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Abstract

In this thesis, we look at chip-firing on M-matrices and study the corresponding top-
pling ideal, generalizing results from [25]. We introduce a class of matrix extensions of
M-matrices and show that burning configurations give Gröbner bases of the toppling
ideal. Finally, we look at the McKay-Cartan matrix of a faithful complex represen-
tation of the cyclic group. We use combinatorial tools to obtain the minimal free
resolution of the homogenized toppling ideal when the matrix has no zero entries and
we conclude that the ungraded Betti numbers are the Stirling numbers of the second
kind.





Introduction

Given an undirected graph G, we can place chips on its vertices and play the chip-
firing game. The way chips are placed is called a configuration. The chips are
allowed to disperse along the edges according to certain rules. For example, consider
the diamond graph shown in Figure 1. We start with putting four chips on v2 and
one on v1. The pile of • next to each vertex denotes the chips being placed on that
vertex. We then fire one chip along each edge starting at v2 and end up with a new
configuration having two chips on v1 and one on v2, v3, and v4.
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Figure 1: A chip-firing on the diamond graph.

Chip-firing on a graph itself arose as a game worth of studying ([4], [5]). Apart
from this, it has arisen naturally under different names in a wide variety of areas of
mathematics: as the group of components in arithmetic geometry [18], the Abelian
Sandpile Model in statistical physics [1], in probability theory [17], and in pattern
formulation [16]. In combinatorics, it is connected to the theory of parking functions
[27]. In algebraic geometry, chip-firing is envisioned as a discrete version of divisor
theory on an algebraic curve or Riemann surface [2].

The mysterious firing rules on the graph are encoded in a matrix called the Lapla-
cian of a graph as an analogue of the continuous Laplacian operator. In [12] and [14],
it is shown that the chip-firing game can be extended to a larger class of matrices
called M-matrices that has already been used in the study of partial differential equa-
tions [26]. In [3] and [13], it is shown that the McKay-Cartan matrix of a faithful
complex representation of a finite group is an M-matrix. This naturally brings the
language of chip-firing to representation theory.

From the point of view of commutative algebra, chip-firing can be interpreted as
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polynomial division [7]. For example, in the diamond graph, we label the vertices
as indeterminates x, y, z, and w instead of v1, v2, v3, v4 as shown in Figure 2. A
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Figure 2: Chip-firing and division by binomial.

configuration of chips gives us a monomial with the exponent of each indeterminate
given by the number of chips put on the vertex. The configuration where there are
four chips on v2 and one on v1 corresponds to the monomial xy4. Firing chips at v2

results in a new configuration, which corresponds to the remainder of dividing xy4 by
the binomial y3−xzw: xy4−xy(y3−xzw) = x2yzw. The binomial y3−xzw is called
a toppling polynomial and corresponds to the firing rule of v2 losing three chips and
each of v1, v3, v4 gaining one.

The image of the Laplacian of a graph consists of all possible firings of vertices.
These firings may be encoded as binomials, as above, and together they form what
is known as the toppling ideal of the graph in a polynomial ring. These ideals were
introduced in [7] and [25]. It is then natural to find the minimal free resolution of the
ideal and attach to it algebraic invariants called Betti numbers. In [29], John Wilmes
began to describe the connection between the combinatorics of the graph and the
Betti numbers of the toppling ideal. The project was further developed in [19], [15],
and [20].

The goal of this thesis is to develop the theory in [25] and to use it to study the
toppling ideals associated with M-matrices. To see the theory in action, we look at
a faithful complex representation of the cyclic group that has no zero entries in its
McKay-Cartan matrix. We use the combinatorial tools introduced in [24] and [11]
and show that the ungraded Betti numbers of the corresponding lattice ideal are the
Stirling numbers of the second kind. Some directions for future work include: What
are the graded Betti numbers? What happens when there are entries being zero in
the McKay-Cartan matrix? How can we apply the results to representations of other
finite groups like Abelian groups and symmetric groups?

The first two sections of Chapter 1 generalize the chip-firing language to M-
matrices and introduce a class of matrices which extends a given M-matrix through
left and right burning scripts. The last section recalls the extended McKay-Cartan
matrix and the McKay-Cartan matrix of a faithful complex representation of a finite
group as presented in [3]. In Proposition 1.3.3, we show that the extended matrix is
a special case of our more general construction.
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Chapter 2 studies the lattice ideals corresponding to a given M-matrix and its
extension and generalizes relevant results from [25]. We introduce a weighted sand-
pile monomial ordering and give a Gröbner basis of the lattice ideal corresponding to
the extended M-matrix in Corollary 2.2.5. The last section follows [11] and [24] and
introduces the Scarf complexes of monomial ideals and lattice ideals. The Scarf com-
plex provides a combinatorial approach to finding minimal free resolutions of generic
lattice ideals from a free resolution of its initial ideal, as explained in Theorem 2.3.23
and Corollary 2.3.24.

Chapter 3 looks at faithful complex representations of the cyclic group. The
extended McKay-Cartan matrices of these representations are the full Laplacian of
some directed multigraph. We work only with the case when the graph is saturated,
i.e., when there are edges between each ordered pair of its vertices. Following [27] and
[21], Lemma 3.3.6 shows that the Scarf complex of the initial ideal of the lattice ideal
corresponding to the extended McKay-Cartan matrix is the barycentric subdivision
of the simplex of one dimension lower. Theorem 3.3.7 then gives the minimal free
resolution of the lattice ideal, and we conclude that the ungraded Betti numbers are
the Stirling numbers of the second kind.





Chapter 1

Chip-firing on M-Matrices

1.1 Chip-Firing on a Graph

Let G = (Ṽ , E) be a directed weighted graph with vertices Ṽ = {v1, . . . , vn+1} and

a weight function wt: Ṽ × Ṽ → N. For simplicity, suppose there is no loop in G.
The edges form a multiset E with each pair of ordered vertices (vi, vj) showing up

wt(vi, vj) times. The (full) Laplacian of G is the matrix L̃ ∈ M(n+1)×(n+1)(Z) with
each entry defined as:

L̃i,j =

{
−wt(vj, vi) if i 6= j;∑n+1
j=1 wt(vj, vi) otherwise.

Let ZṼ denote the free Z-module with generators Ṽ . A divisor D on G is an ele-
ment of this free module, with D =

∑
v∈Ṽ D(v)v, D(v) ∈ Z. There is an isomorphism

of free Z-modules, ZṼ ∼= Zn+1, sending vi to the i-th standard basis vector of Zn+1.
Thus, we can identify divisors on G with vectors. The degree of D is the dot product

with the all 1’s vector, deg(D)
def
= ~1 · D ∈ Z. We say that two divisors D and D′

are linearly equivalent if D − D′ ∈ imZ(L̃). One can check that linearly equivalent
divisors have the same degree.

Fixing a vertex vi ∈ Ṽ , we obtain the reduced Laplacian of G with respect to vi, a
matrix L ∈Mn×n(Z), by removing the row and column corresponding to the entry L̃i,i
in L̃. Since we can always relabel the vertices, we may assume that the reduced
Laplacian is always with respect to the last vertex vn+1. Hence, L ∈ Mn×n(Z) is L̃
with the last row and last column removed.

Denote the vertex set Ṽ \{vn+1} as V . Let ZV be the free Z-module with gen-
erators V . A chip configuration on G is a linear combination of vertices c ∈ ZV ,
i.e., c =

∑n
i=1 civi with ci ∈ Z. Similarly, there is an isomorphism of free Z-

modules ZV ∼= Zn given by sending vi to the i-th standard basis element of Zn.
Then any configuration can be denoted as a column vector. A configuration c is
nonnegative if ci ≥ 0 for all i.
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Given a nonnegative configuration c on G, we can think of it as putting ci chips
on the vertex vi for each i. A firing at vi in the configuration c results in a new
configuration c′ = c − Lvi. One can check that firing a sequence of vertices in any
order results in the same configuration. The rules of vertices losing and gaining chips
through firing are encoded in the columns of the reduced Laplacian. We see that the
last vertex vn+1 will never fire and that chips disappear along edges leading into vn+1.

In this way, we may consider the diagonal entries of L as the costs of firing. When
there are too many chips on a vertex, the chips will topple and redistribute themselves
amongst vertices along adjacent edges. If ci ≥ Li,i for some i, then we say c is unstable
at the vertex vi, and the firing at vi in c is legal, meaning c−Lvi is still nonnegative.
If there is no unstable vertex in c, then c is a stable configuration. We say a vertex
is globally reachable if there is a directed path from every vertex to it. If vn+1 is
globally reachable, in which case we call vn+1 the sink vertex, then through firing
unstable vertices in c and subsequent configurations, we will reach at a unique stable
configuration on G [25, Section 2]. Such a process is called stabilization.

Linear equivalence defines an equivalence relation on the set of divisors, and firing
at vertices defines an equivalence relation on the set of chip configurations. For
Eulerian multigraphs, we have an isomorphism [8, Chapter 12]:

Zn+1/ imZ(L̃) ∼= Z⊕ (Zn/ imZ(L)).

This gives us motivation to study divisors on a graph through chip-firing.

Example 1.1.1. Consider the following directed graph G drawn in Figure 1.1, with
vertices labeled from v1 to v4. We use edges without arrows to indicate that there is
an edge in both directions connecting the two vertices. Also, edges with multiplicities
greater than 1 are labeled with their multiplicities. The full Laplacian L̃ and the

v1

v2 v3

v4

2

Figure 1.1: The graph G.

reduced Laplacian L of G are:

L̃ =


2 −1 0 0
−1 2 −2 0
−1 0 3 0
0 −1 −1 0

 , L =

 2 −1 0
−1 2 −2
−1 0 3

 .

Start with the configuration c = (2, 0, 2), i.e., put 2 chips on both v1 and v3. The
stabilization of c goes as shown below, where the label on the arrow indicates the
vertex at which a legal firing occurred:

(2, 0, 2)
v1−→ (0, 1, 3)

v3−→ (0, 3, 0)
v2−→ (1, 1, 0).
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1.2 M-Matrices and Extended Matrices

The reduced Laplacian of a graph is a special case of a larger class of matrices, called
M-matrices. We may generalize the chip-firing language to this class as well.

First, we introduce some notation: We use ~0 and ~1 to denote the vector with
its entries being all 0 and the vector with its entries being all 1 of appropriate sizes.
Given c ∈ Zn, we say c ≥ ~0 if ci ≥ 0 for all i. Also, we say c 
 ~0 if ci ≥ 0 for all i
and if c 6= ~0. Finally, we say c > ~0 if ci > 0 for all i. Note that this is equivalent to
say that c ≥ ~1.

1.2.1 M-matrices

Definition 1.2.1 (Z-matrix, M-matrix). For a matrix A ∈ Mn×n(Z), we say A is a
Z-matrix if ai,j ≤ 0 for 1 ≤ i, j ≤ n, i 6= j. A Z-matrix A is an M-matrix if it can be
written as sIn − B for some non-negative matrix B, where In is the n × n identity
matrix and s is larger than the absolute values of all eigenvalues of B.

Given a Z-matrix A ∈Mn×n(Z), we can associate a directed weighted graph GA to
it. The vertices of GA are labeled v1, . . . , vn, and the weights of edges are determined
by wt(vi, vj) = −Aj,i for any pair of distinct vertices vi, vj. It also makes sense to
talk about chip-firing on the associated graph GA: the firing costs are the diagonal
entries of A, and the firing rules are given by the columns of A.

Example 1.2.2. Let us see an example of the graph associated to a Z-matrix and
see how the language of chip-firing is extended to Z-matrices. Consider

A =

 5 −3 −2
−2 5 −2
−2 −3 4

 .

The graph associated to A, GA, is pictured in Figure 1.2. Note that the costs of firing
vertices, i.e., the diagonal entries of A, cannot be inferred from the graph. Start with

v1

v2 v3

2
3

3

2

2

Figure 1.2: GA, the graph associated to A.

the configuration c = (1, 3, 5), i.e., put 1 chip on v1, 3 on v2, and 5 on v3. A process
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of stabilizing c via legal firings looks like this:

(1, 3, 5)
v3−→ (3, 5, 1)

v2−→ (6, 0, 4)
v1−→ (1, 2, 6)

v3−→ (3, 4, 2).

Actually, all configurations on A are guaranteed to stabilize since A is an M-matrix,
as will be shown in Theorem 1.2.3 (check that A is inverse-positive).

Given a Z-matrix A, we say that A is avalanche-finite if every nonnegative con-
figuration on GA stabilizes. It is well-known in the chip-firing literature (see [14], for
example) that the reduced Laplacian of a graph is avalanche-finite. In fact, avalanche-
finiteness characterizes non-singular M-matrices.

Theorem 1.2.3 (Characterizations of M-Matrices. [14], [26]). Let A ∈ Mn×n(Z) be
a Z-matrix. Then the following are equivalent:

1. A is a non-singular M-matrix.

2. The transpose A> of A is a non-singular M-matrix.

3. A is inverse-positive, that is, A−1 exists and all entries of A−1 are nonnegative.

4. A is avalanche-finite.

5. There exists u > ~0 with Au 
 ~0 such that if (Au)i0 = 0 for some i0, then
there exist indices 1 ≤ i1, . . . , ir ≤ n with aik,ik+1

6= 0 for 0 ≤ k ≤ r − 1 and
(Au)ir > 0.

Hereon, when we speak about configurations on a graph G, we assume that G is
the graph associated to some non-singular integer M-matrix A ∈ Mn×n(Z) and that
G has vertices V = {v1, . . . , vn}.

1.2.2 Burning configurations and the extended matrix

Now we introduce a type of configuration and use it to form an extended matrix
for a non-singular M-matrix A, so that the relationship between A and the extended
matrix is analogous to that of the reduced Laplacian of a graph and its full Laplacian.

For a configuration c on a graph G, we define its support to be the set of vertices vi
such that ci > 0 and denote it as supp(c).

Definition 1.2.4 (Burning configurations, [25, Definition 2.26]). A nonnegative con-
figuration b is a right burning configuration of A if it has the following properties:

1. b ∈ imZ(A), b 6= ~0;

2. for all v ∈ V , there exists a directed path to v from some element of supp(b).
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If b is a right burning configuration, we call σb = A−1b the script for b. For σ > 0, if Aσ
is a right burning configuration, we call σ a right burning script of A. If b′> is a right
burning configuration for A> with script σ′>, then b′ is a left burning configuration
of A, and σ′ is a left burning script of A.

Burning configurations exist by the last characterization of non-singular M-matrices
in Theorem 1.2.3, and there is a unique burning configuration with the script be-
ing minimal as shown in [22, Theorem 1.38]. To find this configuration, we start
with u = ~1 and look at Au. If (Au)i < 0 for some i, then we replace ui by ui + 1 and
repeat the process.

Proposition 1.2.5. Let A ∈ Mn×n(Z) be a non-singular M-matrix. Let σ ∈ Nn be
such that b = Aσ 
 ~0. Then b is a right burning configuration if and only if σ ≥ ~1.

Proof. We will prove both directions by contradiction.

(⇒) Suppose that b is a burning configuration, and suppose for contradiction
that σi = 0 for some i. Let us look at bi. Since Ai,j ≤ 0 for j 6= i, we have bi ≤ 0.
But b is a burning configuration, so bi = 0. This implies that Ai,j = 0 for all j 6= i,
i.e., there is no edge with tail vi. Thus, we have vi /∈ supp(b) and at the same time, vi
is not reachable by supp(b). We can conclude that b is not a burning configuration,
which gives us the contradiction.

(⇐) Suppose that σ ≥ ~1, and suppose for contradiction that there are some
vertices not reachable by supp(b). If there is only one vertex vi not reachable by
supp(b), then there is no edge with tail vi, i.e., Ai,j = 0 for all j 6= i. But since σ ≥ ~1,
we have bi = Ai,i > 0. This means that vi ∈ supp(b), which contradicts with the
assumption.

Now let T denote the set of vertices not reachable by supp(b), |T | = k. From the
previous paragraph, we know that 1 < k < n. Similarly, there is no edge with its
head in V \T and its tail in T , i.e., Ai,j = 0 for all vi ∈ T, vj ∈ V \T . Therefore we
can rearrange A into the form

A =

(
B 0
C D

)
,

where B is a k×k-matrix corresponding to the k vertices in T , D is a (n−k)×(n−k)-
matrix, and 0 is the k × (n − k) zero matrix. Since all the vertices in T are not in
supp(b), we have (

B 0
)
σ = ~0.

This means that det(B) = 0, and det(A) = det(B) · det(D) = 0. But A is non-
singular, so we have a contradiction.

Definition 1.2.6. Let A ∈ Mn×n be a non-singular M-matrix, and let u, v ∈ Nn be
two column vectors such that u is a right burning script of A and w a left burning
script of A. Define the (u,w)-extension of A, a Z-matrix Ã ∈ M(n+1)×(n+1)(Z) as
follows:

Ã
def
=

(
A −Au

−w>A w>Au

)
.
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We see that Ã has left kernel spanned by (w, 1), and right kernel spanned by (u, 1).
Furthermore, the graph GA is the subgraph of GÃ obtained from removing vn+1.

Remark 1.2.7. This construction was introduced in [6, Section 7], where the authors
studied the linear systems on graphs and generalized their results to M-matrices.

Remark 1.2.8. If A is the reduced Laplacian of an undirected graph G, then the
(~1, ~1)-extension of A is its full Laplacian. However, if G is directed, then it is not
always possible to recover the full Laplacian of G by extending A using the above
construction. Although setting w = ~1 gives the last row of the full Laplacian (except
for the last entry), it is not guaranteed that the last column of the full Laplacian
(except for the last entry) lies in imZ(A).

For example, let us return to Figure 1.1, with the full and the reduced Laplacians
listed below:

L̃ =


2 −1 0 0
−1 2 −2 0
−1 0 3 0
0 −1 −1 0

 , L =

 2 −1 0
−1 2 −2
−1 0 3

 .

The full Laplacian has the last column being all zero. But note that since the reduced
Laplacian L is nonsingular, it has trivial kernel. Therefore, there is no such u ≥ ~1
such that Lu = ~0 ∈ Nn.

We can also talk about divisors on GÃ: A divisor D on GÃ is an element of the

free module ZṼ , where Ṽ = V ∪ {vn+1}, and we can consider divisors as column
vectors. The degree of a divisor D is the dot product (w, 1) · D ∈ Z. We say two

divisors on GÃ, D and D′ are linearly equivalent if D−D′ ∈ imZ(Ã). One can check
that the degree is an invariant under this equivalence relation, exactly because the
left kernel of Ã is spanned by (w, 1).

Example 1.2.9. Let us recall Example 1.2.2, where we looked at the graph associated
to an M-matrix. Here we look at its extended matrix using its minimal left and right
burning scripts. Let

A =

 5 −3 −2
−2 5 −2
−2 −3 4

 .

Its minimal left burning script is w = (6, 8, 7), and the minimal right burning script
is u = (7, 6, 8). Thus, the (u,w)-extension of A is shown below, and the graphs

associated to A and Ã are pictured in Figure 1.3.

Ã =


5 −3 −2 −1
−2 5 −2 0
−2 −3 4 0
0 −1 0 6

 .
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v1
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3
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2
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2

Figure 1.3: Graphs associated to A and Ã.

We end this section by proving another nice property of the extended matrix.

Proposition 1.2.10. Let A ∈ Mn×n(Z) be a non-singular M-matrix, and let u,w

be such that we can form Ã, the (u,w)-extension of A. Then in the graph GÃ, the
vertex vn+1 is a sink vertex.

Proof. Recall that vn+1 being a sink vertex means that for each 1 ≤ i ≤ n, there is a
directed path from vi to vn+1. Suppose for contradiction that there is some vi that has
no directed path to vn+1. If this is the only vertex with this property, then Aj,i = 0 for
all j 6= i, and the i-th entry of wTA will always be positive. This means that in GÃ,
we have an edge going from vi to vn+1, which contradicts the assumption. Therefore,
there is some vj such that: 1) i 6= j, 2) Aj,i 6= 0, and 3) there is no directed path
going from vj to vn+1.

We repeat this process on all such vj and continue until we cannot reach any new
vertices. Let T denote the set of vertices reached by this process, and let k = |T |.
Note that k < n since w>A 6= ~0. Also note that there is no edge going from vertices
in T to vertices in V \T . Thus we may rearrange A into the form

A =

(
B C
0 D

)
,

where B is a k×k matrix corresponding to the k vertices in T , D is a (n−k)×(n−k)
matrix, and 0 is the (n− k)× k zero matrix.

All vertices in T do not have a directed path to vn+1, and in particular, there is
no edge going from vertices in T to vn+1. Therefore, we have that

w>
(
B
0

)
= ~0.

That is to say, some nontrivial linear combination of the rows of B gives us ~0. Thus,
det(B) = 0. Using the rearrangement of A, we have det(A) = det(B) · det(D) = 0.
This contradicts the assumption that A is non-singular. Thus, there must be a di-
rected path from vi to vn+1, making vn+1 a sink vertex.
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1.3 McKay-Cartan Matrix of a Representation

This section primarily follows [3, Section 5] and [13].

Definition 1.3.1 (McKay-Cartan Matrix). Let G be a finite group. Let γ : G →
GLm(C) be a complex representation of G of dimension m and denote its character
by χγ : G→ C. Let ρ1, . . . , ρn+1 denote all the inequivalent irreducible complex repre-
sentations of G, with ρn+1 being the trivial representation. Use χ1 . . . , χn+1 : G→ C
to denote their characters. For 1 ≤ i ≤ n+ 1, we can decompose each product χγ ·χi
as a sum of irreducible representations, i.e.,

χγ · χi =
n+1∑
j=1

mi,jχj.

Record the coefficients as the matrix M = (mi,j) ∈ M(n+1)×(n+1)(Z). Define the

extended McKay-Cartan matrix as C̃
def
= mIn+1 − M>, where In+1 is the identity

matrix of size n + 1, and define the McKay-Cartan matrix as the submatrix C ∈
Mn×n(Z) of C̃ by removing the row and column corresponding to χn+1, i.e., C is the
submatrix obtained by removing the last row and the last column.

Theorem 1.3.2 ([3, Theorem 1.2]). If a complex representation of a finite group is
faithful, then its McKay-Cartan matrix is avalanche-finite.

The McKay quiver of γ is the directed graph that has n vertices that correspond
to χ1, . . . , χn and has mi,j edges from χi to χj for any pair of i, j. We can perform
chip-firing on these quivers, with firing rules encoded in the columns of C.

Proposition 1.3.3 ([3, Proposition 5.6, Proposition 5.14]). Following the notation
as above, let

d = (dim(ρ1), . . . , dim(ρn)).

Then:

1. The vector (d, 1) spans both the right and left kernels of C̃;

2. d is both a right and a left burning script for C;

3. The (d, d)-extension of C is C̃.

Proof. The first part is [13, Proposition 8]. In [3, Proposition 5.14], it has been shown
that d is a right burning script for C. The last part follows through a computation
using these two results and the definition of the extended matrix. Finally, d is a left
burning configuration by Proposition 1.2.5.

Thus, we focus on a faithful representation γ : G ↪→ GLm(C), in which case
its McKay-Cartan matrix C is a non-singular M-matrix, and we consider its (d, d)-
extension, where d = (dim(ρ1), . . . , dim(ρn)).
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Remark 1.3.4. It is often seen in the literature that the trivial representation is de-
noted as ρ0 and appears first amongst the irreducible representations. We decide to
put it in the end so that the lattice ideals associated to imZ(C) and imZ(C̃) behave
well under the monomial ordering we choose. It is also common in the literature
that the extended McKay-Cartan matrix is defined as mIn+1−M , where here we are
taking its transpose in order to use the columns as firing rules on the McKay quiver.

Example 1.3.5. Let C3 denote the cyclic group of order 3 with generator g. It
has three inequivalent irreducible complex representations ρ1, ρ2, ρ3 given by sending
the generator of C3 to e2πi/3, e4πi/3, and 1 respectively. Let γ : C3 → GL3(C) be the
representation that sends the generator to the permutation matrix of (1 2 3) as shown
below:

g 7→

0 0 1
1 0 0
0 1 0

 ,

and let χγ denote its character. The character table of C3 along with γ is shown in
Table 1.1.

e g g2

ρ1 1 e2πi/3 e4πi/3

ρ2 1 e4πi/3 e2πi/3

ρ3 1 1 1
γ 3 0 0

Table 1.1: Character table of C3.

Now we form the extended McKay-Cartan matrix C̃ for γ. First we decompose γ
into γ ∼= ρ1 ⊕ ρ2 ⊕ ρ3. Now note that χγ · χ1 = χγ · χ2 = χγ · χ3 = χ1 + χ2 + χ3. So:

M =

1 1 1
1 1 1
1 1 1

 , C̃ = 3I3 −M =

 2 −1 −1
−1 2 −1
−1 −1 2

 , C =

(
2 −1
−1 2

)
.

The McKay quiver of γ is shown in Figure 1.4. The dimensions of all irreducible
representations of C3 are 1, which gives us d = (1, 1). The corresponding configura-
tions Cd and d>C are the same, both being (1, 1).

v1 v2

Figure 1.4: The McKay quiver of γ.

Example 1.3.6. Let S4 denote the symmetric group on 4 letters. The four nontrivial
irreducible representations have characters as shown in Table 1.2, where ρ1 is the sign
representation, ρ3 is the standard representation, ρ4 is the tensor product ρ1 ⊗ ρ3,
and ρ2 is the pullback of the standard representation of S3.
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e (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)
χ1 1 −1 1 −1 1
χ2 2 0 −1 0 2
χ3 3 1 0 −1 −1
χ4 3 −1 0 1 −1
χ5 1 1 1 1 1

Table 1.2: Character table of S4.

Let γ be the standard representation ρ3. The matrices M , C̃, and C are:

M =


0 0 0 1 0
0 0 1 1 0
0 1 1 1 1
1 1 1 1 0
0 0 1 0 0

 , C̃ =


3 0 0 −1 0
0 3 −1 −1 0
0 −1 2 −1 −1
−1 −1 −1 2 0
0 0 −1 0 3

 , C =


3 0 0 −1
0 3 −1 −1
0 −1 2 −1
−1 −1 −1 2

 .

The McKay quiver for γ is shown in Figure 1.5. We have d = (1, 2, 3, 3), and the
corresponding burning configurations are both (0, 0, 1, 0).

v1

v2

v3

v4

Figure 1.5: The McKay quiver of γ.



Chapter 2

M-Matrices and Lattice Ideals

2.1 Lattice Ideal from a Non-singular M-Matrix

First we introduce some notation. Let R = C[x1, . . . , xn] and S = C[x1, . . . , xn+1],
where x1, . . . , xn+1 are indeterminates. For u ∈ Nn, we use xu to denote the monomial

xu =
n∏
i=1

xuii ∈ R.

For v ∈ Nn+1, we use x̃v to denote the monomial

x̃v =
n+1∏
i=1

xvii ∈ S.

Let u ∈ Zn. Define u+, u− ∈ Nn as follows:

u+
i =

{
ui if ui ≥ 0

0 otherwise
, and u−i =

{
−ui if ui ≤ 0

0 otherwise
.

One can see that u = u+ − u−.

Definition 2.1.1 (Lattice Ideal). A lattice L ⊆ Zn is a submodule of Zn. It can
be written as the image of some integer matrix L with n rows, i.e., L ∼= imZ(L). In
this case, L is generated by the columns of L. The lattice ideal associated to L, IL,
or I(L), is the binomial ideal defined as

I(L) = IL
def
= 〈xu − xv | u, v ∈ Nn, u = v mod L〉 ⊆ R.

Let IL denote the ideal generated by binomials xc
+−xc− , where c ranges through the

columns of L.

Lemma 2.1.2 ([11, Lemma 7.6]). Using the notation above, the lattice ideal IL is
computed from IL by taking the saturation with respect to the product of all the vari-
ables:

IL = (IL : 〈x1 · · ·xn〉∞) ,

which by definition is the ideal {f ∈ R | (x1 · · ·xn)mf ∈ IL for some m > 0}.
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Saturation of an ideal is hard to compute. However, when L is a non-singular
M-matrix, we can compute IL from IL by adding an additional generator.

Definition 2.1.3 (Toppling polynomial). Let A ∈ Mn×n(Z) be an M-matrix with
columns c1, . . . , cn. For 1 ≤ i ≤ n, define the i-th toppling polynomial of A to be

ti
def
= xc

+
i − xc

−
i = x

Ai,i
i −

∏
j 6=i

x
−Aj,i
j .

Proposition 2.1.4 (c.f. [25, Proposition 4.2]). Let A ∈ Mn×n(Z) be a non-singular
M-matrix, and b ∈ Nn any burning configuration on A. Then the lattice ideal associ-
ated to its image, I(A), is generated by the toppling polynomials {ti}ni=1 and xb − 1,
i.e., I(A) = IA + 〈xb − 1〉.

Proof. Let J = IA+〈xb−1〉. Since b ∈ imZ(A) and b ≥ ~0, it is clear that xb−1 ∈ I(A)
and thus J ⊆ I(A). By Lemma 2.1.2, it suffices to show that J is already saturated
with respect to the ideal generated by the product x1 · · ·xn. Suppose there is f ∈ R
such that (x1 · · ·xn)kf ∈ J for some k > 0. We will show that f ∈ J by showing
f = 0 mod J .

For each m > 0, consider the monomial xmb. Note that mb is a configuration
on GA. If it is unstable at vertex vi, then firing at vi results in the configuration
mb−Avi, which corresponds to a monomial equivalent to xmb modulo J . During the
process of stabilizing mb, we obtain monomials that are equivalent to xmb modulo J .

Recall that by definition, every vertex of GA is connected by a directed path
from some vertex in supp(b). Thus by taking m large enough and firing appropriate
vertices, we arrive at a monomial xγ which is equivalent to xmb and γ = δ+(k, k, . . . , k)
for some δ ≥ 0. Using the fact that xmb = 1 mod J , we have, modulo J ,

0 = (x1 · · ·xn)kf

= xδ(x1 · · ·xn)kf

= xγf

= xmbf

= f.

In order to better understand the lattice ideal I(A), we want to find a Gröbner
basis for it. It turns out that by imposing a weighted sandpile monomial ordering,
right burning configurations of A give us Gröbner bases. This will be shown in
Proposition 2.1.16.

Definition 2.1.5. A monomial ordering, or term order, < on R is a total order
of monomials that is multiplicative, i.e., xa < xb if and only if xa+c < xb+c for all
a, b, c ∈ Nn, and is Artinian, i.e., 1 < xa for all a 6= ~0.

The following are some common monomial orderings on a polynomial ring:
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• The lexicographic ordering, lex, is defined as xa > xb if the left-most nonzero
entry of a− b is positive (i.e., more of the earlier indeterminates is larger);

• The degree lexicographic ordering, deglex, is defined as xa > xb if deg(xa) =
~1 · a > deg(xb) or if deg(xa) = deg(xb) and the left-most nonzero entry of a− b
is positive (i.e., first order by degree and then break ties with lex);

• The reverse lexicographic ordering, revlex, is defined as xa > xb if the right-
most nonzero entry of a− b is negative (i.e., less of the later indeterminates is
larger).

• The degree reverse lexicographic ordering, grevlex, is defined as xa > xb if
deg(xa) > deg(xb) or if deg(xa) = deg(xb) and the right-most nonzero entry of
a− b is negative (i.e., first order by degree and then break ties with revlex);

• Given a weight vector w ∈ Nn, we can define a w-weighted order. For any given
monomial xa, instead of looking at its degree, we look at its w-weighted degree,

deg(xa)
def
= degw(xa)

def
= w · a.

To compare two monomials xa and xb, we first compare their w-weighted de-
grees, and break ties using some other monomial ordering.

Definition 2.1.6. For a polynomial f ∈ R, its leading term, LT(f), is the term with
the largest monomial. For an ideal I ⊆ R, its initial ideal, In(I) = 〈LT(f) | f ∈ I〉,
is the ideal generated by the leading terms of its elements.

Remark 2.1.7. Fix a term order on R. Let I ⊆ R be an ideal with a set of generators
{f1, . . . , fn}. Note that the ideal 〈LT(fi) | i = 1, . . . , n〉 is not always the same as the
initial ideal In(I). For example, consider C[x, y] with grevlex. Let f1 = x2 + 2xy2,
f2 = xy + 2y3 + 1. Note that x ∈ I = 〈f1, f2〉 since x = xf2 − yf1. Thus x ∈ In(I).
However, 〈LT(f1),LT(f2)〉 = 〈2xy2, 2y3〉. It is obvious that x is not in this ideal.

Definition 2.1.8 (Gröbner basis). Fix a monomial ordering on R, and let I be an
ideal. A finite generating set Γ ⊆ I of I is a Gröbner basis with respect to the given
ordering if 〈LT(g) | g ∈ Γ〉 = In(I).

Fix a monomial ordering on R. Let I ⊆ R be an ideal, and let Γ = {g1, . . . , gn}
be a Gröbner basis for I. Then for any f ∈ I, we can write f uniquely as

f =
n∑
i=1

sigi + f ′

for some si ∈ R, such that f ′ has no term divisible by any of the leading terms of gi’s.
We call the remainder f ′ the reduction of f by Γ. Note that the expression may not
be unique if we do not use a Gröbner basis (see [9, Chapter 2], for example).
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Definition 2.1.9 (S-polynomial). Fix a monomial ordering on R, and let f, g ∈ R.
Define the S-polynomial for the pair (f, g) to be

S(f, g) =
lcm(LT(f),LT(g))

LT(f)
f − lcm(LT(f),LT(g))

LT(g)
g.

Proposition 2.1.10. Fix a monomial ordering on R, and let I be an ideal. The
following are equivalent for a finite subset Γ of I:

1. Γ is a Gröbner basis for I with respect to the given ordering.

2. Each f ∈ I can be reduced to 0 by Γ.

3. Γ generates I, and for each pair g, g′ ∈ Γ, the S-polynomial, S(g, g′) can be
reduced to 0 by Γ.

For proofs and a more detailed exposition, see [10, Chapter 15].

Remark 2.1.11. The last criterion in Proposition 2.1.10 is the Buchberger’s algorithm
for computing a Gröbner basis for I from a generating set X. Namely, we compute
S(f, g) for each pair f, g ∈ X, add it to X if it cannot be reduced to 0 by X, and
compute the S-polynomials again. The process eventually stops.

Let A ∈ Mn×n(Z) be a non-singular M-matrix, and Ã its (u,w)-extension. Now
we introduce a weighted sandpile monomial ordering on R, and show that the right
burning scripts of A give Gröbner bases with respect to this ordering.

The monomial ordering is a w-weighted grevlex order, where we first compare
the w-weighted degree and break ties by revlex using the following order on inde-
terminates: we say xi > xj if the length of the shortest path from vi to the sink vn+1

is longer than that of vj. Recall Proposition 1.2.10, where we showed that in GÃ, the

graph associated to Ã, there is a directed path to vn+1 from all vertices vi. If the two
paths are of the same length, then we make an arbitrary choice for which of xi or xj
is larger.

In this way, after comparing the total degrees of monomials, we have ordered the
indeterminates x1, . . . , xn. When comparing two monomials xa and xb, we say xa > xb

if w · a > w · b, or if w · a = w · b and there is i such that (a − b)i < 0 and xi is the
smallest amongst all xj’s with (a− b)j 6= 0.

Remark 2.1.12. If A is the reduced Laplacian of some graph and we choose w = ~1,
then the w-weighted sandpile monomial ordering is a sandpile monomial ordering
introduced in [25, Section 5].

Proposition 2.1.13 (c.f. [25, Proposition 5.10]). Let a, b be distinct configurations
such that b can be obtained from a through a legal firing script σ. Using the monomial
ordering described above, we have xa > xb.

Proof. By assumption we have b = a− Aσ. Without loss of generality, suppose σ is
the firing script of a single firing at some vertex vi. To compare the two monomials xa

and xb, we first compare their w-weighted degrees:

deg(xa)− deg(xb) = w · a− w · b = w · (Aσ) = w>Aσ ≥ 0,
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where the last inequality is given by the condition that w>A 
 ~0 in Definition 1.2.4.
If the inequality is strict, then we are done. If not, note that whenever vi fires, there
will be chips landing at some vertex vj that is closer to the sink vn+1 than vi is. The
resulting monomial is smaller since xj < xi.

Example 2.1.14. Recall that in Example 1.2.9, we used the minimal left burning
configuration w = (6, 8, 7). In R = C[x1, x2, x3], the w-weighted order on R gives us
deg(x1) = 6, deg(x2) = 8, deg(x3) = 7. The graph GÃ gives us x2 < x1 and x2 < x3

since only v2 has a directed edge going into the sink. We make an arbitrary choice
of x1 > x3. So if the degrees of two monomials are the same, then we use grevlex

with the ordering of indeterminates: x1 > x3 > x2. One can check that x5
1 > x2

2x
2
3,

x5
2 > x3

1x
3
3, and x4

3 > x2
1x

2
2, where the second monomials in the three inequalities are

obtained by firing at v1, v2, and v3 correspondingly.

Example 2.1.15. Let B be the M-matrix defined as below, and use w = (2, 2, 3, 2)

and u = (3, 4, 2, 3) to form B̃, the (u,w)-extension of B.

B =


5 −2 0 −1
−2 7 −5 −3
0 −1 5 −2
−1 −3 −2 7

 , and B̃ =


5 −2 0 −1 −4
−2 7 −5 −3 −3
0 −1 5 −2 0
−1 −3 −2 7 −2
−4 −1 −1 0 18

 .

The graph associated to B̃ is shown in Figure 2.1. The w-weighted order on R =
C[x1, x2, x3, x4] gives us deg(x1) = deg(x2) = deg(x4) = 2 and deg(x3) = 3. To order
the variables, we look at the lengths of shortest paths from v1, v2, v3 and v4 to v5

in GB̃. Note that there is no edge (v4, v5), so the shortest path from v4 to v5 has
length 2, while it is 1 for v1, v2, and v3. If we choose x1 > x2 > x3, then we have
x4 > x1 > x2 > x3, and one can check that, for instance, x7

4 > x1x
3
2x

2
3.

v1

v2

v3 v4

v5

2 4

3
5

2

3

2

Figure 2.1: GB̃, the graph associated to B̃.

Define E : Zn → R as E(u) = xu
+−xu− for all u ∈ Zn, and let T = E◦A : Zn → R.

Let {ei}ni=1 denote the standard basis of Zn. Then T (ei) = ti is the i-th toppling
polynomial.
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Proposition 2.1.16 (c.f. [25, Theorem 5.11]). Let A ∈ Mn×n(Z) be a non-singular
M-matrix. Let b be a burning configuration, and let σb be its script. Then

Γb = {T (σ) | 0 ≤ σ ≤ σb}

is a Gröbner basis for I(A).

Proof. By definition of I(A), we have im(T ) ⊆ I(A). Also, for b any burning config-
uration, T (σb) = xb − 1. So Γb generates I(A) by Proposition 2.1.4.

Let σ1, σ2 be scripts with σ1, σ2 ≤ σb. For i = 1, 2, define ci = Aσi, and write

T (σi) = xc
+
i − xc

−
i .

Observe that c−i is the configuration obtained from c+
i through firing the script σi.

Thus by Proposition 2.1.13, xc
+
i is the leading term in T (σi) with respect to the

monomial ordering we put on R. Now define

xai =
lcm(xc

+
1 , xc

+
2 )

xc
+
i

for i = 1, 2 so that a1 + c+
1 = a2 + c+

2 = c for some configuration c. It remains to show
that the S-polynomial,

S(T (σ1), T (σ2)) = xa1T (σ1)− xa2T (σ2) = xa2+c−2 − xa1+c−1 ,

is reduced to 0 by Γb.

Define a script τ ∈ Nn as τj = max(σ1,j, σ2,j). Since by assumption σ1, σ2 ≤ σb,
we have τ ≤ σb. Let c′ = c−Aτ denote the configuration obtained from c by firing τ ,
and let us consider a decomposition of the script τ via the firing sequence

ai + c+
i

σi−→ ai + c−i
τ−σi−→ c′.

Also, note that

T (τ − σi) =
lcm(xc

+
1 , xc

+
2 )

xc
+
i

− lcm(xc
−
1 , xc

−
2 )

xc
−
i

.

One can hence check that

S(T (σ1), T (σ2)) = xa2+c−2 − xa1+c−1 = xc
−
2 T (τ − σ2)− xc

−
1 T (τ − σ1).

2.2 Lattice Ideal from the Extended Matrix

In this section, we will find a Gröbner basis for I(Ã) ⊆ S = C[x1, . . . , xn+1]. To do
so, we need a monomial ordering on S that is compatible with the ordering on R.
Namely, it is a (w, 1)-weighted grevlex order that extends the ordering on R and
satisfies the condition xi > xn+1 for all 1 ≤ i ≤ n. We say that xaxdn+1 > xbxen+1

if (w, 1) · (a, d) > (w, 1) · (b, e), or if (w, 1) · (a, d) = (w, 1) · (b, e) and d < e, or if
(w, 1) · (a, d) = (w, 1) · (b, e), d = e, and xa > xb.
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Definition 2.2.1 (Homogenization). We define the degree of a polynomial in either R
or S to be the largest degree of its monomials’ degrees. For f ∈ R, we can homogenize
f to some monomial fh ∈ S such that each monomial in f has degree deg(f):

fh
def
= x

deg(f)
n+1 f

(
x1

xw1
n+1

, . . . ,
xn
xwnn+1

)
.

Similarly, given F ∈ S, we define the dehomogenization of F to be F (x1, . . . , xn, 1),
i.e., we evaluate F at xn+1 = 1. Finally, given some ideal I ⊆ R, we can define the
homogenization of I in S as

Ih
def
= 〈fh | f ∈ I〉.

Remark 2.2.2. Let f ∈ R. Note that fh(x1, . . . , xn, 1) = f , i.e., homogenize and
then dehomogenize gives back the original polynomial. On the other hand, if f is the
dehomogenization of some F ∈ S, then F = xdn+1f

h, where d is the largest power
of xn+1 such that F is divisible by xdn+1.

Lemma 2.2.3 ([9, 8.4 Theorem 4]). For any ideal I ⊆ R, if Γ is a Gröbner basis
of I, then Γh = {gh | g ∈ Γ} is a Gröbner basis for Ih.

Proof. First we show that for any f ∈ R, LT(fh) = LT(f). Indeed, if there is only one
term m in f with deg(m) = deg(f), then all other terms in fh are divisible by xn+1

and hence smaller than m even after homogenization. On the other hand, if there are
two terms m,n with deg(m) = deg(n) = deg(f) and m > n, then both terms are not
divisible by xn+1 after homogenization, and as a result we still have m > n.

Now let F ∈ Ih. By definition, we can write F as F =
∑k

i=1 hif
h
i for some hi ∈ S,

fi ∈ I. Let f denote the dehomogenization of F , and we have

f = F (x1, . . . , xn, 1) =
k∑
i=1

hi(x1, . . . , xn, 1)fi ∈ I.

Since F = xdn+1f
h for some d, we also have

LT(F ) = xdn+1 LT(fh) = xdn+1 LT(f).

Since Γ is a Gröbner basis for I, LT(f) is divisible by LT(g) for some g ∈ Γ, or
otherwise f cannot be reduced to zero by Γ. So LT(F ) is divisible by LT(g) = LT(gh)
as well, and we may conclude that Γh is a Gröbner basis for Ih.

Proposition 2.2.4 (c.f. [25, Proposition 4.8]). Let A ∈ Mn×n(Z) be an M-matrix,

and let u,w ∈ Nn be such that we can form Ã ∈M(n+1)×(n+1)(Z), the (u,w)-extension
of A. Using the weighted sandpile monomial ordering on R and a compatible ordering
on S, we have I(Ã) = I(A)h.

Proof. (⊆) This inclusion follows from construction of Ã. Let

ã =

(
a

an+1

)
, b̃ =

(
b

bn+1

)
∈ Nn+1
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be such that ã − b̃ ∈ imZ(Ã). Then there is some c ∈ Zn+1 such that ã − b̃ = Ãc.
Taking the dot product of both sides with (w, 1) gives:

(w, 1) · (ã− b̃) = (w, 1) · (Ãc) = (w, 1)>
(

A −Au
−w>A w>Au

)
c = ~0 · c = 0.

Therefore,
w · (a− b) = bn+1 − an+1.

Without loss of generality, suppose w · (a− b) ≥ 0. Now observe that:

x
an+1

n+1 (xa − xb)h = x
an+1

n+1 (xa − xbxw·(a−b)n+1 ) = x̃ã − xbxan+1+bn+1−an+1

n+1 = x̃ã − x̃b̃.

(⊇) By Proposition 2.1.16 and Lemma 2.2.3, there is a Gröbner basis for I(A)h

given by the homogenization of some generators of I(A). Thus, it suffices to show
the inclusion of the homogenization of the generators of I(A). Let a, b ∈ Nn such
that a = b mod imZ(A), i.e., there is c ∈ Zn such that a− b = Ac. If it happens to

be that w · a = w · b, then (xa − xb)h = xa − xb ∈ I(Ã). Without loss of generality,
suppose that w · a > w · b. Thus xa has a larger total degree than xb. Denote this
difference in degree as d. Then

d = w · a− w · b
= w · (a− b)
= w · (Ac)
= w>Ac.

By assumption, (xu − xv)h = xu − xvxdn+1. Check that

Ã

(
c
0

)
=

(
Ac

−w>Ac

)
=

(
u− v
−d

)
=

(
u
0

)
−
(
v
d

)
.

It follows from definition of I(Ã) that (xu − xv)h ∈ I(Ã).

Corollary 2.2.5. Let b be a right burning configuration of A with script σb. Define
Γb = {T (σ) | ~0 � σ ≤ σb}. Then Γh = {ghi | gi ∈ Γb} is a Gröbner basis for I(Ã).

2.3 Minimal Free Resolutions of Lattice Ideals

In order to have a better understanding of the structure of lattice ideals, we look at
their minimal free resolutions. To begin with, we introduce chain complexes of free
modules. For more details, see [24] and [11, Chapter 6].

We say that an R-module F is a free module of rank r if there is some isomorphism
F ∼= Rr for some r > 0. If F is graded, usually by Nn, then the isomorphism can be
written as F ∼=

⊕r
i=1R(−ai) for some ai ∈ Nn. A sequence of maps of free R-modules

F� : 0←− F0
φ1←− F1 ←− · · · ←− Fl−1

φl←− Fl ←− 0 (2.3.1)
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is a complex if φi ◦ φi−1 = 0 for all i. The complex is exact in homological degree i if
ker(φi) = im(φi+1). When the free modules Fi are graded, we require the maps φi to
be degree-preserving.

Definition 2.3.2. A complex F� as in 2.3.1 is a free resolution of a module M over R
if it is exact everywhere except at homological degree 0, where M = F0/ im(φ0). We

can augment the free resolution F� by placing 0←−M
φ0←− F0 in the left end instead.

The image of φi+1 in Fi is the ith syzygy module of M . The length of the resolution
is the greatest homological degree of a nonzero module in this resolution.

The Hilbert syzygy theorem says that every module over the polynomial ring R
has a free resolution with length at most n. In particular, if M = R/I for some ideal
I ⊆ R, then M has a free resolution with length at most n. We can always find a
minimal free resolution ofM , such that the ranks of the free modules Fi in the complex
are minimal. The minimal free resolutions of a module are isomorphic, meaning if F�

and F ′� are two minimal free resolutions of M , then we have an isomorphism of free
R-modules Fi ∼= F ′i for each i. Therefore, the ranks of free modules in the minimal
free resolution of M is well-defined.

Definition 2.3.3. Let M be a finitely generated Nn graded R-module, and F� be a
minimal free resolution of M with Fi =

⊕
a∈Nn R(−a)βi,a . We define the i-th Betti

number of M in degree a to be the invariant βi,a = βi,a(M).

Definition 2.3.4. A simplicial complex ∆ on the vertex set [n] = {1, 2, . . . , n} is a
collection of subsets of [n] called faces that is closed under taking subsets, i.e., if we
have σ ∈ ∆ and there is τ ⊆ σ ⊆ [n], then τ ∈ ∆. A face σ of cardinality |σ| = i+ 1
has dimension i and is called an i-face of ∆. The dimension dim(∆) is the maximum
of the dimensions of its faces. A facet of ∆ is a face such that none of its superset is
in ∆.

Example 2.3.5. Let n = 4, and define ∆ to be a simplicial complex with facets
{2, 3, 4}, {1, 2}, {1, 3}. We can thus draw ∆ as shown below in Figure 2.2:

1 2

3 4

Figure 2.2: The simplicial complex ∆

Let ∆ be a simplicial complex on [n], and for each i we use Fi(∆) to denote the
set of i-dimensional faces of ∆. Let kFi(∆) be the vector space over a field k with basis
elements eσ corresponding to σ ∈ Fi(∆). For σ ∈ ∆ and j ∈ σ the r-th element of σ
written in increasing order, define the sign of j in σ as sign(j, σ) = (−1)r−1.
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Definition 2.3.6. The (augmented or reduced) chain complex of ∆ over k is the

complex C̃�(∆, k):

0←− kF−1(∆) ∂0←− · · · kFi−1(∆) ∂i←− kFi(∆) ←− · · · ∂n−1←− kFn−1(∆) ←− 0,

where the boundary maps ∂i is defined as

∂i(eσ) =
∑
j∈σ

sign(j, σ)eσ\{j}.

The boundary maps can be thought of as picking an orientation of the faces, which
starts from the vertex with the smallest label, and traverses through the vertices with
increasing labels.

Example 2.3.7. Let us return to ∆ in Example 2.3.5. Fix an orientation as in
Figure 2.3, and the boundary maps over C can be written as:

1 2

3 4

	

Figure 2.3: ∆ with an orientation

The chain complex C�(∆,C) can be written out as:

0 C C4 C5 C 0
0

1 2 3 4[ ]
∅ 1 1 1 1

12 13 23 24 34


1 −1 −1 0 0 0

2 1 0 −1 −1 0

3 0 1 1 0 −1

4 0 0 0 1 1

234



12 0

13 0

23 1

24 −1

34 1

0

A monomial ideal is an ideal that is generated by monomials. We can form its
Scarf complex to compute a minimal free resolution of a monomial ideal.

Definition 2.3.8 (Scarf Complex). Let M ⊆ R be a monomial ideal with a minimal
generating set xa1 , . . . , xar . For σ ⊆ [r], we define aσ ∈ Nn as

(aσ)j = max({(ai)j | i ∈ σ}).

The Scarf complex of M , denoted ∆M , is defined to be

∆M = {σ ⊆ [r] | aσ = aτ =⇒ σ = τ}.

Namely, if σ ∈ ∆M , then xaσ = lcm({xai | i ∈ σ}) call
= sσ is the unique least common

multiple of all of the generators xa1 , . . . , xar .
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Lemma 2.3.9 ([11, Lemma 6.8]). The Scarf complex ∆M is a simplicial complex. Its
dimension is at most n− 1.

Definition 2.3.10. The algebraic Scarf complex of M , denoted FM , is the augmented
chain complex of ∆M over R, that is, at each level, we have Fi = RFi−1(∆M ), the free
module over R with basis elements being the (i−1)-faces of ∆M . The boundary maps
are written as

∂i(eσ) =
∑
j∈σ

sign(j, σ)
sσ

sσ\{j}
eσ\{j},

and the faces are labeled as sσ instead of σ.

Definition 2.3.11. A monomial s′ strictly divides another monomial s if s′ di-
vides s/xi for all variables xi dividing s. A monomial ideal 〈s1, . . . , sr〉 is generic if
whenever two distinct minimal generators si and sj have the same positive (nonzero)
degree in some variable, a third generator sk strictly divides their least common mul-
tiple lcm(si, sj).

Example 2.3.12. For example, x1x2 strictly divides x2
1x

2
2x3, but it does not strictly

divide x1x
2
2x3. The monomial ideal I = 〈x1x2, x

2
1, x

2
2〉 is generic since the condition

is vacuously satisfied. The monomial ideal J = 〈x1x2x3, x
2
1x3, x

3
1x2〉 is not generic,

since x2
1x3 does not strictly divide lcm(x3

1x2, x1x2x3) = x3
1x2x3. Now we draw ∆I

and ∆J , the Scarf complexes for I and J , in Figure 2.4, with the labels of the vertices
replaced by the corresponding monomial generators:

x1x2

x2
1 x2

2

x1x2x3

x2
1x3 x3

1x2

Figure 2.4: The Scarf complexes for I and J .

Theorem 2.3.13 ([11, Proposition 6.12, Theorem 6.13]). If M is a monomial ideal
in R, then every free resolution of R/M contains the algebraic Scarf complex FM as
a subcomplex. If M is a generic monomial ideal, then FM minimally resolves the
quotient R/M .

Now we define the Scarf complex of a lattice ideal, using a construction similar to
the Scarf complex of a monomial ideal.

Let L be a sublattice of Zn satisfying L∩Nn = {~0}, i.e., L contains no nonnegative
vectors. This is to ensure that the lattice ideal IL is homogeneous with respect to
some weight vector w ≥ ~1. For any finite subset J ⊆ L, we define max(J) ∈ Zn to
be the vector which is the coordinate-wise maximum of J , meaning

(max(J))i = max({ai | a ∈ J}).
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We define an infinite simplicial complex ∆L as:

∆L = {J ⊆ L | max(J) 6= max(J ′) for all finite J ′ ⊆ L other than J}.

This is an infinite simplicial complex of dimension of at most n−1. There is a natural
transitive action of L on ∆L given by translation, i.e., for any a ∈ L, J ∈ ∆L if and
only if J + a ∈ ∆L.

Definition 2.3.14. Following the notation as above, for a lattice L ⊆ Zn with no
nonnegative vectors, we identify ∆L with its poset of nonempty faces, and define the
Scarf complex of L to be the quotient poset ∆L/L.

Remark 2.3.15. For a ∈ L, the link of a in the complex ∆L is the subcomplex

∆a
L

def
= {J ⊆ L\{a} | J ∪ {a} ∈ ∆L}.

We may identify the Scarf complex ∆L/L with ∆
~0
L modulo the action by L. It turns

out that ∆L is locally finite, meaning ∆a
L is finite for all a ∈ L, and that the Scarf

complex ∆L/L is finite (see [24, Section 2]).

Example 2.3.16. Let L ⊆ Z2 be the lattice spanned by (1,−1). The complex ∆L
has facets formed by the consecutive pairs {(i,−i), (i+ 1,−i− 1)}i∈Z. Its Scarf com-
plex ∆L/L consists of one face of dimension 1 and one of dimension 0, since all vertices
are identified to be the same as (0, 0) under the action by L.

Remark 2.3.17. Let A ∈ Mn×n(Z) be a nonsingular M-matrix, and Ã be its (u,w)-

extension. We always have that imZ(Ã) ∩ Nn+1 = {~0}. Let v ∈ Zn. We will show

that there is no k ∈ Z such that Ã · (v, k) > ~0. Consider the multiplication:

Ã

(
v
k

)
=

(
A −Au

−w>A w>Au

)(
v
k

)
=

(
Av − kAu

−w>Av + kw>Au

)
=

(
A(v − ku)

−w>A(v − ku)

)
.

Since w ≥ ~1, we have that A(v−ku) ≥ ~0 if and only if −w>A(v−ku) ≤ 0. Therefore,

Ã(v, k) ≥ ~0 implies that Ã(v, k) = ~0.

Definition 2.3.18. We first identify the Scarf complex ∆L/L with ∆
~0
L modulo the

action by L. For J ∈ ∆L/L, let CJ be the set of monomials

CJ = {xmax(J)−a | a ∈ J}.

The algebraic Scarf complex of the lattice ideal IL is defined to be the complex of
free R-modules

FL =
⊕

J∈∆L/L

R · EJ ,

where EJ denotes a basis vector in homological degree |J | − 1, and the sum runs
through all faces of ∆L/L. The differential map ∂ is defined as

∂(EJ) =
∑
a∈J

sign(a, J) · gcd(CJ\{a}) · EJ\{a},

where we define sign(a, J) = (−1)r−1 if xmax(J)−a is in the r-th position under the
lexicographic ordering of CJ .
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Remark 2.3.19. The set of monomials CJ in Definition 2.3.18 is a basic fiber of L.
The set of all monomials of a fixed degree in Zn/L is called a fiber. A fiber C is basic
if gcd(C) = 1 and gcd(C\{m}) 6= 1 for all m ∈ C. For any m ∈ C, the monomials
in C\{m} divided by their greatest common divisor form a basic fiber. So we have
a poset structure on the set of all basic fibers of L. It turns out that this poset is
isomorphic to the Scarf complex ∆L/L. See [24, Section 2] for more details.

Definition 2.3.20. A lattice ideal IL is generic if it is generated by binomials of full
support, i.e., if xu − xv is a generator, then supp(u− v) = [n].

Remark 2.3.21. Genericity of lattice ideal does not guarantee the initial ideal being
strongly generic, meaning there is no generator having the same nonzero degree in
some variable [24, Example 4.5]. Whether genericity of lattice ideal implies genericity
of its initial ideal is still a question to be answered.

Theorem 2.3.22 ([24, Theorem 4.2]). The algebraic Scarf complex FL is contained
in the minimal free resolution of R/IL. If IL is generic, then FL is the minimal free
resolution of R/IL.

Fix some monomial ordering on R. We compute the algebraic Scarf complex of a
generic lattice ideal through the algebraic Scarf complex of its initial ideal, which is
a finite simplicial complex and is much easier to compute.

We use xa
+
i − xa

−
i to denote the generators of the lattice ideal IL and assume

that xn is the smallest variable and that it divides xa
−
i .

Theorem 2.3.23 ([24, Theorems 5.2, 5.4]). Let IL be a generic lattice ideal. Fix
a monomial ordering, and let M = In(IL). Use ∆L/L and ∆M to denote the Scarf
complexes of IL and M correspondingly. Then

1. The i-faces of ∆M are in bijection with the (i+ 1)-faces of ∆L/L.

2. The poset ∆L/L is derived from ∆M in the following way. Let J be a face
of ∆M and hence of ∆L/L. Then J covers J\{j} for all j ∈ J , and it covers

one additional face J̃ as follows: set mJ = lcm({xa
+
j | j ∈ J}), consider the set

of monomials { mJ
x
a+
j

xa
−
j | j ∈ J} divided by their greatest common divisors, and

let p be the unique monomial among them which is not divisible by xn; then J̃

is the unique (|J | − 1)-face of ∆M such that lcm({xa
+
j | j ∈ J̃}) = p.

Corollary 2.3.24 ([24, Corollary 5.5]). The minimal free resolution of R/IL is the
free R-module

FL =
⊕
J∈∆M

R · EJ ,

where the basis element EJ is placed in homological degree |J |. The differential map
is defined as

∂(EJ) =
∑
i∈J

sign(i, J) · mJ

lcm({xa+i | j ∈ J\{i}})
· EJ\{i} ± m̃J · EJ ,
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where mJ = lcm({xa
+
j | j ∈ J}), m̃J = gcd({xa

−
j | j ∈ J}), and J̃ is described in

Theorem 2.3.23. The sign of the last term is determined by the condition ∂2 = 0.

Remark 2.3.25. Note that if we erase the last term of the boundary maps, we get the
algebraic Scarf complex of the initial ideal, FM .



Chapter 3

Cyclic Groups

3.1 Faithful Representations of the Cyclic Group

Let Cn = 〈g | gn = e〉 denote the cyclic group of n elements with generator g. All its
irreducible representations over C are of dimension 1, and they are distinguished from
each other by sending g to different n-th roots of unity. Put ζ = e2πi/n, a primitive
n-th root of unity, and let ρi denote the representation of Cn given by g 7→ ζ i, where
1 ≤ i ≤ n.

Let ρ : Cn → GLm(C) be a representation of dimension m. We can decompose it
into a direct sum of these irreducible representations, ρ ∼=

⊕n
i=1miρi for some mi ∈ N

such that
∑n

i=1mi = m. Now we want to form the extended McKay-Cartan matrix C̃
for this representation as described in Section 1.3. For 1 ≤ k ≤ n, one may check
that

ρ⊗ ρk ∼=

(
n⊕
i=1

miρi

)
⊗ ρk ∼=

n⊕
i=1

mi(ρi ⊗ ρk) ∼=
n⊕
i

miρi+k.

The subscripts i + k live in Z/nZ. So we form the matrix M with Mi,j = mj−i and

the extended McKay-Cartan matrix C̃:

M =


mn m1 . . . mn−2 mn−1

mn−1 mn . . . mn−3 mn−2
...

...
. . .

...
...

m2 m3 . . . mn m1

m1 m2 . . . mn−1 mn

 ,

C̃ = mIm −M> =


m−mn −mn−1 . . . −m2 −m1

−m1 m−mn . . . −m3 −m2
...

...
. . .

...
...

−mn−2 −mn−3 . . . m−mn −mn−1

−mn−1 −mn−2 . . . −m1 m−mn

 .
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The McKay-Cartan matrix is:

C =


m−mn −mn−1 . . . −m2

−m1 m−mn . . . −m3
...

...
. . .

...
−mn−2 −mn−3 . . . m−mn

 .

The representation ρ is faithful when it has trivial kernel, i.e., ker(ρ) = {e}.
Amongst the irreducible representations, ρi is faithful when gcd(i, n) = 1. Therefore,
ρ ∼=

⊕n
i=1miρi is faithful only when gcd({i | mi 6= 0} ∪ {n}) = 1. By Theorem 1.3.2,

in order to study the lattice ideal I(C̃), we restrict ourselves to such kinds of repre-
sentations of Cn.

Observe that the extended McKay-Cartan matrix C̃ is the full Laplacian of a
directed graph G, and that the McKay-Cartan matrix C is the reduced Laplacian
of G with respect to the vertex corresponding to the trivial representation. Using
properties of the cyclic group, we may describe G in the following way:

For 1 ≤ i < n, edges of weight mi start at vj and end at vj+i for 1 ≤ j ≤ n.
One can see that if gcd(i, n) = 1, then the subgraph of G containing only edges of
weight mi is a directed cycle that starts from vi and passes through all vertices.

For simplicity, we only consider the case when mi 6= 0. Using results from ear-
lier, we can describe the generators of the lattice ideal I(C) and give Gröbner bases

for I(C) and for I(C̃).

By Proposition 1.3.3, ~1 is a burning script of C. Since ~1C > ~0, there is a directed
edge from all vertices to the sink vn in GC̃ . So the ~1-weighted sandpile monomial
ordering on C[x1, . . . , xn−1], introduced in Section 2.1, is any grevlex ordering. The
monomial ordering on R = C[x1, . . . , xn] extending this ordering is still any grevlex

ordering satisfying the condition that xn is the smallest indeterminate. Therefore,
we will use the normal grevlex ordering, where we say xa > xb if ~1 · a > ~1 · b or if
~1 · a = ~1 · b and the rightmost nonzero entry of a− b is negative.

By Proposition 2.1.4, the lattice ideal I(C) ⊆ C[x1, . . . , xn−1] is generated by the

toppling polynomials {
∏n−1

i=1 x
(c+i )
i −

∏n−1
i=1 x

(c−i )
i | c is a column of C} along with the

binomial
∏n−1

i=1 x
mi
i −1. By Proposition 2.1.16, a Gröbner basis Γ for I(C) is given by

Γ = {
∏n−1

i=1 x
(Cσ)+i
i −

∏n−1
i=1 x

(Cσ)−i
i | ~0 � σ ≤ ~1}, (3.1.1)

i.e., binomials corresponding to sums of columns of C.

Note that the positive term in each binomial is always the leading term by Propo-
sition 2.1.13. Therefore, in the homogenization Γh, the indeterminate xn only appears
in the negative terms of the binomials. By Corollary 2.2.5, the homogenization Γh is
a Gröbner basis for I(C̃). Thus, the initial ideal M = In(I(C̃)) has generators

M = 〈x(C̃σ)+ | ~0 � σ ≤ ~1〉,

which is a minimal generating set as none of the monomials divides each other. Hence,
we conclude that Γh is a minimal generating set of I(C̃).
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Using this information and the technique introduced in Section 2.3, we can de-
scribe the minimal free resolution of I(C̃) by first describing the minimal free resolu-

tion of the initial ideal of I(C̃). But before proceeding, let us first see an example of
such a resolution when n = 3.

3.2 Example: the Cyclic Group with 3 Elements

In this section we work with C3. Let ρ : C3 → GLm(C) be a faithful representation.
We decompose ρ into ρ ∼=

⊕3
i=1miρi. First suppose that mi 6= 0. The extended

McKay-Cartan matrix and the McKay-Cartan matrix for ρ are listed below:

C̃ =

m1 +m2 −m2 −m1

−m1 m1 +m2 −m2

−m2 −m1 m1 +m2

 , C =

(
m1 +m2 −m2

−m1 m1 +m2

)
.

Using the burning script ~1, we can find a generating set for the lattice ideal I(C):

I(C) = 〈xm1+m2
1 − xm1

2 , xm1+m2
2 − xm2

1 , xm1
1 xm2

2 − 1〉.

We fix an ordering where x1 > x2. This generating set is already a Gröbner basis
for I(C). Thus, we can write the lattice ideal I(C̃) = I as

I = I(C̃) = 〈xm1+m2
1 − xm1

2 xm2
3 , xm1+m2

2 − xm2
1 xm1

3 , xm1
1 xm2

2 − xm1+m2
3 〉,

and the initial ideal In(I) = M as

M = In(I) = 〈xm1+m2
1 , xm1+m2

2 , xm1
1 xm2

2 〉.

Note that both I and M are generic. The Scarf complex of M is easy to find by
hand, and we apply the method in Theorem 2.3.23 and Corollary 2.3.24 to find the
minimal free resolution of R/I.

Let σ1 = (1, 0), σ2 = (0, 1), σ3 = (1, 1). The generators are of the form x(Cσi)
+

.
The facets of ∆M are {σ1, σ3} and {σ2, σ3}. The Scarf complex ∆M is drawn in
Figure 3.1.

σ1 = (1, 0) σ3 = (1, 1) σ2 = (0, 1)

Figure 3.1: The Scarf complex of M .

We give an example of how the combinatorial rule described in Theorem 2.3.23
is applied to compute the resolution. Consider the facet J = {σ1, σ3}. Let ai = Cσi
for σi ∈ J . What is the additional face J ′ ∈ ∆M which J covers once we move to the
Scarf complex of I? Following the notation in Theorem 2.3.23, we have

mJ = lcm({xa
+
i | σi ∈ J}) = xm1+m2

1 xm2
2 .
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We also have

mJ

xa
+
1

xa
−
1 =

mJ

xm1+m2
1

xm1
2 xm2

3 = xm1+m2
2 xm2

3 ,

mJ

xa
+
3

xa
−
3 =

mJ

xm1
1 xm2

2

xm1+m2
3 = xm2

1 xm1+m2
3 .

Divide both monomials by their greatest common divisor xm2
3 , and we get {xm1+m2

2 , xm2
1 xm1

3 }.
The unique monomial not divisible by x3 is xm1+m2

2 = p. The only J ′ that satisfies

the condition lcm({xa+i | σi ∈ J ′}) = p is J ′ = {σ2}.
Finally, Theorem 3.3.7 produces the minimal free resolution of R/I:

0←− R
∂1←− R3 ∂2←− R2 ←− 0,

where the matrices representing ∂1 and ∂2 are:

∂1 =
(1, 0) (0, 1) (1, 1)

[ ]∅ xm1+m2
1 − xm1

2 xm2
3 xm1+m2

2 − xm2
1 xm1

3 xm1
1 xm2

2 − xm1+m2
3

,

∂2 =

{(1, 0), (1, 1)} {(0, 1), (1, 1)}[ ](1, 0) −xm2
2 −xm1

3

(0, 1) −xm2
3 −xm1

1

(1, 1) xm2
1 xm1

2

.

3.3 Resolution of Saturated Graphs

We study the case when mi 6= 0 for all i, in which case the McKay quiver of ρ is
saturated in the sense that there is an edge from vi to vj for all i 6= j. Following
[27] and [21], we will see that the Scarf complex of the initial ideal is the barycentric
subdivision of the (n − 2)-simplex. Applying Theorem 2.3.23 and Corollary 2.3.24,

we obtain a minimal free resolution of the lattice ideal I(C̃) and we conclude that
its k-th Betti number is (k − 1)!Sn,k, where Sn,k is the Stirling number of the second
kind.

Definition 3.3.1. Let I, J ⊆ [n] be disjoint subsets. Define the monomial xI→J as

xI→J =
∏
i∈I

x
−

∑
j∈J C̃i,j

i ,

where the exponent on each xi is the total number of edges from the vertex set {vj}j∈J
to vi.

Remark 3.3.2. Let us see some properties of these monomials xI→J that will be useful
later. For disjoint I1, I2, J :

xI1∪I2→J = xI1→JxI2→J .
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For J1 ⊆ J2 and I disjoint from J1 and J2:

lcm(xI→J1 , xI→J2) = xI→J2 , gcd(xI→J1 , xI→J2) = xI→J1 .

For I1 ⊆ I2 and J disjoint from I1 and I2:

lcm(xI1→J , xI2→J) = xI2→J , gcd(xI1→J , xI2→J) = xI1→J .

One can check that for the lattice ideal I = I(C̃), the homogenization Γh of
the Gröbner basis Γ we found using the burning script ~1 (Equation (3.1.1)) is ex-
actly the set of binomials {xI→J − xJ→I | I ∪ J = [n], I ∩ J = ∅, n ∈ J}. Moreover,

the initial ideal M = In(I(C̃)) is minimally generated by the set of monomials
{xI→[n]\I | I ⊆ [n− 1], I 6= ∅}. Thus, Γh is a minimal generating set of I. Both I
and M are generic, so Theorem 2.3.23 applies. We will construct a complex of free
R-modules, and show that it is the algebraic Scarf complex of I.

Let Cycn,k denote the set of cyclically ordered partitions of the set [n] into k
nonempty blocks. Partitions in Cycn,k have the form (I1, . . . , Ik) satisfying the con-

ditions: Ii 6= ∅,
⋃k
i=1 Ii = [n], and Ii ∩ Ij = ∅ for all i 6= j. We always use the

representative where n is in the last block, i.e., n ∈ Ik. We write RCycn,k for the free
R-module generated by these partitions. The rank of this free module is the same as
the number of cyclically ordered partitions. So we have

|Cycn,k| = (k − 1)!Sn,k,

where Sn,k is the Stirling number of the second kind, i.e., the number of ways to
partition n into k parts.

Definition 3.3.3. The (n− 1)-simplex, denoted ∆n−1, is a simplicial complex on [n]
with its only facet being [n]. Geometrically, it is the set

∆n−1 def
= {(a1, . . . , an) | 0 ≤ ai ≤ 1,

∑n
i=1 ai = 1 ⊆ Rn},

which has vertices being the standard basis {ei} of Rn.

The barycentric subdivision of ∆n−1, denoted Bary(∆n−1), is the simplicial com-
plex on V = [2n−1], which we can identify with {σ ∈ Nn | ~0 � σ ≤ ~1} by converting
a ∈ [2n − 1] using binary digits. Thus, we will use the n-tuples as the vertex set of
Bary(∆n−1). For σ ∈ V , define

|σ| def
= |{i | σi 6= 0}|,

the number of nonzero entries of σ. The facets of Bary(∆n−1) are all of dimension
n− 1 and can be characterized using the following two properties:

1. If F is a facet of Bary(∆n−1), then for each 1 ≤ i ≤ n, there is exactly one
σ ∈ F such that |σ| = i.

2. If there are σ, τ ∈ F such that |σ| = |τ |+ 1, then σ − τ = ei for some i.
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Geometrically, this is the same as adding a vertex to the barycenter of each face of the
(n− 1)-simplex and connecting this vertex to all vertices of each face. (The original
faces of ∆n−1 are no longer present, of course.)

Given a (k− 1)-face F ∈ Bary(∆n−1), we can order the vertices in F as σ1, . . . , σk
such that |σ1| < · · · < |σk|. For σi ∈ F , we define the sign of σi in F to be
sign(σi, F ) = (−1)i−1.

Example 3.3.4. Let n = 3. The 2-simplex ∆2 is the triangle with vertices labeled
by {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Its barycentric subdivision Bary(∆2) is the triangle
but with each vertex connected to the midpoint of its opposite edge. The vertices of
Bary(∆2) are labeled by {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)},
corresponding to {1, 2, 3, 4, 5, 6, 7} = [23−1]. The two simplicial complexes are drawn
in Figure 3.2.

(0, 0, 1)

(0, 1, 0) (1, 0, 0)

(0, 0, 1)

(0, 1, 0) (1, 0, 0)

(0, 1, 1) (1, 0, 1)

(1, 1, 0)

(1, 1, 1)

Figure 3.2: The 2-simplex ∆2 and its barycentric subdivision Bary(∆2).

Lemma 3.3.5. We can impose a partial order on Cyc =
⋃n
k=1 Cycn,k. Using this

partial order, there is a poset isomorphism Cyc ∼= Bary(∆n−2).

Proof. Given two partitions I = (I1, . . . , Ir), J = (J1, . . . , Js), we say I covers J if
there is some i such that for 1 ≤ j ≤ s,

Jj =


Ij if j < i;

Ij ∪ Ij+1 if j = i;

Ij+1 if j > i.

That is, we have s = r−1 and J can be obtained from I by merging the two blocks Ii
and Ii+1. The partial order on Cyc is generated by this covering relation. One can
check that it is reflexive, antisymmetric, and transitive.

Now we show that there is a poset isomorphism Cyc ∼= Bary(∆n−2). First
note that there is a bijection between nonempty subsets of [n − 1] and vertices of
Bary(∆n−2) given by S ⊆ [n−1] corresponding to ~0 � σ ≤ ~1 with σi = 1 ⇐⇒ i ∈ S.

Consider (I1, . . . , Ik) ∈ Cycn,k. We can find a (k − 2)-face in Bary(∆n−2) with

vertices corresponding to the sets I1, I1∪I2, . . . ,
⋃k−1
j=1 Ij. This is a face since all the Ij’s

are disjoint and nonempty. On the other hand, given F ∈ Bary(∆n−2) a (k− 2)-face,
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we can find a partition in Cycn,k as follows: Order vertices in F as σ1, . . . , σk−1 such
that |σj| < |σj+1| for all j. Define I1 = {i ∈ [n− 1] | (σ1)i 6= 0}. For 1 < j < k, define

Ij = {i ∈ [n− 1] | (σj − σj−1)i 6= 0}. Finally, define Ik = [n]\(
⋃k−1
j=1 Ij). The Ij’s are

nonempty and disjoint since F is a face. Also n ∈ Ik by definition. Thus, (I1, . . . , Ik)
is a partition in Cycn,k.

It remains to show that the covering relation is preserved. Consider the partition
I = (I1, . . . , Ir) and its corresponding face F = {σ1, . . . , σr−1}, where σk is the tuple
corresponding to the set

⋃k
j=1 Ij. Choose some i < r and form the partition I ′ =

(I1, . . . , Ii−1, Ii ∪ Ii+1, Ii+2, . . . , Ir). Let F ′ = {τ1, . . . , τr−2} be its corresponding face
in Bary(∆n−2). Note that τj = σj when j < i, and τj = σj+1 when j ≥ i. Thus,
F ′ ⊆ F and |F ′| = |F | − 1. We conclude that F covers F ′ in Bary(∆n−2).

Lemma 3.3.6. The Scarf complex ∆M of the initial ideal M is Bary(∆n−2). Hence,
we have ∆M

∼= Cyc.

Proof. We can identify generators of M with the set {σ ∈ Nn | σn = 0, ~0 � σ ≤ ~1},
which is the same as {σ ∈ Nn−1 | ~0 � σ ≤ ~1}. We will use the two sets interchange-
ably to represent the generators of M . In this way, ∆M and Bary(∆n−2) share the
same set of vertices. We show that the two simplicial complexes are isomorphic by
showing a bijection of facets.

Let F = {σ1, . . . , σn−1} ∈ Bary(∆n−2) be a facet with |σi| = i. Let τi be the index
of the only nonzero entry of σi − σi−1, where we set σ0 = ~0. Using the isomorphism
Bary(∆n−2) ∼= Cyc in Lemma 3.3.5, we see that

sF = lcm({x(C̃σi)
+ | 1 ≤ i ≤ n− 1})

= xτ1→[n]\{τ1}xτ2→[n]\{τ1,τ2} · · · xτn−2→{τn−1,n}xτn−1→{n}

= x
−

∑
j 6=τ1

C̃τ1,j
τ1 x

−
∑
j 6=τ1,τ2

C̃τ2,j
τ2 · · · x

−
∑
j∈{τn−1,n}

C̃τn−2,j

τn−2 x
−C̃τn−1,n

τn−1 .

If there is another face F ′ with s′F = sF , we can easily conclude that F = F ′. So sF
is unique, and F is a face in ∆M . By Lemma 2.3.9, F is a facet.

Now let F be a facet in ∆M . We need to show three things: 1) If there are σ, τ ∈ F
such that |σ| = |τ |, then σ = τ ; 2) If there are σ, τ ∈ F such that |σ| = |τ |+ 1, then
σ− τ = ei for some i; 3) |F | = n− 1. It then follows that F is a facet in Bary(∆n−2).

If we have σ, τ ∈ F such that |σ| = |τ | but σ 6= τ , we want to show that {σ, τ}
is not a face, which contradicts the assumption that F is a face. Indeed, consider
ξ = max(σ, τ). Note that

s{σ,τ} = lcm(x(C̃σ)+ , x(C̃τ)+) = lcm

(∏
σi 6=0

x
−

∑
σj=0 C̃i,j

i ,
∏
τi 6=0

x
−

∑
τj=0 C̃i,j

i

)
,

and also

x(C̃ξ)+ =
∏
ξi 6=0

x
−

∑
ξj=0 C̃i,j

i .
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So each exponent of xi in x(Cξ)+ is always no bigger than the corresponding exponent
in s{σ,τ}, and s{σ,τ} = s{σ,τ,ξ}. Therefore, {σ, τ} is not a face in ∆M .

Suppose that |σ| = |τ | + 1 but σ − τ is not a basis vector. Let ξ = max(σ, τ).
Similarly, s{σ,τ} = s{σ,τ,ξ}, and {σ, τ} cannot be a face of ∆M .

Recall from Lemma 2.3.9 that |F | ≤ n − 1. We will prove by contradiction that
|F | = n − 1. Using the previous part, we can write F = {σ1, . . . , σl} such that
|σ1| < |σ2| < · · · < |σl|. Suppose instead that l < n − 1. Then there is some k such
that (σi)k = 0 for all i. Put ξ = σl + ek. We show that F ∪{ξ} is a face of ∆M , which
contradicts the assumption that F is a facet. One can check that

sF∪{ξ} = sF · x
−

∑
ξj=0 C̃k,j

k ,

which is unique amongst all faces of ∆M .

Let CYC denote the following complex of free R-modules:

0←− RCycn,1 ←− RCycn,2 ←− · · · ←− RCycn,n ←− 0,

where the boundary map from RCycn,r to RCycn,r−1 is given by

(I1, . . . , Ir) 7→
∑r−1

s=1(−1)s−1xIs→Is+1(I1, . . . , Is−1, Is ∪ Is+1, Is+2, . . . , Ir)

−xIr→I1(I2, I3, . . . , Ir−1, I1 ∪ Ir).

We show in the following theorem that this is the minimal free resolution of R/I.

Theorem 3.3.7. The complex CYC coincides with the algebraic Scarf complex of I,
and it minimally resolves R/I.

Remark 3.3.8. In [21], the authors showed that the above complex gives the min-
imal free resolution of the lattice ideal corresponding to the full Laplacian of an
undirected and saturated multigraph. Here we explicitly show that the same thing
holds for directed graphs that are saturated. In terms of M-matrices, given an M-
matrix A and its (u,w)-extension Ã, this theorem applies to the lattice ideal I(Ã)
if the following two conditions are satisfied: 1. u = w = ~1; 2. The graph asso-
ciated to Ã is saturated. These two conditions together ensure that the binomials
{xI→[n]\I − x[n]\I→I | I ⊆ [n− 1]} is a minimal Gröbner basis for I(Ã).

Proof. Since I is generic, by Theorem 2.3.23 and Corollary 2.3.24, we only need to
find the Scarf complex of M = In(I) and apply the combinatorial rule to know the
minimal free resolution of R/I. Lemma 3.3.6 says that ∆M

∼= Bary(∆n−2) ∼= Cyc.

Consider the partition (I1, . . . , Ir) ∈ Cycn,r. Let F = {σ1, . . . , σr} denote the
corresponding face in ∆M . For any 1 ≤ s < r, the face F\{σs} corresponds to the
partition (I1, . . . , Is−1, Is ∪ Is+1, Is+2, . . . Ir). One can check that

sF
sF\{σs}

= xIs→Is+1 ,
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and that sign(s, F ) = (−1)s−1. Therefore, the boundary map without the last term
gives the algebraic Scarf complex of M .

Now we use the combinatorial rule described in Theorem 2.3.23 to show that
(I2, . . . , Ir−1, Ir∪I1) is the additional face covered once we move to the Scarf complex
of I. The face F in Bary(∆n−2) gives us a subset of generators of M , and hence
generators of I. For 1 ≤ l < r, the corresponding generator of I is

x(C̃σl)
+ − x(C̃σl)

−
= x

⋃l
i=1 Ii→

⋃r
i=l+1 Ii − x

⋃r
i=l+1 Ii→

⋃l
i=1 Ii .

Recall the least common multiple sF of the leading terms:

sF = lcm({x(C̃σ)+ | σ ∈ F}) = xI1→[n]\I1xI2→([n]\(I1∪I2)) · · ·xIr−1→Ir .

Now we want to compute, for 1 ≤ l < r, the monomials sl:

sl =
sF

x(C̃σl)+
x(C̃σl)

−
=

sF

x
⋃l
i=1 Ii→

⋃r
i=l+1 Ii

· x
⋃r
i=l+1 Ii→

⋃l
i=1 Ii

To see some examples:

s1 =
sF

xI1→[n]\I1
x[n]\I1→I1

= x[n]\I1→I1xI2→[n]\(I1∪I2) · · ·xIr−1→Ir

= xIr→I1xI2→I1 · · ·xIr−1→I1xI2→[n]\(I1∪I2) · · ·xIr−1→Ir

= xIr→I1xI2→[n]\I2xI3→[n]\(I2∪I3) · · ·xIr−1→(Ir∪I1).

s2 =
sF

x(I1∪I2)→[n]\(I1∪I2)
x[n]\(I1∪I2)→(I1∪I2)

= x[n]\(I1∪I2→(I1∪I2)xI1→I2xI3→[n]\
⋃3
i=1 Ii · · ·xIr−1→Ir

= xIr→(I1∪I2)xI3→(I1∪I2)xI4→(I1∪I2) · · ·xIr−1→(I1∪I2)xI1→I2xI3→[n]\
⋃3
i=1 Ii · · ·xIr−1→Ir

= xIr→(I1∪I2)xI1→I2xI3→[n]\I3xI4→[n]\(I3∪I4) · · ·xIr−1→(Ir∪I1∪I2).

We can see a general pattern that sl is not divisible by xi if i ∈ Il. So

gcd({sl | 1 ≤ l < r}) = gcd({xIr→
⋃l
i=1 Ii | 1 ≤ l < r}) = xIr→I1 .

Let F ′ ∈ Bary(∆n−2) be the face corresponding to the partition (I2, · · · , Ir−1, Ir∪I1).
Observe that

sF ′ = xI2→[n]\I2xI3→[n]\I1∪I2 · · ·xIr−1→Ir∪I1 =
s1

xIr→I1
.

Therefore, the additional face covered by (I1, . . . , Ir) is (I2, . . . , Ir−1, Ir ∪ I1). Also,
note that

gcd({x(C̃σl)
− | 1 ≤ l < r}) = gcd({x

⋃r
i=l+1 Ii→

⋃l
i=1 Ii | 1 ≤ l < r})

= gcd({xIr→
⋃l
i=1 Ii | 1 ≤ l < r})

= xIr→I1 .
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So the additional term in the boundary map is of the form described in the theorem.

Finally, we need to show that ∂2 = 0. Let us start with some partition (I1, . . . , Ir).
By definition, we have

∂(I1, . . . , Ir) =
r−1∑
s=1

(−1)s−1xIs→Is+1(I1, . . . , Is−1, Is ∪ Is+1, Is+2, . . . , Ir)

− xIr→I1(I2, . . . , Ir−1, Ir ∪ I1).

Since the boundary map without the additional term gives the algebraic Scarf complex
of ∆M , to show that ∂2 = 0, we only need to consider the behavior of the additional
term. Thus, we have

∂2(I1, . . . , Ir) =xI1→I2(−1)xIr→I1∪I2(I3, I4, . . . , Ir−1, Ir ∪ I1 ∪ I2)

+
r−2∑
s=2

(−1)s−1xIs→Is+1(−1)xIr→I1(I2, . . . , Is−1, Is ∪ Is+1, Is+2, . . . , Ir ∪ I1)

+ (−1)r−2xIr−1→Ir(−1)xIr−1∪Ir→I1(I2, . . . , Ir−2, Ir−1 ∪ Ir ∪ I1)

− xIr→I1
(
r−3∑
t=1

(−1)t−1xIt+1→It+2(I2, . . . , It, It+1 ∪ It+2, It+3, . . . , Ir ∪ I1)

)
− xIr→I1(−1)r−2xIr−1→Ir∪I1(I2, . . . , Ir−2, Ir−1 ∪ Ir ∪ I1)

+ xIr→I1xIr∪I1→I2(I3, I4, . . . , Ir−1, Ir ∪ I1 ∪ I2).

One can then check that the coefficient for each partition is 0.

We end this section by giving an example when the graph is not saturated. In this
case, the lattice ideal is not generic, but we can still obtain a minimal free resolution
from the chain complex CYC introduced in Theorem 3.3.7.

Example 3.3.9. Let us return to C3 and, without loss of generality, suppose that
ρ = mρ1. Its extended McKay-Cartan matrix and the McKay-Cartan matrix are
shown below:

C̃ =

 m 0 −m
−m m 0

0 −m m

 , C =

(
m 0
−m m

)
.

Since now there is no edge going from v1 to v3, we get the ordering x1 > x2 and the
monomial ordering on R is still the normal grevlex. Applying Theorem 3.3.7, the
lattice ideal I = I(C̃) is generated by the three binomials:

I = 〈xm1 − xm2 , xm2 − xm3 , xm1 − xm3 〉

But this is not a minimal generating set since two of the generators share the same
leading term. This is expected as I is not generic. Note that the chain complex
given by the theorem is still a free resolution, but it is no longer minimal as will be
explained.
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We record the free resolution as

0←− R
∂1←− R3 ∂2←− R2 ←− 0,

with the boundary maps being

∂1 =
(1, 23) (2, 13) (12, 3)

[ ](123) xm1 − xm2 xm2 − xm3 xm1 − xm3 ,

∂2 =

(1, 2, 3) (2, 1, 3)[ ](1, 23) −1 −xm3
(2, 13) −1 −xm1
(12, 3) 1 xm2

.

Note that the first column of ∂2 consists only of constants. By performing row and
column operations on ∂2, we can replace its first column and first row with basis
vectors. Consider matrices U and V , where U encodes the row operations performed
on ∂2, and V the column operations:

U =

−1 0 0
−1 1 0
−1 0 −1

 , V =

[
1 −xm3
0 1

]
.

The inverses of U and V are:

U−1 =

−1 0 0
−1 1 0
1 0 −1

 , V −1 =

[
1 xm3
0 1

]
.

Define d1 = ∂1U
−1 and d2 = U∂2V . Their corresponding matrices are:

d1 = ∂1U
−1 =

(1, 23) (2, 13) (12, 3)
[ ](123) 0 xm2 − xm3 xm3 − xm1 ,

d2 = U∂2V =

(1, 2, 3) (2, 1, 3)[ ](1, 23) 1 0
(2, 13) 0 xm3 − xm1
(12, 3) 0 xm3 − xm2

.

Therefore, we have a commutative diagram as shown below. Since the vertical
maps are all isomorphisms, the top row is also exact and hence a free resolution of I.

0 R R3 R2 0

0 R R3 R2 0

d1 d2

=

∂1

U

∂2

V −1
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This resolution is not minimal since the partition (1, 2, 3) is mapped directly to (1, 23),
which is in the kernel of d1. We can therefore remove the generator (1, 23) from R3

and (1, 2, 3) from R2 to reduce the ranks by 1 and obtain the following exact sequence:

0←− R/I ←− R
d′1←− R2 d′2←− R←− 0,

where d′1, d
′
2 are matrices with the corresponding row and column removed. Namely,

they are

d′1 =
(2, 13) (12, 3)

[ ](123) xm2 − xm3 xm3 − xm1 , d′2 =

(2, 1, 3)[ ]
(2, 13) xm3 − xm1
(12, 3) xm3 − xm2

.

This resolution is similar to a cellular resolution supported on the 1-simplex as
shown in Figure 3.3, with vertices labeled by the cyclic partitions. Also, note that

(2, 13) (12, 3)

Figure 3.3: The 1-simplex.

this complex can also be obtained from Figure 3.1 by removing the leftmost vertex
and the corresponding edge. How this phenomena generalizes to larger n would be
an interesting problem for future investigation.
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