’s position with radius the sum of radius of two product particles.

(4) Catalytic birth: reactions of the form A → A + B, i.e., reactions with a reagent A and
the same product A, along with another product of any species. The catalyst particle will
remain in its original position and the other product will be generated uniformly within
reactive radius.

(5) Merge: reactions of the form A + A → B and A + B → C. The product will be born
randomly in one of the two reagents’ positions.

(6) Catalytic annihilation (coagulation): reactions of the form A+B → A or A+A→ A, i.e.,
reactions with reagent A, another reagent of any species, and a single product of species A.
If the two reagents have the same species then the product will be born randomly in one of
the reagent’s position; otherwise, the product will be born in the position of reagent with
the same species.

(7) Catalysis: reactions of the form A+B → A+C, i.e., reactions with catalyst A, along with
a different reactant and a different product. The catalyst particle remains in its original
position during reaction and the other product will take the position of the other reagents.

(8) Transformation: reactions of the form A+A→ A+B, A+A→ B + C, A+B → A+A,
and A + B → C + D, i.e., reactions of two reagents and two products but which are not
catalyst reactions. One product will take the position of one of the two reagents’ positions
and the other product will take the position of the other one.

The reactive system is confined to a rectangular box in d-dimensions. For reasons that will be clear
soon, we divide the box into rectangular cells of equal sizes. Given the system size and a set of
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parameters that specify how many cells of both types we want in each dimension, we can calculate
the sizes of the cells.

3.2. Boundary Condition. Among the different types of boundary conditions, we study the
periodic boundary condition only. There are reasons to exclude the use of some other boundary
conditions. For example, because we assume that particles undergo Brownian motions, a rigid
wall that reflects particles when they hit the wall is not viable since the particles do not have a
straight-line trajectory or a constant velocity. Also, reservoir boundary condition will only be used
in the S-BD-RME simulation, because the S-RBD simulation requires a propensity function that
depends on neighboring cells and the treatment of the boundary cells becomes complicated.

For a periodic boundary condition (PBC), whenever a particle exits the rightmost boundary of the
box, it automatically enters the leftmost boundary, with its new position being its original position
modulo the domain length, and similarly for the case where it exits the leftmost boundary.

3.3. Setup. With all the cells initialized, we can now a function to fill the cells with particles,
where we use the given number density as the mean to generate a Poisson distributed number of
particles for each cell and fill the cell with a corresponding number of particles with uniformly
generated positions. The motivation for using a Poisson distributed density is that the medium is
assumed to be homogeneous and that cells are supposed to be independent of each other.

Now, we will discuss S-BD-RME and S-RBD.

3.4. S-BD-RME. Suppose we are interested in the system’s evolution from t = 0 to t = T . We
need to first divide T into N timesteps of equal length, where dt = T/N such that a particle on
average diffuses a small fraction of the cell size. For each timestep, we shift all particles by a random
amount, and then let each particle undergo Brownian motion for dt/2 with the mass diffusivity Di,
that is, ri = ri + Nd

√
2Didt, where Nd is the standard normal vector with dimension d. Then,

process stochastic reactions for a timestep dt independently for each cell.

Now, we explain what the algorithm does in each timestep. To reduce the error in the algorithm,
we use a random shifting for the grid. For actual implementation, we translate all particles by a
small fraction (less than one half in absolute value) of the cell size in each dimension. As discussed
earlier, this algorithm suffers from issues such as non Galilean-invariance. The motivation for using
such a translation is to ameliorate the effect introduced by the grid structure. Later at the end
of this timestep we will do a backward translation so that this translation will reduce the artifact
without introducing new artifacts.

After the random translation, we start simulating the evolution of the system. In order to combine
both diffusion and reaction together simulltaneously, it requires an extremely high computational
cost. Hence, we need to divide the reaction-diffusion process into two separate parts, reaction and
diffusion. In [5], Lie splitting was used. In other words, the algorithm processes a diffusion of time
dt, followed by a reaction process of time dt. Here, as an improvement, we use strang splitting,
that is, we process a diffusion by dt/2, followed by a reaction process of dt, and eventually another
diffusion by dt/2.

The diffusion part is simple. We just generate random numbers from the standard normal distribu-
tion and use them, along with the mass diffusivity and diffusion time, to determine the displacement.
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The formula for displacement in each dimension of a particle is,

s =
√

2DtZ (21)

where D is the mass diffusivity of the particle, t is the length of time, and Z is the standard normal
random variable. Note that after making this change, the particle may move outside the box and
we need to make corresponding changes with respect to the boundary conditions.

For the reaction, we iterate through each cell and call the reactor module to process reactions.
Recall that in S-BD-RME, we only allow reactions where all the reagents are in the same cell. The
reactor module works as described below.

(1) Set i = 1.

(2) Build a recorder matrix of size Ns by Cmax, where Cmax is the maximum allowed number
of particles in a cell, estimated separately at the beginning. Then, let the recorder matrix
store the particle indices and species of the i-th cell.

(3) Set the clock to 0.

(4) Calculate the propensity functions and generate the probabilities of each reaction. Also,
update the time correspondingly.

(5) Generate a uniform random real in [0, 1] and decide the corresponding reaction to process.
Then, process that reaction with randomly chosen candidates from the recorder matrix.

(6) Update the recorder matrix.

(7) If the current time is still smaller than dt, go to step 3. Otherwise, increase i by 1.

(8) If i is larger than the number of reaction cells in the box, then end the routine. Otherwise,
go to step 2.

In particular, recall that the pronpensity function for reactions is given by,

• 0 reagents: α0 = k0Vc, where k0 is the reaction rate and Vc is the volume of the cell;

• 1 reagent: α1 = k1A1, where k1 is the reaction rate and A1 is the number of reagent
particles;

• 2 reagents: α2 = k2A1A2/Vc, where k2 is the reaction rate and A1, A2 are the numbers of
candidate reagent particles.

For S-BD-RME, the numbers A1, A2 refer to the numbers of particles of corresponding species in
the cell of interest. Here we need Vc as a normalizing constant so that the cell volume does not
change the reaction count.

The detailed implementation of the algorithm above will not be discussed since S-BD-RME is not
the central topic of this thesis and also because its implementation is relatively simple.

After calling the reaction module, we can diffuse the particle again by dt/2 and then do a backward
translation to finish the timestep.
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3.5. S-RBD. For S-RBD, we do not need the random shifting since S-RBD is essentially grid-free.
However, to make the system grid-free, we need to allow binary reactions where two reagents are
in different cells. Hence, we need to use a rather different reaction module. In S-BD-RME, we
can process reaction for each cell independently. However, to make our method grid-free, there
will be interference between neighboring cells. Therefore, we need to have a proper ordering for
the cells when processing reactions. An inspiration comes from the next subvolume method (NSM)
proposed in [8]. The NSM first calculates the propensity functions for each cell, and then generates
the corrsponding event time for each cell, where the event time means the time of occurence for the
first event in a cell. With these times, we can then build a priority queue and process reactions by
reading data and then making appropriate changes to the queue. Essentially, the idea of S-RBD is
a combination of NSM, I-DSMC, and CRDME.

Again, we use strang splitting for higher accuracy and the outline for each timestep is the follow-
ing.

(1) Let each particle undergo Brownian motion for dt/2 with the mass diffusivity D is exactly
the diffusion constant given in the input file.

(2) Call the S-RBD reaction module to process stochastic reactions for dt.

(3) Let each particle undergo Brownian motion for dt/2.

Note that we abandon the random shifting since the algorithm is grid-free and there is no need for
a random shifting. However, because of the possibility of inter-cell reactions, we cannot call the
reaction module cell by cell. To see why this is true, consider the following case. Suppose we still
process reactions cell by cell and we visit cell i first. While visiting cell i, the reaction module may
process an inter-cell reaction in cell i and its neighboring cell j. However, in the global system,
one inter-cell reaction that involves particles in cell j and another cell k may happen first, and
thus consuming some particles in cell j and k. In this way, the reaction in cell i and j may never
happen, if the reagent in cell j is the last particle in the cell. Even in case there are other reagents
left in cell j, it still suffers from the problem of a wrong propensity function since this mistakenly
decreases the propensity function of cell k.

Essentially, what we want to do is to create a list of all overlapping particles that can react. To do
so, we use the idea of NSM and combine it with Gillespie’s SSA. Hence, we need a different way
to calculate the propensity function since now we are taking inter-cell reactions into account. For
reactions with 0 or 1 reagents, the propensity functions remain the same for the obvious reason.
Before defining the propensity function, we need to define a few concepts.

In a system of dimension d, we are interested in systems only when d ≤ 3. However, when d < 3, we
do not just view the system as in lower dimension. Instead, we view the system as if the dimensions
from d + 1 to 3 do not affect system evolution at all. That is, particles’ diffusion in the extra
dimension is not important and separation in the extra dimensions does not affect reactions. That
being said, the underlying system is still 3-dimensional and the extra dimensions have impact on
parameters such as the volume of the system. Then, we define the “thickness” h for the system to
be the product of the lengths in the extra dimensions. When d = 3, h is a trivial 1.

Also, we define the effective area S of a binary reaction to be the volume of the d-ball with radius
equal to the sum of radii of the two participating reagent particles. Now, for binary reactions with
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reagents of species sp1 and sp2, we modify the propensity function for this reaction in cell i as
follows,

(1) calculate a normalizing factor to be 1/(hS);

(2) if sp1 = sp2, go to step 3; otherwise, go to step 5;

(3) calculate S-RBD reaction rate to be k′ = k/(hS);

(4) calculate S-RBD propensity function for this binary reaction to be α = k′Asp1
A′sp1

/Vc,
where Asp1

is the number of particles of species sp1 in cell i and A′sp1
is the number of

particles of species sp1 in cell i and its neighboring cells, that is cells that share at least one
boundary with cell i;

(5) calculate S-RBD reaction rate to be k′ = k/(2hS);

(6) divide this reaction into two reactions, where the first one has sp1 as its first reagent and
the second one has sp2 as its first reagent;

(7) calculate S-RBD propensity for these two sub-reactions to be α1 = k′Asp1
A′sp2

/Vc and
α2 = k′Asp2

A′sp1
/Vc.

We make some remarks of the calculation of the propensity function above. To include inter-cell
reactions, we need to use a propensity function that accounts for particles in neighboring cells.
However, if we simply define the propensity function of the reaction to be α = kA′sp1

A′sp2
, then we

are overestimating the propensity since in this way it is possible that neither participating particles
are in cell i. Hence, to ensure that at least one of the reagent particle is in cell i, we need to have
a primary particle that is in cell i and the other particle can be in either cell i or its neighboring
cells. However, for a reaction where sp1 6= sp2, the number of possible pairs for reactions depends
on the species of the primary particle. Therefore, in such a case, we need to divide the reaction into
two reactions, where they have different primary particles and thus different propensity functions
kAsp1

A′sp2
/2 and kAsp2

A′sp1
/2, where the factor 1/2 is used since each of the sub-reaction should

only have half of the original reaction’s reaction rate.

With this modification, the propensity function seems to allow inter-cell reactions. However, a
careful reader can notice that this propensity function is still not ideal since in case of large cell size
it allows for particles with big separation to react. To resolve this issue, we require furthermore
that even if a pair of particles are chosen to be reaction candidates, they still need to be within
a reactive separation for the reaction to take place. In case where the cell size is larger than the
particle’s typical radius, where almost all realistic cases fall into this category, the number of binary
reactions declines if we use the same propensity function proposed in last paragraph. Therefore,
to compensate for this difference and make the reaction rate in S-RBD consistent with that in
S-BD-RME, we need to find the normalizing constant.

Now, we have the propensity functions for each cell. However, as mentioned earlier, we cannot
process reactions cell by cell and must perform the reactions with respect to the global clock. To
achieve this goal, we create an event queue and store the list of time for occurence of reactions in
all cells in ascendending order. In this way, we can always visit the cell where the first reaction
takes place, take appropriate actions, and update the corresponding cell and its negihboring cells’
status, propensity functions, and positions in event queue.
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In the next section, we will present a detailed description of the implementation and also provide
some psuedocode.

3.6. Implementation of S-RBD. In this section, we will demonstrate the S-RBD process. Note
that there are other alternatives in implementation, which we do not use for memory or time
reasons but may be useful in certain circumstances. We will start with a discussion of the major
data structures and setups, then shift to initialization of simulation, and then illustrate the diffusion
and reaction processes in each timestep.

3.6.1. Setup. Particles are central building blocks of our algorithm. In implementation, we define
a particle to be a data structure that carries position and species information. For the position,
regardless of the dimension d, we always assume that a particle has 3-dimensional position. In cases
where d < 3, a particle’s position in the extra dimensions will always be default to 0. The reason
we keep a 3-dimensional position is for consistency and simplicity in code.

For the reaction part, we need a way to find particles in any given cell. The way we achieve this goal
in S-BD-RME is to build a local recorder matrix. However, for S-RBD, a local recorder matrix is
insufficient because of inter-cell reactions. The memory cost for using a global recorder matrix can
be huge. Instead, we chose to use linked list, which is less efficient in time but much more efficient in
memory. For our purpose, a singly linked list is sufficient. Alternatively, one can also use a doubly
linked list, which speeds up some part of searching but increases the cost of maintaining the data.
Specifically, we use a linked list called “nextParticle” and another array called “firstParticle”. We
used firstParticle to find the first particle of a certain species in a given cell and then for particle
pi, nextParticle(pi) = pj if pj is the next particle in the same cell with the same species and
nextParticle(pi) = 0 if pi is the last particle in that cell with the same species.

For our event queue, we used a min-heap to store the list of next occurence times and index for
each cell. We order the heap by the time for next occurence in a ascendening way.

3.6.2. Algorithm Outline. Here we give an outline for the simulation.

(1) Initialize the box and fill cells with particles. Set clock to 0.

(2) Call the diffusion module for dt/2.

(3) Call the reaction module for dt.

(4) Call the diffusion module for dt/2.

(5) Clean data that are no longer useful.

(6) Increment the time by dt. If the new time is larger than desired simulation time, stop the
simulation; otherwise, go to step 2.

In the following, we will give an outline for initialization, diffusion, and reaction processes.

Simulation Part I: Initialization
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(1) Initialize simulation parameters such as the calculating size of a reaction cell or a sample
cell, the mass diffusivities for all species, and classifying reaction types.

(2) Create the box and all necessary data structure.

(3) Use the number densities for all species as the mean of Poisson distribution to generate
Poisson random numbers and fill the sample cells with particles accordingly.

Simulation Part II: Diffusion

(1) For each particle, generate a standard normal random vector of dimension d. The displace-

ment for the particle is this vector multiplied by
√

2Dt termwise.

(2) Handle boundary conditions if necessary.

Simulation Part III: Reaction

(1) Set the clock to 0.

(2) Reset th which is used as an event queue. Then, go through the list of cells and calculate
their S-RBD propensity functions. Generate corresponding stochastic occurence times for
all cells.

(3) Check if the first event in the queue has a time exceeding dt. If so, stop the module.

(4) Choose the first event in the queue and go to the corresponding cell. Calculate its propensity
functions and decide the reaction type for the next reaction.

(5) If this reaction is not binary, process the reaction immediately. Otherwise, first choose two
random particles of proper species, with the first one from our central cell and the second
one from a neighboring (including the central one) cell. If these two particles are within
the reaction radius, process the reaction. Otherwise, this reaction is invalid and we do not
change the particles.

(6) If a reaction takes place in some reaction cells the previous step, erase the first event from
the queue and update the occurence times for all reaction cells whose propensity functions
change. Also, update the clock time. Otherwise, update the queue only for the first event’s
corresponding cell. Go to step 3.

4. Numerical Test

In this section we show the result of numerical tests.
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4.1. Selection Test. This test checks if certain candidates are chosen uniformly to be reaction
candidates. Specifically, we test (1) for birth reaction, if each cell is chosen uniformly; (2) for
annihilation reaction, if each particle is chosen uniformly, (3) for binary reactions, if each overlapping
pair is chosen uniformly.

In this test, we used an input file that contains four reactions:

• ∅ → A

• A→ ∅

• A+B → ∅

• A+A→ ∅

We included all four reactions to make sure they are not affecting each other. There is no diffusion.
For test, we used two criteria: (1) visual check of the plot to see if it looks uniform; (2) Pearson’s
Chi-square test to see if the data is close to uniform distribution.

The following figures are the bar plots of the four reactions in order as listed above. The horizontal
axis is the index of each candidate, which may be a cell, a particle, or an overlapping pair. The
vertical axis shows the number of observation. The horizontal red line is the mean. The two green
lines are mean plus/minus two square root of mean. Hence, around 95% of the bars should lie inside
the two green lines.

As for the result of the statistical test, we used a significance level of 0.05. The corresponding Chi
square critical values are 77.9305, 340.3278, 62.8296, 47.3999, all higher than the Chi square statistic
obtained from data. The visual check and the Chi square test thus suggest that the selection is
very likely to be uniform.

4.2. Position Test. This test checks if position is generated uniformly within the reactive radius.
The reactions are C → A + B and ∅ → A + B. In this test, we simulated both 2D and 3D
input, processing two reactions together (without diffusion, without real reactions). We want to
check if (1) for the first reaction, one particle is born in C’s position and the other one is uniformly
distributed inside the circle of radius rA+rB centered at C; (2) for the second reaction, one particle
is uniformly distributed in the domain and the other is uniformly distributed inside the circle of
radius rA + rB centered at the first particle.

For this test, we used two criterions: (a) visually check if the plotted points fill the circle uniformly;
(b) plot the probability density function and compare it with the percentage histogram. For (a),
plotting the points inside a 3D ball does not convey enough information since the detail inside the
ball cannot be seen clearly. For (b), I first collected the first n sets of data, where n was chosen to
be around 40,000 because plotting too many data points is too slow in Matlab and 40, 000 provides
sufficient accuracy already. For 2D, when projected to the x-dimension, the theoretical probability
density function is given by

p(x) =
2
√
r2 − x2
A

(22)

where A is the area of the circle, r = rA + rB . For 3D, it should be

p(x) =
π(r2 − x2)

V
(23)
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(a) birth (b) annihilation

(c) pair selection: A+B (d) pair selection: A+A

Figure 1. Selection Test

where V is the volume.

In particular, we manually created a particle C near boundary so we can test if boundary condition
works. We checked all plots and they worked well. Three sample plots are also attached in the
below, where they correspond to 2D uniform circle visual check, 2D PDF-histogram comparison,
and 3D PDF-histogram comparison, in order.

4.3. Rate Test. This test checks if reaction rate approximates theoretical prediction. Specifically,
we allowed diffusion but no real reactions. This test consists of two reactions:

• A+B → ∅

• A+A→ ∅

We start with a certain number of different particles. In each timestep, a particle diffuses a fraction
(on average, 0.15-0.3) of cell length (for convenience, I set the cells to be cubic). We record the
number of reactions in each step and calculate the relative error by using theoretical prediction.
Suppose the input rate for a binary reaction with reactants A and B is r, then the corresponding
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(a) 2D Uniform Circle (b) 2D PDF-Histogram Comparison

(c) 3D PDF-Histogram Comparison

Figure 2. Position Test

real rates for RDME and IRDME models are:

λRDME = r ∗ c ∗ /V
λIRDME = r ∗ c ∗ VAB/V

(24)

where c = NA ∗NB if A 6= B, with NA, NB being the number of A,B particles in the domain and
c = NA ∗ (NA − 1) if A = B, V is the volume of the box, and VAB is the volume of the ball with
radius equal to the sum of radius of A and B.

In this test, we let the particles diffuse and process fake reactions. The recorded reaction counts
are then used to compare with theoretical values. In the following, we attach several plots, where
values of horizontal axis correspond to real time and values of vertical axis correspond to relative
error, given by (CR − CE)/CE , where CR is the reaction count generated by the code and CE is
the theoretical count calculated separately. In addition, the red line is theoretical mean and the
two green lines are plus/minus 2/3 sqrt(mean), respectively. The first two plots use 2 sqrt(mean)
and the last two use 3 sqrt(mean).
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(a) 2D A + A → ∅, 95% Confidence (b) 2D A + B → ∅, 95% Confidence

(c) 2D A + A → ∅, 99.7% Confidence (d) 2D A + B → ∅, 99.7% Confidence

Figure 3. Rate Test

4.4. Test on BPM Model. Originally developed in [4] and [3], the Baras-Pearson-Mansour model
is a variation of the Gray-Scott model (see [11] and [12]). Unlike the Gray-Scott model, the BPM
model does not include trimolecular reactions. The BPM model assumes six different species and
the following reaction network:

(1) U +W ⇔ V +W

(2) 2V ⇔W + S

(3) V ⇔ S

(4) U ⇔ Uf

(5) V ⇔ Vf

The BPM model can exhibit limit cycles and bimodal states when provided with appropriate
initial and boundary conditions. In the following, we compare the simulation results of the BPM
model with four different methods: deterministic approach, fluctuating hydrodynamics, S-BD-RME,
and S-RBD. In particular, for the fluctuating hydrodynamics, we used multinomial diffusion and
Gillespie’s SSA with a splitting scheme.

Firstly we compare the time until occurence of the Turing pattern.
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(a) 2D Turing Pattern, Limit Cycle (b) 2D Turing Pattern, Bimodal

Figure 4. Turing Pattern in 2 Dimensions

(a) 2D BPM, Limit Cycle
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(b) 2D BPM, Bimodal
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Figure 5. Total Number of U Particles

In the two figures above, the top left results from deterministic approach, the top right results
from fluctuating hydrodynamics, the bottom left results from S-BD-RME, and the bottom right
results from S-RBD. As can be seen from the figure, there is a qualitative difference between the
deterministic approach and the other three approaches. However, the quantitative difference is
unclear from these figures along.

Starting from uniform configurations for both limit cycle and bimodal states, we generate the
following results for the four methods, where the y−axis represents the total number of U -particles.

We chose a fitting formula,

y = (1− tanh((x− a0)/a2)) ∗ (a1 ∗ sin(a3 ∗ x+ a4) + a5) + a6 (25)
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Figure 6. 2D BPM Coeffcients Fitting, Limit Cycle

The fitted values for the limit cycle case is,

For a2, one observes some statistical differences. We believe that there are quantitative differ-
ence among these three stochastic methods and will investigate the underlying reasons with more
numerical tests.

5. Future Work

At this point, we have finished a series of implementation and numerical tests. There are some more
questions concerning the difference among fluctuating hydrodynamics, S-BD-RME, and S-RBD to
be answered. Moreover, we would like to provide a theoretical reason to explain the difference and
understand the behaviors of these three methods better. The future work will be summarized on
our ongoing research paper.
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